


Saurabh Shringarpure

NOTE:  *The Approval Sheet with the original signature must accompany the thesis or 
dissertation.  No terminal punctuation is to be used.

Doctor of Philosophy,

ni95333@umbc.edu

DISSERTATION APPROVAL SHEET

Quantum Optical State Preparation for Quantum Communication

Physics

Name of Candidate:

Graduate Program:

2022

Title of Dissertation:

Physics Department

jfranson@umbc.edu

Professor

11/4/2022 | 10:02:32 AM EDT

Franson, James

Dissertation and Abstract Approved:



 
 

CURRICULUM VITAE 

 

Name: Saurabh U. Shringarpure. 

 
Degree and date to be conferred: Doctor of Philosophy, 2022. 

 
Collegiate institutions attended:  

1. University of Maryland Baltimore County, M.S. Physics, 2019. 

 

2. Indian Institute of Technology Delhi, B. Tech. Engineering Physics, 2016. 
 

Major: Physics. 

 
Professional publications:  

1. Inhibiting phase drift in multi-atom clocks using the quantum Zeno effect, S.U. 

Shringarpure and J.D. Franson, preprint, arXiv:2208.06301 (2022). 

 

2. Coherence of quantum states after noiseless attenuation, S.U. Shringarpure, C.M. 

Nunn, T.B. Pittman, and J.D. Franson, Phys. Rev. A 105, 013704 (2022). 

 

3. Proposal for a destructive controlled phase gate using linear optics, S.U. 

Shringarpure and J.D. Franson, Sci. Rep. 11, 22067 (2021). 

 

4. Generating entangled Schrödinger cat states using a number state and a beam 

splitter, S.U. Shringarpure and J.D. Franson, Phys. Rev. A 102, 023719 (2020). 

 

5. Nonlocal dispersion cancellation for three or more photons, I.C. Nodurft, S.U. 

Shringarpure, B. T. Kirby, T.B. Pittman, and J.D. Franson, Phys. Rev. A 102, 

013713 (2020). 

 

6. Generating photon-added states without adding a photon, S.U. Shringarpure and 

J.D. Franson, Phys. Rev. A 100, 043802 (2019). 
 

Conference presentations:  

1. Inhibiting phase drift in multi-atom clocks using the quantum Zeno effect, S.U. 

Shringarpure and J.D. Franson, Frontiers in Optics + Laser Science (2022, Oct. 17 

- 20, virtual), LM3F.6. 

 

2. Destructive controlled phase gate using linear optics, S.U. Shringarpure and J.D. 

Franson, CLEO (2022, May 14 - 20, San Jose, CA), FF3J.3. 

 



 
 

3. Clock synchronization using the quantum Zeno effect, S.U. Shringarpure and J.D. 

Franson, Poster, Frontiers in Optics + Laser Science (2021, Oct. 

31 - Nov. 4, virtual), JTh5A.21. 

 

4. Noiseless attenuation of nonclassical states of light, S.U. Shringarpure, C.M. 

Nunn, T.B. Pittman, and J.D. Franson, CLEO (2021, May 9 - 14, virtual), 

FTu4G.4. 

 

5. Generation of entangled cats from photon number states, S.U. Shringarpure and 

J.D. Franson, Frontiers in Optics + Laser Science (2020, Sept. 14 - 17, virtual), 

LM1F.2. 

 

6. Generating photon-added states without adding a photon, S.U. Shringarpure J.D. 

Franson, APS March Meeting (2020, March 2 - 6, virtual), W01.00005. 

 

7. Generating photon-added states without adding a photon, S.U. Shringarpure J.D. 

Franson, Poster, Frontiers in Optics + Laser Science (2019, Sept. 15 - 19, 

Washington D.C.), JW4A.52. 

 

Professional positions held:  

1. Graduate Research Assistant, Univ. of Maryland Baltimore County, USA (2019-

2022). 

 

2. Graduate Teaching Assistant, Univ. of Maryland Baltimore County, USA (2017-

2018). 
 

 

  



 
 

ABSTRACT 

 

 
Title of Document: QUANTUM OPTICAL STATE PREPARATION FOR 

QUANTUM COMMUNICATION   

  
 Saurabh U. Shringarpure 

Doctor of Philosophy, 2022 
  

Directed By: Dr. James D. Franson 
Professor 
Department of Physics 

 

Nonclassical states of light are essential for long-distance quantum communication. 

In this dissertation, we theoretically analyze the state preparation of nonclassical 

states of light, resource-efficient quantum optical information processing, 

decoherence in quantum optical communications, and the use of the quantum Zeno 

effect to protect the phase of a quantum clock. An essential component of a 

quantum network is entanglement distribution. We study a method that can 

encode quantum information in entangled macroscopic superposition states, which 

typically carry a large number of photons. This is based on the generation of phase-

entangled Schrödinger cat states using linear optical elements such as beam 

splitters for possible application in entanglement distribution. Controlled phase 

shifts can be used to verify the entanglement of the Schrödinger cat states. We 

then show how linear optical elements can be used to implement a controlled phase 

shift efficiently, with possible applications in quantum repeaters. Decoherence can 

arise from photon loss in quantum communication applications. Nevertheless, 

noiselessly attenuating single rail qubits prior to the transmission can suppress the 

effects of loss in the channel. A linear optical realization of noiseless attenuation is 

described in phase space by conditional measurements of zero photons in one of 

the output ports of a beam splitter. We study this approach and analyze the 



 
 

coherence of quantum states that have been attenuated using this operation. 

Finally, we explore the use of the quantum Zeno dynamics to protect multi-atom 

clocks from phase drift. 
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Chapter 1 : Introduction 

 

Quantum communication applications require the ability to transport quantum 

states between distant locations. The motivating goal of this project is to improve 

quantum communication using photons. A hybrid of linear and nonlinear optics is 

used in this study to prepare quantum optical states, process information, and 

improve quantum state communication. There have been several proposed methods 

of encoding quantum information into physical systems. These include 

superconducting qubits, solid-state vacancy centers, and photonic qubits [1]. 

Photons can carry qubits over long distances without much degradation and in a 

relatively short time. For example, a recent experiment sent a quantum state from 

the Earth to a satellite [2]. Clearly, photonic qubits are better suited for 

communication than matter-based ones.  

As a result, optical quantum communication networks will be crucial for global 

systems in the near future [3]. Fault-tolerant quantum computing requires a large 

number of qubits sharing entanglement [4], one of the reasons for setting up 

extensive networks. In practice, maintaining this kind of entanglement and using 

it for computation even at one location is challenging, and so “Quantum Data 

Centers” that interface between computing, communication, and sensing will be 

necessary [5]. A city-wide quantum network “DC-Qnet” has been recently 

announced for Washington D.C., laying the foundations for this future. 

First and foremost, communication requires methods for generating the signal 

we want to send. We need ways to encode information in light's various degrees of 

freedom in optical quantum communications. Polarization, photon numbers, 

frequencies and time of a pulse, amplitude, and phase degrees of freedom can be 
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used to encode qubits [4]. Realizing this encoding of information is what we 

generally refer to as state preparation.  

This thesis starts by presenting an optical quantum state preparation method 

that produces a superposition between a coherent state and one of its orthogonal 

states. These are particularly attractive because they may be resilient to 

decoherence from photon losses. Coherent states are closest to the classical notion 

of an electromagnetic wave and remain intact in the event of photon annihilation. 

Entangled states show a noticeable departure from classical theory and intuition 

as their subsystems can exhibit greater correlations than allowed classically under 

the assumptions of locality and realism [6]. Therefore, it is essential to have 

methods for distributing and testing entanglement. Here we study the phase 

entanglement produced by splitting a pure photon number state into two separate 

beams. 

Based on Ref. [7], photon number states are one of light's most “non-classical” 

quantum states. The phase of a pure number state is random or indeterminate. We 

show that beam splitters, one of the most common optical devices, can produce 

quantum states with entangled phases (Schrödinger cat states) when number states 

pass through them. Nonclassicality at a beam splitter is known to create 

entanglement [8]. As a result, splitting of number states at a beam splitter is an 

ideal starting point for studying entanglement distribution. The famous Bell's 

inequality violation [9,10] demonstrates that quantum correlations are stronger 

than classical ones. With the help of a single-photon interferometer, a cross-Kerr 

effect, and conditional measurements on the quadratures of the light field, we show 

that Bell's inequality is violated by these entangled Schrödinger cat states [11]. 

Crystals with nonlinear susceptibility can implement the cross-Kerr effect [12] 

needed in the Bell’s inequality test mentioned above. However, it is impossible to 
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achieve large, controlled phase shifts with current technology and materials, and 

we investigate instead the possibility of using linear elements with conditional 

measurements. We then examine how quantum information processing can be done 

using controlled phase gates. These controlled phase gates are also essential to 

circuit-based quantum computing [13]. A large body of past and ongoing research 

is devoted to scalable quantum information processing using optics. However, a 

scalable implementation is still out of reach due to the requirement for a large 

number of resources. In this work, we will develop a technique to implement a 

controlled phase gate with fewer resources that significantly improves the success 

probabilities [14]. This comes at the expense of destroying the control at the end 

of a successful gate operation. 

Decoherence due to the environment can pose a challenge to optical quantum 

communication, despite its merits. Amplifying the signal is insufficient to address 

this problem for quantum states encoded in phase space variables beacause 

quantum mechanics prohibits it from being done deterministically without adding 

noise [15,16]. Mičuda et al. proposed noiselessly attenuating before transmission 

and noiselessly amplifying the signals at the receiver, to suppress the effects of 

noise in the channel [17]. We can achieve noiseless attenuation using a conditional 

measurement of zero photons at one of the outputs of a beam splitter. Nunn et al. 

demonstrated the zero-photon subtraction (ZPS) technique in their experiment 

[18,19]. They examined the statistical effects of noiseless attenuation via ZPS. We 

investigate whether ZPS preserves phase information and is genuinely noiseless. 

Quantum communication protocols require reliable timekeeping in addition to 

methods for suppressing noise in channels. We propose a novel method for 

potentially forming better clocks using quantum Zeno dynamics. Atomic clocks 

have significantly improved timekeeping over quartz clocks as each of the 

unperturbed atoms of a species will have the same energy levels [20]. However, 
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different environments, such as stray electromagnetic fields, can cause the atoms 

to change their level structure and cause phase drifts to occur erroneously. This 

thesis proposes a technique that can protect multi-atom clocks from phase drifts 

by restricting them to a suitable subspace using the quantum Zeno effect [21]. 

There are parallels between this and quantum computing in decoherence-free 

subspaces [22]. 

This work fits within the current trends in quantum computing and 

communication. We hope this contributes to the ongoing efforts toward the second 

quantum internet revolution by aiding in the quest to understand quantum optical 

theory’s strengths and limitations. With the quantum internet, we aim to send and 

receive quantum states over large distances without destroying them. This would 

allow quantum computation to be performed nonlocally, in parts, distributed all 

over a network. Thus, a robust quantum communication network between all these 

distributed parts will be essential. 

 The rest of this thesis is organized as follows. Chapter 2 describes some 

fundamental concepts that will support the rest of the material. Chapter 3 discusses 

generating nonclassical quantum states using conditional measurements. Chapter 

4 analyzes the generation of phase-entangled Schrödinger cat states and violating 

Bell's inequality. Chapter 5 proposes a destructive controlled-phase gate using 

linear optics and conditional measurements for single-rail qubits. Chapter 6 studies 

the coherence properties of quantum states undergoing noiseless attenuation with 

linear optics and conditional measurements. Chapter 7 investigates the use of the 

quantum Zeno effect to prevent phase drift in multi-atom clocks. Finally, Chapter 

8 provides a summary and conclusions.  
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Chapter 2 : Background concepts 

 

2.1 The postulates of quantum mechanics 

Quantum mechanics is a mathematical framework that is useful in explaining 

physical phenomena typically at the microscopic scale. At its core, there are several 

postulates [23]. These are: 

(1) A unit vector represents all the accessible information of the state of a closed 

physical system, , residing in a Hilbert space, , which is referred to as 

the “state vector.”  

(2)  The observable physical attributes of any system are represented by 

Hermitian operators acting on vectors of this Hilbert space. 

(3) The measurement outcomes of any observable are the eigenvalues of the 

corresponding Hermitian operator. 

(4) The probability of a specific outcome is given by the square of the absolute 

value of the inner product between the state of the system and the 

corresponding eigenvector of the Hermitian operator.   

(5) After the measurement, the system's state is given by the eigenvector of the 

Hermitian operator corresponding to the realized outcome. This is known as 

the “state collapse.” 

(6) The Schrödinger equation gives the time evolution of an unobserved state 

vector:  

 ˆ ,H
t

i


=


 (2.1) 

 where ˆ  is the Hamiltonian, the operator for the total energy. 
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2.2 Density operators 

If the quantum states of the system are not completely known but described 

only as an ensemble of “pure” quantum states then we have a “mixed state.” The 

density operators are convenient representations of these mixtures. The density 

operator ˆ  for an ensemble of quantum states  ,,k k
p  where kp  is the 

probability that the state is ,
k

 is given by 

 .ˆ
k kk
p=  (2.2) 

Several ensembles can give the same density operator.  

The expectation value of a Hermitian observable, Ô , for a state described by a 

density operator is given by a trace operation: ˆTr .ˆO 
 

 The post measurement 

state just after realizing one of the distinct measurement outcomes can be obtained 

using a set of orthogonal projection operators or “von Neumann projectors”,  ˆ
m . 

These capture the transformation that occurs during the state collapse from the 

postulate (5) and satisfy a completeness condition:  ˆˆ
mm

I=  [1]. The 

completeness condition may be considered a consequence of the normalization of 

sum of probabilities of all outcomes, as the probability of an outcome m  is given 

by 

 ( ) ˆTr Tr .ˆ ˆˆ ˆ
m m mp m    = =

   
 (2.3) 

Here, ˆm  are the elements of a projection valued measure [1]. 

The normalized density operator, when the outcome m  is realized, becomes  

 
( )

.
ˆ ˆˆ
m m

p m
 (2.4) 
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General measurements do not require the operators transforming the state to 

be Hermitian, von Neumann projectors, and are given by so-called “Kraus operators” 

 ˆ
mM  satisfying the completeness condition =

†ˆ ˆ ˆ
m mm

M M I  [1]. The probability of 

an outcome m  is given by 

 ( ) † †Tˆˆ ˆ ˆ ˆTr r .ˆ
m m m mp m M M M M   = =

   
 (2.5) 

Here, †ˆ ˆ
m mM M  are the elements of a positive operator valued measure [1], 

and the normallized, post measurement density operator is given by 

 
( )

†ˆ ˆ
.

ˆ
m mM M

p m
 (2.6) 

These general measurements may be important when a part of the system is 

measured, for example when considering states of open systems that can interact 

with the environment. In this thesis we will use von Neumann projectors wherever 

possible but a detailed description about these general measurements can be found 

in Ref. [1]. 

Analogous to the Schrödinger equation for state vectors, the Liouville-von 

Neumann equation describes the dynamics of a density operator of a closed system: 

 ˆ, .
ˆ

ˆ
d i

H
dt

 = −
 

 (2.7) 

The dynamics of an open quantum system are more complicated and generally 

given by a quantum master equation. For environments satisfying the Born-

Markov approximations of weak coupling to the system and short memory 

interactions, and when the system and the environment are initially in a product 

state, a Lindblad master equation describes the dynamics [24]. 

A Lindblad master equation has the form: 
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    † †ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, ,k k k k kk

d i
H L L L L

dt

 
= − + − 

 
  (2.8) 

where k  are the interaction strengths and ˆ
kL  are the corresponding Kraus 

operators that describe transformations of the system due to the interaction with 

the environment. These are also commonly known as the jump operators because 

they can be thought of as abrupt jumps or transitions experienced by the system. 

The first term in parantheses captures the modifications to the density operator 

due to the jump operations, whereas the second term is required to normalize the 

trace of the final density operator to unity [24].  

2.3 Properties of a quantum system 

2.3.1 Superposition 

States of a quantum system can be represented by vectors residing in a Hilbert 

space. As linear combinations of vectors are also vectors, the state of a quantum 

system can be a superposition of states. If we consider a cat as a quantum system 

then it means, very counterintuitively, there exists some state that describes the 

cat which is an equal “superposition” of it being alive and dead at the same time, 

when not observed [25].  

2.3.2 Entanglement 

Two, or more, subsystems may be described by a state vector that cannot be 

written as a simple tensor product of state vectors each describing a subsystem 

independently. The subsystems in these “entangled” states are highly correlated. 

These correlations may even exceed any classically allowed correlations as shown 

by a violation of Bell's inequality [9,10].  
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2.3.3 Interference 

Upon measurement, the state collapse may leave the system in a superposition 

of states if the measurement does not distinguish between these states. In such 

cases the states may superpose and increase the probability of that outcome, 

constructive interference, or it may decrease the probability, destructive 

interference. Classically, the probabilities of two events cannot cancel one another. 

However, destructive interference makes that possible when the measurements 

cannot distinguish between two possibilities or probability amplitudes. 

2.4 Quasiprobabilities 

2.4.1 Characteristic functions 

For classical probability distribution ( )x  over some variable x  we can 

compute the expectation value ( ) i xC e  which is its “characteristic function” 

[26]. Consequently, the probability distribution is just the Fourier transform of the 

characteristic function: ( ) ( ) .i xC dx e


−

−

=   Consider the exponential factor 

( )exp * *−  for a phase space formed by the real and the imaginary parts of 

a complex amplitude  that are conjugate variables decribing a simple harmonic 

oscillator with angular frequency .=  In the quantum theory, these variables are 

promoted to operators which do not commute and so, different schemes for ordering 

the operators lead to different expectation values.  

The Wigner characteristic function is given by [26],  

 ( )
†̂ ˆ*Tr ˆ ,a a

WC e − =
 

 (2.9) 

where  and *  in ( )exp * *−  have been replaced by the annihilation and 

creation operators â  and †â , respectively, and the resulting operator is said to be 
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Weyl ordered [27]. If instead the operators are ordered normally, such that all the 

creation operators lie to the left of the annihilation operators, then we may separate 

them out into two exponential terms giving the characteristic function: 

( )
† ˆ*ˆTr ,ˆ a a

NC e e− =
 

(2.10) 

and similarly, the antinormal ordering of operators gives: 

( )
†ˆ ˆ*Tr .ˆ a a

AC e e− =
 

(2.11) 

2.4.2 Wigner distribution 

The Wigner distribution is the Fourier transform of the Weyl ordered 

characteristic function [26]: 

( ) ( ) ( )   exp * * .WW C d= − (2.12) 

By making the substitutions: ( ) ,q ip+= ( ) ,x iy+= and 

,dxdyd = it can be shown that [27] 

Figure 2.1 Wigner distribution of a single-photon state in the phase 

space formed by the conjugate variables  and  which are related 

to the complex amplitude  by the convention 

Units where  were used. 
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 ( ), ˆipx
W q p e q x q x dx



−

= + −  (2.13) 

Wigner distributions are primarily used to easily identify the nonclassical nature 

of a state. For example, the volume of the negative region of the Wigner 

distribution of a pure, single mode state corresponds to the nonclassicality. A 

coherent state has no Wigner negativity, whereas a single photon state has 

characteristic negativity at the origin as shown in Fig. 2.1. Similarly cat states, 

which are quantum superpositions of coherent states with equal amplitudes and 

opposite phases,  have fringes near the origin that can take negative values [26]. 

Interestingly, the negativity of a bipartite state can act as an entanglement witness 

[28,29]. In this way, the Wigner distribution is a powerful tool for monitoring the 

evolution of the nonclassicality in a noisy environment, for example.  

2.4.3 Glauber-Sudarshan P distribution 

The Glauber-Sudarshan P distribution is obtained from the normally-ordered 

characteristic function [26]: 

 ( ) ( ) ( )   exp * * .NP C d= −  (2.14) 

For coherent states these are simply delta functions located at the phase space 

value equal to their amplitude. This makes P distributions particularly useful if we 

want to express states in terms of collections of coherent states. For a general 

classical state which is a statistical mixture of coherent states, the P distribution 

is simply the well-behaved probability distribution of complex amplitudes that 

describe it. The only classical pure states are coherent states [30].  One of the 

biggest problems of these quasiprobabilities is that they can be highly singular 

which makes analyses quite difficult for a general state. Unlike the Wigner 

distriution of Fig. 2.1 the P distribution of a single-photon state is highly singular, 

more singular than a delta function distribution, hence cannot be plotted [26].  



12 

2.4.4 Husimi-Kano Q distribution 

The Husimi-Kano Q distribution is obtained from the antinormal characteristic 

function [26]: 

( ) ( ) ( )   exp * * AQ C d= − (2.15) 

In terms of the density operator, the Q distribution is easiest to compute using 

[26] 

( ) ,ˆQ = (2.16) 

which is nonnegative and bounded ( )Q  , unlike the previous examples.

Despite these properties, it is not a probability distribution because ( )Q  does

not represent the probability of mutually exclusive states ,  as required by the 

third axiom of the probability theory [31]. The Q distribution can be measured 

directly, making it helpful in characterizing optical quantum states. A 50:50 beam 

splitter divides the signal into two coherent parts, and balanced homodyne 

detection is used to separately measure the two quadratures of the field. The joint 

Figure 2.2 Husimi-Kano Q distribution of a single-photon state in 

the phase space formed by the conjugate variables  and  which 

are related to the complex amplitude  by the convention 

 Units where  were used. 
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probability for those simultaneous measurements is simply the Q distribution of 

the initial field before the beam splitter [32-34]. Figure 2.2 illustrates the Q 

distribution of a single-photon state. 

All the distributions mentioned above are quasiprobabilities. They all show 

some properties that cannot be satisfied by a valid probability distribution.   

2.5 Heralding, post-selection, and the quantum Zeno 

effect 

Measurements in quantum mechanics play an essential role. Classically, the 

system remains unaffected by measurements, but quantum theory tells us that they 

modify systems as per postulate (5) mentioned earlier. This modification can be 

quite dramatic and may occur even if we only observe a small part of the system. 

The changes depend on the entanglement between the subsystems. Suppose a 

system can be partitioned into two separate parts A and B, so that the initial 

product state is given by =  .ˆ ˆ ˆ
A B  After some unitary time evolution ˆ,U  the 

system may no longer be in a product state. However, we can measure the 

subsystems A and B separately in what we refer to as partial measurements. Let's 

consider measuring part B. The final form of the system would then be given by 

 ( ) ( )† .ˆ ˆˆ ˆ ˆˆ Π̂k kk k
I U U I    (2.17) 

Here, the identity acts on part A whereas Π̂k  project part B onto different 

measurement outcomes .k  From this, we can immediately see that these different 

outcomes for B can give very different final normalized states for part A, 

 
( ) ( )

( )

†

|
†

,

ˆ ˆ ˆ ˆ
ˆ

ˆ ˆΠ Π

ˆTr

ˆ

ˆ ˆ ˆΠ ˆ

k k

Ak

k

I U U I

U I U

 
=

 
 

 (2.18) 
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where |Âk  represents the density operator of A just after the outcome k  is realized. 

Thus, we can implement transformations for the system of interest, part A, by 

observing an ancillary system, part B, that may otherwise be difficult or impossible 

to realize experimentally with an ordinary, unitary time evolution. This process is 

referred to as a “conditional measurement” that can be performed by post selecting 

or heralding. 

Frequent measurements of a quantum system can lead to interesting behavior. 

Consider a system that starts in an eigenstate of a measurement observable ˆ .  

Time evolution of the system can take it into a superposition of different eigenstates. 

However, suppose the same observable ˆ  is measured repeatedly in sufficiently 

quick succession. The system does not have enough time to build the probability 

amplitudes of the measurably different eigenstates orthogonal to the initial one. 

Each of the measurements projects the system onto the initial eigenstate with a 

high probability. Thus, effectively the dynamics is “frozen” or slowed down in a 

phenomenon known as the quantum Zeno effect [21,35]. The anti-Zeno effect is a 

complementary effect where a different, lower rate of measurements leads to a 

speed up in the dynamics [36].  

If a measurement cannot distinguish between several orthogonal states, it 

projects the system down onto a subspace spanned by those orthogonal states. In 

this case, the system is free to evolve within that subspace but forced to remain 

inside it [37]. As we will see in Chapter 7, applications like inhibiting a clock's 

phase drift can employ such quantum Zeno dynamics. 
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2.6 Quantum optics 

2.6.1 Quantization of the electromagnetic field 

Maxwell's equations describe the classical theory of light [38]. For fields in the 

vacuum, in the absence of charges and currents, these are  

 
t


  = −



B
E  (2.19) 

 
t


  =



E
B  (2.20) 

 . =B  (2.21) 

 . =E  (2.22) 

where E  and B  are the electric and magnetic fields, respectively.  and  are 

the permeability and permittivity of free space. In terms of the vector potential A  

in the absence of any sources, we have  

 =  B A  (2.23) 

 .
t


= − −



A
E  (2.24) 

Combined with Maxwell's equations in the Coulomb gauge with . =A  and 

= , this gives a simple wave equation 

 ,c
t


 =



A
A  (2.25) 

where c   is the speed of light in the vacuum. The general solution to this 

equation for monochromatic light is a weighted sum of transverse plane waves. 

Let's consider a Fourier expansion of the vector potential inside a finite volume, 

V : 

 
( )( ).

, ,,
. .i te c c−

= +
k r

k kk
A e  (2.26) 
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where ,k  is the amplitude in a given mode (Fourier component), ,ke  is the 

polarization unit vector for polarization  which is perpendicular to the wave 

vector k  for transverse waves, the angular frequency is given by ,c ck =k  and 

finally . .cc  is the complex conjugate of the term on the left. 

The electric and magnetic fields are, therefore 

 
( )( ).

, ,,
. .i ti e c c−

= +
k r

k kk
E e  (2.27) 

 ( ) ( )( ).

, ,,
. .i ti e c c−

=  +
k r

k kk
B k e  (2.28) 

The energy density contained in the electric and magnetic fields in free space is  

 E B= +  (2.29) 

The Hamiltonian of the system given by the total energy reduces to then 

  * *
, , , ,

,
,H V + =   k k k k

k
 (2.30) 

which has the same form as the Hamiltonian for a large number of uncoupled 

simple harmonic oscillators. For simplicity, let's only consider a single mode and 

drop all the subscripts, so we have 

 ( )  ,H p q +  (2.31) 

where the conjugate canonical variables are defined as 

 ( )  *x V +  (2.32) 

 ( )  * .p V i −  (2.33) 

Quantizing the field corresponds to promoting the variables to operators that 

act on quantum states, so that ˆx x→  and . ˆp p→  By imposing the commutator, 

  ,,̂ ˆx p i=  we can rewrite  as an  
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operator ˆV a  and similarly *  as its Hermitian conjugate so that 

†,̂ ̂a a  =   [26]. The Hamiltonian in terms of the new operators is 

 † .ˆ ˆH a a
 

= + 
 

 (2.34) 

The operators â  and †â  have the effect of annihilating and creating an 

excitation of the harmonic oscillator in a given mode, respectively: 

 â n n n= −  (2.35) 

 † .ˆ na n n= + +  (2.36) 

Here, n  denotes the thn  excitation of the harmonic oscillator and  the vacuum 

state with the lowest possible energy. The excitations of the electromagnetic field 

are referred to as “photons.” Finally, we can redefine the vector potential and, 

consequently, the electric and the magnetic fields as operators acting on the 

quantum state of the electromagnetic field. 

2.6.2 Optical devices and their unitaries 

We have shown how to describe the electromagnetic field in the quantum theory. 

In quantum optics experiments, we use optical devices such as beam splitters, 

mirrors, glass slabs, etc. to modify and manipulate the electromagnetic fields to 

our needs. The evolution of the quantum state of light in these optical devices is 

described by unitary Schrödinger evolution assuming no losses. In practice, we can 

greatly simplify the analysis by considering input-to-output relations for these 

devices, provided that the Hamiltonian is at most a quadratic polynomial in the 

field operators of the consituent modes.  
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The Schrödinger evolution, 
ˆˆ iHt

U e
−

= , is then referred to as a “Gaussian 

unitary.” These have the property of transforming quantum states with Gaussian 

Wigner distributions, such as the vacuum state, coherent states, and thermal states, 

into other states with Gaussian distributions [39]. 

 

First, consider the example of a lossless fiber coupler type beam splitter as 

shown in Fig. 2.1. It mixes the fields in two electromagnetic modes with some 

coupling strength  for some time t . The unitary operator that evolves the 

quantum state can be modeled by a Gaussian unitary of the form  

 ( )† † ,ˆ ˆex ˆ ˆ ˆp i iU e a a e a a− = −
   (2.37) 

with  .t  Let's consider that the beam splitter splits a single photon state 

incoming in the first mode so that the initial state can be written as , . The 

final state in the two outputs is then 

 = −, cos , sin , . ˆ iU e  (2.38) 

            

Figure 2.3 A fiber coupler type beam splitter. 

The input modes correspond to field operators 

 and  while the output modes correspond 

to  and  
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Alternatively, by expanding the identity operator as a product of the unitary 

and its Hermitian conjugate, and using the fact that the unitary leaves the vacuum 

state unchanged, =, , ,Û  we have 

 ( ) ( )† † † † .ˆ ˆ ˆ ˆ ˆ ˆˆ, , ˆ ,U UaU U UaU= =  (2.39) 

This is equivalent to replacing the creation operator in the first mode with its 

Heisenberg picture evolved operator with time reversed:  † † †ˆ ˆˆ ˆ .a UaU→  However, 

note that the state itself is still in the Schrödinger picture. It can be seen that the 

creation operators in the output can be related to the to the input operators by a 

linear transformation [13] 

 
−

 −
=   
 

cos sin
,

sin cos

i

i

e
B

e
 (2.40) 

where cos  is the transmittance and ie  is the phase gained during the coupling 

from the first into the second mode. 

More generally for any Gaussian unitary, the output creation and annihilation 

operators can be related to the input by a linear transformation that is referred to 

as a Bogoliubov transformation [40]. These linear transformations are additionally 

required to preserve the commutator between the operators from input to output 

in all the modes: 
†ˆ ˆ .,m n mna a  =   

A beam splitter transformation does not mix the creation and annihilation 

operators and the more general linear transformation that relates the input 

operators to the output operators is given by  

 † †

† †

ˆ ˆ

ˆ ˆ
.

cos sin

sin cos

cos sin

s

ˆ

in ˆc s

ˆ

ˆ o

i

i

i

i

in out

a ae

a ae

a ae

ea a

−

−

    −
    
    =
    −
    

    
    

 (2.41) 
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Next, consider a single-mode squeezer implemented by a nonlinear crystal [41]. 

This produces a collinear, degenerate, down conversion process as shown in Fig. 

2.2.  

The system undergoes unitary evolution   

 ( )† ,ˆ ˆexp * ˆU z a za
 

= − 
 

 (2.42) 

where  iz re is the squeezing parameter. The Bogoliubov transform can be shown 

to be [40] 

 
−

     
=          

     
† †

cosh s
.

iˆ ˆnh

sinh cosˆ ˆh

i

i

in out

a r ae r

a e r r a
 (2.43) 

 

Similarly, a two-mode squeezing  operator can be achieved using a non-collinear 

down conversion process as shown in Fig. 2.3 by with a unitary evolution [16]    

 ( )† † .ˆ ˆex ˆp * ˆ ˆU z a a za a= −  (2.44) 

 

        

Figure 2.4 A single mode squeezed vacuum created during 

a collinear down conversion process. 

    

      

     

    

Figure 2.5 A two-mode squeezed vacuum created during a 

non-collinear down conversion process. 
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This gives [40]  

 
−

−

    
    
    =
    
    

    
    

† †

† †

.

cosh sinhˆ

cosh sinh

sinh cos

ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

h

sinh cosh

i

i

i

i

in out

a ar e r

a ar e r

a ae r r

e r ra a

 (2.45) 

As we are considering various Gaussian unitaries in this section, it is worth 

considering the single mode displacement operator which creates a coherent state 

from the vacuum state. It is given by the unitary 

 ( )= −†ˆ ˆp ˆex *U a a  (2.46) 

where  is the complex displacement amplitude. Experimentally, this operator can 

be implemented using a highly asymmetrical beam splitter and a large-amplitude 

coherent state in the secondary input mode [42].  

The input-output transform for a displacement operation is quite simple as it 

only adds a constant offset [40]  

 
     

= −        
    

† †
.

ˆ

*

ˆ

ˆ ˆ
in out

a a

a a
 (2.47) 

To conclude the discussion of Gaussian unitaries, let's consider the phase 

rotation unitary [40] 

 =
ˆˆ .inU e  (2.48) 

 

             

Figure 2.6 A phase rotation implemented by inserting 

a glass slab in the optical path. 
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The Bogoliubov transformation for this is given by [40] 

 
† †

.
ˆ ˆ

ˆ ˆ

i

i

in out

a ae

a e a

−     
=          

     

 (2.49) 

Any arbitrary Gaussian unitary may be expanded as a product of displacements, 

rotations, and squeezing operations, making them fundamental [40]. The 

corresponding multiport generalizations are used [43-45] for multiport unitaries. 

2.6.3 Disentanglement formulas 

We often need to analyze the unitary evolution when the initial quantum state 

is a complicated superposition state. Here we cannot use Bogoliubov 

transformations between the input and the output creation operators in an effective 

way. Several phenomena of this kind in quantum optics can be analyzed using Lie 

algebras and Lie groups [46]. Lie group elements may be expressed in terms of an 

exponential of linear combinations of its generators, such as ( )=
=  ˆˆ exp

n

k kk
U i c A . 

Note, however, that the exponential cannot be broken up simply into a product of 

the exponentials of the generators as they may not always commute.  

When the commutator of two operators, say a  and b , also commutes with each 

of the operators, the Baker-Cambell-Housdorff formula states that  

 ( ) ( ) ( )  
 

+ = − 
 

exp exp exp exp , .a b a b a b  (2.50) 

Generally, the set of all the commutators between the generators defines a Lie 

algebra. Thus, an arbitrary Lie group element may be expressed as a product of 

exponentials of these generators and their commutators. Unitary time evolutions 

are nothing but Lie group elements, and the generators differ depending on the 

system of interest. This framework can be helpful if the Lie algebras are finite-

dimensional. 
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Take the example of the displacement operator ( )= −† .ˆ p ˆ ˆex *U a a  The 

operators 
†â  and â  are the generators here, and they have a simple commutator, 

  = 
† ˆ,̂ ˆa a I , with all other relevant commutators being trivial. This forms a 

Heisenberg-Weyl algebra and the displacement operator can be written in the form 

[47] 

 ( ) ( ) ( )= †exp exp exp ,ˆ ˆˆ ˆU a a I  (2.51) 

with coefficients , , and  that depend on the order of the exponential 

operators. Here, we have = , = − * , and /= − [47]. 

 Now let's consider the single-mode squeeze operator in the form 

+ −
 = − 

exp ,ˆ *ˆ ˆU K K  with the ladder operators defined as + 
†ˆ ˆ / K a , 

ˆ ˆ / K a−   [48,49]. The relevant Lie algebra here is ( )su ,  with the commutators 

+ −
  = −
 
ˆ ˆ, ˆK K K  and  

  = 
 
ˆ ˆ, ˆK K K  where 

 
 + 

 

†ˆ ˆˆ ˆK a a I .  

With this alebgra, it is possible to rewrite the squeeze operator as [47] 

 ( )+ −

   −
= −   

   

*
exp tanh exp ln cosh exp tanh .ˆ ˆ ˆ ˆU K K K

 (2.52) 

The two-mode squeeze operator has the same form but with the definitions 

† †ˆ ˆ ˆK a a+  , ˆ ˆ ˆK a a− = , and ( ) + +† †ˆ ˆˆ ˆ ˆ ˆK a a a a I  where â  and â  are the 

annihilation operators of the two modes [47,49].  

As a final example, let's consider a beam splitter with the unitary evolution of 

the form ( )+ −
= −ˆ p ˆ ˆex *U J J , with the ladder operators + 

†ˆ ˆ ˆJ a a , and − 
†ˆ ˆ ˆJ a a . 
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They form an ( )su  Lie algebra with the commutators, + −
  = +
 
ˆ ˆ, ˆJ J J  and 

 
  = 
 
ˆ ˆ, ˆJ J J  where ( ) −† †ˆ .ˆ ˆ ˆ ˆJ a a a a   

It can be shown that the beam splitter unitary has the form [47] 

 ( )+ −

   −
= −   

   

*
exp tan exp ln cos exp tan .ˆ ˆ ˆ ˆU J J J  (2.53) 

By changing the order of the exponentials of the generators several equivalent 

disentanglement formulas can be obtained, which may be useful in different 

applications. However, the scalar coefficients in the exponents may take up 

different values if the generators do not commute [47,49].  
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Chapter 3 : Generating 

nonclassical states using post 

selection 

 

This chapter has been taken from Ref. [50] published in Physical Review A.  

In this chapter, we use post selection on the output of an optical parametric 

amplifier (OPA) to generate a wide range of nonclassical states. OPAs are 
( )

 

nonlinear crystals that convert high-energy photons into two pairs of lower-energy 

photons. This process is known as spontaneous parametric down conversion. The 

two daughter photons generated in this way are referred to as the signal and the 

idler. The signal and idler photons are emitted in specific spatiotemporal modes 

depending on the phase matching conditions. If these spatiotemporal modes are 

excited with a field at the input ports of the crystal, then the ( )  crystal amplifies 

these modes by increasing their average photon number. In this way, the device 

functions an optical parametric amplifier. We demonstrate that such a device can 

be used to create a large variety of quantum states that are a macroscopic 

superposition of two orthogonal states of light. Our approach here is an example 

of photon catalysis, where we mix a particular auxiliary state with the input on an 

optical device, such as a beam splitter or an OPA, and the output is conditioned 

on the auxiliary being unaffected  [51,52].  
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The basic approach is illustrated in Fig. 3.1, where a coherent state is incident 

in the signal mode of an optical parametric amplifier with a single photon incident 

in the idler mode. We post-select, or herald, the output state of the signal mode 

when a single photon is detected in the output idler mode. Since the signal and 

idler photons are emitted in pairs, the post-selection process ensures that no 

photons were emitted or absorbed in either mode. Nevertheless, the post-selection 

process can have the effect of creating a photon-added state for an appropriate 

choice of the gain. Other choices of the gain can produce a displaced number state 

or states that are orthogonal to a coherent state or a photon-added state, which 

may be useful for continuous-variable qubits. 

Quantum state engineering methods to prepare various types of quantum states 

[53], such as photon-added/subtracted coherent states, thermal states, displaced 

number states [54], superpositions of number states [55], and truncated coherent 

states [56] have been explored using conditional measurements on beam splitters. 

These techniques have been very successful, but they have limited tunability of the 

prepared state due to the fixed transmittance of conventional beam splitters.  

The equivalence between a lossless beam splitter and an optical parametric 

amplifier when the input and output signals are appropriately interchanged has 

been previously discussed [57,58]. This equivalence allows an optical parametric 

Figure 3.1 Optical parametric amplifier with a coherent state in 

the input signal mode and a single photon number state in the idler 

mode.  A measurement of a single photon in the output idler mode 

heralds the state of interest in the output signal mode. 
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amplifier to be used with conditional measurements in a way that is somewhat 

analogous to the use of a beam splitter. This has been applied, for example, to the 

noiseless attenuation of coherent states [59] and the preparation of various non-

classical states [60-62], and it provides part of the motivation for the work reported 

here.  

This paper is organized as follows. Section 3.1 derives the form of the post-

selected output state and the corresponding probability of success. Sections 3.2 and 

3.3 examine the behavior of the final state as a function of the amplifier gain, 

including the special cases where the output is a displaced number state or a 

photon-added state.  Section 3.4 describes the properties of the output in phase 

space using the Q-function for specific values of the gain.  Section 3.5 provides a 

summary and conclusions.    

3.1 State preparation 

The time evolution operator Ŝ  for an optical parametric amplifier can be 

written in a factored form given by [15,63] 

 
( )− +− − −

=
†† † † ˆ ˆˆ ˆˆ ˆˆ ˆ ˆ .

a a b bg a b g ab
eS e

g
g  (3.1) 

Here = cosh( )g t  is the gain, where  is the coupling strength of the amplifier 

and t  is the interaction time, while â  and b̂  are the annihilation operators of the 

signal and the idler modes respectively. Note that we can effectively tune the 

amplifier gain by varying the intensity of the pump. We will define  −G g

for convenience. 

We assume that a coherent state 
s
 is introduced in the signal mode while a 

single photon number state 
i
 is incident in the idler mode of the amplifier. This 
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corresponds to an input state of ,
s i

 which is a simplified notation for 


s i

 in the tensor product space of the signal and idler modes. The 

transformation produced by the optical parametric amplifier is followed by a 

conditional measurement of a single photon in the idler mode, which can be 

represented by a projection operator ˆ  given by 

 =ˆ .
i i

 (3.2) 

Thus, the final state  after these operations is given by 

 = ˆˆ .
s i

S  (3.3) 

Using a Taylor series expansion of the final exponential in Eq. (3.1) gives  

 ( ) ( )= + + = +
ˆˆ ˆˆ ... .Gab

s i s i s i i
e Gab G  (3.4) 

We see that only the first two terms of the expansion contribute after it acts 

on the input state. Similarly, the adjoint of the Taylor series expansion of the first 

exponential factor in Eq. (3.1) acting on the projection operator to the left also 

gives only two non-vanishing terms: 

 ( )
† † † † †− = − + = −
ˆˆ ˆˆ ˆ ˆ... .

i i

Ga b

i i i i
e Ga b Ga  (3.5) 

Next, we let the middle exponential factor in Eq. (3.1) act on the state obtained 

in Eq. (3.4). Expanding the coherent state in the number basis gives  

 

( ) ( )

( ) ( )

† †− +

− −


− −

=


−

=

−

+

= +

   
= +   

  

    
= +         

 
= + 

 





ˆ ˆˆ ˆ

ˆ ˆ

ˆ

!

!

.

s i

s

a a b b

s i i

n n

s i i

n
n

s i i
n

n

s i i
n

G

i is

g G

g g G

e g n G
gn

e n G
g gn

e g G
g

 (3.6) 
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Inserting Eqs. (3.1), (3.4), (3.5) and (3.6) in Eq. (3.3), we get the following 

post-selected (unnormalized) state in the signal mode 

 
†−  

= − 
 

.
G

s
e G a g

g g
 (3.7) 

Equation (3.7) shows that the post-selected output state is a superposition of 

an attenuated coherent state and a photon-added coherent state, where the 

probability amplitudes of those two states can be controlled by varying the gain. 

It can be rewritten in another useful form by using the fact that  

= ˆ
s s
gg ga  which gives  

 
†−  

= − 
 

ˆ ˆ .
G

s
e G a a g

g
 (3.8) 

Since 
† =ˆ ˆ

ŝa a n , this gives the following expression for the final state: 

 
−  

= − 
 

ˆ .
G

s s
e G n g

g
 (3.9) 

This form of the post-selected output state provides useful insight into the 

effects of the post-selection process as viewed in a number-state basis, as will be 

discussed in the next section.   

The probability SP  of success for the post-selection process is given by the norm 

of the final state  in Eq. (3.7) which can be shown to be 

 −

  
 − 
 

=


 

+



.G

SP
g g

e G G
g

 (3.10) 

The final state can then be normalized to give 

 ˆ .G n g
g
G

g g g
G

  
= − −      

+



 (3.11) 
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The probability of success is exponentially small for large values of .G  

3.2 Displaced number states 

Eqs. (3.7) and (3.9) show that the post-selection process can be used to generate 

a continuous range of quantum states as we vary the gain. In this section, we will 

describe some of the properties of these states as a function of the gain. We will 

show that a specific value of the gain can be used to generate a displaced single-

photon state. 

Equation (3.9) suggests that the value of the gain can be chosen in such a way 

that the coefficient nc  in an expansion of the state in a basis of number states will 

vanish for a specific value of .n   For example, an appropriate choice of the gain 

can cause nc  to vanish when n  is equal to the mean photon number. In that case, 

the final state will have an asymmetric probability amplitude in the number state 

basis as illustrated in Fig. 3.2. This allows the final state  to be chosen to be 

orthogonal to the coherent state 
s

g , which may be useful in generating two 

orthogonal states for use as a qubit, for example.   

We will now show that a displaced number state can be produced by choosing 

a value of the gain given by 

 = 
−

.g g  (3.12) 

A displaced numbers state has the property that it is orthogonal to the 

corresponding coherent state, which may be a useful way to represent two 

orthogonal qubits. Inserting the value of the gain from Eq. (3.12) into Eq. (3.11) 

gives 
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   

 −       

= − †| .
*

ˆ
*

g s
ga

g
 (3.13) 

This state can be simplified by making use of the displacement operator ˆ( )D  

defined as usual by 

 
−=

†̂ ˆ* ,ˆ( ) a aD e  (3.14) 

which has the property that [64] 

Figure 3.2   Coefficients  in the expansion of two states of interest in a basis 

of number states  The plot with red square markers shows the coefficients 

 for an attenuated coherent state  for the case of  with  given by 

Eq. (3.12).The plot with blue circle markers shows the coefficients  of the 

final post-selected state for a value of the gain  which causes the final 

state to be orthogonal to the attenuated coherent state  It can be seen 

that the cancellation of the two terms on the right-hand side of Eq. (3.9) gives 

 near the center of the  distribution, so that the final state is 

approximately asymmetric about the mean photon number.  The final state in 

this case is a displaced single photon state. 
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 =ˆ( ) .D  (3.15) 

The displacement operator satisfies the following commutation relationship 

with the photon creation operator [64] 

 =† .[ , ]ˆ ˆˆ ( ) * ( )a D D  (3.16) 

Eqs. (3.15) and (3.16) allows the ( )† † ˆˆ ˆ|
ssga a D g =  term in Eq. (3.13) 

to be rewritten in the opposite order of the operators. The commutator cancels the 

g  term in Eq. (3.13), which gives 

 ( )
 

  =
 

− ˆ | .|
*

g sgD  (3.17) 

Equation (3.17) shows that the post-selected amplifier produces a displaced 

number state as desired for this value of the gain.   

Since ˆ( )D  corresponds to a unitary transformation and = ,  the 

displaced number state produced in this way is orthogonal to the corresponding 

coherent state 
s

g . The orthogonality of these two states can be understood 

from the asymmetric nature of the amplitudes nc  in the photon number basis as 

shown in Fig. 3.2. 

The displaced number state 
g

 also has the interesting property that it has 

the same average photon number as the initial coherent state in the input to the 

optical parametric amplifier. This can be shown by rearranging Eq. (3.12) into the 

form 

 = − .g  (3.18) 

The average photon number for a displaced photon number state is given by 

[64] 
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|'ˆ ( )

' .ˆ
D n

n n


 + =  (3.19) 

Combining Eqs. (3.18) and (3.19) for =n  and ' ,g=  we see that the 

average photon number remains unchanged for = .g g  

However, the variance in the photon number for the output state | g  is 

different from the input state. The variance for a displaced number states is given 

by [64] 

 ( )ˆ )|'(
Var( ) ' .

D n
n n


= +  (3.20) 

Combining Eqs. (3.18) and (3.20) gives a photon-number variance of  

= −g . 

We have shown that a gain of =g g  gives a displaced number state with =n . 

We will now consider an arbitrary value of the gain and show that there is no 

contribution from displaced photon number states with photon number greater 

than 1. Using Eq. (3.16) in Eq. (3.11) allows the final state to be written in the 

form 

 
  
 = − − 
    

, ,G
g g g g gN

G  (3.21) 

where we have used the notation  = ˆ( ) | | ,D n n  and  

 
 

 −
 


+



.G
g

N
g g

G  (3.22) 

Equation (3.21) shows that the final signal state completely lies in the subspace of 

only two orthogonal states – the attenuated coherent state g  and the 

corresponding displaced single photon state.  
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3.3 Photon-added states 

We showed in the previous section that the post-selection process can produce 

a displaced number state that is orthogonal to a coherent state. We now show that 

the post-selection process can also produce a photon added state in the limit of 

large gain.   

This can be seen intuitively from Eq. (3.9), where the G g  term becomes much 

larger than the g  term in the limit of large gain. As a result, the first term can 

be neglected in that limit and the second term gives a photon added state 

proportional to 
†ˆ .a g  Figure 3.3 shows a plot of the absolute value squared of 

the inner product between the final state and a single-photon added coherent state.   

The inner product approaches unity in the limit of large gain, which shows that 

Figure 3.3 A plot of the magnitude squared of the inner product of the output 

state with a photon-added state proportional to  The inner product is 

plotted as a function of the gain  with  It can be seen that 

the output state approaches a photon-added state in the limit of large gain, and 

that there is a gain  where the output is orthogonal to a photon-added 

state. 
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the post-selected amplifier can generate a photon-added state in that limit as 

expected.   

It can also be seen from Fig. 3.3 that the inner product vanishes for a specific 

value of the gain =g g  where  

 .âg =  (3.23) 

We can determine the value of g  by combining Eq. (3.23) with the requirement 

that the gain be real and greater than or equal to 1. It can be shown that this 

occurs for 

 ( ) + − ++= .g g  (3.24) 

Figure 3.4 Magnitude squared of the projection of the final state onto specific 

quantum states with  The solid black line shows the projection onto 

an attenuated coherent state, while the dashed blue line shows the projection 

onto a photon-added coherent state.  The dotted red line shows the projection 

onto a displaced photon number state. Values of the gain  where the final 

state is orthogonal to an attenuated coherent state, or a photon added state 

can also be seen. A logarithmic scale for the gain has been used to illustrate 

all the relevant features.  
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Thus, the final state is orthogonal to the photon added state proportional to 

†â g  for this value of the gain. The orthogonality of these two states may also 

be useful for generating continuous-variable qubits with two orthogonal states. 

The contributions to the final state from an attenuated coherent state, a photon 

added state, and a displaced number state are summarized in Fig. 3.4, where the 

square of the projection of the final state onto these states is plotted over a 

relatively large range of the gain. It can be seen that there are values of the gain 

where the output state is purely a coherent state, a displaced number state, or a 

photon added state. In addition, it can be seen that the output is orthogonal to an 

attenuated coherent state or a photon added state for values of the gain equal to 

g  and ,g  respectively. 

3.4 Husimi- Kano Q-functions 

The Husimi-Kano Q-function [65,66] provides a convenient tool for visualizing 

the properties of quantum states as well as for calculating the expectation value of 

observables. For a single mode of the field, the Q-function ( )Q  is defined as  

 ,( ˆ)Q =  (3.25) 

where ˆ  is the density operator of the state. The Q-function corresponds to the 

diagonal matrix elements of the density operator in a basis of coherent states. For 

pure states, which we have here, this becomes 

 ( ) ,Q =  (3.26) 

where  is given by Eq. (3.21). 
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Figure 3.5 Contour plots of the Q-function of the 

output state for an initial amplitude of for 

various amplifier gain values. (a) This 

corresponds to the input coherent state. (b) 

 This state is orthogonal to a photon 

added coherent state with an amplitude attenuated 

to  (c)  This is a displaced 

single photon state with the amplitude of 

displacement attenuated to  (d) 

This is an arbitrary state with a larger gain, which 

approaches a photon-added state in the limit of 

large gain. 
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Figure 3.5 shows a plot of the Q-function for some specific values of the 

amplifier gain. Fig. 3.5(a) shows the Q-function for the initial coherent state  

corresponding to a gain of unity, while Fig. 3.5(b) shows a state that is orthogonal 

to a photon added state at a gain of = = . .g g  The Q-function for a displaced 

number state that occurs at a gain of = = .g g  is shown in Fig. 3.5(c), and 

an arbitrary state at a higher gain of = .g  is shown in Fig. 3.5(d); the output 

state approaches a photon-added state in the limit of large gain. All these plots 

correspond to a coherent state amplitude of = ,  but similar results are obtained 

for other values of . 

Figure 3.5 exhibits the wide range of quantum states that can be produced 

using the post-selected amplifier illustrated in Fig. 3.1. It can be shown from Eq.  

(3.9) that cancellation between the g  and G  terms will cause the probability 

amplitude nc  in a number-state basis to vanish at a particular value n  given by 

 = .
g G

n  (3.27) 

It can also be shown that the Q-function vanishes at a coherent state amplitude 

*  given by  

 =* .
n

g
 (3.28) 

The zero in the Q-function indicates that the state is orthogonal to the 

corresponding coherent state .*  As the gain is increased for a fixed input signal 

amplitude, the zero can be seen to move inwards from infinity towards the origin. 

This can be viewed as a generalization of the orthogonality of the displaced number 

state of Eq. (3.17) to the coherent state .
s

g  It is consistent with the fact that, 

in the limit of large gain, the state becomes a single photon state that is orthogonal 
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to the vacuum state. Roughly speaking, the existence of the zero in the Q-function 

corresponds to the orthogonality of the asymmetric nc  coefficient in Fig. 3.2 to a 

particular coherent state. 

3.5 Experimental considerations 

In any practical implementation of this approach, it will be essential to consider 

the effects of experimental errors such as photon loss, detector dark counts, and 

limited detector efficiencies. To analyze the effects of these experimental errors, we 

will consider the specific implementation shown in Fig. 3.6. 

      

      

  

  

 

 

Figure 3.6 Possible experimental setup for the generation of a continuous range 

of quantum states. The single photon required for input to the idler mode of 

an optical parametric amplifier (OPA) is generated by spontaneous parametric 

down-conversion (SPDC) in the lower nonlinear crystal which is pumped by a 

laser. The detection of a single photon in detector  located in one of the 

output modes of the SPDC crystal heralds the presence of a single photon in 

the other mode. The single photon then enters a second nonlinear crystal used 

as an OPA, which is pumped by a second laser.  The gain of the OPA can be 

varied by controlling the intensity of the second laser, which allows a 

continuous range of quantum states to be generated. 
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It will be assumed that the single photon input to the idler mode of the optical 

parametric amplifier in Fig. 3.1 is generated in one of the two output modes of a 

spontaneous parametric down conversion crystal (SPDC) as shown in Fig. 3.6. The 

presence of the single photon is heralded by post-selecting on a detection event in 

the other output path of the SPDC. We will assume that the spontaneous 

parametric down conversion process generates only a single pair of entangled 

photons at a time, which is a good approximation when the intensity of the laser 

used as a pump for the nonlinear crystal is sufficiently low. With this assumption, 

the only error in heralding a single photon is due to the dark counts in detector 

.D  

Post-selecting on the case in which a single photon is present in the output of 

the idler mode of the optical parametric amplifier in Fig. 3.1 will require a number 

resolving detector D  as shown in Fig. 3.6. Here a dark count in detector D  will 

produce an error in which it is assumed that an idler photon was present even 

when there were none. In addition, limited detection efficiency in detector D  can 

produce an error in which it was concluded that one idler photon was present even 

though there were actually two or more. Errors of that kind are equivalent to 

photon loss combined with a perfect detection efficiency.  

We will assume that there is negligible probability that higher photon number 

states ( )n  will falsely indicate that a single photon was present in detector ,D  

which is a good approximation for relatively high detection efficiencies. We will 

also assume that there is negligible probability of having a dark count and a photon 

loss simultaneously. With these assumptions, we will denote the dark count 

probability in both detectors by d  and the probability that a photon count is lost 

(due to detector inefficiency or actual photon loss) by a probability of .l  
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The fidelity F  of the final mixed state ˆ  with the ideal output state  of Eq. 

(3.9) is defined as  

 = ˆ .F  (3.29) 

F  can be written as a sum of terms corresponding to the inner products of  

with the various states that are actually present in the output when a dark count 

or photon loss occurs.   There are six different possibilities that could contribute 

significantly to an outcome in which both detectors appear to register a single 

photon. These outcomes will be labelled (0, 0), (0, 1), (0, 2), (1, 0), (1, 1) and (1, 

2), where the first and second entries denote the actual photon number in the input 

and output modes of the amplifier respectively. For example, (0, 0) is an event in 

which two dark counts occurred, while (1, 1) corresponds to the case in which both 

detectors functioned correctly. 

All six of these states can be calculated using techniques similar to those 

described above. The outcome (0, 0) corresponds to the noiseless attenuation of an 

input coherent signal state  to g  as shown in Ref. [59]. The state (0, 1) 

corresponds to photon addition on g  while (1, 0) corresponds to g  itself. 

All six of these states can contribute to the fidelity in general since none of them 

are orthogonal to  for an arbitrary value of the gain. 

The states (0, 2) and (1, 2) can also be calculated using similar techniques but 

they have a relatively complicated form. For simplicity, we can calculate a lower 

bound on the fidelity by assuming that the states (0, 2) and (1, 2) are 

approximately orthogonal to the desired state .  In that case, the lower bound 

on the fidelity is given by 
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= + − −
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( , ) ( , )

( )
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F d d d l

d d d d l
 (3.30) 

Figure 3.7 shows the lower bound on the fidelity as a function of d for several 

values of .l  We have also plotted the actual fidelity including the contributions 

from the states (0, 2) and (1, 2). Limited detection efficiency and dark counts can 

both have an effect on the fidelity. 

The detectors used in pulsed down-conversion experiments have dark counts 

corresponding to d  as low as 
− ,  so that dark counts should have a relatively 

small impact on the fidelity. Superconducting detectors can have efficiencies of 

about 95% ( . )l  which would also have a minimal effect on the fidelity, 

whereas the more common silicon photo avalanche diodes can have detector 

efficiencies up to 74% [67]. In both cases, the dominant error source is more likely 

to be actual photon loss due to coupling between fibers or absorption in filters. 

3.6 Summary and conclusions 

We have shown that post-selection on the idler mode of an optical parametric 

amplifier can generate a continuous range of quantum states with different 

properties. As illustrated in Fig. 3.1, a coherent state is assumed to be incident in 

the signal mode while a single photon is incident in the idler mode. Post-selection 

on a single photon emerging in the idler mode gives an output state whose 

properties depend on the gain of the amplifier. The states that can be generated in 

this way include a coherent state, a displaced number state, and a photon added 

state, along with a continuous range of states with intermediate properties. 

One of the interesting features of this approach is that no photons are absorbed 

or emitted in the idler mode due to the post-selection process, and no photons are 

absorbed or emitted in the signal mode either since the photons are only absorbed 
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or emitted in pairs. As a result, one might suspect that the amplifier has done 

nothing. Nevertheless, the post-selection process can change the probability 

amplitudes nc  of the state in a number-state basis, since different values of n  will

have different probability amplitudes for producing the post-selected output. In 

that respect, these results are somewhat similar to Ref. [68] in which they 

considered post-selecting on an ensemble of absorbing atoms, accepting only those 

events in which the atoms remained in their ground states. Although the atoms 

may appear to have done nothing, the post-selection process can increase the 

amount of absorption or even produce gain, depending on the strength of the 

interaction. 

   

   

   

Figure 3.7 Fidelity of the output stated plotted 

as a function of the dark count probabilit for 

several values of the loss probability   The 

blue dashed curve shows the lower bound on the 

fidelity obtained by neglecting the 

contributions from the states  and  as 

described in the text. The black solid curve 

shows the actual fidelity without neglecting 

those terms.  and  were 

chosen for the plots. (a) Loss probability 

(b) (c)
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The state produced by the post-selection process is orthogonal to a coherent 

state whose amplitude depends on the value of the gain. This can be understood 

as being due to cancellation between the two gain-dependent terms in Eq. (3.9), 

which produces an asymmetric dependence of the coefficient nc  as a function of n  

as illustrated in Fig. 3.2. A corresponding zero in the Q-function is apparent in Fig. 

3.5. This orthogonality may be a useful property when using these states as 

continuous variable qubits. 

It can be seen from Eq. (3.10) that the probability of success becomes 

exponentially small for coherent state inputs with a large amplitude since it 

becomes increasingly unlikely that one or more pairs of photons will not be emitted 

due to stimulated emission in the signal mode. This is one of the major open 

problems in quantum state engineering using conditional measurements. 

Nevertheless, this approach may have useful applications for moderate values of 

the gain and input coherent state amplitudes. The fidelity of the output state is 

primarily limited by photon loss or detector efficiency, but reasonably high values 

of the fidelity should be achievable. 

Our analysis provides an interesting example of the variety of quantum states 

that can be obtained by varying the gain in a post-selected optical parametric 

amplifier. In addition, this approach may have practical applications for moderate 

values of ,  since the gain and the output state can be continuously varied by 

adjusting the intensity of the pump beam. Two amplifiers can also be used in a 

somewhat similar technique to create entangled macroscopic states, in a future 

work. 
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Chapter 4 : Generating phase 

entangled Schrödinger cat states 

and violating Bell’s inequality 

 

This chapter is essentially taken from Ref. [69] that has been published in 

Physical Review A. 

Quantum mechanics violates Bell inequality, which rules out the possibility of 

local hidden-variable theories [6,9,10,70,71] as an alternative to quantum mechanics. 

The earliest experimental tests of Bell’s inequality were based on entanglement 

between the polarizations or spins of two particles [72-78]. It was subsequently 

shown that Bell’s inequality could be violated using continuous degrees of freedom, 

such as energy-time entanglement combined with two distant interferometers [79]. 

Here we note that a photon number state incident on a balanced beam splitter will 

produce an entangled state in which the phases of the two output beams are highly 

correlated [80].  This entangled state can be viewed as a generalized Schrödinger 

cat state where there is an equal probability amplitude for all phases. 

We show that Bell’s inequality can be violated using this entangled state and 

two distant measurement devices.  Each of the measurement devices consists of a 

single-photon interferometer with a Kerr medium in one path, a set of single-photon 

detectors, and post-selection based on a homodyne measurement. The use of post-

selection suggests that the fair sampling assumption may be required for a violation 

of Bell’s inequality. Somewhat surprisingly, we show that the fair sampling 

assumption is not required if the measurements are performed in the correct order. 

Like other Schrödinger cats, these states are highly sensitive to photon loss. A 
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violation of Bell’s inequality requires that either the photon loss is inherently small 

or its effects have been minimized using linear optics techniques based on post-

selection [17]. 

 It is well known that photon number states are highly nonclassical states of 

light [7] and that they are a useful resource for generating other kinds of 

nonclassical states.  For example, a number state incident on a beam splitter has 

been used to herald an approximate cat state in one output mode by postselecting 

on the results of a homodyne measurement in the other output mode [81]. It has 

previously been shown that Bell’s inequality can be violated using a variety of 

continuous variable states, homodyne measurements, or N00N states [82-85]. The 

approach described here is somewhat similar to earlier nonlocal interferometers 

[79,86], but the source of the entangled state is very different. 

 This chapter is organized as follows. Section 4.1 outlines the basic approach.  

Section 4.2 derives the form of the entangled cat state at the output of the beam 

splitter.  The nonlocal interference effects that can be observed using this entangled 

state are calculated in Section 4.3.  Section 4.4 shows that Bell’s inequality can be 

violated provided that the effects of photon loss are sufficiently small.  In Section 

4.5, we show that the fair sampling assumption is not required if the measurements 

are performed in the correct order.  Section 4.6 discusses an intuitive explanation 

for the origin of these effects, while Section 4.7 provides a summary and conclusions. 
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4.1 Basic approach 

 We consider a situation in which a photon number state N  is incident on 

a beam splitter with 50% transmission and reflection as illustrated in Fig. 4.1. As 

will be shown in the next section, the output state  from the beam splitter 

corresponds to a superposition of identical coherent states in each of the output 

beams. Since photon number and phase are conjugate variables, the phase of the 

input number state is totally uncertain and the output state corresponds to a 

superposition of all possible coherent-state phases between  and .  The nonlocal 

properties of this entangled state are the main focus of this chapter. 

 We will show that the entangled state  can be used to violate Bell’s 

inequality using two distant measurement devices as illustrated in Fig. 4.1. Each 

measurement device includes a single-photon interferometer (shown in red) with a 

Kerr medium in one of the two paths of the interferometer.  The two output beams 

from the beam splitter also pass through the Kerr media, so that a phase shift will 

be applied depending on which path the single photons took.   A fixed phase shift 

(not shown) is also included so that each of the beams will undergo a phase shift 

of   .  Single photon detectors D   through D  determine which path the single 

photons take when they leave the interferometers. Variable phase shifts  and  

are also included in one path of the two interferometers as shown in Fig. 4.1. 
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Figure 4.1  A number state  incident on a balanced beam splitter will 

produce two output beams that are entangled in phase.  A phase shift of  

is applied to each of the beams using a pair of single-photon interferometers 

A and B with a Kerr medium located in one path, combined with a constant 

bias phase shift (not shown). Variable phase shifts  and  are introduced 

into one path of the single-photon interferometers and their outputs are 

measured using single-photon detectors  through  After the two 

beams have passed through the single-photon interferometers, their 

quadratures  and  are measured using homodyne detectors.  Those 

events in which  and  lie within a small range  centered about  

and  are postselected. Bell’s inequality can be violated in the usual way 

using the output of detectors  through  measured at four different 

settings of the parameters  and  
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Homodyne measurements are used to determine the quadratures x  and x  of 

the two beams after they have passed through the single-photon interferometers. 

We postselect on events in which the measured value of x  lies within a small range 

x  centered about some specific value ,Mx  while x  lies in a range x  about 

.Mx  The combination of a single-photon interferometer with a Kerr medium in 

one path, the single-photon detectors, and post-selection based on a homodyne 

measurement can be viewed as a compound measurement device. We will show 

that Bell’s inequality can be violated in the usual way based on the output of the 

single-photon detectors D  through D  measured at four different settings of the 

parameters  and .  

We will assume for the time being that the homodyne measurements are made 

after the single-photons have been detected in  detectors D  through ,D  which 

simplifies the analysis. According to quantum mechanics, the same results would 

be obtained if the homodyne measurements were performed first. The advantages 

of the latter approach in ruling out hidden-variable theories will be discussed in 

Section 4.5. 

 The origin of these effects can be understood as being due to nonlocal 

quantum interference between two different probability amplitudes for obtaining 

quadrature measurements centered about Mx  and .Mx  This will be described in 

more detail in the discussion of Section 4.6 after we have calculated the properties 

of the system. 
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4.2 Entangled state after the beam splitter 

The effect of a balanced beam splitter can be described as usual by the unitary 

transformation 

 ( )† † †ˆ ˆ ˆa a ia→ +  (4.1) 

and 

 ( )† † †ˆ ˆ ˆ .a a ia→ +  (4.2) 

Here 
†â  and 

†â  are the photon creation operators in the two input/output 

modes and we have used the common convention that the reflected component 

undergoes a phase shift of .  

The initial state  incident on the beam splitter is given by 

 = ,,N  (4.3) 

where ,i j  will denote a state with i  photons in one mode and j  photons in the 

other mode. We will make use of the fact that a number state can be written as a 

superposition of coherent states [87]:  

 =  .iN d f Re  (4.4) 

Here f  is defined by  

 
−


/ !

,
R iN

N
f

e e N

R
 (4.5) 

and 
iRe  denotes a coherent state with amplitude R  and phase .  R  is an 

arbitrary constant, but it will be convenient to choose the value = .R N  

 Eq. (4.4) can be used to rewrite the initial state of the system before the 

beam splitter as 
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 =  .,id f Re  (4.6) 

Here ,iRe  denotes a coherent state with amplitude 
iRe  in one input to the 

beam splitter and a coherent state with zero amplitude in the other input port. 

 It is well known that a coherent state incident on a beam splitter will 

produce a coherent state in the two output modes with amplitudes equal to the 

corresponding classical fields. As a result, the beam splitter transforms the state of 

the system in Eq. (4.6) into 

 =  , .i iR R
d e ef  (4.7) 

Here we have applied a phase shift of −  in path 2 after the beam splitter to 

compensate for the factor of i  on reflection that appears in Eq. (4.1) (This phase 

shift is not shown in Fig. 4.1). 

 The phase entanglement of the two beams is apparent in Eq. (4.7), which is 

qualitatively consistent with the results of Ref. [88] as well. All of the subsequent 

results can also be derived without using Eq. (4.4) by making use of the properties 

of the Hermite polynomials, as is described in the Appendix B. 

4.3 Nonlocal interference 

In this section, we will calculate the effects of the single-photon interferometers 

and show that there are two different probability amplitudes for obtaining 

homodyne measurement results of Mx  and .Mx  Quantum interference between 

these two probability amplitudes can violate Bell’s inequality. For the time being, 

we will only consider the situation in which single photons are detected in D  and 

,D  which shows the nonlocal dependence on the phase shifts  and  in a 

straightforward way. In the following section, we will generalize the results to 
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include photons detected in any of the four detectors D  through ,D  which can 

then be used to violate Bell’s inequality in the usual way. 

 The single-photon interferometers inserted into paths 1 and 2 will be labelled 

by A and B, respectively. The state ,
A

i j  will denote the case in which there are 

i  photons in the left path of interferometer A with j  photons in the right path, 

while ,
B

i j will denote the corresponding state in interferometer B.  Including the 

single photons, the complete state of the system before the photons have entered 

the interferometers is given by 

 =  , .i i

A B

R R
d e ef  (4.8) 

After the single photons have entered their respective interferometers and 

passed through the first beam splitter, the state of the system becomes 

 
+ +  

=    
   

 .,i i A A B Bf
i iR R

d e e  (4.9) 

The presence of a single photon in the path with the Kerr media will produce 

a nonlinear phase shift and we assume that a constant phase shift is also applied 

so that the net phase shift is  .  As a result, the state of the system after the Kerr 

media can be written in the form 

 ( )= + + +−+ + + − + − − .
f

d i i i

 (4.10) 

Here we have introduced the notation 

 ( ) ( )+ −
+ −  ,,i iR R

e e  (4.11) 

with analogous definitions for − + , + + ,  and − − . We have also used the 

more compact notation  ,
A B

and so forth. 
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The single photons encounter the variable phase shifts  and  depending on 

which path they traverse as shown in Fig. 4.1. This transforms the state of Eq. 

(4.11) into 

 

( )(

)

+
+ +

+

+= +

+

−

− + − −



.

i i

i

d e ie

i i

f

e

 (4.12) 

 Finally, the single photons exit the interferometers through another set of beam 

splitters which gives the state 

 

( ) ( )(
( )
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( ))
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=

 + + +

+ + + +

+ + + +
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+ +

+
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+
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f

iii

 (4.13) 

The case in which single photons are detected in D  and D  corresponds to the 

state . Postselecting on that outcome gives the following unnormalized final 

state 

 
( )( )+

= + ++ + + + − − + − − .i i id
f
e ei e  (4.14) 

The four terms in Eq. (4.14) correspond to the possible phase shifts in the two 

beams before they enter the homodyne detectors. 

A single mode of the electromagnetic field is mathematically equivalent to a 

harmonic oscillator, and a homodyne measurement of the x-quadrature can be 

represented by the operator ( )†= +ˆ ˆ ˆx a a  with a suitable choice of units. As a 

result, it is convenient to use the position representation, where the usual wave 

function ( )x  is given by 
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 ( ) = .x x  (4.15) 

It can be shown [89] that the wave function ( )c x  for a coherent state 
ie  

of the field corresponds to a Gaussian wave packet of the form 

 ( ) ( )− − −
=

/
.

x x ix pip x
c x e e e  (4.16) 

Here  cosx  and  sin .p  The overall phase factor of − /ix pe  is 

sometimes ignored, but it plays an important role [90] in superposition states such 

as in Eq. (4.9). 

 In the coordinate representation, Eq. (4.14) gives 

 ( ) ( ) ( ) ( ) ( )++ −− +− −−= = + + +, , , , , , ,x x x x x x x x x x x x

 (4.17) 

where ( ) ,x x  correspond to the four terms in Eq. (4.14). It will be convenient 

to choose the phase shift  so that ( )= ,N m  where m  is an integer. In that 

case, Eqs. (4.13) and (4.16) can be used to show that 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

+ + +

++

− − + − − +    − + +   

= −




sin sin

cos cos sin cos

,

.

i iR x iR x

x R x R iR

x x e d f e e

e e e

 (4.18) 

with = ( ),N m  −− ++=  aside from the phase shift of +( ).ie  The cross-terms 

are given by 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

+ −

+−

   − + + − − −− − + − − −          

= −




sin sin

sin cos sin coscos cos

( , )

,

iR x iR xi

i R i Rx R x R

x x e d f e e

e e e e

 (4.19) 

with a similar expression for −+ .  
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The probability ( ),M MP x x  of obtaining quadrature measurements that lie 

within a small interval x  about = Mx x  and = Mx x  is given by 

( ) ( )=, ,M M M MP x x x x x  (It is necessary to integrate over x  and x  for 

large values of ,x  as will be done in the following section). It is possible to choose 

values of  Mx  and Mx  such that ( )+− ,M Mx x  and ( )−+ ,M Mx x  are negligible. 

In that case, Eq. (4.18) and the corresponding equation for ( )−− ,M Mx x  can be 

used to show that 

 ( ) ( ) ( )+

++
 = + = + 

( ), , cos ( ) .i
M M M MP x x e x x x

 (4.20) 

Here  is a constant that depends on the choice of ,Mx  ,Mx  and .x  The 

success rate for the post-selection process (coincidence counting rate) depends on 

the value of  as will be discussed in the following section. 

Eq. (4.20) shows that the coincidence measurements depend nonlocally on the 

sum of the phase shifts + ,  which is characteristic of nonlocal interferometers 

such as that of Ref. [13]. A nonlocal interference pattern proportional to 

 + cos ( )  with a sufficiently high visibility indicates that Bell’s inequality 

can be violated. This is shown to be the case in more detail in the following section. 

4.4 Violations of Bell’s inequality 

The simple form of Eq. (4.20) depends on the assumption that the cross-terms 

( )+− ,M Mx x  and ( )−+ ,M Mx x  can be neglected. In order to investigate this 

possibility, the value of ( ) ( )++ −−=, ,M M M Mx x x x  is plotted as a function of 
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x  and x  in Fig. 4.2(a). These results correspond to =N  and = , which 

satisfies the condition that ( )= .N m  It can be seen that the phases of the two 

fields are highly correlated as expected. The magnitude squared of the wave 

function also shows an oscillatory behavior extending towards to the origin, which 

is due to the rapidly varying phase factor of −iNe  in the definition of .f  

For comparison, Fig. 4.2(b) shows the magnitude squared of the cross-terms 

( ) ( )+− −+=, ,M M M Mx x x x  as a function of x  and .x  A phase shift of 

= /  causes the phases of the two beams to become uncorrelated. In addition, 

the wave function is only appreciable inside a ring with a relatively narrow width. 

It can be seen that there are many choices of  Mx  and Mx  where the cross-terms 

would be negligible compared to ( )++ , ,M Mx x  which would give high-visibility 

nonlocal interference as described by Eq. (4.20). There are also regions where 

( )++ ,M Mx x  is negligible compared to ( )+− , ,M Mx x  which would also allow 

high-visibility quantum interference between the ( )+− ,M Mx x  and ( )−+ ,M Mx x  

terms. 
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The normalized probability ( ),M MP x x  is shown in Fig. 4.3 as a function of 

the phase shift  in interferometer A for several values of the phase shift  in 

interferometer B. Here the postselected quadratures Mx  and Mx  were chosen to 

be == ,M Mx x N  for which ( )+− ,M Mx x  and ( )−+ ,M Mx x  are negligibly 

small.  Bell’s inequality [70] can be violated  if the visibility of a nonlocal 

interference pattern of this kind is greater than  [91], which is the case for the 

results shown in Fig. 4.3. 

Figure 4.2 Plots of the magnitude squared of the wave function in 

the coordinate representation as a function of  and  (a) Plot 

of (b) Plot of the cross-terms 

 These results correspond to 

and  which satisfies the condition that  where 

 is an integer. 
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There can be a significant contribution from the ( )+− ,M Mx x  and 

( )−+ ,M Mx x  terms for smaller values of N  or .  In that case,  the interference 

pattern is no longer described by Eq. (4.20) and we must make use of the CHSH 

form of Bell’s inequality introduced by Clauser, Horne, Shimony, and Holt [70]. We 

also need to generalize the results of the previous section to include the detection 

of single photons in any of the four detectors D  through .D  The effects of photon 

loss will be neglected initially but then included later in this section. 

The CHSH inequality requires two sets of measurement settings, which will be 

denoted by = A  or 'A  in interferometer A and = B  or 'B  in 

interferometer B. The result a  of the measurement obtained using = A  in 

interferometer A will be assigned the value =a  if a photon is detected in detector 
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Figure 4.3 The normalized probability  of a postselected event for  

 plotted as a function of the phase shift  in 

interferometer A. (a) Phase shift  in interferometer B. (b) Phase 

shift  in interferometer B. These nonlocal interference effects  

correspond to the same parameters as in Fig. 4.2 and they indicate that a 

violation of Bell’s inequality should be possible. 
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,D  while it will be assigned the value = −a  if a photon is detected in detector 

.D  [3]. The results obtained in interferometer A using 'A will be denoted = 'a  

in a similar way, while the results obtained in interferometer B will be denoted 

= b  or = ' ,b  depending on the choice of .  The values of ( ) ,x x  

corresponding to the various single-photon detector outcomes can be calculated in 

the same way as in the previous section with the addition of a factor of i  when a 

single photon is reflected by a beam splitter. 

The parameter S  in the CHSH form of the inequality is then defined as 

 + + − ' ' ' ' .S ab a b ab a b  (4.21) 

Here ab  denotes the average product of the measurement results a  and ,b   

with a similar notation for the other three terms. The inequality S  holds for 

all local hidden-variable theories. 

In the example of interest here, the results are postselected on having obtained 

quadrature measurements of x  and x  within a range x  of Mx  and .Mx  For 

small values of ,x  the properly normalized expectation values are therefore given 

by [70]  

 
=+ =+ =+ =− =− =+ =− =−

=+ =+ =+ =− =− =+ =− =−

− − +
=

+ + +

, , , ,

, , , ,

,
a b a b a b a b

a b a b a b a b

ab  (4.22) 

with analogous results for the other expectation values. Here we have used the 

notation ( )=+ =+   , ,a b A B
x x  with a similar definition for the 

other three terms. The constant  and the factors of x  cancel out of these 

results. 
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We will first consider the case in which the range x of accepted homodyne 

measurements is negligibly small. Fig. 4.4 shows a plot of S  as a function of 'A

and ',B where the other measurement settings were held fixed at =A  and 

= .B  These results correspond to a relatively large photon number of =N

and = , as was used in Figs. 4.2 and 4.3.  It can be seen that there are regions 

of the plot where S and Bell’s inequality is violated, as would be expected 

from Fig. 4.3. 

Fig. 4.5 shows a similar plot of S  for a more realistic value of = .N  Although 

the interference pattern would no longer have the simple form shown in Eq. (4.20), 

Figure 4.4 A plot of the absolute value of the CHSH parameter  as a 

function of the measurement settings and  The other measurement 

settings  and  were held fixed at values of  and  respectively, 

while and  There are large regions of the 

parameter space where  and the CHSH form of Bell’s inequality is 

violated. 
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it can be seen that there are still values of 'A and 'B where Bell’s inequality can

be violated. 

In order to obtain an acceptable counting rate in an experiment, it would be 

necessary to choose x to be a significant fraction of the overall range of the 

homodyne measurement results, such as = ..x N This choice of x can be 

shown to give a probability of success for the post-selection process of . %  per 

pulse for = ,N  for example. With = ,A = ,' .A = ,B  and = −' . ,B  this 

value of x gives a violation of Bell’s inequality with = . .S More generally, 

the maximum value of S is plotted in Fig. 4.6 as a function of N  for several values 

of .x  Here ,A  ,'A  ,B  and 'B  were varied to optimize .S  These results were

Figure 4.5 Another plot of the absolute value of the CHSH parameter  

as a function of the measurement settings and where here the 

number of photons corresponds to  All of the other parameters are 

the same as in Fig. 4.4. It can be seen that there are still regions of the 

parameter space where  and the CHSH form of Bell’s inequality is 

violated. 
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obtained by integrating the magnitude squared of the wave functions in Eq. (4.22) 

over the relevant range of x  and .x  

It can be seen from Fig. 4.6 that Bell’s inequality can be violated for all 

values of ,N  including = .N  The value of S  is just above the hidden-variable 

limit of =S  for = ,N  and it gradually increases for larger values of N  up to 

the maximum value allowed by quantum mechanics of (the Tsirelson bound). 

It can also be seen that Bell’s inequality can be violated for relatively large values 

of ,x  which would result in reasonable values for the probability of success. 

The results shown above neglect the effects of photon loss. Schrödinger cat 

states are very sensitive to photon loss, and the loss of even a single photon will 

typically produce a substantial amount of decoherence. The effects of photon loss 

during transmission were evaluated by including an additional beam splitter in 

both paths after the initial beam splitter of Fig. 4.1. The reflected components of 

Figure 4.6 Plots of the maximum value of the CHSH parameter  as a 

function of the initial number  of photons incident on the first beam 

splitter. The results are shown for several different values of the range 

of the homodyne measurement results that are accepted in the post-

selection process.  These results neglect photon loss. 
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the two beams provide which-path information regarding their phases, which 

reduces the amount of quantum interference [92]. The maximum value of the CHSH 

parameter S is plotted in Fig. 4.7 as a function of the mean photon loss n  for 

several values of .N  It can be seen that Bell’s inequality can no longer be violated 

for n  greater than  0.1 photons for =N  and  0.2 for = ,N  while larger 

values of N  allow a mean loss of  0.3 photons.  For a given channel loss, the 

value of n  will be proportional to ,N  which favors the use of small values of N  in 

an experimental test. 

Although the violation of Bell’s inequality is sensitive to photon loss, Ref. 

[17] has shown that an arbitrary quantum state can be transmitted through a lossy

channel with negligible decoherence due to photon loss if the signal is noiselessly 

attenuated [17,59] before transmission, followed by noiseless amplification [93-95] 

after transmission. Roughly speaking, the noiseless attenuation can be used to 

reduce the intensity of the field to the point that the mean number of photons lost 

is much less than one and no significant which-path information is left in the 

environment.  In principle, the phase-entangled states of interest here could violate 

Bell’s inequality even after transmission through a lossy channel using techniques 

of that kind. Noiseless attenuation and amplification are both probabilistic, 

however, which results in an exponential reduction in the probability of success. 
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Another difficulty in an experimental test of Bell’s inequality using this 

approach is the need to implement a Kerr phase shift at the single-photon level.  

Single-photon nonlinear phase shifts as large as  have been demonstrated 

experimentally [30-37] but experiments of that kind remain challenging.  Further 

improvements in those techniques would probably be required for the kind of 

experiments proposed here. Alternatively, a controlled phase shift (Kerr effect) can 

be implemented at the single-photon level using linear optics techniques [38,39]. 

4.5 Fair sampling assumption 

The post-selection process based on the results of the homodyne measurements 

is required in order to violate Bell’s inequality. As a result, one might suspect that 

the fair sampling assumption [96,97] may be needed. It will be shown in this section 

that the fair sampling assumption is not required provided that the homodyne 

measurements are completed before the phase shifts  and  are chosen at 

Figure 4.7 Maximum value of the CHSH parameter  as a function of the 

mean photon loss  for several values of the initial number  of photons. 

These results assume that  is negligibly small. 
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random. In that case, there is no opportunity for a hidden-variable model to bias 

the statistics as a result of the post-selection process. 

We have assumed up to now that the single-photon detection measurements in 

D  through D  were completed before the homodyne measurements in Fig. 4.1. 

That produces two possible phase shifts on beams 1 and 2 which give quantum 

interference effects in the subsequent homodyne measurements.  But the results 

         
  

   

   

   

   

   

   

    

  

      

                 

                   

  

  

  

         
  

Figure 4.8 Modification of the apparatus shown in Fig. 4.1 to avoid the 

need for the fair sampling assumption as a result of post-selection. By 

extending the length of the interferometer arms, the homodyne 

measurement used for the post-selection process can be completed before 

the phase settings  and  are chosen at random. Under those 

conditions, a local hidden-variable theory cannot bias the statistics from 

detectors  and  The combined system inside the dashed blue line 

can be viewed as a compound source that generates (heralds) the entangled 

states that are to be measured. 
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would be the same if the homodyne measurements were completed first, since the 

homodyne and single-photon detection measurements correspond to commuting 

operators. This can be accomplished by extending the length of the single-photon 

interferometers as illustrated in Fig. 4.8, which allows the settings of  and  to 

be chosen at random after the homodyne measurements have been completed. 

Figure 4.9 compares the approach described here with a more conventional test 

of Bell’s inequality using a pair of single-photon detectors with limited detection 

efficiency. Fig. 4.9(a) illustrates a conventional Bell’s inequality experiment based 

on a pair of particles, such as two photons with entangled polarizations. In a local 

realistic theory, each photon is assumed to carry a set of hidden-variables  i  

that are used to locally determine the outcome of two measurement devices with 

randomly-chosen settings  and ,  such as the orientation of two polarization 

analyzers. The two possible outcomes = a  and = b  of each measurement are 

then determined by single-photon detectors ,aD ,bD ,aD  and bD  as previously 

described.  The measurement outcomes  ( ), ia  and  ( ), ib  are functions of 

,  ,  and  i  in a hidden-variable theory. Bell’s inequality can be derived in 

the usual way if the detectors have %  detection efficiency. But for limited 

detection efficiencies, a photon entering a detector could have a probability of being 

detected that depends on the settings  and . That would bias the statistical 

results and allow a hidden-variable theory to violate Bell’s inequality [96,97]. That 

possibility can be ruled out by using the fair sampling assumption or by using 

detectors with sufficiently high detection efficiencies. 
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Figure 4.9 Comparison of a conventional test of Bell’s inequality with the 

approach described in the text. (a) A conventional Bell inequality 

experiment in which a pair of entangled particles are created by a source 

 and propagate to two distant detectors with settings  and  The 

outcome of the measurements are recorded by detectors  and 

 with limited detection efficiencies. Given that a photon enters one of 

the detectors, the detection probability could depend on  and  in a 

hidden-variable theory, which would bias the statistics and require the use 

of the fair sampling assumption. (b) The experiment of interest here, where 

the results are postselected based on the measurement outcomes in 

detectors  and  The outcome of those measurements cannot depend 

on the choice of  and  if those measurements are completed before  

and  are chosen at random. The fair sampling assumption would be 

required as usual if the detectors  and  have sufficiently 

low efficiencies. 
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For comparison, the approach of interest here is illustrated in Fig. 4.9(b). The 

optical pulses leaving the source contain an indeterminate number of photons along 

with a set of hidden-variables  i  that are used to locally determine the outcome 

of any measurements in a local hidden-variable model.  A beam splitter separates 

part of the signal in each path and sends it to homodyne detectors 'D  and ',D  

whose outcome will form the basis for the post-selection process. The outcome of 

the post-selection process would be determined by the hidden-variables  i  in a 

local hidden-variable theory. 

After the homodyne measurements 'D  and 'D  have been completed, the 

settings  and  in the two measurement devices are chosen at random.  In our 

example,  and  correspond to the phase shifts  and  in the extended-

length single-photon interferometers shown in Fig. 4.8. In a local hidden-variable 

theory, the measurement outcomes  ( ), ia  and  ( ), ib  are determined by a 

new set of hidden-variables  'i  that are consistent with the outcome from the 

first set of measurements in 'D  and '.D  The probability distribution of these 

measurement outcomes can be viewed as conditional probabilities given the results 

obtained  in 'D  and '.D   In any event, the new hidden-variables  'i  must 

determine the outcome of the subsequent measurements as recorded by detectors 

,aD  ,bD  ,aD  and ,bD  in complete analogy with the role of the hidden-variables 

 i  in the conventional Bell’s inequality test of Fig. 4.9(a). 

Bell’s inequality can then be proven as usual, based on the fact that the  'i  

must determine the outcome of the subsequent measurements. The usual proof 

relies only on the requirement that the probability distributions associated with 

the  'i  must be normalized to unity (i.e., the hidden-variable theory must always 
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produce an outcome) with all probabilities in the range of 0 to 1 (no negative 

probabilities allowed). 

 The fair sampling assumption is not required for the post-selection process 

because the detection probabilities in 'D  and 'D  cannot depend on the subsequent 

choice of the settings  and .  As a result, a hidden-variable model cannot take 

advantage of the limited detection efficiency of 'D  and 'D  to bias the statistics. 

That is not the case for the subsequent Bell-inequality measurement outcomes 

recorded by detectors ,aD ,bD ,aD  and ,bD  and the fair sampling assumption 

would still be required as usual if those detection efficiencies are sufficiently low. 

The combined system consisting of the source S and homodyne detectors 'D  

and 'D  can be viewed as an effective source that prepares an entangled state for a 

subsequent Bell inequality test.  This is illustrated by the dashed-line box in Fig. 

4.8. A compound source of this kind uses post-selection to herald when an entangled 

state is ready to be measured, after which the hidden-variables  'i  must 

determine the outcomes of the measurements.  From a conceptual point of view, 

this can be viewed as either a state preparation process or a preselection of quantum 

states, rather than post-selection based on the results of the actual Bell-inequality 

test. 

It can be seen from Eq. (4.7) that the post-selection process does not create the 

entanglement between the phases in the two beams, which already exists before 

any measurements are made. The post-selection provides a way to observe 

quantum interference between the probability amplitudes for states with different 

phases, which is required for a violation of Bell’s inequality. 

As a practical matter, the fair sampling assumption will be required in most 

experiments due to the limited detection efficiencies in ,aD ,bD ,aD  and .bD  In 
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that case, there is no need for the homodyne measurements to be space-like 

separated from the choice of  and ,  and the experimental apparatus of Fig. 

4.1 would probably be easier to implement than the one in Fig. 4.8. The two 

experimental arrangements are equivalent according to quantum mechanics. 

4.6 Discussion 

The quantum interference responsible for the violation of Bell’s inequality can 

be understood in an intuitive way if .N   In that case, Eq. (4.7) describes a 

superposition of coherent states in each beam that is centered about a ring of radius 

R N=  in phase space as illustrated in Fig. 4.10. The phases of the coherent 

states in the two beams are the same but totally uncertain, as illustrated by the 

red and blue circles. 

A homodyne measurement on beam 1 will give a value of x  that corresponds 

to two possible values of the phase. For example, Fig. 4.11 illustrates the case 

where the measured value of x  is zero, which corresponds to a phase of  .  For 

simplicity, only the  case is shown in the figure, where it is represented by a 

light blue circle. There are two ways of achieving a final phase of  .  Both beams 

may have initially had a phase of −  followed by a phase shift of  from the 

single-photon interferometers, which corresponds to the ++  amplitude. Or both 

beams may have initially had a phase of +  followed by a phase shift of −  

from the single-photon interferometers, which corresponds to the −−  amplitude. If 

the +−  or −+.  amplitudes can be eliminated by the post-selection process, then 
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the total amplitude for this process to occur is 
+

++ −−+( )
,

ie  Quantum 

interference between these two terms is responsible for the form of Eq. (4.20). 

The +−  or −+.  amplitudes correspond to the case where one beam undergoes 

a phase shift of  while the other beam undergoes a phase shift of − .  For  ,N  

those amplitudes do not overlap and they can be eliminated using post-selection as 

illustrated by the dashed open circles in Fig. 4.11.  But for small values of ,N  the 

radius R  will be reduced to the point that the uncertainty circles in Fig. 4.11 will 

overlap and the post-selection process is ineffective. This is responsible for the 

reduction in the value of S  that can be seen in Fig. 4.6 for small values of .N  

Figure 4.10 Interpretation of the phase-entangled state in Eq. (4.7) in phase 

space, where  and  represent the position and momentum in the 

Wigner distribution. There is an equal probability amplitude for all possible 

phases at a distance of   from the origin. The small circles 

represent the uncertainty in the quadratures of the coherent states. A phase 

measurement in beam 1 will collapse the states in the two beams to 

approximate coherent states with equal phases [14].  Two possible results 

are illustrated by the two sets of arrows. (Dimensionless units.)  
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This interpretation is only approximately correct because of the uncertainty in 

the quadratures of a coherent state as well as the rapid variation in the factor of 

( )exp iN−  in the integral of Eq. (4.7). Nevertheless, it does provide some insight 

into the origin of these effects and it was the initial motivation for our interest in 

the system shown in Fig. 4.1. 

 

 

Figure 4.11 Nonlocal quantum interference produced by applying a phase 

shift of  to the two output beams from the initial beam splitter shown 

in Fig. 4.1.  This can be done using two single-photon interferometers 

containing a Kerr medium in one path. In this example, the results are 

postselected on obtaining a homodyne measurement of  in both 

beams, which corresponds to a final phase of  (For simplicity, only 

the  phase is shown.) One probability amplitude for this process to 

occur corresponds to an initial phase of  in both beams, followed by 

a phase shift of  from the single-photon interferometers. A second 

probability amplitude corresponds to an initial phase of  in both 

beams, followed by a phase shift of  from the single-photon 

interferometers. Quantum interference between these two probability 

amplitudes can produce a violation of Bell’s inequality. (Dimensionless 

units.) 
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4.7 Summary and conclusions 

A photon number state is one of the most basic examples of a nonclassical state 

of light. A number state incident on a balanced beam splitter will produce two 

output beams that correspond to a superposition of identical coherent states in 

each beam. The phase of the coherent states is totally uncertain but the same in 

both beams. An entangled state of this kind can be viewed as a generalized form 

of a Schrödinger cat state with an equal probability amplitude for all phases. 

Bell’s inequality can be violated using this entangled state and two distant 

measurement devices. Each measurement device consists of a single-photon 

interferometer with a Kerr medium in one path, a set of single-photon detectors, 

and post-selection based on a homodyne measurement. The Kerr media produce a 

phase shift that depends on the path taken by the single photons through the 

interferometers.  This gives two different probability amplitudes for obtaining the 

postselected value of the quadrature in the homodyne measurements. Nonlocal 

quantum interference between these probability amplitudes is responsible for the 

violation of Bell’s inequality, which can occur for any number N  of photons 

incident on the initial beam splitter. 

Like other Schrödinger cats, these states are highly sensitive to photon loss.  A 

violation of Bell’s inequality requires that either the photon loss is inherently small 

or that its effects are minimized using linear optics techniques based on post-

selection [16]. The decrease in the CHSH parameter S  due to photon loss can be 

understood as being due to which-path phase information that is left in the 

environment. 

The use of post-selection suggests that the fair sampling assumption may be 

required for a violation of Bell’s inequality. We have shown that the fair sampling 
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assumption is not required if the homodyne measurements  are performed before 

the parameters  and  in the Bell-inequality measurements are chosen at 

random. Quantum mechanics predicts the same results regardless of the order of 

the measurements. 

Somewhat similar violations of Bell’s inequality have previously been proposed 

using entangled Schrödinger cat states [86,92]. The main difference is that most 

entangled Schrödinger cat states only contain a superposition of two possible phases, 

whereas the entangled state produced by a number state and a beam splitter 

contains a continuous range of possible phases.  This approach provides a relatively 

straightforward way to produce entangled cat states, especially for small values of 

.N  

In principle, this technique could be used to distribute entangled pairs of 

photons in the output of the single-photon interferometers, provided that the 

photon loss is sufficiently small. More importantly, a number state is one of the 

simplest forms of a nonclassical state and the fact that it can be used in this way 

to violate Bell’s inequality is of fundamental interest. 
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Chapter 5 : Destructive controlled 

phase gate using linear optics 

 

This chapter is taken from Ref. [14] that has been published in Scientific 

Reports. 

A controlled-phase gate produces a phase shift  when the control and target 

qubits both have a logical value of 1. This is a very useful operation since it is a 

universal gate for quantum computation when combined with single-qubit 

operations [98]. It can also be used to create Schrödinger cat states [99], to perform 

nonlocal quantum interferometry with violations of Bell’s inequality [69,86], and to 

implement complete Bell state measurements in quantum teleportation [100,101], 

for example. 

Knill, Laflamme, and Milburn (KLM) [13] showed that linear optics techniques 

could be used to implement a nonlinear sign gate. They also showed that two of 

their nonlinear sign gates could be combined to implement a controlled-phase gate. 

In this chapter, we propose an alternative implementation of a controlled-phase 

gate for a single-rail target qubit that only requires a single nonlinear sign gate. 

Since each operation of a nonlinear sign gate requires an ancilla photon, our 

approach requires one less ancilla photon than earlier approaches [13,102,103]. This 

gives a higher average probability of success when the required ancilla photons are 

generated using down-conversion and heralding techniques. The increased 

probability of success comes at the expense of destroying (erasing) the control qubit. 

Logic gates in which the control qubit is destroyed have been used in a number 

of previous applications. For example, a destructive Controlled-NOT (CNOT) gate 

can be combined with a quantum encoder to implement a non-destructive CNOT 
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gate [104-106]. The same devices can be used to implement fusion gates that allow 

the construction of a cluster state [107]. As another example, Bell’s inequality can 

be violated in nonlocal interferometer experiments in which a controlled-phase shift 

is combined with homodyne measurements [69]. The control qubit is destroyed in 

a post-selection process in experiments of that kind, which allows the use of the 

controlled-phase gate described here. 

There have been several demonstrations of controlled logic operations in the 

coincidence basis using dual-rail qubits or polarization encoding, including 

controlled-phase gates [105,108,109]. However, the coincidence basis cannot be used 

for the single-rail target qubits of interest in this chapter due to the superposition 

of the  and  Fock states in the input, which causes the total number of 

photons to be uncertain. The use of a single-rail target qubit is required for certain 

applications, such as in the interferometer of Ref. [86]. In addition, post-selection 

in the coincidence basis often destroys both the control and target qubits, whereas 

the event-ready approach described here only destroys the control qubit. Controlled 

phase gates for quantum computation applications have also been achieved using 

nonlinear interactions with trapped atoms [110-113], for example. In contrast, the 

controlled phase gate described here uses only linear optical elements. 

In Section 5.1 we look at the nonlineat sign gate constructed using only linear 

optical elements and conditional measurements, as proposed by Knill, Laflamme 

and Milburn. Section 5.2 reviews their controlled phase gate that takes in dual-rail 

control and acts on a dual-rail target. In Section 5.3 we describe the proposed gate 

which takes a dual-rail control and acts on a single-rail target. Section 5.4 makes 

various comparisons between the two gates. In Section 5.3 we discuss implementing 

controlled phase shifts on coherent states with large amplitude and present a 

summary and our conclusions in Section 5.6. 
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5.1 Nonlinear sign gate 

The nonlinear sign gate shown in Fig. 5.1 is the basic building block of the 

KLM approach to linear optics quantum computing [98]. The input state in  is 

limited to at most two photons.  The operation of the nonlinear sign gate is then 

defined by 

 = + + → + − ,in  (5.1) 

where ,  , and  are complex constants. The only effect of the nonlinear sign 

gate is to reverse the sign of the two-photon amplitude, which is similar to the 

effects of a nonlinear Kerr medium [94]. 

The KLM nonlinear sign gate utilizes three beam splitters, one ancilla photon, 

and post-selection based on the output of two single-photon detectors, as shown in 

Fig. 5.1. The gate applies a nonlinear phase shift of  as in Eq. (5.1) for an 

   

   
    

   

  

  

         

     

     

Figure 5.1 KLM nonlinear sign gate. An input state of the form 

 gives an output state  for an 

appropriate choice of the transmission coefficients of the three beam 

splitters   and  along with a fixed phase shift  The results are 

heralded on the presence of a single photon in one of the two single-photon 

detectors 
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appropriate choice of beam splitters and linear phase shifters as shown in Fig. 5.1.  

Other choices of the parameters can also be used to implement a nonlinear phase 

shift of ,  for example [13]. There have been several proposals to enhance the 

success rate of this gate at the expense of adding more resources [114,115] or vice-

versa [116]. 

Costanzo et al. [94] proposed an alternative implementation of a nonlinear sign 

gate that is shown in Fig. 5.2. As illustrated in the left part of the figure, the device 

produces a coherent superposition of photon subtractions that occur either before 

or after a photon addition. The operation of the gate can be intuitively understood 

from the commutation relation   = 
†, .ˆ ˆa a  This gate can be implemented using a 

down-conversion crystal with heralding to produce the photon addition, with 

photon subtraction occurring either at the first beam splitter B  or the second 

beam splitter .B  Heralding on the output of beam splitter B  ensures that there 

is a fixed phase relationship between the two ways in which the photon subtraction 

can occur. The final state in this approach undergoes a noiseless amplification [94] 

in addition to the nonlinear sign shift. If necessary, this can be compensated using 

noiseless attenuation [17,117]. 
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Our destructive controlled-phase gate could be implemented using either the 

KLM nonlinear sign gate or the alternative implementation shown in Fig. 5.2. Our 

goal is to implement a controlled phase shift using only linear optical elements, 

whereas the approach shown in Fig.5.2 is based on the use of a nonlinear crystal. 

As a result, we will assume that the KLM approach is used for the nonlinear sign 

gate throughout the rest of this chapter. 

 

     

   

   
   

  

 

  

  

         

            

Figure 5.2 Alternative nonlinear sign gate suggested by Costanzo et al.  

A superposition of  and  operations is implemented using photon 

subtraction that occurs either at the first beam splitter  or at the 

second beam splitter  These operations cannot be distinguished 

when a single photon is detected in one of the outputs of the third beam 

splitter  Photon addition is implemented in between  and  

with the aid of a heralding signal from a down conversion process. A 

variety of nonlinear phase shifts can be achieved by adjusting the 

reflectivities of the three beam splitters along with an additional phase 

shift  
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5.2 KLM controlled-phase gate 

The controlled-phase gate suggested by KLM is shown in Fig. 5.3. Dual-rail 

encoding is used for both qubits, and the two paths corresponding to a logical value 

of 1 are fed into a 50:50 beam splitter. Both outputs of the first beam splitter are 

passed through a nonlinear sign gate, after which they are recombined on a second 

beam splitter to form the output of the device. 

The operation of this device can be understood as being due to Hong-Ou-Mandel 

interference [118] at the first beam splitter. If both qubits have a logical value of 0, 

then no photons pass through the nonlinear sign gates and the device has no effect. 

If only one qubit has a logical value of 1, then a single photon passes through one 

of the nonlinear sign gates, which also has no effect.  But if both qubits have a 

value of 1, then both of them will emerge in the same path after the first beam 

splitter as in the Hong-Ou-Mandel interferometer. In that case, one of the nonlinear 

sign gates will apply a phase shift of  as desired. The second beam splitter can 

      

      

      

      

  

  

 
 
 
  
 
 

  
  
  

           

Figure 5.3 KLM Controlled-phase gate.  Dual-rail encoding is 

combined with Hong-Ou-Mandel interference at the first beam 

splitter to apply a phase shift of  if both qubits have a logical 

value of 1. Two nonlinear sign gates labelled NS are required. 
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be viewed as implementing the inverse of the Hong-Ou-Mandel interferometer with 

a single photon emerging in each path. 

Other nonlinear phase shifts, such as = ,  can be produced by adding fixed 

phase shifts and varying the reflectivities of the beam splitters in the nonlinear sign 

gate from Fig. 5.1. E. Knill [102] has also described a somewhat a different 

implementation of a controlled-phase gate that also requires two ancilla photons 

as a resource. 

5.3 Destructive controlled-phase gate 

An alternative implementation of a controlled-phase gate that only requires a 

single nonlinear sign gate is shown in Fig. 5.4. In this case, we assume that a dual-

rail encoding is used for the control qubit while a single-rail encoding is used for 

the target qubit. The two paths for the control qubit are incident on beam splitters 

B  and ,B  whose outputs are postselected on the absence of a photon to produce 

a photon addition at one of the two beam splitters. The path representing a logical 

value of 1 for the control qubit is assumed to be on the left-hand side of the figure, 

where it passes through beam splitter .B  A nonlinear sign gate is placed between 

the two beam splitters, after which beam splitter B  is used to subtract a photon. 

The initial states T  and C  for the target and control qubits, respectively, 

will be denoted by 

 = + = +,   ,T T T C C C  (5.2) 

where ,  ,  ,  and  are complex constants. Here T  and T  represent the 

state of the target qubit containing zero or 1 photons, while C  and C  

correspond to the dual-rail encoded states of the control qubit. 
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The basic idea behind the operation of the gate is illustrated in the left part of 

Fig. 5.4. If the control qubit has a logical value of 1, the photon addition occurs 

first and the state 'T  that passes through the nonlinear sign gate will contain 

two photons if the target qubit also has a logical value of 1. In that case, the 

nonlinear sign gate would produce a phase shift of ,  after which the photon 

subtraction at beam splitter B  would restore the target qubit to its original 

number of photons. In all other cases, the state ' ,T  passing through the 

nonlinear sign gate would contain at most a single photon and no phase shift would 

be applied. 

The transmission coefficients for the three beam splitters will be denoted by ,t  

,t  ,t  and ,t  while the corresponding reflection coefficients will be denoted by ,r  

,r  and .r  If we apply the usual beam splitter transformation with a factor of i  on 

reflection, the unnormalized state of the system at the output can be shown to be 

given by 

  ( )= +' ,T T  (5.3) 

where ,   and  are the states at the three detectors that herald the 

target output. This state does not contain the states C  and C  of the control 

qubit because it is destroyed during the heralding process. 
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This state can be put into the desired form by choosing the values of the 

transmission coefficients such that =t t t  and = .r r t  Equation (5.3) then 

reduces to 

 ( ) ( ) = + + − 
 ,T T T Tr r  (5.4) 

where we have taken the projection onto the heralded state .  The 

probability of success is given by   , which will depend on the value of the 

probability amplitudes in the initial state, as discussed in the next section. 

            

  

       

      
    

      
     

         

      
           

       

 

Figure 5.4 Destructive controlled-phase gate. Implementation of a destructive 

controlled-phase gate that only requires a single nonlinear sign gate labelled 

NS.  If the control qubit has a logical value of 1, it produces a photon addition 

at beam splitter  If the target qubit also has logical value of 1, two 

photons will then pass through the nonlinear sign gate and produce a phase 

shift of  In all other cases, at most a single photon passes through the 

nonlinear sign gate and there is no effect on the state of the system. A photon 

subtraction at beam splitter  restores the original number of photons to 

the target qubit.  The events are heralded on the outputs shown in three 

single-photon detectors. The detector in one of the output ports of beam 

splitter  is assumed to be a photon-number resolving detector. 
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Equation (5.3) gives a controlled phase shift of =  using the parameters 

described above. Other nonlinear phase shifts can be produced using different 

parameters in the nonlinear sign gate. It may be worth noting that the same gate 

can be implemented by interchanging the locations of the output target state and 

the third heralding detector if the transmission and reflectivity of the final beam 

splitter are also interchanged. The gate fidelity and the success probability will 

remain the same in that case because the two experimental arrangements are 

equivalent. 

5.4 Performance comparison 

The probability of success for the destructive controlled-phase gate proposed 

here will be compared to that of the original KLM controlled-phase gate in this 

section. The fidelity of both gates depends on the efficiency of the single-photon 

detectors used in the heralding process, and those efficiencies will also be compared. 

One measure of the probability of success is to assume that the necessary ancilla 

photons are available with 100% probability and then calculate the intrinsic 

probability of success associated with the gate itself. But in many applications, the 

relevant probability of success would combine the intrinsic probability of success 

with the probability of generating the required ancilla photons using down-

conversion and heralding techniques.  Single photons can be generated using down-

conversion with a very high fidelity, for example, which is essential in meeting the 

threshold for error correction. 



85 
 

We will first consider the probability of success for a controlled-phase gate with 

= . As was noted in the previous section, Eqs. (5.3) and (5.4) will give the 

desired result if we choose =t t t  and = ,r r t  but those two equations do not 

completely determine the value of all three transmission coefficients. Fig. 5.5(a) 

shows the solutions for t  and t  as a function of ;t  the solutions only exist for  

 . .t  It can be shown that the maximum probability of success occurs for 

= ,t  = ,t  and = .t  This gives the maximum value of the 

coefficient r r  that appears in Eq. (5.4), as can be seen in Fig. 5.5(b). 

Figure 5.5 Parameters used in the destructive controlled-phase gate. Plots of 

various parameters, as a function of the transmission coefficient , satisfying 

the conditions  and  required for the successful operation of 

the destructive controlled-phase gate. (a) Transmission coefficient  (dashed 

red line) and  (solid blue line). The plots suggest that  cannot be less 

than  for a solution to exist. (b) Product  that appears in Eq. (5.5) 

for the probability of success. Maxima occurs at  which 

corresponds to using a 50-50 beam splitter in the photon subtraction. 

 

(a) (b) 
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From Eq. (5.4), the intrinsic probability DP  of success of the destructive 

controlled-phase gate is given by 

 ( ) ( ) = = −


  +


*Re .D NSG NSGP P P r r  (5.5) 

where NSGP  is the probability of success for the nonlinear sign gate shown in Fig. 

5.4. For the time being, we will assume that NSGP  is calculated based on the 

assumption that the ancilla photons are produced with %  efficiency. 

DP  depends on the values of the probability amplitudes ,  , ,  and  that 

describe the initial control and target qubits.  This is illustrated in Fig. 5.6, which 

is a plot of the intrinsic probability of success as a function of  and ,  where all 

of the probability amplitudes were assumed to be real with = −  and 

= − ,  for example. It can be seen that there is a significant variation in the 

probability of success depending on the form of the incident qubits. 

If the target qubit has a logical value of 1 ( )=  and = ,  then it can be 

seen from Eq. (5.4) that the output state will have zero amplitude and = ,DP  as 

can be seen in Fig. 5.6. This is an inherent feature of a destructive controlled-phase 

gate where the value of the control qubit is erased. This does not occur for other 

values of the controlled phase shift, such as ,  and it is not an issue in nonlocal 

interferometer applications, for example [69,86]. 
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In order to simplify the comparison of the KLM controlled-phase gate and the 

gate proposed here, we averaged the intrinsic probability of success DP  over all

possible values of the coefficients ,  , ,  and . This result is compared with the 

corresponding result KLMP  for the KLM controlled phase gate in Table 5.1. It can 

be seen that the intrinsic probability of success is comparable for the two gates for 

the case of = ,  which corresponds to a Controlled-Z operation. 

Single photon ancilla can be generated using down-conversion and heralding on 

one of the pair of photons, which we will assume to succeed roughly 1% of the time 

[119]. Table 5.1 also includes the effective probabilities of success 'DP  and 'KLMP  for 

the two controlled phase gates if we include the probability of generating the 

Figure 5.6 Intrinsic probability of success. Intrinsic probability of success 

 of the destructive controlled-phase gate as a function of the 

probability amplitudes  and  in the incident control and target qubits.  

All four probability amplitudes in Eq. (5.3) were assumed to be real in 

this example. On the other hand, if we select  and  to be imaginary, 

we get a probability independent of the real valued  and 
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required ancilla photons using down-conversion.  It can be seen that ' 'D KLMP P  

since the KLM gate requires two ancilla photons while the destructive controlled-

phase gate only requires a single longer ancilla photon. 

As described in the previous section, a destructive controlled-phase shift of  

=  can also be produced using a different set of parameters.  The KLM gate 

can be modified to produce a phase shift of =  as well [13]. The probability 

of success for these two gates was calculated in the same way as before and the 

results are also compared in Table 5.1. 

 It can be seen that the destructive controlled-phase gate has a much higher 

average probability of success in this case as well if we include the probability of 

generating the required ancilla photons using down-conversion and heralding. 

In principle, both types of gates can be operated with unit fidelity if the single-

photon detectors are assumed to be perfect. The dark counts in an avalanche-diode 

single-photon detector are typically on the order of 100 counts/second or less.  With 

a coincidence window of 1ns, this corresponds to an erroneous output in 

approximately 
−

 of the events, which has a negligible effect on the fidelities. 

In contrast, heralding on those cases where the output of a single-photon 

detector indicated that no photons were present can have a significant impact on 

the gate fidelity if the efficiency  of the detectors is limited. Roughly speaking, 

this allows photons to escape unnoticed from the system, leaving an incorrect 

number of photons in the output state.  The average fidelity DF  of the destructive 

controlled-phase gate of Fig. 5.4 and the average fidelity KLMF  for the KLM 

controlled-phase gate are plotted in Fig. 5.7 as a function of the detector efficiency 

. Both of these results correspond to a controlled phase shift of =  and they 

assume that the ancilla photons have unit fidelity. 
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 π=  π /=  

DP  .  .  

KLMP  .  .  

'DP  . −  . −  

'KLMP  . −  . −  

 

Table 5.1 Comparison of the average probability of success. Here DP  and KLMP  are 

the intrinsic success probabilities of the destructive controlled-phase gate and the 

KLM gate respectively, while 'DP  and 'KLMP  include the probability of generating 

the required ancilla photons using heralded down-conversion. The nonlinear phase 

shift is given by .  

 

It can be seen that the fidelity of the destructive controlled-phase gate is 

somewhat less than that of the KLM gate. This can be understood from the fact 

that the destructive controlled-phase gate of Fig. 5.4 relies upon 3 photon detectors 

indicating that no photons were detected, while the KLM gate of Fig. 5.3 only 

depends on 2 null detection events. This includes the fact that each of the nonlinear 

sign gates of Fig. 5.1 relies on a single null detection event. 
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The KLM gate preserves the control qubit whereas it is destroyed in the 

controlled-phase gate of Fig. 5.4. As noted previously, a destructive controlled-

phase gate can be used in a number of applications, such as nonlocal quantum 

interference experiments, the generation of entangled Schrödinger cat states [69], 

and in fusion operations for generating cluster states [107]. More generally, a 

quantum encoder gate [104,106] could be used in combination with a destructive 

controlled-phase gate to preserve the value of the control qubit, but that would 

require an additional ancilla photon. In that case, there would no longer be any 

advantage in the overall probability of success as compared to using the KLM gate. 

5.5 Controlled phase shift for large photon numbers 

Up to now, we have assumed that the target state that is input to the 

controlled-phase gate of Fig. 5.4 contains a maximum of one photon. There are 

potential applications where it would be desirable to produce a controlled phase 

shift on a state containing a larger number of photons, such as a coherent state.  

Figure 5.7 Comparison of the fidelities. Average fidelity  

of the KLM controlled-phase gate (solid blue line) compared 

with the average fidelity  of a destructive controlled-phase 

gate (dashed red line). Both fidelities are plotted as a function 

of the single-photon detector efficiency  
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This can be useful in producing Schrödinger cat states [99] or in quantum 

interference experiments, for example [69,86]. 

The controlled-phase gate can be modified as shown in Fig. 5.8 to allow a larger 

number n  of photons in the input. Here a series of beam splitters is used to divide 

the incident field into N  different paths. For  ,N n  each of these paths will 

contain at most a single photon with high probability, which allows a destructive 

controlled-phase gate to be applied in each of the paths. The output of each of 

these controlled-phase gates can then be recombined using another series of beam 

splitters.  This approach is similar to the technique used for noiseless amplifiers 

when the input state has more than one photon [93]. 

The main limitation in this approach is that all of the controlled-phase gates 

have to succeed simultaneously, and the probability of that occurring decreases 

exponentially with the value of .N  In addition, a single control qubit would need 

to control the phase shift in all N  paths. This can be accomplished by using a 

series of quantum encoders [106], which would further decrease the overall success 

        

     

     

     

     

      

      

      

      

    

    

    

    

      

      

      

      

       
 
  
  
 

       
 
   
  
 

Figure 5.8 Controlled-phase gate for a coherent state. The incident field is 

divided into  separate paths, each of which contains a destructive 

controlled-phase gate. The case of  is shown here. A set of beam 

splitters then recombines the individual beams to form a single output state.   
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rate. Nevertheless, an approach of this kind may be feasible for relatively weak 

coherent states. 

5.6 Summary and conclusions 

We have proposed a destructive controlled-phase gate that produces a phase 

shift of  when the control and target qubits both have a logical value of 1. The 

most commonly used values of  are  or / ,  but other phase shifts can be 

produced as well.  The controlled-phase gate proposed here only requires a single 

nonlinear sign gate as a resource, whereas earlier implementations required two 

nonlinear sign gates [13]. As a result, the average probability of success for this 

controlled-sign gate is much larger than in earlier implementations if we include 

the need to generate ancilla photons using down-conversion and heralding.  No 

such advantage would exist if the ancilla photons are produced on demand using 

quantum dots, but that typically does not give fidelities as high as can be achieved 

using down-conversion due to charge fluctuations [120]. Nevertheless, the use of 

quantum dots to produce single photons is an active area of research with continual 

improvements [121-123]. 

The basic idea behind the proposed controlled-phase gate is the use of a dual-

rail control qubit to add a photon either before or after the nonlinear sign gate. If 

the photon is added before the nonlinear sign gate and the target qubit has a logical 

value of 1, then two photons will pass through the nonlinear sign gate and a phase 

shift of  will be produced. No such phase shift will be produced if the photon 

addition is done after the nonlinear sign gate.  A photon subtraction is performed 

at the output of the gate to restore the original number of photons in the target 

qubit. 

The increased probability of success comes at the cost of destroying the control 

qubit.  This is acceptable in a number of applications where the control qubit would 
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have been destroyed in any event, such as in a post-selection process. Potential 

applications of this kind include the generation of Schrödinger cat states [99], 

nonlocal interference experiments that violate Bell’s inequality [69], and the 

construction of cluster states using fusion gates [107]. The control qubit can always 

be preserved if necessary by using a quantum encoder circuit [106] before the 

controlled-phase gate, but that would require two ancilla photons and there would 

be no benefit as compared to the original KLM controlled-phase gate.  The 

probability of success vanishes for certain input states for a controlled phase of ,  

but that is not the case for other values of the controlled phase that are required 

in many applications. 

In summary, the controlled-phase gate described here provides an interesting 

example of the use of photon addition and subtraction [94], and it may be of 

practical use in certain applications such as the generation of Schrödinger cat states 

and violations of Bell’s inequality. 
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Chapter 6 : Noiseless attenuation 

 

This chapter is taken from Ref. [124] that has been published in Physical Review 

A. 

Photon loss in the transmission of continuous-variable quantum states can 

produce a large amount of decoherence, which limits the usefulness of continuous-

variable quantum states in quantum communication systems. These effects can be 

reduced by noiselessly attenuating the signal prior to transmission, followed by 

noiseless amplification after transmission [17]. In this chapter, we analyze the 

degree of coherence of several kinds of continuous-variable quantum states after 

they have been noiselessly attenuated. We show that ordinary attenuation by a 

beam splitter would introduce a large amount of decoherence, but that noiseless 

attenuation preserves the coherence of the quantum states and their ability to 

produce quantum interference effects. 

Noiseless amplification techniques have been studied and experimentally 

verified, using linear or nonlinear optical elements combined with heralding 

techniques [125-128]. These probabilistic devices avoid the noise that is always 

introduced by deterministic, phase-preserving linear amplifiers [15,16]. Similarly, 

the inverse transformation of noiseless attenuation can be implemented using 

several kinds of nondeterministic devices [17,59]. The effect of noiseless attenuation 

can be described by the nonunitary operator 
n̂

 where the parameter  can have 

values between 0 and 1. This transforms an input state of the form 
n

nc n  into 

 ,n

n
nc n  where  is a suitable normalization constant.  In addition to reducing  
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the average photon number [117], we will show that such a device is truly “noiseless” 

in the sense that it preserves the coherence of several nonclassical states of interest. 

We will analyze the effects of a noiseless attenuator implemented using a beam 

splitter and conditional measurements (heralding) [1], as illustrated in Fig. 6.1. 

Noiseless attenuation can also be achieved using an optical parametric amplifier 

and heralding techniques [59]. Ordinary attenuation by a beam splitter (without 

heralding) will leave which-path information in the environment, which produces 

decoherence and a reduction in quantum interference. Heralding on zero photons 

in the upper output path of Fig. 6.1 eliminates any which-path information in the 

environment. Several recent experiments have demonstrated the feasibility of 

heralding on the detection of zero photons [18,129-134]. 

We will use the Wigner distributions [27] of the states as the primary tool for 

monitoring their evolution, since negative regions of the Wigner distribution are 

an indicator of nonclassicality and they can be used to test for any decoherence 

due to attenuation. In addition, the Wigner distribution is a useful tool since it can 

be reconstructed using homodyne measurements [135,136]. 

 

 

Figure 6.1 A noiseless attenuator implemented using a beam 

splitter combined with heralding on the presence of zero photons 

in one of the output ports. The conditional measurement is 

represented by a projection  on the reflected mode. 
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The rest of the chapter is as follows. In Section 6.1, the nonclassicality of 

Schrödinger cat states is shown to be preserved under the action of a noiseless 

attenuator. In Section 6.2, we consider the noiseless attenuation of single mode 

squeezed vacuum (SMSV) states. Section 6.3 expands the analysis to two-mode 

states, including the effect of noiseless attenuation on the quantum interference of 

two SMSV states using a Mach-Zehnder interferometer. Section 6.4 deals with the 

effects of limited detector efficiency. A Summary and Conclusions are provided in 

Section 6.5. 

6.1 Schrödinger cat states 

Schrödinger cat states are a superposition of macroscopically distinguishable 

states. In the context of quantum optics, they are usually assumed to be a 

superposition of two coherent states [137]. For a coherent state, the Wigner 

distribution [27] is a Gaussian distribution centered at the corresponding amplitude.  

A cat state shows additional oscillations in between the Gaussians of the individual 

coherent states, as can be seen in Fig. 6.2. These oscillations are due to quantum 

interference between the two components of the cat state. The interference also 

gives rise to negative regions of the Wigner distribution, which is an indicator of 

the nonclassical nature of the state [138]. 

It is well known that photon loss from a Schrödinger cat state will leave which-

path information in the environment, which suppresses the interference pattern in 

the Wigner distribution [139,140]. If a noiseless attenuator is to be truly “noiseless,” 

it must preserve the oscillations in the Wigner distribution. We will analyze the 

effects of the noiseless attenuator shown in Fig. 6.1, where the measurement of no 

photons in one of the output modes heralds the successful generation of the 

attenuated output in the other path. 
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We will assume that the input to the noiseless attenuator is an even cat state 

given by 

 

( )−

+ −
=

+ | |

,cat

e
 (6.1) 

where  is a real parameter and  is a coherent state with that amplitude. 

A coherent state is given in the number basis by 

 
=


−= | | / ,

!n

n

e n
n

 (6.2) 

and if we consider relatively small amplitude cat states then, to a good 

approximation, we only need to keep a small number of photon number states .n  

All of the subsequent numerical calculations were performed using an initial value 

of =  and keeping the first  photon number terms. 

The wave function of the initial cat state in the coordinate representation [69] 

is thus a superposition of the wave functions ( )n x  of the corresponding photon 

number states 

 =( ) ( ),cat n n
n

x c x  (6.3) 

where the coefficients nc  can be obtained from Eqs. (6.1) and (6.2) as is described 

in more detail in the Appendix C. The Wigner distribution for a pure state | in 

units where =  is then given by the transformation  [27] 

 
*( , ) .ipy y y

W x p dy e x x
+

−





   
= − +   

   
  (6.4) 

Figure 6.2 shows the Wigner distribution of the input cat state. 
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The beam splitter transformation used to represent the input photon creation 

operators in terms of the output operators was chosen to be 

 
=  
 

,
t ir

B
ir t

(6.5) 

where t  and r  are the transmissivity and the reflectivity of the beam splitter. 

Equation (6.5) is equivalent to several commonly used beam splitter 

transformations with the addition of different phases at its input and output modes. 

6.1.1 Ordinary attenuation 

The beam splitter shown in Fig. 6.1 can couple photons into the output path 

labeled A as well as the auxiliary mode labeled B, which can be thought of as the 

environment. In the photon number basis, the state of the system after the beam 

splitter can be written as 

( )= , .
a b

out a b a b
n n

c n n n n (6.6) 

Figure 6.2 Wigner distribution of the input cat state with 

The oscillations near the origin are due to quantum interference 

between the two coherent states in Eq. (6.1). The fact that the 

Wigner distribution has negative regions indicates that the state is 

nonclassical. (Dimensionless units.) 
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Here the coefficients ( ),a bc n n can be found using Eqs. (6.1), (6.2), and (6.5), 

while an  and bn  correspond to states with an and bn photons in the two 

output modes.  The details of the calculations are described in the Appendix C. 

Since the number of photons in the environment is not measured in an ordinary 

attenuator, we need to take a partial trace over the environment.  We will denote 

the projection onto the state with bn  of photons in mode b as  | ,
bout n  which is 

given by 

( )= | , .
b

a

ou at n a b
n

c n nn (6.7) 

The density matrix of the mixed state after tracing over mode b is given by 

=  |  | 
ˆ .

b b

b

out out n out n
n

(6.8) 

Figure 6.3 Wigner distribution of the output state after a Schrödinger cat 

state has passed through an ordinary beam splitter. Here, the reflectivity of 

the beam splitter was arbitrarily chosen to be (a 50:50 beam splitter). 

The oscillations near the origin have been reduced due to decoherence arising 

from the which-path information left in the environment. (Dimensionless 

units.) 
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The trace operation represents the decoherence due to loss of information into the 

environment. The Wigner distribution of the mixed state after the partial trace is 

then given by 

=  | ,
b

bout out n
n

WW (6.9) 

where  | bout nW  is the Wigner distribution of state  | .
bout n  Note that  | bout n is an 

un-normalized state in our notation. 

Figure 6.3 shows the Wigner distribution of the mixed state after tracing over 

the environment. The peaks corresponding to the original coherent states have been 

moved closer to the origin due to the overall attenuation. In addition, the 

oscillations near the origin have been reduced and are not as negative as before 

attenuation, which indicates a loss of decoherence and less nonclassical behavior. 

6.1.2 Noiseless attenuation 

In the previous section, we considered the case in which there was no heralding 

based on the number of photons that were coupled into the auxiliary mode 

(environment), which reduces the amount of quantum interference. Now we will 

analyze the output of a noiseless attenuator in which the output is only accepted 

when no photons are found in the auxiliary mode. 

With post-selection of that kind, the Wigner distribution of the output mode is 

obtained by keeping only the =bn  term in Eq. (6.9). After renormalization, this 

gives

=( )
 |  |  | ,

b b b

heralded
out out out outW W (6.10) 

where 

= | .
b n

n

n
out c t n (6.11) 
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The results are plotted in Fig. 6.4, where it can be seen that the oscillations in 

the Wigner distribution have been restored. The negativity of the Wigner 

distribution is also similar to that of the original state in Fig. 6.2. At the same 

time, the peaks due to the two coherent states have been moved closer to the origin 

as a result of the attenuation. 

For comparison, the Wigner distribution of an exact Schrödinger cat state 

corresponding to a superposition of coherent states with a reduced amplitude of 

=  is plotted in Fig. 6.5. It can be seen that the Wigner distributions in Fig. 

6.4 and 6.5 are the same, as can be shown analytically as well. The noiseless 

attenuation of a cat state is equivalent to simply reducing the amplitude of the 

coherent states in Eq. (6.1) while maintaining the coherence of their superposition. 

The amplitude of coherent states in the cat state at the output is given by .t  

Figure 6.4 Wigner distribution of the state of the output mode after 

noiseless attenuation of a Schrödinger cat state. Here the output 

was postselected for events in which no photons were observed in 

the auxiliary mode. The oscillations near the origin are much larger 

than is the case for ordinary attenuation in Fig. 6.3, which shows 

that the coherence of the state has been maintained.  

(Dimensionless units.) 
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The success probability SP is state dependent and given by 

= = |  | .
b b

n
out out nS

n

P c t (6.12) 

If the input state can be approximated by an expansion in the  Fock basis with a 

maximum of N photons, then it is evident from Eq. (6.12) that  ;NSP t i.e., it is 

lower bounded [17]. This is a good approximation for weak cat states and squeezed 

vacuum states and for some .N  For the example shown in Fig. 6.4, = . .SP  

6.2 Single mode squeezed vacuum 

We saw in the previous section that a noiseless attenuator preserves the 

coherence of a Schrödinger cat state. We will now consider another example in 

which a single mode squeezed vacuum (SMSV) state with squeezing along the x 

Figure 6.5 Wigner distribution of an exact Schrödinger cat 

state with a coherent-state amplitude of  Comparing 

these results with those of Fig. 6.4 shows that noiseless 

attenuation of a cat state is equivalent to simply reducing the 

amplitude of the two coherent states in Eq. (6.1). 

(Dimensionless units.) 
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quadrature is passed through a noiseless attenuator. The initial SMSV state is 

given [141] by 



=

   
=    


−

 


tanh
,

cosh
SM

n
S

n

V

n
n

n
(6.13) 

where  is a parameter related to the strength of the interaction in a 
( )

 medium.  

States of this kind can be produced using parametric down-conversion [142] and 

they are widely used in many applications. 

The Wigner distribution of a single-mode squeezed vacuum state is described 

by a Gaussian of the form [27] 

  
= − +  

  
( , ) exp ,

p
W x p A sx

s
(6.14) 

Figure 6.6 Wigner distribution of a single mode squeezed vacuum 

state with a squeezing parameter of  (arbitrary units). Fitting 

the distribution with Eq. (6.14) gives   (Dimensionless 

units.) 
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as illustrated in Fig. 6.6.  The squeezing parameter s  is related to  by = ln ,s

while the width  has the same value as in an ordinary vacuum state where =s

and = . The uncertainty in one direction of phase space is reduced at the 

expense of an increased uncertainty in the orthogonal direction, as required by the 

uncertainty principle. 

Figure 6.7 Wigner distribution of a single mode vacuum state after it has 

passed through an ordinary attenuator consisting of a beam splitter with 

an arbitrarily chosen reflectivity  Fitting the distribution with 

Eq. (6.14) gives and  (Dimensionless units.) 

Figure 6.8 Wigner distribution of a single mode squeezed vacuum state 

after noiseless attenuation using a beam splitter and heralding, as 

illustrated in Fig. 6.1. Fitting the distribution with Eq. (6.14) gives 

which is same as that for the original single-mode squeezed state 

in Fig. 6.6, along with a value of  (Dimensionless units.) 
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Figure 6.7 shows the Wigner distribution of the output state after a single mode 

squeezed vacuum state has passed through an ordinary attenuator consisting of a 

50:50 beam splitter. In comparison, Fig. 6.8 shows the Wigner distribution after 

the state has passed through a noiseless attenuator with post-selection on the 

auxiliary mode as discussed earlier. A reduction in the squeezing can be clearly 

seen in both cases. A fit to Eq. (6.14) gives = .  and = .s  for ordinary 

attenuation, while noiseless attenuation gives = .  and = . .s  It can be 

seen that noiseless attenuation gives a state with lower uncertainty (noise) than is 

obtained using ordinary attenuation, although the difference is not as apparent as 

it is for a Schrödinger cat state. The new squeezing parameter in the state at the 

output is given by ( ) ( ) ( ) ( )   + + − − + +
   

.s t t s t t  For the example 

shown in Fig. 6.7, = . .SP  

6.3 Quantum interference 

Figure 6.4 shows that noiseless attenuation maintains the quantum interference 

that is responsible for the oscillations near the origin of the Wigner distribution of 

a Schrödinger cat state.  In this section, we will use a Mach-Zehnder interferometer 

to give a more explicit demonstration of the effects of a noiseless amplifier.  In an 

ordinary attenuator, which-path information left in the environment will produce 

a large decrease in the visibility of the interference pattern.  A noiseless attenuator 

eliminates the which-path information and would be expected to maintain the 

coherence of the quantum interference. 
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The interferometer measurements of interest are illustrated in Fig. 6.9. A two-

mode squeezed state is incident in the two input ports of the 50:50 beam splitter 

which is assumed to have the same form as in Eq. (6.5). It can be shown that this 

transformation generates two independent single-mode squeezed states in the two 

output modes [143]. These single-mode-squeezed states then pass through the 

noiseless attenuators placed in both paths, which consist of a beam splitter and 

heralding on zero photons in one of the output paths as in Fig. 6.1. Finally, the 

two beams are mixed on a second beam splitter to form a Mach-Zehnder 

interferometer. Coincidence measurements are performed on the two outputs. 

Figure 6.9 A modified Mach-Zehnder interferometer that could be used 

to measure the amount of quantum interference between two states 

after noiseless attenuation. The input state is a two-mode squeezed 

state, which is transformed into two independent single mode squeezed 

states after passing through the first beam splitter on the left. The 

noiseless attenuators are shown enclosed in blue dashed boxes. A phase 

shift  is applied in one path, after which the two modes are 

recombined at a second beam splitter on the right. The effects of 

quantum interference can be observed in coincidence measurements 

between the two output ports. 
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The incident two-mode squeezed state can be written in the number state basis 

in the form [63] 

 tanh .
cosh

 (6.15) 

Here  is once again related to the strength of the squeezing interaction, which 

we arbitrarily assumed to have the value . . For relatively small squeezing, it 

is sufficient to retain only the first few terms in a number-state expansion.  

Equation (6.15) can be used to calculate the effects of the first beam splitters, and 

the coincidence rate was calculated numerically using the same techniques as before. 

Figure 6.10 Probability of a single-photon coincidence in the two output 

paths of the Mach-Zehnder interferometer of Fig. 6.9. The solid (blue) line 

shows the results for the case of ordinary attenuation, where no heralding 

on the auxiliary mode was performed.  This reduces the visibility of the 

interference pattern to 90%. The dashed (orange) line shows the results 

for noiseless attenuators, where the output was heralded on the presence 

of zero photons in the auxiliary mode; this gives a visibility of 100%. Both 

cases correspond values of  and chosen arbitrarily.  

(Dimensionless units.) 
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With 100% reflective beam splitters (mirrors) in the two paths through the 

interferometer, Fig. 6.9 reduces to a standard Mach-Zehnder interferometer, and 

the calculated results show a visibility of %  in the interference pattern. By 

reducing the reflectivity of the intermediate beam splitters, ordinary attenuation is 

introduced in both paths, adding noise. An arbitrarily chosen reflectivity of 

. , for both beam splitters, gives a reduced visibility of  90%. Noiseless 

attenuation is achieved by heralding on zero photons in the auxiliary modes, as 

shown in the dashed boxes of Fig. 6.9. This restores the interference visibility to 

100%, as illustrated in Fig. 6.10. For the example shown there, . .These 

results show that noiseless attenuation does maintain the coherence required for 

quantum interference effects. 

6.4 Detector efficiency 

Up to this point, the single-photon detectors used in the heralding process were 

assumed to have 100% detection efficiency. Limited detection efficiency can have 

a significant effect on the output of the heralded detection process shown in Fig. 

6.1, which will no longer be completely “noiseless” [18,19]. In this section, we will 

model the effects of limited detection efficiency using a perfect detector preceded 

by a beam splitter to simulate the effects of loss or detection inefficiency. 
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Figure 6.11 shows the effects of a noiseless detector on a Schrödinger cat state 

for several different values of the detector efficiency. It can be seen that the 

coherence of the cat state is completely maintained for a perfect detector, but that 

the performance of the device gradually degrades to that of an ordinary attenuator 

for a detection efficiency of 0. Intermediate values of the detection efficiency 

produce a reduction in the oscillations near the origin of the Wigner distribution, 

indicating a gradual decrease in the coherence of the output state. It can be seen 

from Fig. 6.11(c) that a detection efficiency as low as 50% can still give significantly 

better performance than an ordinary attenuator. For an initial cat state, the 

Wigner function of the output state can be solved analytically for arbitrary detector 

efficiency (see the Appendix C). 

(a) (b) 

(c) (d) 

Figure 6.11 Effect of using inefficient detectors for heralding on no photons 

for noiseless attenuation of cat states. Wigner distribution of the outputs 

when the efficiency is: (a) 100%, (b) 75%, (c) 50%, and (d) 0%.  

(Dimensionless units.) 
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The dependence of the Mach-Zehnder interferometer of Fig. 6.9 on the detection 

efficiency is shown in Fig. 6.12, which is a plot of the visibility as a function of 

detector efficiency. There is a decrease in the visibility for lower efficiency 

photodetectors, which can be understood from the fact that a detector with limited 

efficiency does not completely rule out the possibility of which-path information 

being left in the environment, as in ordinary attenuation. 

The overall process is still noisy, and we are simply heralding on a suitable 

subset of the output states, which eliminates the terms that would have contributed 

to the noise. The ability to eliminate these outcomes, however, depends on the 

detector efficiency, which in turn has an effect on the amount of which-path 

information lost to the environment. 

6.5 Summary and conclusions 

Ordinary attenuation of an optical quantum state using a beam splitter can 

produce decoherence due to which-path information left in the environment.  

Figure 6.12 Visibility of the quantum interference from the Mach-Zehnder 

interferometer of Fig. 6.9 as a function of the detector efficiency used in the 

heralding process. No which-path information is left in the environment and 

the visibility is 100% for a perfect detector. The visibility decreases for 

limited detection efficiency since the possibility of which-path information 

is not completely eliminated in that case. (Dimensionless units). 
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Noiseless attenuation can be achieved using a beam splitter combined with 

heralding on those events in which no photons are present in the auxiliary mode 

(the environment), which eliminates the which-path information. It is interesting 

that this process can reduce the intensity of an optical signal without extracting 

any power from the system [17,59]. 

In this chapter, we showed that noiseless attenuators are truly “noiseless” in the 

sense that they do not reduce the coherence of the input state. We first considered 

the case of a Schrödinger cat state that has passed through a noiseless attenuator. 

The Wigner distribution of a cat state has characteristic oscillations near the origin 

that arise from the interference of its two constituent coherent states. The Wigner 

distribution also has negative regions, which demonstrates that the states are 

nonclassical.  We showed that noiseless attenuation maintains both these properties. 

We also found similar results for the case of a single-mode squeezed vacuum state, 

where noiseless attenuation maintained the width of the Gaussian Wigner 

distribution. 

Quantum interference effects were investigated more directly by considering a 

Mach-Zehnder interferometer with noiseless attenuators in each arm and a two 

mode-squeezed vacuum state for the input. The visibility in the interference pattern 

from coincidence measurements was found to be maintained by noiseless 

attenuation, while it was substantially reduced by ordinary attenuation. Once 

again, this is due to the fact that the heralding process eliminates any which-path 

information left in the environment. 

The effects of limited detection efficiency were also investigated. As might be 

expected, heralding using a detector with limited detection efficiency limits the 

ability of the heralding process to eliminate noise by eliminating those states that 

would leave which-path information in the environment. 
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These results may be of practical use in quantum communications systems 

based on continuous variables, where photon loss will result in the decoherence of 

nonclassical states. These effects can be reduced by noiselessly attenuating the 

signal before transmission, followed by noiseless amplification after transmission 

[17]. Our results show that noiseless attenuation can maintain the coherence of 

nonclassical states, but that detector efficiency will be an important consideration. 
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Chapter 7 : Inhibiting phase drift 

in multi-atom clocks using the 

quantum Zeno effect  

 

This chapter is taken from the preprint Ref. [144] submitted to Scientific 

Reports. 

Atomic clocks have a number of important applications[145-149], and there has 

been considerable progress in developing new techniques to improve their 

performance[150-153]. The precision of atomic clocks depends in part on the 

absorption bandwidth of the relevant atomic transition[154]. Here we consider an 

ensemble of N  atoms whose transition frequencies have been independently 

perturbed by a small amount due to coupling to the environment or other factors, 

such as the effective bandwidth due to finite lifetimes. We investigate the 

possibility of using the quantum Zeno effect to lock the relative phases of the atoms, 

which would decrease their effective bandwidth by a factor of .N  An example 

is analyzed in which the quantum Zeno effect can be used to lock the relative phase 

of a pair of atoms, after which the elapsed time can be determined. Practical 

applications may require N   in order to achieve a good signal-to-noise ratio. 

In the quantum Zeno effect[21,37,155], frequent measurements can inhibit 

transitions into unwanted states and force the system to evolve in the desired 

subspace of Hilbert space. The Zeno effect has been experimentally demonstrated 

using  9Be+ ground-state hyperfine levels[35], Bose-Einstein condensates[156], ion 

traps[157], nuclear magnetic resonance[158], cold atoms[159], cavity QED[160], and 

large atomic systems[155].  It has also been shown that the Zeno effect is a sufficient 
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resource for the implementation of quantum logic gates[22,161], which could be 

used as the basis of a quantum computer[161] or quantum repeaters[162]. The Zeno 

effect can also be used to prepare various nonclassical or entangled states[68,163-

166] and to protect entanglement once it has been generated[167,168]. The anti-

Zeno effect, by which repeated measurements increase the rate of transitions, may 

be useful in quantum heat engines[169]. 

Earlier approaches have used entangled states to synchronize distant 

clocks[170,171]. Our approach is also based on the use of simple entangled states 

(dark states)[172], but here the goal is to improve the stability of a single clock 

rather than synchronize two or more distant clocks.  A Zeno-like-effect has recently 

been shown to mitigate phase diffusion in self-sustaining quantum systems[173-175], 

which is somewhat related to our technique for inhibiting relative phase drift in 

atomic clocks. It has also been shown that an atomic clock can be implemented 

using the entropy reduction produced by weak coupling to the environment and 

continuous measurements[176]. 

This chapter begins with a discussion of the potential reduction in the 

bandwidth of an ensemble of atoms using the quantum Zeno effect and the 

increased precision of an atomic clock that could be achieved in that way in Section 

7.1. In Section 7.2, a technique for using the quantum Zeno effect to lock the 

relative phase of a pair of two-level atoms is then described. Section 7.3 discusses 

the advantages of using three-level or four-level atoms. The ability to directly read 

out the phase of the atoms after some period of time and the need to extend these 

methods to larger numbers of atoms is considered in Section 7.4. Section 7.5 

provides a summary and conclusions. 
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7.1 Benefit of atomic phase locking 

Atomic clocks are typically operated by locking the frequency of an external 

microwave oscillator to the resonant frequency associated with an atomic transition 

between two nuclear hyperfine states[20]. Once locked in this way, the external 

oscillator provides the readout of the clock.  The precision of such a clock depends 

on the bandwidth of the atoms and the measurement interval as described by the 

Allan deviation[154,177], which is given by 

 ( ) .cy

f T

f N
  (7.1) 

where ( )y  is the standard deviation of the fractional frequency offset ( )y t  in the 

output, which is defined by  

 
( )

( ) ,
f t f

y t
f

−
=  (7.2) 

cT  is the clock cycle time,  the total averaging time, and N  is the number of 

independent atoms. 

Equation (7.1) is valid when the statistical noise is much larger than any 

systematic error. It is based on the assumption that the 
thk  atom in the ensemble 

has a frequency kf  chosen at random from a normal distribution about a central 

frequency ,f  with a full width at half maximum (FWHM) of .f  This 

corresponds to a standard deviation of ln .f  The N  term in the 

denominator of Eq. (7.1) corresponds to the fact that the signal-to-noise ratio 

increases for larger numbers of atoms, since the absorption signal is larger in that 

case.  Equation (7.1) clearly shows the advantage of reducing the atomic bandwidth 

.f  
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Locking an external oscillator to the atomic transitions is roughly equivalent to 

measuring the spectrum of the atomic transitions and performing a least-square fit 

to determine the central frequency ,f  as illustrated in Fig. 7.1(a). For a fixed 

number of atoms, the peak in the spectrum will be inversely proportional to the 

bandwidth ,f  as illustrated in Fig. 7.1(b), since the total rate of transitions is 

fixed.  The goal of our approach is to use the quantum Zeno effect to lock the 

relative phases of all of the atoms, despite the differences between the various 

values of .kf  

After phase locking, the central peak in Fig. 7.1(b) will correspond to the 

average f  of all of the frequencies of the individual atoms, as given by  

 .
N

k
k

f f
N =

=   (7.3) 

      

Figure 7.1 Reduced bandwidth after phase locking. (a) Initial 

probability distribution  of the frequencies  of  atoms in 

an atomic clock.  (b)  If the frequencies of all of the atoms are 

locked to their average frequency  using the quantum Zeno 

effect, the width of the probability distribution will be reduced by 

a factor of  and the height of the peak will be increased 

accordingly.  In this example  
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This results in a standard deviation  for f  that is reduced by a factor of 

,N  as is the FWHM ,f  when measured over an ensemble of similarly-

prepared systems.  The Allan deviation of Eq. (7.1) is reduced by the corresponding 

amount.  It should be noted that reducing the bandwidth is in addition to the 

factor of N  that already appears in Eq. (7.1), which corresponds to the 

improved signal-to-noise ratio due to the increased transition rate from N  atoms. 

The output of an atomic clock could also be read out by directly measuring the 

average change in phase of the atoms after they have evolved over a time interval 

of .t  The fact that the atoms have slightly different frequencies will cause a 

measurement of the average phase to wash out over a period of time.  In order to 

see this, consider a situation in which all of the atoms start out at time t =  with 

the same phase.  At a subsequent time ,t  the phases of all of the atoms will have 

evolved independently based on their frequencies kf  as chosen from a normal 

distribution given by 

 
( )

( ) .
f f

P f e
− −

=  (7.4) 

  A measurement of the average cosine of the phases will then have the value 

 . .cosc (os )
N

meas k
k

t
N

f
=

=   (7.5) 

The expectation value of this signal measured over a large number of similarly-

prepared samples is given by 

 ( ).cos ( ) ,cos
N

meas
k

df P f ft
N =

=    (7.6) 

which reduces to 

 ( ) ( )
)

.

(

cos ( ) cos .cos
t

meas df P f ft e tf




−

−

= =  (7.7) 
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The exponential factor in equation Eq. (7.7) means that a measurement of the 

average phase will wash out after a relatively short amount of time, as indicated 

in Fig. 7.2(a). 

On the other hand, suppose that all of the atoms have been locked onto their 

average frequency f  given by Eq. (7.3) as a result of the Zeno effect or some other 

mechanism. f  is once again a random variable, but with a reduced standard 

deviation of .N  Now the cosine of the average phase is simply  

 ( ).cos cos ,meas f t=  (7.8) 

which has an expectation value of 

Figure 7.2 Average phase of an ensemble of atoms. The expectation value of the 

average of the cosine of the phases of an ensemble of atoms is plotted as a 

function of the time t. (a) The average cosine of the phase for an ensemble of 

independent atoms. (b) The cosine of the phase averaged over an ensemble 

where the phases of the atoms have all been locked to their average phase  

using the quantum Zeno effect. For simplicity, the results plotted correspond to 

 and a central frequency of  It can be seen that the 

average phase decoheres very rapidly for independent atoms, while locking the 

phase using the quantum Zeno effect can greatly extend the time interval over 

which the average phase is coherent and could be measured. 
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( )

( ).

/

cos cos .
Nt

meas f te
−

=  (7.9) 

In this case the average phase remains coherent over a much longer time 

interval, as illustrated in Fig. 7.2(b). These plots correspond to an arbitrary choice 

of N =  atoms with %.f f =  

Figure 7.2 provides another way to understand the potential benefits of locking 

the phases of the atoms in an atomic clock. The rest of our analysis will be based 

on determining the elapsed time by measuring the change in phase using the 

radiation emitted by the atoms, as will be described below. 

7.2 Two-level atoms 

In this section, we will show that the quantum Zeno effect can be used to lock 

the relative phase of a pair of two-level atoms. It will be assumed that the two-

level atoms interact weakly with a single mode of an optical cavity and that their 

average frequency f  is on resonance with the cavity mode, as illustrated in Fig. 

7.3. 

The atoms are initially prepared in a subradiant state  given by 

 ,
field

EG GE−
=   (7.10) 

where the state EG  corresponds to one atom in its excited state and the other 

atom in its ground state, with a similar notation for the other states of the atoms.  

The state 
field

 represents the vacuum state of the cavity. 

The Hamiltonian for this system in the rotating wave approximation can be 

written [178] as 
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( ) ( ) † ( ) ( ) †
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E
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E

+ − + +

= + +

   

+

+ ++ +  

 (7.11) 

where  is the angular frequency of the cavity mode while A  and B  are the 

transition frequencies of the two atoms A and B, which are unequal due to an 

interaction with the environment. ( )A B  are the interaction strengths between the 

atoms and the photons, and 
( )

( )
ˆ
A B


 are the atomic raising and lowering operators. 

In the subsequent analyses, we will assume that the interaction strengths of the 

two atoms are identical. A pair of atoms in a subradiant state of this kind cannot 

emit a photon into the cavity mode due to destructive interference between the 

two probability amplitudes[172,179]. 
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We will now consider the evolution of the initial state of Eq. (7.10) over a time 

interval  that is sufficiently short that the effects of the interaction with the 

cavity modes can be neglected ( )( ) .A B =  If the atoms both had the same 

transition frequency, then the phases of their excited states would evolve at the 

same rate and the form of the subradiant state would be maintained indefinitely 

(the minus sign would always hold).  

Suppose instead that the frequencies of the two atoms are given by 

A = + +  and .B = + −  Here  is a common deviation from the 

resonant frequency of the cavity while  corresponds to a frequency difference 

 

 

    

            

 

 

   

   

Figure 7.3 A pair of two-level atoms in a cavity. (a) A pair of 

two-level atoms interact weakly with a single mode of an optical 

cavity. The quantum Zeno effect can be implemented by 

periodically introducing  photons into the cavity and then 

measuring the number of photons present after a time interval 

of  Alternatively, the atoms could be passed through a cavity 

containing  photons. (b) Typical energy level diagrams for the 

two atoms. 
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between the two atoms due to environmental effects. To first order in ,  the final 

state of the system is given by 

 ]([ .)'
field

EG GE EG GE
i i

 −
+

+  
= − −   
   

 (7.12) 

The second term in this equation corresponds to a superradiant state where the 

rate of photon emission is enhanced by quantum interference effects instead of 

decreased. It can be seen that any difference in transition frequencies will cause the 

atoms to gradually develop a superradiant component. The overall phase shift of 

( )i− +  has no physical effects and can be ignored. 

 The basic idea of our approach is to make frequent measurements to 

determine whether or not the system has evolved into the superradiant state.  If it 

has not, then the system will collapse back into a pure subradiant state with the 

original relative phase of 180o as in Eq. (7.10). If these measurements are made 

frequently enough (or continuously), the transition into the superradiant state will 

be inhibited by the Zeno effect and the relative phase of the two atoms will remain 

unchanged, with both atoms evolving at the average angular frequency .f=  

The measurements required for the quantum Zeno effect could be made in 

several ways. Here we will consider an approach in which the coupling of the atoms 

to the cavity mode is sufficiently weak that any interaction with the vacuum state 

(the vacuum Rabi effect) can be neglected. A large interaction with the field can 

then be produced by temporarily introducing a large number n  of photons into 

the cavity, so that .
field field

n→  Alternatively, the atoms could be passed 

through a small aperture in a cavity that already contains n  photons[180,181]. 

Either way, the coupling to the cavity field can be turned on or off as desired. 
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The interaction with the field initially containing n  photons is maintained for 

a measurement time m  as illustrated in Fig. 7.4. m  is chosen in such a way that 

the superradiant term in Eq. (7.12) will undergo half a Rabi flop, causing it to 

absorb or emit one photon [178]. The subradiant term is unaffected by the presence 

of the photons in the cavity. The initial number of photons n  is chosen to be 

sufficiently large that m  is much shorter than the time required for a significant 

superradiant amplitude to evolve. This process is repeated until the final time ft  

when the output of the clock is read out, as described below. As illustrated in Fig. 

7.4, we assume a measurement sequence in which .m ft   

Figure 7.4 Relevant time scales in the measurement process.  denotes 

the time interval between the measurements, during which the system 

will have evolved a small probability amplitude to be in the superradiant 

state. A strong interaction between the atoms and  photons in the 

cavity is applied during the measurement time  which is chosen to 

be half a Rabi flop for the superradiant state in Eq. (7.12).  is the final 

time at which the output of the clock is read out. We consider the limit 

of  where the quantum Zeno effect would be expected to 

inhibit the growth of the superradiant state and lock the relative phases 

of the atoms. 
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In that limit, we would expect the quantum Zeno effect to inhibit the growth 

of the superradiant state. Integrating Schrödinger’s equation over a time interval 

of m  using the initial state of Eq. (7.12) gives a final state of the form 

 

"

cos

sin .

field

m field

m field fieldn

EG GE
n

EG GE
i n n

n n GG n n EE n

−
= 

  +
− +  

 

 
 − + +  + +  − 

+  
 

 (7.13) 

The second term with the cosine dependence will vanish for half a Rabi flop, 

while the third term with the sine dependence will reach a maximum. For simplicity, 

the overall phase factor from Eq. (7.12) has been omitted. 

It can be seen that the net effect of this measurement process is to change the 

number of photons by   if the atoms were in the superradiant state. In principle, 

the number of atoms could be measured at the end of the time interval m  in order 

to determine whether or not the superradiant state was present. As a practical 

matter, no actual measurements are required in the quantum Zeno effect, since the 

entanglement with the state of the field is sufficient to inhibit the growth of the 

superradiant state. 

The probability EP  that the system will be found to be in an error state 

corresponding to one of the last two terms in Eq. (7.13) is given by 

 .EP =  (7.14) 

The probability S
P  of success that the system will remain in the subradiant 

state at the final time ft  is then given by 

 ( )
/( )

exp[ ( ) ].f mt

S E m fP P t
+

= −  − +  (7.15) 
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SP  is plotted as a function of time in Fig. 7.5 for two different values of . 

With frequent measurements corresponding to ( ) . ,m+ =  it can be seen that 

the Zeno effect is very effective in keeping the pair of atoms in the subradiant state 

with their phases locked to their mean phase. Less frequent measurements 

corresponding to ( ) .m+ =  are less successful in locking the phase. These 

results correspond to an arbitrarily chosen value of .=  

Figure 7.5 Plot of the probability  that the phase of a pair of two-

level atoms will remain locked as a function of time. The solid line 

corresponds to relatively frequent measurements with , 

while the dotted line corresponds to less frequent measurements with 

 It can be seen that the quantum Zeno effect can lock 

the relative phase of a pair of two-level atoms in the limit of frequent 

measurements. 
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7.3 Three-level and four-level atoms 

In the previous section, we showed that the quantum Zeno effect could be used 

to lock the relative phase of a pair of two-level atoms. In the limit of frequent 

measurements, the final state is identical to the initial state aside from an overall 

phase factor that cannot be measured. As a result, there is no way to read the 

output of the clock by measuring a time-dependent phase factor. In order to solve 

this problem, we need a reference state of some kind so that a measurement of the 

relative phase can be used to estimate the elapsed time as indicated by the clock. 

With this in mind, we consider two three-level atoms in a V-configuration as 

shown in Fig. 7.6. The atoms are assumed to be in an initial state given by 

 ( ) ( ) .E GE EG GEG = − + −   (7.16) 

Here E  and E  are excited states of the atoms with energies .E E  This 

state corresponds to a superposition of two subradiant states, and the basic idea is 

to lock the relative phase of each of the individual terms using the Zeno effect, 

Figure 7.6 A pair of three-level atoms in a V-configuration. A pair of 

three-level atoms are in a state that corresponds to a superposition of 

two separate subradiant states, as described in Eq. (7.16). This allows 

the elapsed time to be measured by determining the relative phase of 

states  and  
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after which the relative phase between the first and second terms can be used as a 

readout of the elapsed time. 

The Hamiltonian for this system is given by 

( ) ( )

( ) ( ) † ( ) ( ) †

( ) ( ) † ( ) ( ) † ,

ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

A A B BA A B B

A A A A

B B B B

H n n

a

E E E E E E E

a a a

a a a

E

a

+ − + −

+ − + −

= +

+ + +

   + + 

+

 

 

+ +

+ +

 + +   + +

 (7.17) 

where  and ,  refer to two cavity modes that are in resonance with the atomic 

transitions E G  and ,E G  respectively. If the energies of the two 

atoms are slightly different due to environmental effects, the subradiant states in 

Eq. (7.16) will gradually evolve into superradiant components as in the previous 

section.  The Zeno effect can be used to inhibit the superradiant components as 

before, where n  photons are now introduced into both modes of the cavity. 

Unfortunately, it is possible to absorb a photon from the field in a transition 

such as EG n n E E n n −  or GE n n E E n n −  

even in the subradiant states of Fig. 7.6. This difficulty occurs because both of the 

excited energy levels interact with a common lower level (the ground state). This 

problem can be avoided using a pair of four-level atoms as illustrated in Fig. 7.7, 

where the excited states E  and E  interact with two separate lower-energy 

states G  and .G  These could correspond to two different hyperfine levels of 

the atomic ground state, for example.  The cross-couplings between E  and G  

are assumed to be negligibly small, as is the coupling between  E  and .G  

The four-level system is prepared in an initial state given by 

 ( ) ( ) ,G GE G E E G E = − + −   (7.18) 
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with a Hamiltonian given by 

( ) ( )

( ) ( ) † ( ) ( ) †
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 (7.19) 

Quantum Zeno measurements can be implemented as before by introducing n  

photons in each of the two cavity modes that are resonant on the transitions in 

Fig. 7.7. The photons interact with the atoms for a short time interval ,m   

after which the number of photons in each mode could be measured. (Once again, 

no actual measurements are required for the Zeno effect.) 

Figure 7.7 A four-level atomic system used to avoid transitions from the 

ground state. Atomic states  and  are coupled by allowed transitions, 

as are  and  with negligible coupling between the other states. The 

quantum Zeno effect is used to lock the relative phase of each pair of states, 

after which the relative phase between  and  can be used to read out 

the elapsed time from the clock. 
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The probability E
P  that the four-level system will be found to be in an error 

state corresponding to one of the superradiant states after a time interval of  can 

be shown to be 

 .EP
 +

=  
 

 (7.20) 

Here ( ) ( ) ,kA kA kBk kBE G E G− −  −  which corresponds to the difference in 

the transition energies of the two atoms. The probability S
P  that the system will 

remain in the subradiant state at the final time ft  is then given by 

 ( )
( )

( ) .expf mt

E m fSP P t
+  +

= − −
 

 + 



 

 (7.21) 

It can be seen that the Zeno effect can inhibit the growth of the superradiant 

states and maintain a fixed relative phase within each of the states kE  and kG  

as before. The probability of success drops off at the same rates as shown in Fig. 

7.5 if we choose  and  equal to the parameter  in Eq. (7.15). Once again, 

the probability of success can be made arbitrarily high by reducing the value of . 

7.4 Clock readout 

In our approach, the elapsed time can be read out by measuring the relative 

phase of the two terms in parentheses in Eq. (7.18) at the final time.  For large 

values of ,ft  multiple oscillations may have occurred, but the output can be used 

to give a small correction to an external oscillator, for example. 

As shown in the previous section, the quantum Zeno effect can be used to 

eliminate the growth of the superradiant state. In that case, the initial state of Eq. 

(7.18) evolves into  
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 ( ) ( )cl ck foi t
E GG E Ee EG G = − + −

   (7.22) 

at the final time .ft  Here ( ) / ,clock G GE E= + − −  which reflects the phase 

precession due to the difference in the energy levels. kE  and kG  are the values of 

kE  and kG  averaged over the two atoms. 

There are several ways to measure the relative phase of these two states.  We 

will consider an approach in which Eq. (7.22) is first converted to a superposition 

of superradiant states, after which the phase of the electromagnetic field emitted 

by the atoms can be measured. The atoms can be put into a superradiant state by 

focusing a laser beam on atom B that is slightly off-resonance from the transition 

between states E  and .G  The strength of the interaction can be adjusted to 

produce a minus sign on state E  for atom B only. A similar procedure can be 

used to produce a minus sign for state E  of atom B. This converts Eq. (7.22) 

into 

 ( ) ( )' .cloc fkti
G E G EE G e E G = + + +

   (7.23) 

Now the atoms are in a superposition of superradiant states where the rate of 

photon emission is enhanced by quantum interference effects instead of being 

suppressed.  

The next step in the readout process is to mix the amplitudes of the two lower 

ground levels G  and ,G  which will allow quantum interference in the photon 

emission process. This can be done using a strong laser beam that is slightly off-

resonance from the transition between states G  and .G  (If there is no allowed 

matrix element between these two states, two laser beams and an intermediate 
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state could be used instead.) The strength of the coupling is chosen to give a 

unitary transition of the form 

 ( ) ( ), .G G G GG G→+ −→  (7.24) 

Inserting this into Eq. (7.23) gives 

 
( ) ( )
( ) ( )  .clo k fc ti

E G G G G

e E G

E

G G G E

 = + + + 

 − − + − 

 (7.25) 

We now post-select on the case where the atoms are not in the state ,G  

which could be accomplished by observing the photons emitted in a laser-induced 

transition to a higher-energy level, as is done in ion-trap quantum computing, for 

example [182-184]. This reduces Eq. (7.25) to 

 ( ) ( )' .clock fi t
E G G Ee E G GE = + − +

   (7.26) 

The final step in the readout process is to apply a strong laser beam that is 

slightly off-resonance from the transition between E  and ,G  as illustrated in 

Fig. 7.8. Although the interaction between these two states and the cavity modes 

was assumed to be negligible, a sufficiently intense laser beam can produce the 

desired coupling.  This allows a virtual transition in which the atoms can emit a 

photon with a frequency of '
clock −  while making a transition from E  to E

[185-187], as shown in Fig. 7.8. Here '  is the detuning of the coupling laser from 

the ground state. 
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The expectation value of the electric field emitted by the atoms in this way is 

shown in Fig.7.9 as a function of time, as calculated using first-order perturbation 

theory. The initial phase of the field is equal to ,clock ft  which could be directly 

measured using a homodyne detector, for example. A fit to this data could be used 

to determine the elapsed time ft  as indicated by the clock. 

Figure 7.8 Measurement of the relative phase of two atomic states.  

The excited atomic states  and in Eq. (7.26) can be coupled 

using a strong laser (red arrow) that is detuned from the transition 

between  and  Photons (blue wavy line) can then be emitted in 

a virtual transition from state  to  The phase of the emitted 

field is shown in Fig. 7.9. 
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The accuracy of an atomic clock implemented in this way depends on the 

uncertainty in clock  due to interactions with the environment or other 

perturbations. The advantage of using the quantum Zeno effect is that locking the 

phases of the atomic states causes them to evolve at their average frequencies 

determined by kE  and ,kG  which reduces the uncertainty in the clock frequency 

Figure 7.9 Mean electric field emitted during the readout of an atomic clock. 

The expectation value  of the electric field emitted by the atoms in 

the state of Eq. (7.26) is plotted as a function of the time  Here  

corresponds to the time at which the coupling laser shown in Fig. 7.8 is turned 

on. The dashed (red) curve corresponds to a relative phase of  while 

the solid (blue) curve corresponds to  These results correspond to 

an arbitrary choice of parameters with an interaction strength of  

angular frequencies of  a detuning 

of  and a coupling laser amplitude of  Dimensionless units have 

been used for convenience. 
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by a factor of . Practical applications may require that larger numbers of 

atoms be phase locked in this way in order to achieve an enhancement of .N  

7.5 Summary and conclusions 

In this chapter, we have considered the possibility of using the quantum Zeno 

effect to lock the relative phases of an ensemble of  atoms that could be used to 

implement an atomic clock. This would reduce the effective bandwidth of the 

ensemble by a factor of  and improve the accuracy of an atomic clock by a 

corresponding amount. 

We began by considering a pair of two-level atoms and showed that the Zeno 

effect can lock their phases in the limit of frequent measurements. This approach 

was based on the fact that an initial subradiant state with a small relative phase 

difference will slowly evolve into a superradiant state with a different relative phase. 

Frequent observations to determine whether or not the superradiant state has 

emitted any photons will inhibit the growth of the superradiant state, leaving the 

atoms in the original subradiant state with a well-defined relative phase. This has 

the effect of averaging any environmentally-induced phase shifts over the ensemble 

of atoms. 

It was found that using a pair of two-level atoms does not allow a readout of 

the elapsed time, since there is only an unobservable overall phase in that case. 

Three-level atoms allow a readout of the elapsed time, but they are susceptible to 

an error source in which a photon can be absorbed by an atom in the ground state. 

Both of these difficulties can be resolved by using a pair of four-level atoms, where 

the elapsed time can be estimated by measuring the relative phase of two different 

excited states, as illustrated in Figs. 7.7 and 7.8.  
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These results show a potential enhancement by a factor of  in the precision 

of an atomic clock. Practical applications may require  in order to obtain 

a good signal-to-noise ratio, and we have not been able to generalize this approach 

to larger values of .  In addition, the generation of the required initial state would 

be difficult for ,  Fock states are required as a resource, and the 

measurement process is relatively complicated even for .  As a result, further 

research would be required to find a more practical approach. Nevertheless, these 

results provide an interesting example of the potential use of the quantum Zeno 

effect. 
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Chapter 8 : Summary and 

conclusions 

 

This thesis began with the examination of the generation of nonclassical states 

like photon-added states (and a range of other states) using an optical parametric 

amplifier (OPA) and conditional measurements in a single photon catalysis setup 

[50,52]. This method produces macroscopic superpositions of the displaced vacuum 

and single-photon Fock states. It could be used in continuous variable quantum 

information protocols due to the nonclassicality of these states and the tunability 

of the state preparation with the parametric gain. 

Then we studied phase entanglement created by a Fock state [69]. Although 

the Fock state has an uncertain phase, it produces an entangled Schrödinger cat 

state after passing through a beam splitter. By demonstrating Bell's inequality 

violations using phase entanglement, we demonstrated that this entanglement can 

also be used for quantum communications, such as quantum key distribution. 

However, the primary concerns were the inefficiency of the detectors and the 

sensitivity to noise in the paths. 

Current bottlenecks of most quantum communication approaches are low-

efficiency detectors and high channel noise. Nevertheless, noiseless attenuation 

before transmission can facilitate arbitrarily high fidelity at the receivers when the 

signal is recovered from noiseless amplification, for quantum communication [17]. 

By considering the zero-photon subtraction setup, experimentally demonstrated by 

Ref.[18,19], we investigated the properties of the linear optical implementation of 

noiseless attenuation [124]. Earlier, this method had been shown to attenuate 

photon statistics without considering phase properties or coherence [19]. To verify 
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that coherence is preserved by this method, we proposed a quantum interference 

measurement and studied the effects of using inefficient detectors with the Wigner 

quasiprobability. 

The interference measurements mentioned above, and optical quantum 

computing require highly nonlinear interactions, but current materials don't allow 

them at the single-photon level. Instead, we use linear optics and conditional 

measurements that work non-deterministically. Most of these use dual rail encoding, 

but in some cases such as entanglement verification with Bell’s inequality violations, 

we have to use a single rail. Specifically, we developed a destructive controlled 

phase gate for single rail targets and weak coherent states with a dual rail control 

qubit [14]. This method dramatically increases the success probability when the 

ancilla photons are prepared with a low probability, such as in a typical down-

conversion and heralding setup [188]. The increased success rate, however, comes 

at the expense of destroying the control qubit, just as in measurement-based 

quantum computing schemes [106,107,189]. 

In recent years, applications of the quantum Zeno effect [21] have increased for 

use in quantum computing [161] and repeater networks [162]. In any 

communication network, reliable timekeeping is essential. We investigated how 

multi-atom clocks may be improved using the quantum Zeno effect [144]. Locking 

the relative phases of atoms can decrease their effective absorption bandwidth. 

Atoms whose transition frequencies are independently perturbed by the 

environment drift over time in relation to one another. A subradiant atomic state 

may develop superradiant components due to such drift. Our solution is to measure 

the superradiant components sufficiently frequently to prevent their growth 

entirely. In this way, it forces all atoms to evolve in sync at their average frequency, 

which is highly counterintuitive. Synchronizing the atoms their reduces bandwidth, 

illustrating the potential application of the quantum Zeno effect.  
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All the techniques proposed here are expected to be of potential use in quantum 

communications and are of fundamental interest as well. 
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Appendix A  
 

The mean and variance of the photon number were briefly discussed in Chapter 

3. The purpose of this appendix is to discuss some of their properties in more detail. 

For convenience, we rewrite the output state from Eq. (3.21) in the form 

 , ,C Cg g= +  (A1) 

where  

 C G
g gN

 
 − 

 
 

 (A2) 

and 

 .G
gN

C  −  (A3) 

Using these definitions, the average photon number can be shown to be 

 ,n̂ C C
g g gN g

G
g

   
+ + −   

   
 

=



 −



 (A4) 

which can be simplified further by using 
†ˆ ˆ ˆn a a=  to give  

 
* .ˆ ˆ ˆ ˆ, , Re ,C C

g g g g g
n n

g
C n C n  =

 
+ +  

 
 (A5) 
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Figure A.1 shows the behavior of the average photon number as a function of the 

amplifier gain. We observe that the average photon number initially decreases as 

we increase the gain before increasing to a maximum value at a gain of 

approximately .g  This behavior can also be seen in Fig. 3.5 where the peak value 

shifts closer to the origin between Fig. 3.3(a) and (b) whereas the peak shifts away 

from the origin between Figs. 3.3(b) and (d). 

The second moment of the photon number in the final state can also be 

calculated using a similar procedure to give 

 

,

n̂ C C
g g g g

g g
G

g gN



    
 + + + +   

    
    

   
− +   

   
  

 =

−



 (A6) 

from which the variance in the photon number can be calculated using 

 Var( ) .ˆ ˆnn n  − =   (A7) 

Figure A.1 Average photon number in the output signal mode as a function 

of the amplifier gain  for an incident coherent state amplitude of  

The solid red vertical line corresponds to a gain of  while the black 

dashed vertical line corresponds to a gain of  

 



141 
 

A plot of the variance is shown in Fig. A2 for an input coherent state amplitude 

of .=  It can be seen that the variance increases rapidly to a maximum value at 

a gain of approximately .g  This feature could be useful in experiments for 

determining if the output state is close to the displaced single photon state. Another 

interesting feature that can be seen in these plots is that the average photon 

number approaches unity in the limit of high gain while the variance vanishes, 

suggesting that a single photon state is produced in that limit. 

  

Figure A.2 Variance in the photon number of the output signal mode as a 

function of amplifier gain for the case in which the input coherent state has an 

amplitude of . As in Fig. A.1, the solid red vertical line corresponds to a 

gain of  while the black dashed vertical line corresponds to a gain of 
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Appendix B  
  

The results in the Chapter 4 were derived using Eq. (4.4), which expresses a 

photon number state as a superposition of coherent states with all possible phases. 

In this appendix, we give an alternative derivation based on the properties of the 

Hermite polynomials. Although the results are equivalent to those in the text, they 

can be used to derive an analytic form for ++  or .−−  

This initial state of the system with N  photons incident on the first beam 

splitter can be written in terms of the photon creation operators as 

 
( )†

.,
ˆ

!

N
a

N
=  (B1) 

Here the notation is the same as in the text. After passing through the beam 

splitter, Eq. (B1) can be used to write the transformed state as 

 
( )† †

, .
ˆ ˆ

!

N

N

a a

N

i+
=  (B2) 

This can be rewritten using the binomial expansion as 

 ,
N

n
N

N
n

n

C
i N n n

=

−=  (B3) 

where 
N

nC  are the binomial coefficients. 

We can then simplify each of the terms in Eq. (4.14) by integrating over the 

phase .  The results are that 

 , ,
N

n
k kk N

n

N
nCp q N n n

=

= − −  (B4) 

where ( ),Nip e + +
=  ( ),Nip e −

=  
( ),Nip e +

=  ,Np e−=  q q= =  and 

* .iq q e= =  The index k  corresponds to each of the four terms in Eq. (4.17). 
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The dimensionless position-basis representation of the final state is given by the 

inner product , ( , ).x x x x=  We can use the position-basis representation of 

the number states, 

 
!

( ),
x

nn

e
x

n
n H x

−

=  (B5) 

to obtain 

 
( )

( )( , ) ( ) ( ).
!

x x N
n

k k k N n n

N
n

N
n

e
x x p x

N

C
q H H x

− +

−

=

= −   (B6) 

Here ( )nH x is the 
thn  Hermite polynomial. 

We can further simplify Eq. (B6) for k =  and k =  to the analytical form 

 
( )

( , ) .
!

x x

k NNk

e x x
x x p H

N

− +

 
= −  

 

+
 (B7) 

When the cross-terms terms corresponding to k =  and k =  are negligible, 

Eq. (B7) gives an interference pattern that is equivalent to Eq. (4.20) in the text, 

but without any complicated integrals over .  
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Appendix C  
 

Some of the details of the calculations outlined in the Chapter 6 are presented 

in this Appendix.  

 We first consider the form of an even Schrödinger cat state. Combining Eqs. 

(6.2) and (6.3) gives 

 

( )
( )| | /

| |

.
!

nn

cat
n

e
n

ne

−

=



−

+ −

+

=   (C1) 

Since the even terms are the only ones that contribute, we can introduce a new 

variable ,k n=  which gives 

 
( )o

.
s !c h

k

ca
k

t k
k



=

=   (C2) 

This expression gives the values of the coefficients nc  that appear in Eq. (6.3) 

Rewriting the number states in terms of photon creation operators acting on 

vacuum gives 

 
( )

( )†
!cosh
ˆ .

k

k
cat

k

a
k



=

=   (C3) 

The cat state of Eq. (C2) passes through a beam splitter as illustrated in Fig. 

6.1. We use the beam splitter transformation of Eq. (6.5) to relate the photon 

creation operators in the input mode A to those in the output modes A and B, 

which gives 

 † † † .ˆˆ ˆ
in out outt ra bia→ +  (C4) 
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We have chosen to represent the photon creation operators in modes A and B 

by 
†â  and †̂,b  respectively. Inserting Eq. (C4) into Eq. (C3) gives the output state 

after the beam splitter: 

 
( )

( )† † .ˆˆ
cosh !

k

ca

k

t
k

irta b
k=



= +  (C5) 

Using the binomial expansion and then applying the photon creation operators 

to the vacuum state, this can be rewritten as 
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k
k l l
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t k l
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i
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Introducing two new variables defined by bn l=  and an k l= −  gives 
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where ( )( , ) mod .a b a bf n n n n= + +  This gives the final state of Eq. (6.6) where 

the coefficients given are 

 ( )
( ) ( )

( , ) mod .
!co! sh

a bn

a b a b

a

n
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ir
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t

n
n n n n

n
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By setting bn =  in Eq. (C8) and comparing with the coefficients in Eq.(C2) 

we see that heralding on zero photons in mode b would simply give another cat 

state with coherent states of amplitude out t=  in mode a. This can also be noted 

by the transformation of the input state coefficients, ,nc  to the output ones, .nnc t   

Therefore, the Wigner function of the output, assuming real ,  is 

 
( ) ( ) ( ) ( ) ( )( ) cos .

xx t x t theralded p
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 (C9) 
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Using the same procedure for an input state consisting of the single mode 

squeezed vacuum of Eq. (6.11) instead of an even Schrödinger cat state gives a set 

of coefficients of the form  
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 (C10) 

By setting bn =  in Eq. (C10) and comparing with the coefficients in Eq. 

(6.13) we see that heralding on zero photons in mode b would simply give another 

squeezed vacuum state with the squeezing parameters of the output given by 

tanh tanh ,out t=  or alternatively 

( ) ( ) ( ) ( ) .outs s t t s t t   = + + − − + +
     This can also be noted by the 

transformation of the input state coefficients, ,nc  to the output ones, .nnc t  For a 

given initial ,s  ( )outs t  is a monotonically decreasing function of the transmittivity 

.t  

Therefore, the Wigner function of the attenuated output squeezed vacuum state 

is 
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s t t s t t
W x p

s t t s t t

 + + − − + +
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 (C11) 

Equations (C9) and (C11) give analytic results for the case of a Schrödinger cat 

or a single mode squeezed state incident on a beam splitter. Although a similar 
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calculation could be done for the case of a two-mode squeezed vacuum incident on 

a Mach-Zehnder interferometer as in Fig. 6.9, the analysis is more tedious and 

numerical solutions were used instead. 

If heralding on zero is done using a detector of efficiency ,  instead of setting 

bn =  we need to use the density operator formalism and use the projector, 

 .ˆ ( ) b

b

n
b b

n

n n


=

= −  (C12) 

This gives the un-normalized output state 
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If the input is an even cat state, then for even ( ),bn k   
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and similarly for odd ( ),bn k +  
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Using Eqs. (C14) and (C15) in (C13) give the un-normalized state, 
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where ˆ+  and ˆ−  are the normalized density operators for even and odd cat 

states with amplitude t  respectively. This simplifies to the normalized output 

 ( ) ,
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+ −
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where 
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and 
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The corresponding Wigner function is 
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where 
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The success probability of the heralding is .p p+ −+  It may be interesting to 

note that in this case, the noise remaining in the system is simply an odd cat state. 

In general, for other input states, the output heralded with an inefficient detector 

will have a more complicated noise term. 
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