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4.7 — Embedded Devices for Neuromorphic Time-Series Assessment
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Status

Neuromorphic computing aims to mimic the brain to create energy-efficient devices capable_ of
handling complicated tasks. In this regard, analysis of multivariate time-series signals has led to
advancements in different application areas ranging from speech recognition and human activity
classification to electronic health evaluation. Exploration of this domain has led to unique bio-inspired
commercial off-the-shelf device implementations in the form of fitness monitoring devices, sleep
tracking gadgets, and EEG-based brain trauma marker identifying devices. Even with this deluge of
work over the years, the necessity of evolving the research direction with day-to-day needs relating
to this sphere is still pivotal. The key idea behind the wealth of research inithese domains comes from
the fact that it is very difficult to generalize human abilities and activities, and-it:is even more difficult
to create devices that can operate at a level as accurate as human-level perception. This is where
contemporary machine learning and the more modern deep learning frameworks shine. The current
scenario of using automated devices for a variety of health-related.applications requires that these
devices become more sensitive, specific, user-friendly, and lastly accurate for their intended tasks.
This relates to further advancements in the region of algorithm construction and constraint-based
design of implementable hardware architectures. The/current crop of research in this area
investigates deep neural network (DNNs) architectures for the purpose of feature extraction, object
detection, classification, etc. DNN models utilize the, capacity of convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and even to some extent fully connected layers to extract
spatial features for time-series assessment whichrwas previously exhaustively calculated via different
hand-engineered feature extraction techniques coupled with simple classification algorithms. Along
with this, RNNs and their advanced equivalents in"the form of long short term memory networks
(LSTMs) and gated recurrent unit' (GRU) has also been integrated into the deep learning architectures
to handle timeseries signals. The idea behind this integration stems from the fact that RNNs and
LSTMs are modeled in such a way that they can keep track of previous instances of the input data in
order to make a prediction/ which ‘makes these architectures very effective for pattern and
dependency detection within'the time-series data. The other aspect of developing these diverse DNN
models is to make them readily implementable in terms of hardware accelerators and therein lies the
issue of hardware constrained efficient designs. As a consequence, the computation and model size
specifications of different. hardware-oriented approaches will result in the advancement of
application-oriented software designs which will, in turn, increase the reliability and efficiency of
these embedded.devices.

Current and Future Challenges

There are several challenges associated with managing time-series signals for classification or
recognition tasks. One of the foremost issues of time-series classification is to make these signals
interpretable by the DNNs as these signals contain multiple variables relaying information about
concurrent actions and it is difficult to process these signals in their raw form. Authors in [1] proposed
a.solution to this problem by transforming these multimodal signals into windowed images based on
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3 their sampling frequencies. Another obstacle that is related to time-series analysis pertains to skewed
‘5‘ or imbalanced information belonging to multimodal variables as the data collection procedure with
6 different sensors might not always be the same. As a way around, a common practice is to use
7 weighted sampling of the input features during the training of the DNN models so as to balance the
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33 Figure 1. The deep learning framework takes in windowed images of the raw multimodal time-series signals as input to the convolutional
34 layers. Correspondingly, feature extraction is achieved in'convelutional layers which results in a two-dimensional feature map. The pooling
35 layers contribute to reducing the feature map size while keeping the spatial features intact. This two-dimensional pooled feature map is
36 reshaped to have one-dimensional form so that it can be forwarded to the next fully connected layers. Finally, the last fully connected
37 layer will have neurons equal to the number of outputs as desired by.the application. Furthermore, with regards to multi-input model,

supplementary information coming from a separate model can be concatenated with the one-dimensional feature map to bolster the
gg inference accuracy.
40 impact of all features. Pruning outliers in the dataset by eliminating unnecessary sensor data can
41 alleviate this problem as demonstratedsby the authors in [2], however, it is not always feasible to
42 . . . . . .
43 delete multimodal information as the sensor data for multiple variables might be correlated. In
44 addition to this, many-of the software frameworks dedicated to time-series classification do not
45 consider the large computation overhead of the DNNs. This has a significant impact when these
46 frameworks are replicated.on toresource-limited and low-power embedded platforms where the use
47 . 5 5 : s
48 of off-the-chip-memories becomes essential. As a result, the performance remains limited by the
49 memory bandwidth while the power consumption stays high due to the rapid accessing of off-thechip
50 memories. The extent, of theser complications has introduced shallow networks [3], approaches to
g; quantizing model parameters [4] along with ternary [5] and binary [6] models that focus on reducing
53 the memory overhead for efficient resource-constrained hardware accelerator implementation.
54 Authors in [7] provide an example of a fixed-point CNN classifier involving 4-bit fixed point arithmetic
55 that _suggests negligible accuracy degradation and authors in [8] present fast BNN inference
gg accelerators to meet the FPGA on-chip memory requirements. Reducing memory footprints in
58 hardware-accelerators is also tied up to the cost-effective designing of memory units. On top of this,
59 managing and limiting frequent accesses of these memory units also contribute to latency, power,
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and energy efficiency as a whole. Thus, a critical challenge in terms of hardware design is to maintain
high frequency and energy efficiency with low energy consumption.
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Figure 2. This figure illustrates the trend of energy efficiency against model size of different deep learning architectures deployed on the
low power Artix—7 100t FPGA platform which has a memory of 1.65 Mb. The applications focused here are EEG detection [10], human
activity recognition [1], stress detection [1], tongue drive systems [1] along with cough and dyspnea detection as part of respiratory
symptoms recognition [9]. Depending on the model size, the frameworks can be tiny.or large whereas the energy efficiency is dictated by
the performance of the design. In the same vein, the plot also shows the device inference accuracy for the different models ranging from
86% up to 98% which further justifies that these architectures are specific enough fordow power embedded deployment.

Advances in Science and Technology to Meet Challenges

Deep learning frameworks have been widely successful for classifying time-series signals. However,
the challenges mentioned in the previous section make this task ever more difficult. To further boost
the performance of deep learning methods for time-series data, some form of digital signal
processing is commonly required. Te this extent, a common practice is to convert these raw
waveforms into windowed overlapping time-series frames. A sliding window of some specific size
along with a stepping size is passedthrough all variables, creating a set of images of shape as desired
by the user. Since most time-series signals contain label information at precise time intervals, it is
fairly easy to determine the label of the images. Another facet of dealing with time-series signals
requires feature extraction relevant to the application that is being targeted. With classical machine
learning algorithms, this was. achieved using several mathematical and analytical processes to
determine the correlation between variables. In contrast, one of the strengths of using CNNs or RNNs
in deep learning ensures that the relevant features are being extracted in image or time-space. A
general practice-in, time=series classification is to deploy CNN or RNN layers in conjunction with
pooling layers as illustrated inFig.1. The pooling layers reduce the feature map size so that the cost
of computation for the following fully connected layers is minimized. Additionally, the feasibility of
hardware deployment of these deep learning algorithms depends on the computational complexity
and size ‘of these architectures. It is imperative that these frameworks are reduced in size via
quantization, pruning, or by making the networks shallow in the first place so that they fit on
embedded devices with small memories. Hence, there comes a point where the designer has to find
the sweet spot between the accuracy of the model and the practicality of its size being suitable for
low.power embedded platforms while also ensuring that the energy efficiency of the target device is
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also satisfactory. Fig. 2 shows a comparison among different models with a variety of applications for
their model size, classification/detection accuracy, and energy efficiency which establishes that
depending on the application, deep learning models can fit on low-power embedded devices with
standard performance. Also, a modification to these frameworks can take in additional information
in the form of vectors from a separate model to enhance the overall accuracy of the model as
demonstrated in

Fig.1.

Concluding Remarks

Human-related time-series data analysis encompasses a wide range of taskstincluding /speech
recognition, keyword spotting, health monitoring, and human activity recognition to name a few. This
also allows the dedicated development of embedded devices suited for accelerating/such tasks.
Challenges in processing such time-variant data for device implementation range from pre-processing
the raw signals and removing noise and outliers to interpreting long and short dependencies that
exist within the nature of the data. Windowing the continuous stream of data into overlapping frames
to be processed using a simple DNN or CNN is a common practice for'real-world applications in which
the long dependencies in data are negligible. On the other hand, novel approaches such as RNNs and
LSTMs can improve the overall confidence of analysis for time-series data with long dependencies.
When implementing all these methods on resource-bound hardware in which power, energy,
memory footprint, and application latency are all limited, it is of utmost importance to design deep
learning algorithms with small model sizes and low omputation that meet all the application
requirements and hardware limitations. In conclusion, there must be a trade-off between
performance and implementation feasibility to justify the use of low-power embedded devices to
replicate deep learning applications of time-series assessment.
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4.8 Electromyography processing using Wearable Neuromorphic Technologies

Elisa Donati Institute of Neuroinformatics, University of Zurich and ETH
Zurich, Switzerland

Status

Electromyography (EMG) is a neurophysiological technique for recording muscle movements. It is based on
the principle that whenever a muscle contracts, a burst of electric activity is propagated through.the close
tissue. The source of the electrical signal in EMG is the summation of action potentials of metor units,(MUs)
[1]. AMU is composed of muscle fibers innervated by axonal branches of a motorneuron, thatis intermingled
with fibers of other MUs. The recorded electric activity is linearly correlated tothe strength of the
contraction and the number of recruited MUs. EMG signals can be acquired both invasively, using needle
electrodes, and superficially, by placing electrodes on the skin - called surface EMG (SEMG).

EMG signals have been and are relevant in several clinical and biomedical applications. In particular, they
are extensively employed in myoelectric prosthetics control for classifying muscle movements. Wearable
solutions for this application already exist, but they have a large margin for improvement, from increasing
the granularity of movement classification to reducing computational resources needed and consequently
power consumption.

Like any other signal, EMG is susceptible to various types of noises and interferences, such as signal
acquisition noise, and electrode displacement. Hence, a pre-processing phase is the first step to perform
proper signal analysis, which involves filtering, amplification; compression, and feature extraction both in
time and frequency domains [2]. The mainstream approach for movement classification is machine learning
(ML), which delivers algorithms with very high accuracy [3], although the high variability in test conditions
and their high computational load limit their deployment to controlled environments. These drawbacks can
be partially solved by using deep learning technigues that allow for better generalization to unseen
conditions but remain computationally expensive, requiring bulky power-hungry hardware, that hinder
wearable solutions [4].

Neuromorphic technologies offer a/solution torthis problem by processing data with low latency and
lowpower consumption mimicking the key computational principles of the brain [5]. Compared to state-of-
the-art ML approaches, neuromorphic EMG processing shows a reduction of up to three orders of magnitude
in terms of power consumption and latency [6-8], ‘with limited loss in accuracy(5-7%) [9, 10].

New approaches have been proposed:that directly extract the motorneurons activity from EMG signals
as spike trains [12]. They represent a more natural and intuitive interface with muscles but currently limit
themselves by processing spikes with traditional ML techniques and do not consider the possibility of using
more appropriate frameworks/such as,spiking neural networks (SNNs).

Current and Future Challenges

Although the performance of myoelectric prosthetics increased conspicuously in the last decade [13], they
still can not be used in daily life. The fine-grained control is in fact limited by the number of electrodes. This
issue can be overcome by using High-Density EMG (HD-EMG), which typically uses hundreds of electrodes,
allowing to monitor larger areas and effectively increasing the precision of the measurements [14]. However,
HD-EMG uses more.computational resources, in terms of power and time required to classify movements
and to generate motor commands. Current technologies are not able to process such an amount of data in-
situ and with low latency simultaneously. For this reason, the EMG signals are transmitted, for example via
Bluetooth, toa remote system that is quite bulky and heavy, making a wearable solution impractical.
Neuromorphic technologies represent a solution to all the described limitations by processing data in
parallel;, with low latency, and taking advantage of the low-power nature of analog computing and spiking
communication, as the biological system they are inspired from. Although recent results show promising
advances, the current challenge of neuromorphic technology is to fill the gap with state-of-the-art ML
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approaches, in terms of accuracy. One of the main reasons behind this gap is the different amount of
resources invested in the respective research fields. In addition, current research that focuses on adopting
ML methods and implementing them in neuromorphic hardware faces challenges governed by the
unsuitability of such substrates which are primarily targeted for SNNs [11].

To get the most from neuromorphic computing we need a change of paradigm, where the neuromorphic
technology can directly interface with motorneurons’ spiking activity, instead of continuous.sEMG signals.
This represents a matching condition between inputs and outputs that optimize the information transfer
between the muscle activity and the processing and control unit. The spike trains©f motorneurons can be
extracted from sEMG signals by means of decomposition algorithms. In particular, the spatial distribution of
MUs action potentials can be assessed with activation maps obtained from HD-EMG. signals™ [12].
Nevertheless, current implementations are still computationally expensive, and only.recently it was possible
for their deployment in real-time. After the decomposition, the spike trains are translated and processed
using ML methods instead of better-suited SNNs [15].

Designing neuromorphic systems able to extract and process motorneurons activity from EMG signals
will pave the way to a new class of wearable devices that can be miniaturized.and directly interface with the
electrodes.

Advances in Science and Technology to Meet Challenges

A concrete roadmap towards wearable neuromorphic EMG processing, see Figure 1, could be constructed
with short and long-term objectives. In the short term, we should advance neuromorphic computation to
bridge the gap with ML methods for EMG classification, and optimize decomposition algorithms to make
them run real-time on embedded systems. In the long-term, the decomposition algorithm should be ported
into a neuromorphic chip to implement a fully spiking pipeline while the technological breakthroughs in
surface smart electrodes could potentially be able.to record directly motorneurons’ spike trains.

Bridge-the-Gap. The first step is to understand the requirements to improve the accuracy of EMG
movements classification. The front-end, which includes pre<processing and spike conversion, has the largest
margin for improvement. Signal-to-spikerconversion produces spike trains required by neuromorphic
devices. The most common signal-to-spike,converter. is the delta-sigma [7] which is widely applied in
biomedical applications, thanks to its lower cireuit complexity compared to multi-bit ADCs. However, the
delta-modulator generates a high sampling rate and larger data size that can easily push the neurons’ firing
rate into saturation, making them insensitive to further input variations. Furthermore, SNNs for EMG
classification should be optimized and learning algorithms could make them adaptable to different patients.

Embedded Decomposition sSEMG.decomposition into spike trains is generally based on shape-based
algorithms, also called templater matching [16] or blind source separation algorithms [17]. The
decomposition of the complex SEMG is a computationally expensive procedure in a multidimensional
constraint space. To ruh.these algorithms on embedded platforms and in real-time it is imperative to i.
reduce the complexity andiizoptimize it for the selected digital embedded architecture (e.g. PULP platform
[18]) and exploit its hardware capabilities. The extracted spike trains are then sent to a neuromorphic chip,
creating a hybrid digital-analog framework for spike encoding low-power computation.

Spike-based EMG decomposition To build a fully spiking pipeline that can be integrated into a single
neuromorphic chip, the MUs identification algorithm needs to be translated into a spiking version.
Embedding the entire process into a single chip that can be miniaturized and connected directly to the
electrodes/will allow online processing, which is optimal for real-time closed-loop applications and less
vulnerable to interferences either caused by humans or the environment.

Smart electrodes Another long-term game-changer would be the technological breakthroughs that will
allow the single electrode to be able to record directly the activity of a single MU, removing the need for
decomposition algorithms.
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Figure 1: A concrete Roadmap towards neuromorphic Wearable Devices

Concluding Remarks

The need of improving myoelectric prosthetic control to increase the life quality of the patient poses new
challenges for implementing real-time, compact, andlow-power EMG processing systems. A wearable device
based on neuromorphic technology can enable in-situ EMG signal processing and decomposition, without
information transfer and external computation./In particular, mixed-signal SNNs implemented on
neuromorphic processors can be/integrated directly with the sensors to extract temporal data streams in
real-time with lowpower consumption.

This roadmap presents the specific case of prosthetic control, nevertheless, the development of this
technology could reveal useful to more applications where continuous monitoring is required. In clinical
settings, continuous monitoring. of \EMG signals can be utilized to detect degenerative diseases of
motorneurons [19] even for very large time spans such as weeks or months. In rehabilitation, EMG can be
used as feedback to adapt the patient training accordingly to its muscular status, after a stroke or
neurological impairments [20]:

With the current rate of technological and computational improvements the proposed objectives could
be realistically achieved within a decade. If successfully executed, this roadmap will bring technology that
will improve the quality of life for amputees and patients with motorneuron diseases.
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4.9 — Collaborative Autonomous Systems
Silvia Tolu, Roberto Galeazzi, Technical University of Denmark (DTU)

Status

Collaborative autonomous systems (CAS) (see Figure 1) are entities that can cooperate among
themselves and with humans, with variable level of human intervention (depending on the level, of
autonomy) in performing complex tasks in unknown environments. Their behaviour is driven by the
availability of perception, communication, cognitive and motor skills and improved computational
capabilities (on/off-board systems). The high level of autonomy enables the execution of dependable
actions under changing internal or external conditions. Therefore, CAS are expectéd to be able to: 1.
perceive and understand their own condition and the environment they operate in; 2:.dependably
interact with the physical world despite of sudden changes; 3. intelligently evolve through learning
and adaptation to unforeseen operational conditions; 4. self-decide their actions<based on their
understanding of the environment.

Currently, CAS (e.g., collaborative robots - cobots) show limited performances when accomplishing
physical interaction tasks in complex scenarios [1]. Recent studies,have demonstrated that
autonomous robots can outperform the task they are programmed.for, but they are limited in the
ability to adapt to unexpected situations [2] and to different levels of human-robot cooperation [1].
These limitations are mainly due to the lack of generalization. capabilities, i.e., cobots cannot transfer
knowledge across multiple situations (environments, tasks, and interactions). One of the most viable
pathways to solve this issue is to build intelligent autonemous. cobots by incorporating Artificial
Intelligence (Al)-based methods into the control systems [3]. These bio-inspired controllers [4] allow
taking a different perspective from the classical control approaches, which require a deeper
understanding of the mechanics of the interactions andiof the intrinsic limitations of the systems
beforehand. Main current research directions:[5] are focused on the understanding of the biological
working principles of the central nervous system (CNS) in order to build innovative neuromorphic
computing algorithms and hardware that will bring significant advances in this field; In particular, they
will provide computational efficieney and powerful control strategies for robust and adaptive
behaviours.

In the next decades, there will be significant developments in CAS related to self-capabilities such as
self-inspection, -configuration, sadaptation, -healing, -optimization, -protection, and -assembly. This
will be a great enabler of systems acting in real-world unstructured scenarios, such as in remote
applications (deep sea orispace), inthazard situations (disasters), in healthcare interventions (assistive,
rehabilitation, or diagnosis), and in proximity to people.
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Figure 1. Overall idea of a Collaborative Autonomous Control System. The Supervisor manages the entire

system, observes and analyses the whole situation and provides information to each agent to improve their

autonomous actions and optimize the operations.
Current and Future Challenges
Several fundamental challenges demand to be addressed to enable the deployment of heterogenous
autonomous systems able to collaborate towards the achievement oficommon mission objectives.
These challenges span across different research topics ‘including ‘online mission planning and
execution for multi-agent systems under uncertainty. Future mission planners [6] should integrate
several factors to determine the optimal allocation of‘agents to the fulfiiment of the mission tasks.
These factors, among many, include energy availability and depletion rates, physical capabilities of the
agents, probability of failures, and amount of collaboration‘heeded. The mission execution demands
the development of a revolutionary controbparadigm that enables true collaboration among CAS with
different functionalities. Cooperative control [7] has been so far limited to consensus and
synchronization to enable the coordinated dynamic evolution of mostly homogeneous multi-agent
systems to perform the same type of actions. The’execution of tasks in uncertain environments calls
for robust learning/adaptation methods. to enable baseline control systems to ensure robust
cooperation and coordination of heterogeneous multi-agent robots in various real applications [7].
Another big question is how to.endow CAS with a high-level of fault tolerance capabilities in order to
ensure dependability under a wide variety of operational conditions [8]. Despite the large research
effort pursued by the community:over the past four decades, condition monitoring and fault tolerant
control are lacking efficiency due to the ever-increasing complexity of the systems.
Future work will aim to provide insights about how a CAS will show robust, compliant, and intelligent
physical interactions with the environment, human beings, or other systems. In this regard, real-time,
energy-efficient_computing~is required to advance the type of primitive collaborations that are
achievable so far. With'this aim;’systems should be equipped with small processors able to ensure low
energy consumption,«and, at the same time, increase the memory bandwidth. Current alternatives
(e.g., multicore central processing units - CPUs [9], new graphical processors - GPUs [10], parallel
processing core + SpiNNaker [11]) still suffer from an extremely high energy demand that is not
sustainable.and they cannot be easily scaled. Additionally, a limited number of processes can run
simultaneously, and the speed of the response is still low. Consequently, new neuromorphic
architectures are the most promising alternatives to address the increasing demand to create CAS able
of aiseamless interaction with human beings.
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Advances in Science and Technology to Meet Challenges

In this section, we discuss the foremost advances in science and technology that will address the main
aforementioned challenges.

Mission Planning - Novel Al-based heuristic methods will be developed to equip mission planners with
key functionalities that will increase the value for the human operators. These include: the close-loop
decomposition of missions to achieve an adaptive task allocation by leveraging information gathered
at mission execution; automated survivability prediction to assess the likelihood of vehicle:loss based
on faults and failures occurred in past missions; automated reliability assessment to forecast the
probability of mission failure based on past missions’ information; automated learning from previous
missions’ performance to tune the future missions’ parameters; inclusion of services to extend the
mission endurance [12, 13].

Fault-tolerant and Cooperative Control - Paradigms based on cooperation will be created to fulfil the
advances in multi-agent systems [8]. Cooperation among agents offers the possibility of achieving
fault-tolerance towards sensors and actuators faults through the design/of diagnostic solutions that
leverage shared proprioceptive and exteroceptive information. Prescribe-time fault tolerant
cooperative control solutions for safety critical cyber-physical systems.will be achieved; these will
provide the basis for efficient fault-tolerant algorithms able to trade-off between fast convergence
and acceptable fault-tolerance performance.

Robust, Compliant and Intelligent Physical Interactions - New physical mechanisms will be designed
to provide passive properties to the system, to increase the physical’interaction performances, and
include advanced control aspects for achieving simultaneous robustness and compliance. The
advances in Neuro-robotics and Neuromorphic Computing will influence the development of the next
generation of intelligent agents [14]. Current neuromorphic computing systems already exploit
learning and adaptive skills in systems compared to conventional von-Neumann machines thanks to
non-volatile memories and power efficiency performance [15]. However, new types of sensors and
actuators will be introduced to enhance the.cognitive and learning functionalities of the systems and
deal with safety and robustness concerns. Advanced bio-inspired platforms, e.g., brain-on-the-chip
devices, will be designed for processing complex brain-inspired computing techniques that will
support autonomy, more connectivity, increased decentralization, and high-performance computing.
Indeed, neuromorphic technologies will be able to process complex unstructured data and learn to
self-respond to external unknown,stimulisenabling their use in critical edge applications, for example
in autonomous navigation, human-machine interactions and smart healthcare markets.

Finally, innovative applications could be generated through the development of self-reconfigurable
modular CAS, systems able:to adapt their morphology and functionality to varied environments
including unforeseen<conditions [16]. This will require self-learning capabilities to develop new
knowledge and to decide upan the previous accumulated experience.

Concluding Remarks

This paper has presented the future perspectives of collaborative autonomous systems and the main
challenges and research issues that need to be addressed toward their realization. Further to these
scientific and technological challenges, there are ethical, social, and legal issues when realising CAS,
though these are beyond the scope of this article.

CAS'working alongside humans have already been deployed and they support humans’ work ensuring
high productivity, speed, and accuracy [17]; they also relieve us of many heavy and time-consuming
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tasks and reduce the overall risk of collisions. CAS provide an economically viable entry-point to
automation of processes, i.e., accelerated testing scenarios on products, environmental impacts.

Fusion of fundamental and applied research in both technical and natural sciences will facilitate the
development of new theoretical frameworks for the design of intelligent CAS. Multiple disciplineswill
be merged to pursue a systematic innovation within cyber-physical systems with variable level of
autonomy and cooperation; the use of Al and Internet of Everything technologies future proofs.the
system to address changing market demands and expectations in several technological areas.
Applications will be many and varied including, and not limited to, manufacturing, health,care,
inspection and maintenance, precision farming, autonomous marine operations, and.education.
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5. 1 The ethics of developing neuromorphic technology
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Like the development of other forms of artificial intelligence, the development.of neuromorphic technology
may raise a number of ethical questions. [1], [2].

Implemen-
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Figur 1 Some of:the most salient ethical issues raised by the development of neuromorphic technology

One issue concerns privacy.and surveillance. The development of most forms of artificial intelligence
depends upon access.to data, and as far as these data can be seen as private or personally identifiable, it
raises a question about when it is (ethically) defensible to use such data. On the one hand, some argue that
persons have a right to be let alone and exercise full control over information about themselves, so that
any use of such data presupposes fully informed consent. On the other hand, others recognize the
importance of privacy but argue that it may sometimes be outweighed by the fact that reliable applications
for the good:of everyone presuppose access to high quality representative data [3].
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Another issue concerns opacity. Many forms of artificial intelligence support decision making based on
complex patterns extracted from huge data sets. Often, however, it will be impossible not only for the
person who makes the final decision but also for the developer to know what the system’s
recommendations are based on and it is in this sense that it is said to be opaque. For some such opacity
does not matter as long as there are independent ways of verifying that the system delivers an accurate
result, but others argue that it is important that the system is explainable [4]. In this way, a tension is often
created between accuracy and transparency, and what the right trade-off is may often depend upon the
concrete context.

Opacity is closely connected with the question of bias since opacity may hide certain biases. There are
different forms of bias but in general, bias arises when automated Al decision suppert systems’are based
on data that is not representative of all the individuals that the system supports decisions.in‘relation to [5].
There are different opinions as to when the existence of bias in automated decisionisupport systems poses
a serious problem. Some argue that ‘traditional’ unsupported human decision-making is biased, too, and
that the existence of bias in automated Al decision support systems only pose a serigus problem if the bias
is more significant than the pre-existing human bias. Others argue that features such as opacity or the lack
of suitable institutional checks and balances may tend to make the existence of bias in automated decision
support systems more problematic than ‘ordinary’ human bias [6]. A separate problem is created by the
fact that it sometimes will be easier to identify and quantify bias in Al'systems than in humans, making a
direct comparison more difficult.

The development of forms of artificial intelligence based on neuromorphic technology also raises questions
about manipulation of human behavior, online as well as offline. One context in which such questions arise
is advertising and political campaigning, where Al generated deep knowledge about individuals’
preferences and beliefs, which may be used to influence them. in a way that escapes the individuals’ own
awareness. Similar issues may also arise in connection with other forms of artificial intelligence such as
chatbots and care or sex robots that simulate certain forms of human behavior without being ‘the real
deal’. Even if persons develop some form of emotional attachment to such systems, some argue that there
is something deeply problematic and/deceptive about'such systems [7], while others point out that there is
nothing intrinsically wrong with such systems as long as they help satisfy human desires [8]. If, as described
in section 4.1, neuromorphic technologies will make it possible for robots to move from extremely controlled
environments to spaces where they collaberate/with humans and exhibit continuous learning and adaptation,
it may make such questions more pressing.

A distinct set of issues are raised by the-possibility of developing Al systems that do not just support human
decision making but operate inlamore or less autonomous way such as ‘self-driving’ cars and autonomous
weapons. One question thatisuch systems raise concerns the way in which they should be programmed in
order to make sure that they make ethically justifiable decisions (in most foreseeable situations). Another
question concerns how responsibility and risk should be distributed in the complex social system they are a
part of. If, as described in section 4.2, neuromorphic engineering offers the kind of technological leaps
required for achieving truly autonomous vehicles, the development of neuromorphic technologies may make
such questionsimore pressing than at present.

A distinct issue relates to sustainability. As pointed out in the introduction, 5-15% of the world's energy is
spent insome form of data manipulation (transmission or processing), and as long as a substantial amount
of that energy comes from sources that contribute to climate change through the emission of greenhouse
gases, it raises’a question as to whether all that data manipulation is really necessary or could be done in a
more energy, efficient way. And in so far as neuromorphic technologies, as e.g. pointed out in section 4.7,
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shows a reduction of up to three orders of magnitude in terms of power consumption compared to state-of-
the-art ML approaches, it seems to provide robust ethical support for the development of neuromorphic
technologies.

As mentioned in the beginning of this section, the ethical questions raised by the development of
neuromorphic technology is not unique to this technology but related to the development of artificial
intelligence as such. The successful development of neuromorphic technology may make some of the issues
more pressing, and a central task for future work on the ethics of neuromorphic technology will, accordingly,
be to inquire into the exact way in which the issues are raised by the development of neuromorphic
technology. But the existing forms of artificial intelligence already raise many of the questions described so
far. Besides these questions, however, the development of neuromorphic technology, (as wellas other
forms of artificial intelligence) may also raise a number of questions that are more speculative either
because it is unclear whether the development will take place, when it will happen or what the precise
consequences will be.

One such issue has to do with automation and unemployment. Artificial intelligence/systems have already
replaced humans in certain job functions (e.g., customer service), but it has been'suggested that most job
functions will be affected by the development of artificial intelligence at one point [9]. Because such a
development has the potential to disrupt the social order (e.g., thrfough mass unemployment) it raises an
important ethical (and political) question as to how artificial intelligence systems should be introduced into
society [10].

Another more speculative issue relates to artificial moral agents and so-called robot rights. If the
development of neuromorphic (and other) forms of artificial intelligence leads to the creation of systems
that possess some or all the traits that make us ascribe rights and responsibilities to humans, it may thus
raise a question about whether such rights and responsibilities should be ascribed to artificially intelligent
systems [11], [12].

Thirdly, some have also pointed out that the development of neuromorphic (and other) forms of artificial
intelligence may create issues related to.the so-called,/singularity. The idea is that the technological
development may lead to the creation of general forms of artificial intelligence that surpass the human
level of intelligence and then begin to control'the further development of artificial intelligence in ways that
may not be in the interests of the humanispecies and perhaps even threaten its very existence. Whether
such a scenario is likely has been questioned [13], but some argue that even a slight risk should be taken
serious given the potentially devastating consequences [14].

No matter what one thinks is the.right answer to the ethical questions raised by the development of
neuromorphic technology;itis, finally, worth noticing that it still leaves an important practical question:
how best to make surethat the actual development and implementation of neuromorphic technology will
take place in an ethically defensible way. For some questions, governmental regulation may be the best
means. For others,the best solution may be to trust the community of developers to make the right, value-
based decisions when designing systems, while some questions, perhaps, should be left to the enlightened
citizenry. In the'end, however, it will probably be up to an inquiry into the concrete situation to decide
when one orthe other approach — or combination of approaches — provides the best means of securing an
ethically defensibleidevelopment of neuromorphic technology.



Page 169 of 169 AUTHOR SUBMITTED MANUSCRIPT - NCE-100024.R1

coONOUL A WN =

OV UUUUUVUUANADNDNDNDNDNDMRARADNWWWWWWWWWWNNNNNNNNNRNS = 2 = 2 03 a5 o o0
SWVWONOURNWN-OOVOTIODUTRWN-TOLVLONOTUNRNRWN OV NOUNRAWN-OLOVONOTULNAWN=O

References:

[1] Mdller, Vincent C., "Ethics of Artificial Intelligence and Robotics", The Stanford Encyclopedia of.
Philosophy (Winter 2020 Edition), Edward N. Zalta (ed.), URL =
<https://plato.stanford.edu/archives/win2020/entries/ethics-ai/>.

[2] Coeckelbergh, Mark, Al Ethics, Cambridge: MIT Press, 2020.

[3] Topol, Eric, Deep Medicine: How Artificial Intelligence Can Make Healthcare Human again, New York:
Basic Books, 2019.

[4] Cohen, I. (2018). Is There a Duty to Share Healthcare Data? In I. Cohen, H. Lynch, E. Vayena, & U. Gasser
(Eds.), Big Data, Health Law, and Bioethics (pp. 209-222). Cambridge: Cambridge University Press.
d0i:10.1017/9781108147972.020

[5] Binns, Reuben, “Fairness in Machine Learning: Lessons from Political Philesophy”, Proceedings of the 1st
Conference on Fairness, Accountability and Transparency, in Proceedings‘of-Machiné Learning Research, 81.:
149-159, 2018.

[6] Ploug, Thomas and Sgren Holm, “The right to refuse diagnosti¢s and treatment planning by artificial
intelligence”, Medicine, Health Care and Philosophy, 2020 Mar;23(1):107-214.

[7] Nyholm, Sven, and Lily Frank, “From Sex Robots to Love/Robots: Is Mutual Love with a Robot Possible?”,
219-243, in Robot Sex: Social and Ethical Implications, Cambridge: MIT Press, 2017.

[8] Danaher, John, “The Philosophical Case for Robot Friendship®, Journal of Posthuman Studies, 3(1): 5-24,
2019.

[9] Baldwin, Richard, The Globotics Upheaval:Globalisation, Robotics and the Future of Work, New York:
Oxford University Press, 2019.

[10] Goos, Maarten, “The Impact of Technological Progress on Labour Markets: Policy Challenges”, Oxford
Review of Economic Policy, 34(3): 362—375, 2018.

[11] Turner, Jacob, Robot Rules: Regulating Artificial Intelligence, Berlin: Springer, 2019.

[12] Coeckelbergh, Mark, “Care Robots and the Future of ICT-Mediated Elderly Care: A Response to Doom
Scenarios”, Al & Society, 31(4)455-462,2016.

[13] Bostrom, Nick: Superintelligence: Paths, Dangers, Strategies, Oxford: Oxford University Press, 2014.

[14] Floridi, Luciano: “Should We Be Afraid of Al? Machines Seem to Be Getting Smarter and Smarter and
Much Better at Human Jobs, yet/True Al Is Utterly Implausible. Why?”, Aeon, 9 May 2016.
https://aeon.co/essays/true-aizis-both-logically-possible-and-utterly-implausible



	Creative Commons Cover
	152-169
	152-169


