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Abstract: This paper presents the development of a high-order flux reconstruction (FR) 
formulation for unsteady flow simulation with dynamic grid algorithms. Specifically, the 
high-order FR formulation for the Navier-Stokes equations in an arbitrary Lagrangian-Eulerian 
(ALE) format is developed for numerical simulation on moving domains. A hybrid moving grid 
algorithm consisting of algebraic grid smoothing and grid regeneration methods is developed to 
resolve domains with large deformation. The ‘dist-mesh’ technique is used for mesh regeneration, 
and local Lagrange interpolation within finite elements is used for flow field reconstruction. 
Several unsteady flow cases are studied to verify the effectiveness of the new method developed 
in this work. 
 
1. Introduction 

Many engineering problems features unsteady flows over moving geometries, such as flows 
over turbomachinery, and vehicles with revolving or flapping wings. However, moving 
geometries, especially those involving multiple flexible bodies with large relative motion, pose 
tremendous challenge on accurate and efficient numerical simulation. Generally, there are three 
ways to handle moving geometries in numerical simulation, namely, the mesh-free methods [1, 
2], the immersed boundary methods [3, 4], and the ALE methods [5] with dynamic body-fitted 
meshes. Comparing with the other two methods, ALE with dynamic meshes can maintain the 
mesh quality near moving boundaries, especially for high Reynolds number flows; but the mesh 
moving and regeneration algorithms can be very complex, and therefore, hard to design to 
achieve high computational efficiency.  In this study, we will develop a hybrid moving mesh 
and mesh regeneration technique to accelerate the dynamic mesh approach, and verify this 
technique with unsteady flows over moving domains.   

There are basically two approaches to handle dynamic meshes. One is mesh deformation 
(including rigid-body motion), which can resolve small, local mesh deformation or simple mesh 
movement, and the other one is mesh regeneration, which can handle large deformation and/or 
large relative motion among multiple bodies. The algebraic mesh generation/deforming 
technique originates from trans-finite interpolation (TFI) [6]. It has been widely adopted for 
generating static meshes around complex geometries, and smoothing dynamic meshes by the 
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agency of its numerical efficiency. For each specific problem, the blending function used to 
control the mesh quality and algorithm robustness needs to be modified. Furthermore, the 
algebraic approach may generate crossed grid elements and negative volumes [7] when applied 
to cases which have multiple bodies with large deformation or relative movement. To conquer 
the weakness of the algebraic technique, researchers have developed many other meshing 
algorithms. Batina first developed the spring analogy scheme [8], which treats the mesh as a 
linear springs network and solve the equilibrium equation of this to determine the locations of 
the grid points. After that, Degand and Farhat [9], and Blom [10] proposed nonlinear approach 
for the spring analogy scheme. Liu et al. [7] presented a deforming mesh technique based on 
Delaunay graph mapping. Further, Persson [11] proposed a general mesh method named 
‘dist-mesh’ by combining spring analogy with the Delaunay triangulation algorithm. This 
method is easy-to-use and can generate meshes of high quality with high computing efficiency. 
In this work, the algebraic mesh deforming technique developed in our previous work [12] will be 
used to efficiently handle grid movement with relatively small deformation. To handle large mesh 
deformation or relative motion, the mesh quality will be measured following the approach 
proposed by Field [13]. When it is below a certain threshold, the ‘dist-mesh’ method will be 
activated for mesh regeneration. 

In this study, a high-order accurate FR method [14, 15, 16, 17] is further developed to resolve 
flow simulation on domains with large deformation. Our previous work [18, 19] implemented the 
ALE formulation for both the compressible and incompressible Navier-Stokes equations which 
can be directly solved in mesh deforming conditions. To handle large mesh deformation, the 
‘dist-mesh’ technique [11]is used to regenerate the mesh. Then a Lagrange interpolation approach,  
which has been used by many researchers [20, 21, 22] in immersed boundary methods and moving 
grid methods, is adopted to reconstruct flow fields 

The remainder of this paper is organized as follows. In Sect.2, numerical method, dynamic 
mesh algorithm and simulation setup are introduced. In Sect.3, results from vortex propagation  
presented. Sect.4 briefly concludes the study and discusses the future work. 

 
2. Numerical methods 

2.1 Governing equations 
Unsteady compressible Navier-Stokes(N-S) equations in conservation form in the physical 

domain(𝑡𝑡, 𝑥𝑥,𝑦𝑦) can be written as:  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, (1)  

where 𝑄𝑄 is the vector of conservative variables, and 𝐹𝐹 and 𝐺𝐺 are the total fluxes including 
both the inviscid and viscous flux vectors. 
 After introducing a time-dependent coordinate transformation from the physical domain 
(𝑡𝑡, 𝑥𝑥,𝑦𝑦) to the computational domain (𝜏𝜏, 𝜉𝜉, 𝜂𝜂), one can rewrite Eq. (1) as: 
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𝜕𝜕𝑄𝑄�
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐹𝐹�
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐺𝐺�
𝜕𝜕𝜕𝜕

= 0, (2)  

where 

�
𝑄𝑄� = |𝐽𝐽|𝑄𝑄                                 
𝐹𝐹� = |𝐽𝐽|�𝑄𝑄𝜉𝜉𝑡𝑡 + 𝐹𝐹𝜉𝜉𝑥𝑥 + 𝐺𝐺𝜉𝜉𝑦𝑦�
𝐺𝐺� = |𝐽𝐽|�𝑄𝑄𝜂𝜂𝑡𝑡 + 𝐹𝐹𝜂𝜂𝑥𝑥 + 𝐺𝐺𝜂𝜂𝑦𝑦�

. (3)  

Herein, 𝜏𝜏 = 𝑡𝑡 , and 𝜉𝜉  and 𝜂𝜂 , which vary from -1 to 1, are the local coordinates in the 
computational domain. Then, as the transformation shown above, the Jacobian matrix 𝐽𝐽 will be 
the following: 

𝐽𝐽 =
𝜕𝜕(𝑡𝑡, 𝑥𝑥,𝑦𝑦)
𝜕𝜕(𝜏𝜏, 𝜉𝜉, 𝜂𝜂) = �

𝑥𝑥𝜉𝜉 𝑥𝑥𝜂𝜂 𝑥𝑥𝜏𝜏
𝑦𝑦𝜉𝜉 𝑦𝑦𝜂𝜂 𝑦𝑦𝜏𝜏
0 0 1

�. (4)  

Since 𝐽𝐽 is a non-singular matrix, its inverse transformation must also exist. The inverse of 𝐽𝐽 is 

𝐽𝐽−1 =
𝜕𝜕(𝜏𝜏, 𝜉𝜉, 𝜂𝜂)
𝜕𝜕(𝑡𝑡, 𝑥𝑥,𝑦𝑦) = �

𝜉𝜉𝑥𝑥 𝜉𝜉𝑦𝑦 𝜉𝜉𝑡𝑡
𝜂𝜂𝑥𝑥 𝜂𝜂𝑦𝑦 𝜂𝜂𝑡𝑡
0 0 1

�. (5)  

The Geometric Conservation Law (GCL) for the time-dependent coordinate transformation 
can be written as:  

⎩
⎪⎪
⎨

⎪⎪
⎧

𝜕𝜕(|𝐽𝐽|𝜉𝜉𝑥𝑥)
𝜕𝜕𝜕𝜕

+
𝜕𝜕(|𝐽𝐽|𝜂𝜂𝑥𝑥)
𝜕𝜕𝜕𝜕

= 0

𝜕𝜕�|𝐽𝐽|𝜉𝜉𝑦𝑦�
𝜕𝜕𝜕𝜕

+
𝜕𝜕�|𝐽𝐽|𝜂𝜂𝑦𝑦�
𝜕𝜕𝜕𝜕

= 0

𝜕𝜕|𝐽𝐽|
𝜕𝜕𝜕𝜕

+
𝜕𝜕(|𝐽𝐽|𝜉𝜉𝑡𝑡)
𝜕𝜕𝜕𝜕

+
𝜕𝜕(|𝐽𝐽|𝜂𝜂𝑡𝑡)
𝜕𝜕𝜕𝜕

= 0

 (6)  

Eq. (2) can be reformulated in the physical domain by using the relationship between the 
grid velocity 𝑉𝑉𝑔𝑔���⃗ = (𝑥𝑥𝑡𝑡,  𝑦𝑦𝑡𝑡) and (𝜉𝜉𝑡𝑡, 𝜂𝜂𝑡𝑡) as given below, 

�
𝜉𝜉𝑡𝑡 = − 𝑉𝑉𝑔𝑔���⃗ ∙ ∇𝜉𝜉
𝜂𝜂𝑡𝑡 = − 𝑉𝑉𝑔𝑔���⃗ ∙ ∇𝜂𝜂

. (7)  

On applying the GCL identities, Eq. (2) can then be express as: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−  𝑉𝑉𝑔𝑔���⃗ ∙ ∇𝑄𝑄 = 0 (8)  

We note that GCL is automatically satisfied when a chain-rule approach is used to implement Eq. 
(8) [23, 19]. 

2.2 FR formulation 

 In FR, the flux terms in Eq. (2), i.e., 𝐹𝐹� and 𝐺𝐺�, are treated as a combination of local fluxes 
𝐹𝐹�𝐿𝐿𝐿𝐿𝐿𝐿and 𝐺𝐺�𝐿𝐿𝐿𝐿𝐿𝐿, and correction fluxes 𝐹𝐹�𝐶𝐶𝐶𝐶𝐶𝐶and 𝐺𝐺�𝐶𝐶𝐶𝐶𝐶𝐶, which are expressed as: 
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�𝐹𝐹
�(𝜉𝜉, 𝜂𝜂) = 𝐹𝐹�𝐿𝐿𝐿𝐿𝐿𝐿(𝜉𝜉, 𝜂𝜂) + 𝐹𝐹�𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉, 𝜂𝜂)
𝐺𝐺�(𝜉𝜉, 𝜂𝜂) = 𝐺𝐺�𝐿𝐿𝐿𝐿𝐿𝐿(𝜉𝜉, 𝜂𝜂) + 𝐺𝐺�𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉, 𝜂𝜂)

. (9)  

Local fluxes are constructed using only flow information within a specific element. Therefore, 
local fluxes are element-wise continuous, and have jumps on element boundaries. To ensure 
conservation and numerical stability, common or numerical fluxes, i.e., 𝐹𝐹�𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐺𝐺�𝐶𝐶𝐶𝐶𝐶𝐶 in 
current context, are reconstructed on element boundaries using local flow information via 
Riemann solvers [23] for the inviscid fluxes and/or via the first Bassi-Rebay (BR1) approach [24] 
for the viscous fluxes. The numerical fluxes are then used to correct the local fluxes, and forms 
the correction fluxes 𝐹𝐹�𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐺𝐺�𝐶𝐶𝐶𝐶𝐶𝐶. 
 On substituting Eq. (9) into Eq. (2), the governing equations then read 

𝜕𝜕𝑄𝑄�
𝜕𝜕𝜏𝜏

+ �
𝜕𝜕𝐹𝐹�𝐿𝐿𝐿𝐿𝐿𝐿

𝜕𝜕𝜕𝜕
+
𝜕𝜕𝐺𝐺�𝐿𝐿𝐿𝐿𝐿𝐿

𝜕𝜕𝜕𝜕
� + �

𝜕𝜕𝐹𝐹�𝐶𝐶𝐶𝐶𝐶𝐶

𝜕𝜕𝜕𝜕
+
𝜕𝜕𝐺𝐺�𝐶𝐶𝐶𝐶𝐶𝐶

𝜕𝜕𝜕𝜕
�

=
𝜕𝜕𝑄𝑄�
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐹𝐹�𝐿𝐿𝐿𝐿𝐿𝐿

𝜕𝜕𝜕𝜕
+
𝜕𝜕𝐺𝐺�𝐿𝐿𝐿𝐿𝐿𝐿

𝜕𝜕𝜕𝜕
+ 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 = 0. 

(10)  

Herein, 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 = 𝜕𝜕𝐹𝐹�𝐶𝐶𝐶𝐶𝐶𝐶 𝜕𝜕𝜕𝜕⁄ + 𝜕𝜕𝐺𝐺�𝐶𝐶𝐶𝐶𝐶𝐶 𝜕𝜕𝜕𝜕⁄  is named the correction field.  

 To approximate the solution 𝑄𝑄�  within the computational domain, a multi-dimensional 

polynomial of degree 𝑝𝑝 is defined by its value at a set of 𝑁𝑁𝑝𝑝 = (𝑝𝑝+1)(𝑝𝑝+2)
2

 solution points. The 
solution points for a third-order accurate scheme are shown in Figure 1. 

 
Figure 1. Solution points (circles) and flux points (squares) in the reference element for 𝑝𝑝 = 2 . 

Eq. (10) can be expressed in the physical domain as: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙

𝜕𝜕𝜕𝜕
+
𝜕𝜕𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙

𝜕𝜕𝜕𝜕
− 𝑉𝑉𝑔𝑔���⃗ ∙ ∇𝑄𝑄 + 𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐 = 0, (11)  

where the correction field in the physical domain is 𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐 = 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 |𝐽𝐽|⁄ . Readers are referred to 
Refs. [37, 41, 42, 43, 44] for more information on this method. 

2.3 Dynamic grid strategies – the ‘Dist-mesh’ method 
 The basic idea of the ‘dist-mesh’ method is to solve the force equilibrium equation of each 
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element edge (bar) of triangle elements generated by the Delaunay algorithm [25]. First, the 
coordinates of a 2D mesh node are collected in a N-by-2 array 𝑝𝑝: 

𝑝𝑝 = [𝑥𝑥 𝑦𝑦]. (12)  
The force vector 𝐹𝐹(𝑝𝑝) has horizontal and vertical components at each mesh node as following: 

𝐹𝐹(𝑝𝑝) = [𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖,𝑥𝑥(𝑝𝑝) 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖,𝑦𝑦(𝑝𝑝)] + [𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒,𝑥𝑥(𝑝𝑝) 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒,𝑦𝑦(𝑝𝑝)], (13)  
where  𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 represents the internal forces from the bars, and 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 are the external forces which 
are the reactions from the boundaries. 𝐹𝐹(𝑝𝑝) depends on the topology of the bars connecting the 
joints. Since the Delaunay algorithm generates the input points without overlapping each other, 
every edges is shared by at most two triangles. In the process, the force vector 𝐹𝐹(𝑝𝑝) is not a 
continuous function of 𝑝𝑝, as the topology (the connectivity of each mesh node) is changing by 
the Delaunay algorithm when the nodes move. 
 The system 𝐹𝐹(𝑝𝑝) = 0 should be solved for a set of equilibrium positions of 𝑝𝑝. Due to the 
discontinuity in the force function and the external reaction forces at the boundaries, a trivial 
approach to solve this system is to adopt an artificial time-dependence. For some 𝑝𝑝(0) = 𝑝𝑝0, a 
system of ODEs without any physic units is written as: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹(𝑝𝑝), 𝑡𝑡 ≥ 0. (14)  

If any stationary solution is found, it will satisfy the system 𝐹𝐹(𝑝𝑝) = 0. In Eq. (14), a forward 
Euler method is used to approximate the solution. At the discretized artificial time 𝑡𝑡𝑛𝑛 = 𝑛𝑛∆𝑡𝑡, the 
approximate solution 𝑝𝑝𝑛𝑛 ≈ 𝑝𝑝(𝑡𝑡𝑛𝑛) is updated by: 

𝑝𝑝𝑛𝑛+1 = 𝑝𝑝𝑛𝑛 + ∆𝑡𝑡𝑡𝑡(𝑝𝑝𝑛𝑛). (15)  
When evaluating the force function, both the coordinates of each node and the triangulation 
topology are known. The external reaction forces behave in the following way: all nodes that go 
outside the region during the update are moved back to the closest boundary node or just deleted 
to satisfy the requirement that forces act normally to the boundary. Thus, the points can move 
along the boundary, but not go outside.  

Each bar has a force-displacement relationship 𝑓𝑓(𝑙𝑙, 𝑙𝑙0) depending on its current length 𝑙𝑙 
and original length 𝑙𝑙0. In this work, a linear approach for 𝑓𝑓(𝑙𝑙, 𝑙𝑙0) is used as:  

𝑓𝑓(𝑙𝑙, 𝑙𝑙0) = �𝑘𝑘
(𝑙𝑙0 − 𝑙𝑙)   𝑖𝑖𝑖𝑖 𝑙𝑙 < 𝑙𝑙0

0                 𝑖𝑖𝑖𝑖 𝑙𝑙 ≥ 𝑙𝑙0 , (16)  

which is the bar’s response to the repulsive forces but it will not respond to the attractive force. 
Although the nonlinear function may generate better meshes, the piecewise linear force function 
still generates acceptable results.  

2.4 Solution interpolation method 

 When the mesh is regenerated, a local solution interpolation from the original element to the 
new element will be performed using the Lagrange interpolation. Specifically, the interpolated 
value 𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛(𝒙𝒙) on the new elements can be written as 
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𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛(𝒙𝒙) = �𝐿𝐿𝑗𝑗(𝒙𝒙)𝑄𝑄𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜
𝑁𝑁𝑠𝑠

𝑗𝑗=1

, (17)  

where 𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛(𝒙𝒙)  is the value for the new element whose coordinate is 𝒙𝒙 , 𝐿𝐿𝑗𝑗(𝒙𝒙) is the 
multi-dimensional Lagrange polynomial associated with the solution point 𝑗𝑗 of the old element 
in which the solution points of the new element are located. Thus, values at every solution point 
of the new element can be calculated from the multi-dimensional Lagrange polynomial with 
degree 𝑝𝑝. 

3. Numerical results 

3.1 Order of accuracy study 
The convergence rate of the solver is tested by a scalar equation using the 𝐿𝐿2 error with a 3rd 

order scheme (𝑝𝑝 = 2). In this case both quadrilateral and triangular elements are studied with 
stationary and moving grids. Sizes of meshes tessellated with regular elements, defined as 
number of elements in x direction and y direction, are 10 × 10, 20 × 20, 40 × 40, 80 × 80, 
rescpectively. The grid deformation strategy is presented as follows: 

�
𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝐴𝐴𝑥𝑥 ∙ sin (2𝜋𝜋 ∙ 𝑓𝑓𝑥𝑥 ∙ 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟) ∙ sin (2𝜋𝜋 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟)  ∙ sin (2𝜋𝜋 ∙ 𝑓𝑓𝑛𝑛 ∙ 𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝐴𝐴𝑦𝑦 ∙ sin (2𝜋𝜋 ∙ 𝑓𝑓𝑥𝑥 ∙ 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟) ∙ sin (2𝜋𝜋 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟)  ∙ sin (2𝜋𝜋 ∙ 𝑓𝑓𝑛𝑛 ∙ 𝑡𝑡)

, (18)  

Herein, 𝐴𝐴𝑥𝑥 and 𝐴𝐴𝑦𝑦 are the amplitudes of the grid deformation in x and y directions. 𝑓𝑓𝑥𝑥 , 𝑓𝑓𝑦𝑦 
and 𝑓𝑓𝑛𝑛  are frequencies in space and time, respectively. 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟  and 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟  are the original 
coordinates of the mesh nodes. And 𝑡𝑡 is the physical time. In this test, these parameters are set 
as follows: 𝐴𝐴𝑥𝑥 = 𝐴𝐴𝑦𝑦 = 1.0, 𝑓𝑓𝑥𝑥 = 𝑓𝑓𝑦𝑦 = 0.1, and 𝑓𝑓𝑛𝑛 = 1.0. For the time scheme, an explicit 
three-stage strong stability preserving Runge-Kutta method is adopted. The time step is set to 
0.001 𝑠𝑠. Therefore, the maximum CFL number within all the mesh sizes is 0.016. 
 Mesh deformation examples are presented in Figure 2. The results of convergence rate are 
shown in Table 1 and Table 2. It can be observed that the order of accuracy of both quadrilateral 
and triangular elements can reach its optimal value in stationary or moving grid simulations. And 
the tables also show that comparing with that from the stationary grid, the absolute 𝐿𝐿2 error 
from the dynamic one increases. However, the order of accuracy is still well maintained.  
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Figure 2. Deformation of quadrilateral elements and triangular elements. 

 
 
 
 
 

Table 1. Convergence rate for Quadrilateral elements 
Quadrilateral element 

  
Stationary grid Moving grid 

Mesh size Max L2 Error Order of accuracy Max L2 Error Order of accuracy 

10 by 10 0.007783135305    0.015426034622    
20 by 20 0.000770146110  3.3 0.001964748249  3.0 
40 by 40 0.000088315054  3.1 0.000186254477  3.4 
80 by 80 0.000010610625  3.1 0.000017387800  3.4 

 
Table 2. Convergence rate for Triangular elements 

Triangular element 

  Stationary grid Moving grid 

Mesh size Max L2 Error Order of accuracy Max L2 Error Order of accuracy 

10 by 10 0.008217738632    0.012440746642    
20 by 20 0.000763009590  3.4 0.001408945705  3.1 
40 by 40 0.000098648429  3.0 0.000157141687  3.2 
80 by 80 0.000012524947  3.0 0.000017596073  3.2 

 
 Researchers [26, 27] indicates that if the Gauss-Legendre points are used in numerical 
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quadrature, a (2𝑝𝑝 + 1) th order super-accuracy for a 𝑝𝑝th degree DG scheme can be achieved 
on quadrilateral elements. In this paper, similar tests have been done for meshes tessellated with 
quadrilateral and triangular elements using the scalar wave propagation equation. Results of 
convergence rate of the 3rd order scheme (refinement in grid spacing: 20 × 20 and 40 × 40) are 
presented in Figure 3. 

 
(a)                                      (b) 

Figure 3. Rate of convergence of polynomial order 𝑝𝑝 = 2 with wave speed 𝑐𝑐 = 4. 

 From Figure 3, it can be observed that the quadrilateral elements can reach super accuracy 
(2𝑝𝑝 + 1) within 100 periods. This has good agreement with the results from the work by K. 
Asthana et al. [26]. However, the rate of convergence of triangular elements is significantly 
slower than that of the quadrilateral elements: even after 1000 periods, the rate of convergence 
cannot reach the same level of the quadrilateral elements. 
 
3.2 Vortex propagation with dynamic mesh 
 In order to demonstrate the numerical performance of the hybrid moving mesh and mesh 
regeneration method, a vortex propagation case is simulated on a dynamic mesh which has large 
deformation. Both algebraic mesh smoothing and mesh regeneration methods are used in this 
simulation. A ring-like mesh is generated in the computational domain shown in Figure 4.  
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Figure 4. Mesh setup for the vortex propagation problem. 

 In every physical time step, the mesh inside the ring will rotate, meanwhile the ring-like 
mesh will deform. When the deformation is large (shown in Figure 5), the mesh will be 
regenerated. 

 
Figure 5. Mesh before and after regeneration. 

 The process of vortex passing over this dynamic mesh region is shown in Figure 6. When the 
mesh is deforming, the moving grid solver will be adopted. And when the mesh is regenerated, 
the variables on the old mesh will be interpolated to the new mesh with the Lagrange 
interpolation method. In this simulation, the gird velocity is given by its analytical solution. 
When the rotation angle reaches 10 degrees, the mesh is regenerated. It is clear from Figure 6 
that mesh regeneration does not distort the shape of the vortex. 
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Figure 6. Vortex and grid position with the mesh regeneration. 

 Furthermore, the shape of vortex can be maintained well in long-time numerical simulation. In 
Figure 7, we present the density field of the vortex after it travels over the whole domain four 
times. 

 
Figure 7. Shape of vortex after four periods. 
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 𝐿𝐿2 error estimation has also been performed for both moving gird with mesh regeneration and 
stationary grid (with the same mesh) during the vortex passing over the regeneration region. The 
results are shown in Figure 8. It is oberved that the 𝐿𝐿2 error from the moving grid with mesh 
regeneration is slightly higher than the stationary grid. 
 

 
Figure 8. 𝐿𝐿2 error when vortex passing through the mesh regeneration domain. 

 
4. Conclusion and future work 

This work demonstrates the possibility of using mesh regeneration in high-order CFD 
simulation of unsteady flows on moving domains with large deformation. The ‘dist-mesh’ 
technique has been adopted to handle mesh regeneration, and a local Lagrange-polynomial-based 
interpolation approach is used to interpolate solutions from the old mesh to the new one. It is 
found that this technique does not deteriorate the high-order accuracy of the FR method in 
unsteady flow simulation. We also observed that similar to that from simulation with 
quadrilateral elements, spatial super convergence can occur on triangular elements during 
long-time unsteady flow simulation; however, much longer time needs to be taken before super 
convergence shows up on meshes tessellated with triangular elements. Future work will focus on 
applying this approach in simulation of unsteady wall-bounded flows on domains with large 
deformation.  
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