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ABSTRACT 

 

 

A SIP SERVER AND USER AGENT WITH SRTP FOR VoIP ON A BARE PC 

 

 

Andre L. Alexander 

 

 

Bare PC applications run on ordinary desktops and laptops 

without the support of an operating system (OS) or kernel. 

They provide immunity against attacks targeting an 

underlying OS, and have been shown to perform better than 

applications running on conventional systems due to their 

reduced overhead. In this dissertation, we describe a SIP 

server and user agent (UA) with SRTP that are designed for 

VoIP on a bare PC. We give details of their implementation 

and present experimental results evaluating their 

performance. 

The server and UA include streamlined SIP functions and 

message handling, efficient CPU tasking, protocol and 

application intertwining, and direct Ethernet-level data 

manipulation. In particular, the server provides 

registration, proxy, and redirection services, and the UA 

is integrated with lean implementations of the necessary 

protocols within the bare PC softphone.  
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We evaluate the performance of the bare PC SIP server by 

determining its throughput and latency in a dedicated test 

network with and without authentication. We also report 

internal timings for the server. The server’s performance 

is compared with that of the OpenSER and Brekeke SIP 

servers running on Linux and Windows respectively. Our 

results show that the bare PC SIP server has low cost for 

internal SIP-related operations, and higher throughput and 

lower latency than the OS-based servers except in a few 

cases that need further optimization. 

We also implement SRTP to secure VoIP conversations on a 

bare PC softphone. Experiments to evaluate UA performance 

with SRTP are conducted using the bare PC softphone, and 

Twinkle and snom softphones running on Linux and Windows 

respectively. Pre-defined SRTP transforms based on AES 

counter mode encryption with HMAC-SHA-1 authentication are 

tested. Measured internal timings for SRTP operations 

indicate that authentication is more expensive than 

encryption regardless of key or tag size. Measured values 

of jitter, delta (packet interarrival time) and throughput 

show that the addition of SRTP protection to VoIP traffic 

over RTP has a negligible effect on voice quality. 
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CHAPTER I. INTRODUCTION 

VoIP (Voice over Internet Protocol) is one of today’s 

most researched telephony topics. The evolution of high-

speed networks and data compression techniques has enabled 

VoIP to make influential changes to the technology 

landscape. Various studies have focused on the security and 

performance of VoIP in both real world and test 

environments.  

SIP (Session Initiation Protocol) [1] and SRTP (Secure 

Real-time Protocol) [2] are two support protocols 

frequently used by VoIP systems. SIP is implemented in 

servers (known as SIP servers) and softphones (in the form 

of user agents or UAs), and is used for call setup and 

other call management functions. SRTP is implemented in 

softphones, and is used for encryption and 

authentication/integrity of voice data carried over RTP 

(Real-time Transport Protocol). An overview of SIP and SRTP 

is given at the end of this chapter.  
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Conventional VoIP systems require the support of an 

operating system (OS) or kernel. Bare Machine Computing 

(BMC) is an alternative approach to computing that enables 

applications to run on a bare machine with no OS or kernel 

support i.e., a bare PC. Bare PC applications are 

characterized by simplicity and efficiency, and have been 

shown to perform better than similar applications running 

on an OS-based system [3, 4, 5]. They also have inherent 

security advantages due to being immune to OS-based 

attacks. An overview of BMC systems is given in the next 

chapter. 

The preceding considerations motivated us to build VoIP 

systems that support SIP and SRTP. Specifically, we design 

and implement a bare PC SIP server and SRTP with SIP UA 

support on a bare PC softphone. We also evaluate the 

performance of these implementations by measuring the 

throughput and latency of the SIP server, and the delay, 

jitter, and throughput (that serve as call quality metrics) 

for the voice data generated by the softphone. We compare 

performance for the bare PC systems with similar OS-based 
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systems, and also measure the internal timings for key SIP 

and SRTP functions on the bare PC.  

All components of SIP on the bare PC SIP server are 

implemented as part of this doctoral work. Also, we add new 

SIP UA and SRTP implementations to an existing bare PC 

softphone having only RTP/UDP/IP/Ethernet functionality. 

Furthermore, we add dynamic IP address configuration via 

DHCP (to the SIP server and softphone), NAT traversal via 

STUN, and domain name resolution via DNS to the softphone 

to facilitate plug-and-play capability. In keeping with the 

BMC approach, all protocols are implemented in a lean 

manner i.e., only essential functionality is implemented. 

Tests are conducted to verify correct operation of SIP, 

SRTP and the auxiliary protocols, as well as the 

interoperability of the SIP server and SRTP/SIP UA 

softphone with compatible OS-based systems. 

A. SIP Overview 

SIP is an important protocol that provides support for 

VoIP by handling functions such as call set up, user 
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authentication, user registration and location, and billing 

support. Although SIP is a general-purpose protocol that 

can also be used for video conferencing, instant messaging 

and gaming, it is predominantly used today in VoIP systems. 

 Conventional SIP implementations in servers and 

softphones require the support of a traditional OS such as 

Windows or Linux, or an OS kernel. SIP phones are also 

frequently implemented in hardware/firmware typically with 

an embedded OS. The SIP implementations in OS-based systems 

take advantage of their rich supporting environment and 

capabilities and are convenient to use. An optimized SIP 

server can help improve the overall performance of audio or 

video applications even though it is typically not directly 

involved in the actual transmission of audio or video. The 

throughput and latency of the SIP server when responding to 

requests from SIP user agent clients and other SIP servers 

are used as measures in evaluating its performance. 
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B.   SRTP Overview    

SRTP is an Internet standards-track profile of RTP that 

provides a framework for securing VoIP communications. The 

primary security considerations for VoIP are voice 

encryption, voice data authentication and integrity, and 

replay protection.  

SRTP addresses these security aspects by providing 

security for RTP and its control protocol RTCP with low 

overhead. It can be used for encryption, message 

authentication/integrity and replay protection of RTP and 

RTCP traffic. While SRTP mandates message authentication 

for RTCP and adds new fields to an RTCP packet, we do not 

consider SRTP performance with respect to RTCP in our study 

since the overhead due to securing the periodic but 

infrequent RTCP messages is negligible.  

The remainder of the dissertation is structured as 

follows. Chapter 2 contains a survey of related work on SIP 

and SRTP performance and implementation, and an overview of 

Bare Machine Computing (BMC). Chapter 3 describes the 
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design and implementation of the SIP Server and SIP User 

Agent with SRTP, and the supporting protocols DHCP, STUN 

and DNS. This chapter also describes how the VoIP systems 

were tested. Chapter 4 reports the results of performance 

studies evaluating the bare PC SIP Server and SRTP 

implementations. Chapter 5 presents the conclusion and 

suggests possible future work. This dissertation includes 

material from our publications [6, 7, 8]. 
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CHAPTER II. RELATED WORK 

In this chapter, we present an overview of previous work 

on SIP, SRTP, and bare PC systems (also called bare machine 

computing or BMC systems). We discuss how they relate to 

this research and how they differ. The related work is 

divided into three sections dealing with SIP implementation 

and performance, SRTP implementation and performance, and 

BMC systems respectively.  

A. SIP Implementation and Performance 

There are numerous implementations of conventional SIP 

servers and softphones with SIP UAs that run on various OS 

platforms. In [9], a SIP server is implemented on top of an 

existing SIP stack. In [10], SIP servers and SIP UAs are 

implemented on the Solaris 8 OS. A client-side SIP service 

offered to all applications based on a low-level SIP API is 

described in [11]. In [12], the features of a new language 

called StratoSIP for programming UAs that can act as a UA 

server to one endpoint and as a UA client to another are 
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presented. In [13], the UA is a SIP-based collaborative 

tool implemented by using existing SIP and SDP stacks. In 

[14], a Java-based SIP UA is proposed for monitoring 

manufacturing systems over the Internet. The focus of [15] 

is a SIP adaptor for both traditional SIP telephony and 

user lookup on a P2P network that does not have a SIP 

server.  

While SIP servers usually run over UDP and in some cases 

over TCP, the use of SCTP as a transport protocol for SIP 

has also been studied [16]. An early study on SIP server 

performance [17] found that the overhead on a Java SIP 

server due to security mechanisms such as authentication 

and TLS was negligible. However, the study in [18], which 

measured throughput and latency in a dedicated gigabit 

Ethernet for stateless and stateful proxies over UDP and 

TCP, showed that authentication, TCP, or the 

operation/server configuration can significantly impact SIP 

server performance. Their experiments were conducted using 

a 3.06 GHz server class machine, and only the performance 

of a single SIP server (OpenSER on Linux) was evaluated. In 
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[19], SIP server performance for several stateful SIP 

proxies over UDP was evaluated. The authors concluded that 

the overhead due to string processing operations and memory 

management could consume significant processing time and 

that performance varied considerably depending on the 

proxy. Recent work on SIP servers has dealt with 

performance under overload conditions [20], scalability 

issues [21, 22], load balancing [23], and the impact of 

transport protocols on performance [24].  

The main difference between previous studies on SIP and 

the present research is that we focus on a SIP server and 

SIP UA that run on a bare PC. Moreover, studies on SIP 

server performance typically use server machines, whereas 

the bare PC SIP server used for our experiments runs on an 

ordinary desktop (see Chapter IV). Another difference is 

that we evaluate SIP server performance not only for the 

usual register, invite, and redirect operations, but also 

for the register update, register logout, and invite-not-

found operations that could be encountered in practice. We 
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limit our studies to SIP over UDP with stateless proxying, 

which is a commonly used. 

The goal of conventional SIP servers and SIP UAs is to 

offer enhanced services to clients by using existing low-

level SIP stacks that rely on an OS. However, an OS-based 

full SIP implementation is not always needed. If a higher 

level of security or performance is desired at low cost, a 

customized SIP server or a SIP softphone running on a bare 

PC would be more easily secured or designed for high 

performance. For example, an OS-based system may be 

difficult to secure against attacks that target 

vulnerabilities of the underlying OS. Bare PC systems are 

immune to such attacks since they have no OS. Also, since 

bare PC applications have reduced code complexity and code 

size, it is easier to analyze their code for security 

flaws. Moreover, due to their simplicity and the limited 

services they offer, they have fewer avenues open for 

attack.  
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In addition to its security and low-cost benefits, a SIP 

server or SIP user agent running on a bare PC can be 

expected to operate efficiently. For example since there is 

no OS and the SIP applications have direct interfaces to 

the hardware, there is minimal system overhead. Also, lean 

versions of the necessary protocols and application-

protocol intertwining enable the bare PC SIP server or SIP 

softphone application to reduce the overhead of inter-layer 

communication and improve performance. Consequently, the 

bare PC SIP server and UA have less overhead than an OS-

based server or UA, and are more suited for secure low-cost 

environments. 

B. SRTP Implementation and Performance 

Previous work on SRTP primarily focuses on key exchange 

methods and ways to address drawbacks of the protocol. In 

[25], the requirements for a protocol that manages keys and 

parameters for SRTP and interoperates with SIP are 

described. The study also compares several existing 

approaches including SDP security descriptions, MIKEY, ZRTP 

and DTLS-SRTP, an extension of DTLS to manage keys in SRTP. 
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In [26, 27], the vulnerability of SRTP to denial-of-service 

flooding due to the high overhead of HMAC-SHA-1 

authentication is addressed and an alternate lightweight 

authentication scheme SRTP+ is proposed. In [28], security 

protocols for VoIP and their impact on call quality are 

examined by measuring the mean opinion score (MOS).  

This research differs from previous studies in that we 

implement SRTP on a bare PC softphone. Moreover, we 1) 

compare jitter, delta and throughput values with and 

without SRTP using a Windows softphone (snom), a Linux 

softphone (Twinkle) and a bare PC softphone; and 2) 

determine the time for the various internal operations in 

SRTP using a bare PC softphone. SRTP and the SIP UA also 

communicate directly and efficiently with each other and 

with the existing lower-layer protocols and cryptographic 

modules in the bare PC softphone. This enables the bare PC 

SRTP implementation and SIP UA to provide better call 

quality than a SIP UA with SRTP in an OS-based system.   
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C. Bare Machine Computing  

Bare Machine Computing (BMC) is a novel approach to 

computing that enables application programs to control and 

manage hardware resources in a bare machine without an OS 

or kernel i.e., a bare PC. It is based on the application-

centric dispersed operating system (DOSC) paradigm [29]. In 

this approach, the OS or kernel is eliminated. Instead, a 

single self-supporting application object (AO) encapsulates 

all of the necessary functionality for a few (typically one 

or two) applications to directly execute on the hardware. 

BMC applications only use real memory (a hard disk is not 

used). The AO, which is loaded from a USB flash drive or 

other portable storage medium, includes one or more 

applications and the boot code.  

If required by the application, the AO also includes 

cryptographic algorithms, as well as network interface and 

other device drivers, such as an audio driver in case of 

the bare PC softphone. The interfaces enabling the 

application to communicate with the hardware [30] are also 

included in the AO. The AO code is written in C++ with the 
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exception of some low-level assembler code. The AO itself 

manages the resources in a bare machine including the CPU 

and memory. For example, every AO has a Main task that runs 

whenever no other task is running, and network applications 

require a Receive (Rcv) task that handles incoming packets. 

Additional tasks may be used depending on the applications 

included in the AO, such as an audio task for the bare PC 

softphone. 

BMC applications are intertwined with lean 

implementations of the necessary network protocols. For 

example, in bare PC Web servers and email servers, the 

application protocol (i.e., HTTP or SMTP) is intertwined 

with the TCP protocol [3, 31]. Protocol intertwining and 

other bare PC optimizations contribute to the improved 

performance of these servers over compatible OS-based 

servers [3, 4].  

The design, implementation, and performance of a bare PC 

softphone are discussed in [5, 32]. A bare PC softphone 

with encryption and authentication capabilities is 
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described in [33]. However as noted earlier, this softphone 

does not include a SIP UA and does not support SRTP.  
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CHAPTER III. SIP AND SRTP DESIGN AND IMPLEMENTATION  

In this chapter, the design and implementation of a bare 

PC SIP Server for VoIP and a SIP UA with SRTP for a bare PC 

softphone are described. The bare PC SIP implementations 

are based on [1]. The SIP UA is integrated with SRTP and 

other protocols needed by the bare PC softphone.  

A. Bare PC SIP Server Overview 

The bare PC SIP server supports registrar, redirector, or 

proxy modes with or without authentication. The server is 

designed in a modular fashion to allow for easy updates and 

implementation of new features, and to facilitate analysis 

of the server code. Since the bare PC SIP server 

implementation is lean, only specific content from an 

incoming SIP packet is parsed. The bare PC SIP server AO 

contains about 2000 lines of code.  

B. Boot Sequence  

The bare PC SIP server is booted by directly loading its 

AO from a USB flash drive. The protocol/task relationships 

for the server are shown in Fig. 1. The bare PC SIP Server 
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boot sequence begins when the Main task invokes the DHCP 

handler to send a DHCP request for an IP address (unless 

the server has been preconfigured to use a specific IP 

address). When a response arrives, the Rcv task is invoked 

to process it. Next, a file containing username and 

password combinations of authorized users is transferred 

from another host on the network using an adaptation of 

trivial FTP. As discussed later, multiple data structures 

to facilitate server operations such as user lookup, 

username and password lookup, and state lookup are then 

created in memory. The last step in the boot process is to 

display the user interface for administering the server.  
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Figure 1. SIP server protocol/task relationships 

C. SIP Server Internals 

The bare PC SIP server uses only two CPU tasks, Main and 

Receive (Rcv). This simplifies task management and 

increases efficiency. The Main task runs continually and 

activates the Rcv task whenever packets arrive in the 

Ethernet buffer and need to be processed. After a response 

is sent, the Rcv task terminates and the Main task runs 

again.  

For example, when the SIP Server AO’s Rcv task is 

activated by the Main task upon the arrival of a SIP 

request in the Ethernet buffer, a single thread of 

execution handles the request all the way from the Ethernet 

level to the SIP (application) level till a response is 

sent, which simplifies server design and reduces the 

processing overhead. Thus, if an arriving packet is 

designated for the default SIP UDP port 5060, the Rcv task 

causes the Ethernet, IP, and UDP handlers to be invoked to 

process the respective protocol headers using a single copy 
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of the message. As shown in Fig. 1, the Rcv task only 

terminates after the SIP request is processed and a SIP 

response is sent by the server after invoking the 

respective protocol handlers to attach the headers.  

The bare PC SIP server AO consists of several objects. In 

addition to the Ethernet, IP, UDP, and SIP objects, the 

server also requires the DHCP, FTP, and MD5 objects. The 

role of the DHCP and FTP objects were discussed earlier. 

The MD5 object is used to provide support for user 

authentication via standard SIP authentication (i.e., HTTP-

Authentication) if it is needed.  

D. User Database Lookup 

After the usernames and passwords from the file are read 

into memory, the bare PC SIP server runs the 

sipservergetdb() function to store them in the following 

USER_DATABASE structure. 

Struct USER_DATABASE {  

  char username [20];  

  int username_size;  

  int username_hash;  

  char Password [20];  
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  int Password_size;  

};  

 

The data structures HASH_TABLE and SORTED_TABLE shown below 

are also used. 

Struct HASH_TABLE {  

  int hash_hit;  

  int hash_reg_db_loc[HASH_REG_DB_SIZE];  

  int hash_hit_size  

};  

 

Struct SORTED_TABLE {  

  int hash;  

  int hash_link;  

}; 

 

In essence, the hash of each username is then used as an 

index into HASH_TABLE, which is used together with 

SORTED_TABLE to facilitate looking up the user in the 

USER_DATABASE structure, and retrieving information when 

making or receiving calls or registering a user. The 

HASH_TABLE structure links back to the SORTED_TABLE and 

USER_DATABASE structures. The details are as follows. 

First, the hash values are stored in a SORTED_TABLE array 

(which allows for efficient searching for a given hash 

value), and each position in the sorted array is linked to 

the specific HASH_TABLE array corresponding to that hash 

value. In turn, each position in the HASH_TABLE array 
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corresponds to a user that hashed to that value and 

contains a link back to the USER_DATABASE entry for that 

user. The HASH_TABLE structure links the index in the 

USER_DATABASE structure to the hash value of the 

SORTED_TABLE as shown in Fig. 2. 

 

Figure 2. Database, Hash, and Sorted Tables 

The user lookup process in Fig. 3 is done by using two 

functions: the find_hash_hit() function, which is based on 

a particular hash value, and the find_user() function that 

is based on the username and size. In performance tests, 
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this search operation was found to be a likely bottleneck 

because of the username comparisons triggered by collisions 

on a single hash value.  

The find_user() function takes a username and username 

size as input. It then hashes the username and passes the 

value to the find_hash_hit() function, which finds the 

corresponding hash table containing all the users with that 

same hash value. The hash table is passed back to the 

find_user() function, which calls the lookup_user() 

function. The latter goes through each user in that 

specific hash table and first compares the sizes of the 

usernames; if they match, it looks for a second match on 

the full username. If the user is found, the location 

containing the user’s information in the database, 

including the IP Address and port, is returned. To improve 

performance, future bare PC SIP server implementations will 

use adaptations of data structures and search techniques 

used by popular Linux SIP servers. 
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Figure 3. User lookup process 

E. Message Processing 

The siphandler() function manages the processing of 

received SIP messages. This function, which is called 

directly by the udp_handler() function after verifying the 

SIP port in the UDP header, is the key element in the bare 

PC SIP server. The siphandler() function calls the 

parse_headers() function which goes through the SIP packet 

and parses out specific identifiers to identify the type of 
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message (for example, REGISTER, INVITE, ACK, BYE, 180 

Ringing, 200 OK and 100 Trying). Within the parse_headers() 

function are specific functions built to handle the 

following SIP tags: Header, Via, From, To, Expires, 

Authorization, Proxy Authorization, CallId, CSeq, Contact, 

and Content Length. In keeping with the lean SIP 

implementation, only the indicated tags are parsed to 

expedite the processing of SIP packets (other tags are 

bypassed). Once the tags are parsed and the relevant data 

from the packet is stored, control returns to the 

siphandler() function.  

Further processing is determined according to the 

request_type returned. Only the following SIP messages are 

routable by the Bare PC SIP Server: Register Invite, 100 

Trying, 180 Ringing, 200 OK, Ack, Bye, and Unsupported. 

When the system (the siphandler function) has decided what 

to do with the SIP request, processing is carried out to 

forward the SIP message is forwarded or a reply is sent to 

the SIP User Agent by utilizing the generate_sip_response() 

function. This function generates the SIP reply (or 100 
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Trying response) based on the values retrieved earlier by 

parsing the SIP request. It then calls the sipsenddata() 

function which calls the relevant protocol handlers to 

format the headers in the SIP reply.  

Register Message: To process a Register message, the bare 

PC SIP server parses the Via (IP address:port), From and To 

(usernames@domain/IP), and Contact tags. It then calls the 

function check_registered_users(). A process similar to 

that described earlier is used to determine if the user is 

already registered (i.e., is found in the 

Registered_Users_Database). If so, only the relevant 

information is updated; otherwise, the system stores all 

necessary information parsed from the SIP request including 

the username, IP address and port number. This information 

is used to generate replies back to the UA on future 

requests until the UA re-registers or one of the parameters 

is updated. After the information is stored or updated, the 

server generates a 200 OK message and sends the reply back 

to the SIP UA. 
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Invite Message: For an Invite message, the bare PC SIP 

server parses almost all of the same fields as for the 

Register message. The server then sends messages to the 

caller and callee. A 100 Trying message is sent back to the 

caller letting the UA know that the SIP Server is 

processing the request. To send this message, the server 

looks up the IP address of the caller using the process 

described earlier. It also looks up the registration 

information for the callee and forwards the Invite message 

to its UA. A SIP message exchange including Invite for call 

setup and Bye for call termination is shown in Fig. 4.    

 

Figure 4. SIP message exchange  
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SIP Authentication: The Message format for an Invite 

request with authentication is shown in Fig. 5. SIP 

authentication is done by challenging the initial request 

(Invite or Register) sent by the SIP UA. SIP uses HTTP 

authentication techniques. The bare PC SIP Server is 

designed so that each request is not authorized unless it 

receives the proper response for a given challenge. The 

server can be configured at start-up to operate with or 

without authentication. An authorization flag indicates if 

a particular request is approved or denied based on 

authentication.  

The bare PC SIP server processes the initial request, and 

then sends a challenge response back to the requesting SIP 

UA. The SIP server generates a challenge response that 

depends on the values of realm and nonce. The realm is 

typically set to the domain of the SIP server (for example, 

barepc.towson.edu or the IP address). The nonce is a string 

that is randomly generated by the server. Once the server 

receives the reply to the challenge, the fields in the 

authorization request are parsed from the SIP packet. Then 
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the response value is computed using the MD5 algorithm and 

matched against the response value sent by the SIP UA. The 

response value is a hash that depends on the concatenation 

of all values in the authorization request. If the computed 

response matches the response sent by the SIP UA, the 

request is approved (authorized) and normal SIP call flow 

processing is allowed. 

 

Figure 5. SIP Invite with auth 
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F. User Interface 

The bare PC SIP Server has a simple user interface that 

displays its basic configuration and state information when 

the interface function sipserverstate() is called. The 

displayed information includes the number of users added to 

the username and password database, and the server’s 

configuration mode (proxy, redirector, authentication, 

stateless, or stateful). The server can also show the 

username, ip address, and port for each user logged into 

the system. An administrator can toggle through the list of 

users, or configure the server so that the display is 

triggered every time a user is added or removed from the 

Registered_User_Database by calling sipserverstate() from 

the Main task. 

G. SIP UA 

The bare PC SIP user agent (UA) is integrated with the 

bare PC softphone enabling calls to be set up. Its 

operational characteristics are similar to those of a SIP 

UA in a conventional OS-based SIP softphone. However, the 
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UA implementation is different due to the absence of an OS 

and a built-in protocol stack, and results in a UA with 

less overhead and better security. The UA can also directly 

communicate with a peer (without using a SIP server) 

provided the peer can be contacted via a known (public) 

destination IP address and port number.  

H. UA Operation/User Interface 

As in the case of the bare PC SIP server, only two tasks 

Main and Rcv are needed for the UA, and arriving SIP 

messages and responses are processed in a single thread of 

execution as described earlier. When the UA is booted, if 

an IP address for the UA has not been preconfigured, the UA 

sends out a request for and obtains an IP address using 

DHCP. If this is a private address, the UA is behind a NAT 

and uses STUN [34] to learn its public IP address and port. 

In this case, the UA first sends a DNS request and obtains 

the IP address of a public STUN server. The Bare PC STUN 

implementation is described in more detail below.     
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Figure 6. UA main menu screen 

After the UA completes the initialization process it 

displays the main login menu, which enables the user to 

login-in to a particular SIP server or to communicate 

directly with a peer as noted earlier. In case SIP server 

login is selected, the UA sends a SIP Register request to 

the server after performing a DNS resolution if needed. 

Once the 200 OK messages are received from the SIP server, 

the UA displays a “main menu” screen as in Fig. 6. The menu 

has several options, which enables the user to see the IP 
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configuration information from DHCP, and NAT mappings from 

STUN that show the external IP address and 

internal/external SIP and RTP ports for the softphone. Such 

information is useful to troubleshoot connectivity 

problems. In addition, a separate option shows status and 

connectivity information for the current call including 

whether security is on. A “quick dial” option for selecting 

specific users is also available.  

The software design of the bare PC SIP UA is simple and 

modular. The essential UA functionality contained in the 

SIPUA object consists of 3000 lines of C++ code. This 

object is supplemented by 1) objects for cryptographic and 

other algorithms (such as HMAC, SHA-1, MD5, AES, and 

Base64) needed for SIP authentication, and key 

establishment and SRTP as described below; 2) objects 

implementing the essential elements of the necessary 

auxiliary protocols (STUN, DHCP, and DNS); and 3) objects 

needed by the bare PC softphone including the Ethernet, IP, 

and UDP objects, the RTP, audio, and G.711 objects that 

handle voice data processing, recording, and playback on 
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the bare PC softphone, and the SRTP object described below 

that provides VoIP security.   

I. User Agent Client and User Agent Server 

The bare UA consists of two independent components: the 

SIP user agent server (UAS) and SIP user agent client 

(UAC). The UAS is operationally similar to the bare PC SIP 

server with respect to its handling of SIP packets. For 

example, it listens for call requests and its actions are 

activated by the Rcv task when a packet arrives as 

discussed earlier for the case of the SIP server. The UAC 

can be activated by keyboard input. The UA functionality is 

contained in a SIPUA object that is responsible for 

processing SIP messages and SDP tags, displaying the SIP UA 

interface, and interacting with the user. The SIPUA object 

is integrated in a single AO with several other objects 

needed to implement the UA.  

J. STUN/DHCP/DNS  

The public IP address and port learned from the public 

STUN server is used in SIP Invite requests to enable the 
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peer to communicate with the UA behind the NAT. The Bare PC 

SIP UA sends out multiple STUN messages to find the 

external port for its voice channel over RTP. Since the 

signaling channel is proxied through the SIP server, STUN 

is not needed to discover the external SIP signaling port. 

After the bare PC client is booted, STUN messages for the 

media channel are sent every 30 seconds until the SIP UA 

establishes the call. The Invite message contains the last 

known media channel external port number. Since the NAT 

binding may change, the UA sends voice packets to the 

destination host using a sequence of consecutive ports. The 

UA stops sending on the other ports once voice packets are 

received on a particular port.  

Since there is no OS and no built-in protocol stack on 

the bare PC softphone, the bare PC SIP UA also needs to 

send DHCP messages to automatically obtain an IP address 

and other essential configuration information at start-up. 

The DHCP messages follow the typical DHCP call flow 

(Discover, Offer, Request, and Ack). The softphone can also 

send DNS requests to resolve the domain name of the SIP or 
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STUN server. As noted earlier, the implementation of the 

DHCP and DNS protocols have only the minimal features 

needed by the bare PC SIP softphone.  

K. SRTP Implementation 

As noted above, the SIP UA on the bare PC softphone is 

also integrated with SRTP. SRTP allows the UA to 

communicate securely with conventional SIP UAs that are 

SRTP capable. The bare PC SRTP implementation is based on 

the specification in [2].    

The pre-defined cryptographic transforms for SRTP are AES 

in counter mode or f8 mode for encryption, and HMAC-SHA-1 

for message authentication. The f8 mode is not supported by 

the bare PC softphone. When using AES in counter mode, SRTP 

encryption (which precedes authentication) consists of 

generating a pseudo-random keystream for each RTP packet 

and XORing the RTP data (excluding the RTP header) with the 

keystream. 
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Figure 7. SRTP processing 

Fig. 7 shows the main steps in SRTP processing on the 

bare PC SIP softphone. Key derivation produces the session 

encryption, authentication, and salting keys, while 

encryption and decryption use AES in counter mode as 

described earlier. To prevent replay attacks, the receiver 

checks the index of each packet using a replay list of 

processed RTP packets within a window of size 64. Packets 

are authenticated by using HMAC-SHA-1 with a 160-bit key 

and the result is truncated to obtain an 80-bit or 32-bit 
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authentication tag that is appended to the end of the RTP 

packet.  

L. Key Exchange 

Secure VoIP calls require the exchange and management of 

keys for protection of the media sessions. The SRTP 

specification provides guidelines for selection of a key 

management system and mentions several standards but does 

not mandate a particular system. A variety of key exchange 

protocols are currently used by applications/providers with 

SRTP including ZRTP [35] SDES [36], MIKEY [37] and TLS 

[38]. In our experiments (described in Chapter IV), the 

snom and bare PC softphones use SDES/SIP, and the Twinkle 

softphone uses ZRTP for key exchange.  

The SDES/SIP message exchange to set up a secure VoIP 

call is the same as shown in Fig. 4 for a normal SIP INVITE 

exchange. However, it also includes exchange of the master 

and master salt keys, and cryptographic transforms via SDES 

utilizing the SDP Offer/Answer model. Since SDES uses the 

inline tag within SDP, the latter does not require any 



38 

 

 

 

protocol modifications. The bare PC UA and some 

conventional SIP softphones with SRTP currently implement 

this Offer/Answer model via SDES for key exchange. The keys 

used to generate the session keys are Base64 encoded by the 

bare PC softphone SRTP implementation prior to 

transmission. The SDES key exchange in this form is 

insecure since the SIP packets are sent in the clear. This 

problem can be addressed by using a TLS handshake over TCP 

(or DTLS over UDP) to protect the SDES key exchange over 

SIP/SDP.  

However, other key exchange methods may have more 

overhead compared to SDES. For example, Fig. 8 shows the 

ZRTP message exchange used by the Twinkle softphone. ZRTP 

provides a tag within the SDP protocol for notification to 

the client that it is able to support ZRTP. It then 

utilizes the media channel of the VoIP call for key 

establishment. Compared to SDES/SIP, ZRTP requires 5 extra 

packets, which are sent over RTP, with an average size of 

201 bytes. The experimental results for SRTP in Chapter IV 
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show the impact of ZRTP overhead on Twinkle softphone 

performance. 

 

Figure 8. ZRTP message exchange 

M. Testing 

Operational tests (with and without SIP authentication) 

of the bare PC SIP server and SIP UA implementations with 

and without SRTP security were conducted. The test network 
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consists of a dedicated LAN within the Towson University 

network and an external network connected through an ISP as 

shown in Fig. 9.  

The bare PC SIP server and user agents were first tested 

within the dedicated LAN. Testing was performed to verify 

correct operation between the bare PC SIP server and bare 

PC SIP softphones; interoperability of bare PC SIP 

softphones with the OpenSER server [39]; interoperability 

of the bare PC SIP server with snom360 softphones [40]; and 

interoperability of bare PC SIP softphones with the snom360 

softphones. Specifics of these systems are given in the 

next chapter.  

 

Figure 9. Network for operational testing 
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Similar tests were conducted over the Internet by 

establishing calls between a softphone on the external 

network and another on the dedicated LAN when the SIP 

servers are connected to the LAN. These tests also served 

to verify that the UA and the lean DHCP, STUN, and DNS 

implementations on the bare PC SIP softphone work correctly 

when it is connected to the Internet. In particular, the 

bare PC STUN implementation was found to be adequate for 

connecting between clients behind NATs on the dedicated 

test LAN and on an ISP network.  
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CHAPTER IV. SIP AND SRTP PERFORMANCE 

In this chapter, we describe the experimental setup and 

the experiments used to evaluate SIP and SRTP performance, 

and present the results. We also provide details of the 

systems and software used. 

A. Experimental Setup 

The dedicated test LAN consists of a 100 Mbps Ethernet to 

which the PCs (ordinary desktops) used for the various 

experiments are connected. To evaluate SIP server 

performance, the popular open source SIP workload generator 

SIPp [41] was used to generate call connection requests to 

the server for the SIP call flows of interest. The details 

of the SIP servers, hardware, and OSs used are as follows: 

SIP servers: bare PC SIP server (no OS), OpenSer SIP 

Server [39] ver 1.3.2 –notls (Linux) OpenSer 

(Kamailio/OpenSIPS), and Brekeke SIP Server [42] ver 

2.1.6.6 (Windows) utilizing the Jakarta Web Server and Java 

platform; PC hardware: Dell Optiplex GX-260 PCs with an 

Intel Pentium 4 (2.4 GHz) processor, 1.0 GB of RAM and 3COM 
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Ethernet 10/100 PCI network card; OSs: Microsoft Windows XP 

Professional ver. 2002 Service Pack 2 (XP SP2), and Linux 

Ubuntu 8.04 Kernel 2.6.24-16.  

The Test LAN used to evaluate SRTP performance is shown 

in Figure 10. In addition, a Wireshark 1.0.3 packet sniffer 

[43] is used to capture packets, display message exchanges 

and report performance data. The PC hardware is the same as 

detailed above. Calls were made using the following 

softphones/UAs with SRTP: a snom softphone [38] v5.3 

running on Windows XP SP2, a Twinkle softphone [44] version 

1.4.2 running on Linux Ubuntu 8.04 kernel 2.6.24-16, and a 

bare PC softphone with no OS. The OpenSER SIP server (see 

above) is used to register user agents and set up (proxy) 

VoIP calls between the softphones.  
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Figure 10. Test LAN for evaluating SRTP performance 

B. SIP Server Experiments 

In this section, we describe the experiments conducted to 

evaluate SIP server performance. We first obtain the values 

of throughput and latency (defined below) reported by the 

SIPp tool for the bare PC and OS-based SIP servers 

considering the register, register update, register logout, 

invite, invite-not-found, and redirect SIP operations 

(these operations are described below). We then measure 

internal timings on the bare PC server for the register 

operation.  
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For register updates, the SIP Server searches its user 

database for a match and then updates the corresponding 

user’s location data and registration expiration time; for 

the register logout operation, it removes the user from the 

database. The invite operation requires the server to 

lookup the callee's contact details in its database, 

forward the request to the callee, and send the response 

back to the caller. The invite-not-found operation is 

similar to invite except that the callee is not found in 

the database. For redirect, the server receives an invite 

message, but instead of forwarding the response to the 

callee, it forwards a temporarily moved message back to the 

caller.  

For the register, register update, and register logout 

operations, latency measures the delay at the user agent 

between sending the register message and receiving the “200 

OK” message. Latency for the invite operation measures the 

sum of two delays: the time between the invite message and 

“200 OK” messages; and the time between the “bye” and “200 

OK” messages. Each of these operations was also tested with 
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authentication enabled, which adds processing overhead due 

to verifying the MD5 hash, and extra message overhead due 

to the  “unauthorized” message for registration and “407 

proxy authentication” message for invite (and their 

responses).  

Latency for registration with authentication measures the 

sum of two delays: the time between the register request 

and the “unauthorized message”; and the time between the 

new register message with authentication credentials and 

the “200 OK” message. Latency for invite with 

authentication measures the sum of three delays: the time 

between the invite and “407 proxy authentication” messages; 

the time between the “invite with authentication” message 

and the “200 OK” messages; and the time between the “bye” 

and “200 OK” messages. For invite-not-found and redirect 

operations, the latency is similarly measured using the 

“404 not found” and “302 moved temporarily” messages. 

The server throughput measures the number of calls per 

second successfully handled with respect to the offered 
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load, which is the number of calls per second that are 

generated and sent to the server. The peak throughput is 

the highest throughput achieved under overload while the 

server remains stable (and produces consistent results).  

To conduct the experiments, the servers were configured 

to operate in three configuration modes with and without 

authentication: registrar, proxy, and redirector. In 

addition, internal timings were measured by inserting 

timing points within the bare SIP server. Each SIP server 

was pre-loaded with 10,000 unique SIP username and password 

pairs. Call flow performance for register, invite-not-

found, and redirect was measured for a maximum of 10000 

unique users with rates varying from 10 to 1000 calls/s. 

Call flow performance for invite was similarly measured for 

a maximum of 5000 users, with rates varying from 50 to 100 

calls/s. Each experiment was repeated a minimum of three 

times to ensure that the results were consistent. 
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C. SIP Server Throughput  

The throughput for the register and invite operations 

respectively without authentication is shown in Figs. 11-

16. It can be seen that the peak throughput of the bare PC 

SIP server is always higher than that of the OS-based 

servers except in the case of invite redirect. The peak 

throughput of the bare PC server typically exceeds that of 

the Linux server by 50-125 calls/s depending on the 

operation (although peak is only 10 calls/s larger for 

invite, and peak is 150 calls/s smaller for invite 

redirect). For example, the bare PC SIP server has a peak 

throughput of 700 calls/s for register operations (without 

authentication), which is better than the peak throughput 

of Linux (650 calls/s); the Windows server has a much lower 

peak throughput (around 200 calls/s).  
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Figure 11. SIP Throughput: Register without auth 



50 

 

 

 

 

 

Figure 12. SIP Throughput: Register Update without auth 
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Figure 13. SIP Throughput: Register Logout without auth 
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Figure 14. SIP Throughput: Invite without auth 
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Figure 15. SIP Throughput: Invite Not Found without auth 
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Figure 16. SIP Throughput: Invite Redirect without auth 

The peak throughput performance of the bare PC SIP server 

should be better than that of the OS-based servers, due to 

its simple design and the elimination of OS overhead. 

However, this performance advantage may be reduced or lost 

in certain cases due to inefficient algorithms or the lack 
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of concurrency. The latter situation arises with the invite 

operation. The peak throughput of the bare PC server is 

only marginally higher than Linux in this case, but 

introducing a separate SIP task to handle an invite 

operation will improve performance. The apparent drop in 

performance of the bare PC server for invite redirect is 

due to a significant improvement in the performance of the 

Linux server in this case.  

Implementing Linux’s search algorithm on the bare PC SIP 

server should improve its performance. A more efficient 

search algorithm should also improve the performance for 

the invite-not-found operation. The peak throughput of a 

given server does not vary much across the three register 

operations since the work performed in each case is 

essentially the same. The increase in the peak throughput 

of the Windows server for register update compared to that 

for the other two register operations is possibly due to 

caching.  
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Figure 17. SIP Throughput: Register with auth 
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Figure 18. SIP Throughput: Register Update with auth 
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Figure 19. SIP Throughput: Register Logout with auth 
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Figure 20. SIP Throughput: Invite with auth 
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Figure 21. SIP Throughput: Invite Not Found with auth 
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Figure 22. SIP Throughput: Invite Redirect with auth 

The results in Figs. 17-22 show that peak throughput of 

all servers is reduced as expected for both register and 

invite operations when authentication is added. This 

reduction in performance is due to the extra message 

overhead noted previously, and the overhead of computing 
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and verifying the additional information needed for 

authentication with a message digest [17]. The negative 

impact of authentication on performance was also noted in 

[18].  

There are no throughput values for the Windows server for 

invite-not-found with authentication since its message flow 

in this case could not be compared with that of the other 

two servers. It is evident that the peak throughput of the 

bare PC server with authentication shows a greater 

reduction versus its peak throughput without authentication 

compared to the OS-based servers. Adapting the approach 

used for authentication by Linux for the bare PC server 

could improve its performance. 

D. SIP Server Latency 

Figs. 23-28 compare the latencies for bare PC and OS-

based SIP servers for the register and invite operations 

respectively, with and without authentication. In most 

cases, the bare PC server performs better than the OS-based 

servers.  
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As seen in the figures, the highest percentage of 

latencies for the bare PC server are usually in the 0-30 ms 

range, and it rarely has latencies that exceed 150 ms. The 

invite operation is an exception and latency performance in 

this case could be improved by enabling concurrency in the 

server as noted earlier. For all register operations and 

invite redirect with authentication, the latency 

performance of the bare PC and Linux servers is the same. 

Further studies are needed to determine if the approach 

used to implement authentication in the Linux server will 

improve the latency performance of the bare PC server in 

these cases. 
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Figure 23. SIP Latency: Register 
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Figure 24. SIP Latency: Register Update 
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Figure 25. SIP Latency: Register Logout 
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Figure 26. SIP Latency: Invite 

 

 



68 

 

 

 

 

 

Figure 27. SIP Latency: Invite Redirect 
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Figure 28. SIP Latency: Invite Not Found 

E. SIP Server Internal Timings 

Fig. 29 compares average values of internal timings for 

the bare PC SIP server collected during the register 

operation under maximum load conditions. It is seen that 

FindUser, which searches for a given user, and 

ParseSIPHeaders, which processes the SIP header are the 

most expensive operations, although the former is twice as 
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expensive as the latter. The least expensive operation is 

AddUser, which simply adds the information for a new user, 

and thus takes an insignificant amount of time as would be 

expected. The AuthenticateUser and FormatSIPResponse 

operations have approximately the same cost, which is about 

half that of ParseSIPHeaders. We conducted tests on the 

OpenSER server using OProfile 0.9.5 [45], which showed that 

the timings for the AddUser and ParseSIPHeaders operations 

exceed the corresponding timings on the bare PC by factors 

of 4 and 7 respectively. 

 

 

Figure 29. SIP server internal timings 
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F. Analysis of Server Results 

Further insight into the results on throughput may be 

obtained by considering sustainable throughput, which is 

defined as the maximum rate of calls for which the 

processed call rate matches the offered call rate. 

Sustainable throughput reflects the extent to which a 

server can cope with the offered load, and it can be 

determined from the preceding Figs. 11-22. For example, the 

bare PC server’s sustainable throughput values for the 

register, register update, and register logout operations 

without authentication are respectively 400, 600, and 700 

calls/s (for all three register operations without 

authentication, the peak throughput is the same as the 

latter value).  

It can be seen that the sustainable throughput of the 

bare PC server exceeds that of the Linux server for all 

operations without authentication except for invite-not-

found when it is the same. In contrast, the sustainable 

throughput for the two servers for all operations with 

authentication is the same (or differs by a small amount). 
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As noted earlier, in the case of peak throughput with and 

without authentication, the bare PC server’s values are 

higher than those for the Linux server except for invite 

redirect. Thus, both sustainable and peak throughput values 

should be used to estimate server capacity with and without 

authentication. 

The latency performance shown in the preceding Figs. 5 

and 6 may be better understood by computing a latency 

coefficient p1*w1+p2*w2+p3*w3+p4*w4+p5*w5-p6, where p1, … , p6 

are the latency percentages of the groups 0-30 ms, … , 121-

150 ms, and  > 150 ms respectively; and w1, … , w5 are the 

weights of the first 5 groups with 0<=wi<=1 and w1+…+w5=1. 

The last term with a negative sign reflects the 

undesirability of latencies > 150 ms. The weights w1, … , w5 

can be assigned based on the relative importance of the 

lower latency groups.  

For example, suppose we assign w1=0.55, w2=0.445, 

w3=0.004, w4=0.0007, and w5=0.0003. Then the latency 

coefficients for register logout without authentication for 
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the bare PC, Linux, and Windows servers are 0.496, 0.185, 

and -0.7. These values show that the latency performance of 

the bare PC server in this case is much better than that of 

the Linux server, whereas the performance of the Windows 

server is far worse than both of them. It can also be 

verified that the latency coefficient of the bare PC server 

is greater than or equal to that of the Linux server except 

in the case of invite with authentication and invite-not-

found without authentication. As noted above, concurrency 

and use of a more efficient search algorithm may help to 

improve bare PC server performance in these cases. 

G. SRTP Experiments 

In this section, we describe the experiments conducted to 

evaluate SRTP performance on the bare PC softphone. First, 

timing points as shown in Fig. 30 are inserted into the 

SRTP code on the bare PC softphone to get the processing 

times of major functions in SRTP including key derivation, 

encryption, decryption, replay protection and 

authentication, and also the time to process network 

headers in incoming and outgoing SRTP packets.  



74 

 

 

 

Key derivation produces the session encryption, 

authentication, and salting keys, while encryption and 

decryption use AES in counter mode as described earlier. 

Replay protection involves checking the index of each 

packet using a replay list of processed RTP packets within 

a window of size 64. Packets are authenticated by using 

HMAC-SHA-1 with a 160-bit key and the result is truncated 

to obtain an 80-bit or 32-bit authentication tag that is 

appended to the packet. The time to process network headers 

in incoming and outgoing SRTP packets is the time to 

transfer packets between the Ethernet and SRTP processing 

levels. 
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Figure 30. SRTP timing points 

Next, VoIP call quality with and without SRTP is 

evaluated by comparing maximum and mean delta (packet 

interarrival time), maximum and mean jitter, and throughput 

(bits/s) reported by Wireshark for calls using the snom, 

Twinkle, and bare PC softphones. These values were computed 

based on 10,000 VoIP packets transferred in each direction 

between the softphones (i.e., about 3.5 minutes of voice 

traffic). The softphones used SRTP with a 128-bit AES 

encryption key and a 32-bit HMAC-SHA-1 message 
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authentication tag. The bare PC softphone implementation of 

SRTP also allowed 192-bit and 256-bit encryption keys and 

an 80-bit authentication tag. The softphones were 

configured to use the G.711 codec and 20 ms voice packets 

consisting of 160 bytes. Since AES processes 16-byte blocks 

at a time, there are 10 AES invocations per packet. 

H. SRTP Internal Timings   

The internal timings (processing times) for various SRTP 

functions on the bare PC softphone with 128, 192, or 256-

bit AES keys and a 32 or 80-bit HMAC/SHA-1 authentication 

tag are shown in Figs. 31-36. The most expensive internal 

step in the SRTP protocol is authentication processing. In 

contrast, the encryption and decryption processes consume 

much less time. It can also be seen that the times for the 

key derivation and replay processing steps are negligible. 

However, processing network headers on outgoing packets has 

higher cost than any of the other steps. Processing time 

increases by 10% when using a 192-bit AES key versus a 128-

bit key, and by 20% when using 256-bit AES key versus a 

128-bit key.  
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However, since the actual amount of processing time for 

all AES key sizes is very small, key size has no observable 

effect on call quality or VoIP throughput as is confirmed 

by the results in the next section. It can also be seen 

that processing times are about the same regardless of 

authentication tag size. This is because 160 bits are 

produced by HMAC/SHA-1 prior to truncating to a 32-bit or 

80-bit authentication tag and the increase in processing 

time to compare the larger tag is insignificant compared to 

the nearly constant processing time of HMAC-SHA-1. Overall, 

the results clearly indicate that SRTP processing adds 

negligible overhead (less than 1 ms) to RTP processing. 
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Figure 31. SRTP Timing: 128-bit encryption, 32-bit auth 

 

 

Figure 32. SRTP Timing: 128-bit encryption, 80-bit auth 
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Figure 33. SRTP Timing: 192-bit encryption, 32-bit auth 

 

 

Figure 34. SRTP Timing:192-bit encryption, 80-bit auth 
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Figure 35. SRTP Timing: 256-bit encryption, 32-bit auth 

 

Figure 36. SRTP Timing: 256-bit encryption, 80-bit auth 



81 

 

 

 

I. SRTP Maximum and Mean Delta 

Maximum and mean delta values are shown in Figs. 37 and 

38 respectively. Maximum delta without security is close to 

the ideal 20 ms value for the bare PC softphone, and 30 ms 

for the snom and Twinkle softphones. However, while the 

increase in maximum delta due to SRTP is less than 1 ms for 

the snom and bare PC softphones, it is over 40 ms for the 

Twinkle softphone. This increase in maximum delta for the 

Twinkle softphone is likely due to ZRTP exchanging its keys 

in the media channel as discussed in Chapter III. Mean 

delta values for all three softphones with SRTP are close 

to 20 ms.  
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Figure 37. SRTP Maximum delta with and without SRTP 

 

 
Figure 38. Mean delta with and without SRTP 
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J. SRTP Maximum and Mean Jitter 

Maximum and mean jitter values are shown in Figs. 39 and 

40 respectively. For the snom softphone, maximum or mean 

jitter with or without SRTP is the same (13 ms). For the 

Twinkle softphone, maximum and mean jitter is 5 ms and 4 ms 

without security, and increases by 6 ms and 2 ms 

respectively with SRTP. Again, this performance drop in the 

Twinkle softphone is possibly due to the effects of ZRTP 

using the media channel. In contrast, maximum and mean 

jitter for the bare PC softphone with or without SRTP is 

close to zero. 
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Figure 39. Maximum jitter with and without SRTP 

 

 

 
Figure 40. Mean jitter with and without SRTP 
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The above results for the bare PC softphone indicate that 

its streamlined processing of voice packets is able to 

reduce intrinsic delay and jitter with or without SRTP. Yet 

it is also evident that since delta and jitter values for 

all three softphones are within generally accepted limits, 

SRTP overhead has little or no effect on VoIP performance. 

K. SRTP Delta and Jitter for snom-to-bare Calls 

We also tested SRTP interoperability and VoIP performance 

when communicating between different softphones. This was 

done by measuring maximum delta, and maximum and mean 

jitter values on the respective softphones for calls 

between a snom softphone and a bare PC softphone using a 

128-bit AES key and a 32-bit authentication tag. Maximum 

delta and maximum and mean jitter values with or without 

SRTP for bare PC to snom calls are shown in Figs. 41-43. 

These values can be compared with the corresponding values 

in Figs. 37, 39, and 40 respectively. 
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Figure 41. SRTP Maximum delta for bare PC to snom 
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Figure 42. SRTP Maximum jitter for bare PC to snom 
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Figure 43. SRTP Mean jitter for bare PC to snom 

Maximum delta for the voice packet stream from the snom 

softphone is the same with or without SRTP but double that 

for snom to snom calls. However, maximum delta values for 

the stream from the bare PC softphone with or without SRTP 

are not significantly different compared to bare PC to bare 

PC calls. Maximum jitter values with or without SRTP are 

also the same but slightly higher for the stream from the 

snom softphone compared to snom to snom calls, but again, 
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differences in maximum jitter values for the stream from 

the bare PC softphone are very small. Mean jitter values 

with or without SRTP for the stream from each softphone are 

unchanged for bare PC to snom calls. The increased values 

of maximum delta and maximum jitter for the stream from the 

snom softphone are possibly due to the difference in timing 

between the softphones when processing voice packets. More 

studies are needed to investigate these timing differences.  

To evaluate the impact on VoIP performance with SRTP due 

to changing the AES key size, we measured maximum delta, 

and maximum and mean jitter values on a bare PC softphone 

with 192-bit or 256-bit AES keys and a 32-bit 

authentication tag (we were unable to test the snom 

softphone as it did not appear to support alternate AES key 

sizes). The results are compared with those for 128-bit AES 

keys (and a 32-bit authentication tag) in Figs. 44-45. The 

values of maximum delta and maximum jitter show little 

variation, and do not seem to have a simple relation to key 

size (the 192-bit key size has the best values and the 

least variation but the differences are very small). Also, 
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the results for the two softphones are not identical. 

However, mean jitter is nearly constant for both bare PC 

softphones regardless of key size. Since the processing 

overhead for all authentication tag sizes is the same as 

explained above, the results using an 80-bit authentication 

tag would not be significantly different. 

 

 

Figure 44. SRTP Max delta: varying AES key size 
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Figure 45. SRTP Max jitter: varying AES key size 
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Figure 46. SRTP Mean jitter: varying AES key size 

L. SRTP VoIP Throughput 

VoIP throughput for all three softphones without SRTP is 

81.6 kbps without SRTP, and 83.23 kbps with SRTP when using 

a 128-bit AES key and a 32-bit authentication tag. Since 

SRTP encryption does not increase the size of the voice 

packet, the only increase in size is due to the 32-bit (or 

80-bit) authentication tag. In an Ethernet, the total 
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packet size including all network headers but excluding the 

CRC is 214 bytes without SRTP, and 218 bytes (or 224 bytes) 

with SRTP.  Thus, the 2% increase in throughput with SRTP 

in our case simply reflects the 4-byte increase in packet 

size due to the authentication tag i.e., the increase in 

processing time due to SRTP is negligible and does not 

alter the throughput. Furthermore, all three softphones 

have the same throughput since their mean delta values are 

the same. 
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CHAPTER V. CONCLUSION 

This dissertation presents new research on VoIP systems 

in a bare machine computing (BMC)/bare PC environment. The 

focus of this work is the implementation of SIP, SRTP, and 

other support protocols for VoIP systems on a bare PC, and 

the evaluation of these systems by conducting experiments 

to measure their performance. Specifically, this research 

has demonstrated that the development of interoperable, 

dynamically configurable and secure VoIP systems that run 

on a bare PC with no OS or kernel is a viable option to its 

OS-based counterparts. The bare PC VoIP SIP server and SIP 

user agent/softphone with SRTP, which were the focus of 

this research, are characterized by simple tasking, lean 

protocol implementations, and immunity against OS-based 

attacks. 

We first described the design, implementation, and 

operations of a bare PC SIP server and SIP user agent with 

SRTP. These VoIP systems provide essential SIP and SRTP 

functionality with less overhead and better system security 

due to the absence of an OS. The tests conducted show that 
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the bare PC SIP server can interoperate with bare PC and 

OS-based SIP softphones, and the bare PC SIP softphone can 

interoperate with OS-based softphones and SIP servers. 

We then evaluated the performance of a bare PC SIP server 

by measuring its throughput and latency for registration, 

proxying, and redirection, with and without authentication. 

We compared its performance with that of an OpenSER server 

running on Linux and a Brekeke server running on Windows. 

We also determined timings for internal operations on the 

bare PC SIP server. The results show that the bare PC 

server performs better than the OS-based servers in most 

cases.  

The exceptions are throughput performance for the invite 

redirect operation, and latency performance for the invite 

operation with authentication and the invite-not-found 

operation without authentication, for which the Linux 

server is better. It is expected that the performance of 

the bare PC server can be improved in these cases by 

optimized processing techniques and the use of more 
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efficient search algorithms. The bare PC SIP server 

implementation can also be modified based on internal 

timings to reduce the cost of the most expensive 

operations. Our results serve as a baseline to assess the 

minimal overhead associated with basic SIP server 

operations for both OS-based and bare PC servers, and to 

help improve the performance of bare PC SIP servers. They 

also indicate the feasibility of deploying bare PC SIP 

servers in secure environments where OS-based 

vulnerabilities are a concern.  

Finally, we compared VoIP performance with SRTP on a bare 

PC SIP softphone with snom and Twinkle softphones running 

on Windows and Linux respectively. In particular, we 

determined packet interarrival times (delta) and jitter, 

with and without SRTP, for these softphones. Maximum delta 

and maximum and mean jitter for the bare PC softphone, 

which has no operating system, are smaller than for the 

snom and Twinkle softphones. Mean delta values for all 

three softphones are close to the ideal value. We also 

verified that VoIP throughput on the bare PC softphone with 
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SRTP is close to the expected value. Measurement of 

internal processing times for SRTP operations on the bare 

PC softphone revealed that SRTP authentication is expensive 

than AES encryption. However, no SRTP operation degrades 

VoIP performance. Overall, the results indicate that SRTP 

adds negligible overhead to VoIP processing and has no 

observable effect on VoIP call quality.  

Future research can investigate the use of TLS (Transport 

Layer Security) by the bare PC SIP server to secure the 

signaling channel, and for key exchange. An implementation 

of the bare PC SIP server that runs on TCP will provide 

flexibility, and further extend its capability to 

interoperate with OS-based servers. A beta version of such 

a SIP server exists and is being tested and improved. In 

summary, we have shown that the performance of VoIP SIP 

servers and softphones with SRTP may be improved with lean 

protocol implementations, simple tasking, and other bare 

PC-like softphone optimizations. We have also shown that 

bare PC VoIP systems can co-exist with OS-based systems.  
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