
TOWSON UNIVERSITY

COLLEGE OF GRADUATE STUDIES AND RESEARCH

A SIP SERVER AND USER AGENT WITH SRTP FOR VoIP ON A BARE PC

By

Andre Alexander

A Dissertation

Presented to the faculty of

Towson University

in partial fulfillment

of the requirements for the degree

Doctor of Science

August 2010

Towson University

Towson, Maryland 21252

II

© 2010 By Andre L. Alexander

All Rights Reserved

IV

ACKNOWLEDGMENTS

Thank you to my advisors Dr. Wijesinha and Dr. Karne for

their guidance and support during this journey; they are

truly responsible for the successful completion of my

dissertation. I am also deeply indebted to Dr. Zimand, Dr.

Song and Dr. Kim for supporting this research. I also thank

my family and friends for their support and words of

wisdom. Finally, to Anna Alexander (my wife), Anaya

Alexander (my daughter), Benzette Alexander-Fields (my

mother) and Juanita Alexander (my grandmother), I dedicate

this degree to you; your constant support, loving words,

thoughtful gestures and sacrifices have kept me focused.

Thank You! This moment marks the beginning of a wonderful

future for the Alexander family and shows that with hard

work and faith anything is possible!

"Ask and it will be given to you; seek and you will find;

knock and the door will be opened to you." Matthew. 7:7

Andre Alexander

V

ABSTRACT

A SIP SERVER AND USER AGENT WITH SRTP FOR VoIP ON A BARE PC

Andre L. Alexander

Bare PC applications run on ordinary desktops and laptops

without the support of an operating system (OS) or kernel.

They provide immunity against attacks targeting an

underlying OS, and have been shown to perform better than

applications running on conventional systems due to their

reduced overhead. In this dissertation, we describe a SIP

server and user agent (UA) with SRTP that are designed for

VoIP on a bare PC. We give details of their implementation

and present experimental results evaluating their

performance.

The server and UA include streamlined SIP functions and

message handling, efficient CPU tasking, protocol and

application intertwining, and direct Ethernet-level data

manipulation. In particular, the server provides

registration, proxy, and redirection services, and the UA

is integrated with lean implementations of the necessary

protocols within the bare PC softphone.

VI

We evaluate the performance of the bare PC SIP server by

determining its throughput and latency in a dedicated test

network with and without authentication. We also report

internal timings for the server. The server’s performance

is compared with that of the OpenSER and Brekeke SIP

servers running on Linux and Windows respectively. Our

results show that the bare PC SIP server has low cost for

internal SIP-related operations, and higher throughput and

lower latency than the OS-based servers except in a few

cases that need further optimization.

We also implement SRTP to secure VoIP conversations on a

bare PC softphone. Experiments to evaluate UA performance

with SRTP are conducted using the bare PC softphone, and

Twinkle and snom softphones running on Linux and Windows

respectively. Pre-defined SRTP transforms based on AES

counter mode encryption with HMAC-SHA-1 authentication are

tested. Measured internal timings for SRTP operations

indicate that authentication is more expensive than

encryption regardless of key or tag size. Measured values

of jitter, delta (packet interarrival time) and throughput

show that the addition of SRTP protection to VoIP traffic

over RTP has a negligible effect on voice quality.

VII

TABLE OF CONTENTS

List of Figures………x

CHAPTER I. INTRODUCTION ... 1

A. SIP Overview ... 3

B. SRTP Overview ... 5

CHAPTER II. RELATED WORK ... 7

A. SIP Implementation and Performance ... 7

B. SRTP Implementation and Performance 11

C. Bare Machine Computing ... 13

CHAPTER III. SIP AND SRTP DESIGN AND IMPLEMENTATION

 16

A. Bare PC SIP Server Overview ... 16

B. Boot Sequence ... 16

C. SIP Server Internals .. 18

D. User Database Lookup .. 19

E. Message Processing ... 23

F. User Interface ... 29

G. SIP UA .. 29

VIII

H. UA Operation/User Interface ... 30

I. User Agent Client and User Agent Server 33

J. STUN/DHCP/DNS ... 33

K. SRTP Implementation ... 35

L. Key Exchange ... 37

M. Testing ... 39

CHAPTER IV. SIP AND SRTP PERFORMANCE .. 42

A. Experimental Setup ... 42

B. SIP Server Experiments ... 44

C. SIP Server Throughput .. 48

D. SIP Server Latency ... 62

E. SIP Server Internal Timings ... 69

F. Analysis of Server Results .. 71

G. SRTP Experiments .. 73

H. SRTP Internal Timings .. 76

I. SRTP Maximum and Mean Delta ... 81

J. SRTP Maximum and Mean Jitter ... 83

IX

K. SRTP Delta and Jitter for snom-to-bare Calls 85

L. SRTP VoIP Throughput .. 92

CHAPTER V. CONCLUSION .. 94

CHAPTER VI. REFERENCES .. 98

CHAPTER VII.CURRICULUM VITA .. 106

X

LIST OF FIGURES

Figure 1. SIP server protocol/task relationships 187

Figure 2. Database, Hash, and Sorted Tables 21

Figure 3. User lookup process 23

Figure 4. SIP message exchange 26

Figure 5. SIP Invite with auth 28

Figure 6. UA main menu screen 31

Figure 7. SRTP processing 36

Figure 8. ZRTP message exchange 39

Figure 9. Network for operational testing 40

Figure 10. Test LAN for evaluating SRTP performance 44

Figure 11. SIP Throughput: Register without auth 49

Figure 12. SIP Throughput: Register Update without auth 50

Figure 13. SIP Throughput: Register Logout without auth 51

Figure 14. SIP Throughput: Invite without auth 52

Figure 15. SIP Throughput: Invite Not Found without auth 53

XI

Figure 16. SIP Throughput: Invite Redirect without auth 54

Figure 17. SIP Throughput: Register with auth 56

Figure 18. SIP Throughput: Register Update with auth ... 57

Figure 19. SIP Throughput: Register Logout with auth ... 58

Figure 20. SIP Throughput: Invite with auth 59

Figure 21. SIP Throughput: Invite Not Found with auth .. 60

Figure 22. SIP Throughput: Invite Redirect with auth ... 61

Figure 23. SIP Latency: Register 64

Figure 24. SIP Latency: Register Update 65

Figure 25. SIP Latency: Register Logout 66

Figure 26. SIP Latency: Invite 67

Figure 27. SIP Latency: Invite Redirect 68

Figure 28. SIP Latency: Invite Not Found 69

Figure 29. SIP server internal timings 70

Figure 30. SRTP timing points 75

Figure 31. SRTP Timing: 128-bit encryption, 32-bit auth 78

Figure 32. SRTP Timing: 128-bit encryption, 80-bit auth 78

XII

Figure 33. SRTP Timing: 192-bit encryption, 32-bit auth 79

Figure 34. SRTP Timing:192-bit encryption, 80-bit auth . 79

Figure 35. SRTP Timing: 256-bit encryption, 32-bit auth 80

Figure 36. SRTP Timing: 256-bit encryption, 80-bit auth 80

Figure 37. SRTP Maximum delta with and without SRTP 82

Figure 38. Mean delta with and without SRTP 82

Figure 39. Maximum jitter with and without SRTP 84

Figure 40. Mean jitter with and without SRTP 84

Figure 41. SRTP Maximum delta for bare PC to snom 86

Figure 42. SRTP Maximum jitter for bare PC to snom 87

Figure 43. SRTP Mean jitter for bare PC to snom 88

Figure 44. SRTP Max delta: varying AES key size 90

Figure 45. SRTP Max jitter: varying AES key size 91

Figure 46. SRTP Mean jitter: varying AES key size 92

1

CHAPTER I. INTRODUCTION

VoIP (Voice over Internet Protocol) is one of today’s

most researched telephony topics. The evolution of high-

speed networks and data compression techniques has enabled

VoIP to make influential changes to the technology

landscape. Various studies have focused on the security and

performance of VoIP in both real world and test

environments.

SIP (Session Initiation Protocol) [1] and SRTP (Secure

Real-time Protocol) [2] are two support protocols

frequently used by VoIP systems. SIP is implemented in

servers (known as SIP servers) and softphones (in the form

of user agents or UAs), and is used for call setup and

other call management functions. SRTP is implemented in

softphones, and is used for encryption and

authentication/integrity of voice data carried over RTP

(Real-time Transport Protocol). An overview of SIP and SRTP

is given at the end of this chapter.

2

Conventional VoIP systems require the support of an

operating system (OS) or kernel. Bare Machine Computing

(BMC) is an alternative approach to computing that enables

applications to run on a bare machine with no OS or kernel

support i.e., a bare PC. Bare PC applications are

characterized by simplicity and efficiency, and have been

shown to perform better than similar applications running

on an OS-based system [3, 4, 5]. They also have inherent

security advantages due to being immune to OS-based

attacks. An overview of BMC systems is given in the next

chapter.

The preceding considerations motivated us to build VoIP

systems that support SIP and SRTP. Specifically, we design

and implement a bare PC SIP server and SRTP with SIP UA

support on a bare PC softphone. We also evaluate the

performance of these implementations by measuring the

throughput and latency of the SIP server, and the delay,

jitter, and throughput (that serve as call quality metrics)

for the voice data generated by the softphone. We compare

performance for the bare PC systems with similar OS-based

3

systems, and also measure the internal timings for key SIP

and SRTP functions on the bare PC.

All components of SIP on the bare PC SIP server are

implemented as part of this doctoral work. Also, we add new

SIP UA and SRTP implementations to an existing bare PC

softphone having only RTP/UDP/IP/Ethernet functionality.

Furthermore, we add dynamic IP address configuration via

DHCP (to the SIP server and softphone), NAT traversal via

STUN, and domain name resolution via DNS to the softphone

to facilitate plug-and-play capability. In keeping with the

BMC approach, all protocols are implemented in a lean

manner i.e., only essential functionality is implemented.

Tests are conducted to verify correct operation of SIP,

SRTP and the auxiliary protocols, as well as the

interoperability of the SIP server and SRTP/SIP UA

softphone with compatible OS-based systems.

A. SIP Overview

SIP is an important protocol that provides support for

VoIP by handling functions such as call set up, user

4

authentication, user registration and location, and billing

support. Although SIP is a general-purpose protocol that

can also be used for video conferencing, instant messaging

and gaming, it is predominantly used today in VoIP systems.

 Conventional SIP implementations in servers and

softphones require the support of a traditional OS such as

Windows or Linux, or an OS kernel. SIP phones are also

frequently implemented in hardware/firmware typically with

an embedded OS. The SIP implementations in OS-based systems

take advantage of their rich supporting environment and

capabilities and are convenient to use. An optimized SIP

server can help improve the overall performance of audio or

video applications even though it is typically not directly

involved in the actual transmission of audio or video. The

throughput and latency of the SIP server when responding to

requests from SIP user agent clients and other SIP servers

are used as measures in evaluating its performance.

5

B. SRTP Overview

SRTP is an Internet standards-track profile of RTP that

provides a framework for securing VoIP communications. The

primary security considerations for VoIP are voice

encryption, voice data authentication and integrity, and

replay protection.

SRTP addresses these security aspects by providing

security for RTP and its control protocol RTCP with low

overhead. It can be used for encryption, message

authentication/integrity and replay protection of RTP and

RTCP traffic. While SRTP mandates message authentication

for RTCP and adds new fields to an RTCP packet, we do not

consider SRTP performance with respect to RTCP in our study

since the overhead due to securing the periodic but

infrequent RTCP messages is negligible.

The remainder of the dissertation is structured as

follows. Chapter 2 contains a survey of related work on SIP

and SRTP performance and implementation, and an overview of

Bare Machine Computing (BMC). Chapter 3 describes the

6

design and implementation of the SIP Server and SIP User

Agent with SRTP, and the supporting protocols DHCP, STUN

and DNS. This chapter also describes how the VoIP systems

were tested. Chapter 4 reports the results of performance

studies evaluating the bare PC SIP Server and SRTP

implementations. Chapter 5 presents the conclusion and

suggests possible future work. This dissertation includes

material from our publications [6, 7, 8].

7

CHAPTER II. RELATED WORK

In this chapter, we present an overview of previous work

on SIP, SRTP, and bare PC systems (also called bare machine

computing or BMC systems). We discuss how they relate to

this research and how they differ. The related work is

divided into three sections dealing with SIP implementation

and performance, SRTP implementation and performance, and

BMC systems respectively.

A. SIP Implementation and Performance

There are numerous implementations of conventional SIP

servers and softphones with SIP UAs that run on various OS

platforms. In [9], a SIP server is implemented on top of an

existing SIP stack. In [10], SIP servers and SIP UAs are

implemented on the Solaris 8 OS. A client-side SIP service

offered to all applications based on a low-level SIP API is

described in [11]. In [12], the features of a new language

called StratoSIP for programming UAs that can act as a UA

server to one endpoint and as a UA client to another are

8

presented. In [13], the UA is a SIP-based collaborative

tool implemented by using existing SIP and SDP stacks. In

[14], a Java-based SIP UA is proposed for monitoring

manufacturing systems over the Internet. The focus of [15]

is a SIP adaptor for both traditional SIP telephony and

user lookup on a P2P network that does not have a SIP

server.

While SIP servers usually run over UDP and in some cases

over TCP, the use of SCTP as a transport protocol for SIP

has also been studied [16]. An early study on SIP server

performance [17] found that the overhead on a Java SIP

server due to security mechanisms such as authentication

and TLS was negligible. However, the study in [18], which

measured throughput and latency in a dedicated gigabit

Ethernet for stateless and stateful proxies over UDP and

TCP, showed that authentication, TCP, or the

operation/server configuration can significantly impact SIP

server performance. Their experiments were conducted using

a 3.06 GHz server class machine, and only the performance

of a single SIP server (OpenSER on Linux) was evaluated. In

9

[19], SIP server performance for several stateful SIP

proxies over UDP was evaluated. The authors concluded that

the overhead due to string processing operations and memory

management could consume significant processing time and

that performance varied considerably depending on the

proxy. Recent work on SIP servers has dealt with

performance under overload conditions [20], scalability

issues [21, 22], load balancing [23], and the impact of

transport protocols on performance [24].

The main difference between previous studies on SIP and

the present research is that we focus on a SIP server and

SIP UA that run on a bare PC. Moreover, studies on SIP

server performance typically use server machines, whereas

the bare PC SIP server used for our experiments runs on an

ordinary desktop (see Chapter IV). Another difference is

that we evaluate SIP server performance not only for the

usual register, invite, and redirect operations, but also

for the register update, register logout, and invite-not-

found operations that could be encountered in practice. We

10

limit our studies to SIP over UDP with stateless proxying,

which is a commonly used.

The goal of conventional SIP servers and SIP UAs is to

offer enhanced services to clients by using existing low-

level SIP stacks that rely on an OS. However, an OS-based

full SIP implementation is not always needed. If a higher

level of security or performance is desired at low cost, a

customized SIP server or a SIP softphone running on a bare

PC would be more easily secured or designed for high

performance. For example, an OS-based system may be

difficult to secure against attacks that target

vulnerabilities of the underlying OS. Bare PC systems are

immune to such attacks since they have no OS. Also, since

bare PC applications have reduced code complexity and code

size, it is easier to analyze their code for security

flaws. Moreover, due to their simplicity and the limited

services they offer, they have fewer avenues open for

attack.

11

In addition to its security and low-cost benefits, a SIP

server or SIP user agent running on a bare PC can be

expected to operate efficiently. For example since there is

no OS and the SIP applications have direct interfaces to

the hardware, there is minimal system overhead. Also, lean

versions of the necessary protocols and application-

protocol intertwining enable the bare PC SIP server or SIP

softphone application to reduce the overhead of inter-layer

communication and improve performance. Consequently, the

bare PC SIP server and UA have less overhead than an OS-

based server or UA, and are more suited for secure low-cost

environments.

B. SRTP Implementation and Performance

Previous work on SRTP primarily focuses on key exchange

methods and ways to address drawbacks of the protocol. In

[25], the requirements for a protocol that manages keys and

parameters for SRTP and interoperates with SIP are

described. The study also compares several existing

approaches including SDP security descriptions, MIKEY, ZRTP

and DTLS-SRTP, an extension of DTLS to manage keys in SRTP.

12

In [26, 27], the vulnerability of SRTP to denial-of-service

flooding due to the high overhead of HMAC-SHA-1

authentication is addressed and an alternate lightweight

authentication scheme SRTP+ is proposed. In [28], security

protocols for VoIP and their impact on call quality are

examined by measuring the mean opinion score (MOS).

This research differs from previous studies in that we

implement SRTP on a bare PC softphone. Moreover, we 1)

compare jitter, delta and throughput values with and

without SRTP using a Windows softphone (snom), a Linux

softphone (Twinkle) and a bare PC softphone; and 2)

determine the time for the various internal operations in

SRTP using a bare PC softphone. SRTP and the SIP UA also

communicate directly and efficiently with each other and

with the existing lower-layer protocols and cryptographic

modules in the bare PC softphone. This enables the bare PC

SRTP implementation and SIP UA to provide better call

quality than a SIP UA with SRTP in an OS-based system.

13

C. Bare Machine Computing

Bare Machine Computing (BMC) is a novel approach to

computing that enables application programs to control and

manage hardware resources in a bare machine without an OS

or kernel i.e., a bare PC. It is based on the application-

centric dispersed operating system (DOSC) paradigm [29]. In

this approach, the OS or kernel is eliminated. Instead, a

single self-supporting application object (AO) encapsulates

all of the necessary functionality for a few (typically one

or two) applications to directly execute on the hardware.

BMC applications only use real memory (a hard disk is not

used). The AO, which is loaded from a USB flash drive or

other portable storage medium, includes one or more

applications and the boot code.

If required by the application, the AO also includes

cryptographic algorithms, as well as network interface and

other device drivers, such as an audio driver in case of

the bare PC softphone. The interfaces enabling the

application to communicate with the hardware [30] are also

included in the AO. The AO code is written in C++ with the

14

exception of some low-level assembler code. The AO itself

manages the resources in a bare machine including the CPU

and memory. For example, every AO has a Main task that runs

whenever no other task is running, and network applications

require a Receive (Rcv) task that handles incoming packets.

Additional tasks may be used depending on the applications

included in the AO, such as an audio task for the bare PC

softphone.

BMC applications are intertwined with lean

implementations of the necessary network protocols. For

example, in bare PC Web servers and email servers, the

application protocol (i.e., HTTP or SMTP) is intertwined

with the TCP protocol [3, 31]. Protocol intertwining and

other bare PC optimizations contribute to the improved

performance of these servers over compatible OS-based

servers [3, 4].

The design, implementation, and performance of a bare PC

softphone are discussed in [5, 32]. A bare PC softphone

with encryption and authentication capabilities is

15

described in [33]. However as noted earlier, this softphone

does not include a SIP UA and does not support SRTP.

16

CHAPTER III. SIP AND SRTP DESIGN AND IMPLEMENTATION

In this chapter, the design and implementation of a bare

PC SIP Server for VoIP and a SIP UA with SRTP for a bare PC

softphone are described. The bare PC SIP implementations

are based on [1]. The SIP UA is integrated with SRTP and

other protocols needed by the bare PC softphone.

A. Bare PC SIP Server Overview

The bare PC SIP server supports registrar, redirector, or

proxy modes with or without authentication. The server is

designed in a modular fashion to allow for easy updates and

implementation of new features, and to facilitate analysis

of the server code. Since the bare PC SIP server

implementation is lean, only specific content from an

incoming SIP packet is parsed. The bare PC SIP server AO

contains about 2000 lines of code.

B. Boot Sequence

The bare PC SIP server is booted by directly loading its

AO from a USB flash drive. The protocol/task relationships

for the server are shown in Fig. 1. The bare PC SIP Server

17

boot sequence begins when the Main task invokes the DHCP

handler to send a DHCP request for an IP address (unless

the server has been preconfigured to use a specific IP

address). When a response arrives, the Rcv task is invoked

to process it. Next, a file containing username and

password combinations of authorized users is transferred

from another host on the network using an adaptation of

trivial FTP. As discussed later, multiple data structures

to facilitate server operations such as user lookup,

username and password lookup, and state lookup are then

created in memory. The last step in the boot process is to

display the user interface for administering the server.

18

Figure 1. SIP server protocol/task relationships

C. SIP Server Internals

The bare PC SIP server uses only two CPU tasks, Main and

Receive (Rcv). This simplifies task management and

increases efficiency. The Main task runs continually and

activates the Rcv task whenever packets arrive in the

Ethernet buffer and need to be processed. After a response

is sent, the Rcv task terminates and the Main task runs

again.

For example, when the SIP Server AO’s Rcv task is

activated by the Main task upon the arrival of a SIP

request in the Ethernet buffer, a single thread of

execution handles the request all the way from the Ethernet

level to the SIP (application) level till a response is

sent, which simplifies server design and reduces the

processing overhead. Thus, if an arriving packet is

designated for the default SIP UDP port 5060, the Rcv task

causes the Ethernet, IP, and UDP handlers to be invoked to

process the respective protocol headers using a single copy

19

of the message. As shown in Fig. 1, the Rcv task only

terminates after the SIP request is processed and a SIP

response is sent by the server after invoking the

respective protocol handlers to attach the headers.

The bare PC SIP server AO consists of several objects. In

addition to the Ethernet, IP, UDP, and SIP objects, the

server also requires the DHCP, FTP, and MD5 objects. The

role of the DHCP and FTP objects were discussed earlier.

The MD5 object is used to provide support for user

authentication via standard SIP authentication (i.e., HTTP-

Authentication) if it is needed.

D. User Database Lookup

After the usernames and passwords from the file are read

into memory, the bare PC SIP server runs the

sipservergetdb() function to store them in the following

USER_DATABASE structure.

Struct USER_DATABASE {

 char username [20];

 int username_size;

 int username_hash;

 char Password [20];

20

 int Password_size;

};

The data structures HASH_TABLE and SORTED_TABLE shown below

are also used.

Struct HASH_TABLE {

 int hash_hit;

 int hash_reg_db_loc[HASH_REG_DB_SIZE];

 int hash_hit_size

};

Struct SORTED_TABLE {

 int hash;

 int hash_link;

};

In essence, the hash of each username is then used as an

index into HASH_TABLE, which is used together with

SORTED_TABLE to facilitate looking up the user in the

USER_DATABASE structure, and retrieving information when

making or receiving calls or registering a user. The

HASH_TABLE structure links back to the SORTED_TABLE and

USER_DATABASE structures. The details are as follows.

First, the hash values are stored in a SORTED_TABLE array

(which allows for efficient searching for a given hash

value), and each position in the sorted array is linked to

the specific HASH_TABLE array corresponding to that hash

value. In turn, each position in the HASH_TABLE array

21

corresponds to a user that hashed to that value and

contains a link back to the USER_DATABASE entry for that

user. The HASH_TABLE structure links the index in the

USER_DATABASE structure to the hash value of the

SORTED_TABLE as shown in Fig. 2.

Figure 2. Database, Hash, and Sorted Tables

The user lookup process in Fig. 3 is done by using two

functions: the find_hash_hit() function, which is based on

a particular hash value, and the find_user() function that

is based on the username and size. In performance tests,

22

this search operation was found to be a likely bottleneck

because of the username comparisons triggered by collisions

on a single hash value.

The find_user() function takes a username and username

size as input. It then hashes the username and passes the

value to the find_hash_hit() function, which finds the

corresponding hash table containing all the users with that

same hash value. The hash table is passed back to the

find_user() function, which calls the lookup_user()

function. The latter goes through each user in that

specific hash table and first compares the sizes of the

usernames; if they match, it looks for a second match on

the full username. If the user is found, the location

containing the user’s information in the database,

including the IP Address and port, is returned. To improve

performance, future bare PC SIP server implementations will

use adaptations of data structures and search techniques

used by popular Linux SIP servers.

23

Figure 3. User lookup process

E. Message Processing

The siphandler() function manages the processing of

received SIP messages. This function, which is called

directly by the udp_handler() function after verifying the

SIP port in the UDP header, is the key element in the bare

PC SIP server. The siphandler() function calls the

parse_headers() function which goes through the SIP packet

and parses out specific identifiers to identify the type of

24

message (for example, REGISTER, INVITE, ACK, BYE, 180

Ringing, 200 OK and 100 Trying). Within the parse_headers()

function are specific functions built to handle the

following SIP tags: Header, Via, From, To, Expires,

Authorization, Proxy Authorization, CallId, CSeq, Contact,

and Content Length. In keeping with the lean SIP

implementation, only the indicated tags are parsed to

expedite the processing of SIP packets (other tags are

bypassed). Once the tags are parsed and the relevant data

from the packet is stored, control returns to the

siphandler() function.

Further processing is determined according to the

request_type returned. Only the following SIP messages are

routable by the Bare PC SIP Server: Register Invite, 100

Trying, 180 Ringing, 200 OK, Ack, Bye, and Unsupported.

When the system (the siphandler function) has decided what

to do with the SIP request, processing is carried out to

forward the SIP message is forwarded or a reply is sent to

the SIP User Agent by utilizing the generate_sip_response()

function. This function generates the SIP reply (or 100

25

Trying response) based on the values retrieved earlier by

parsing the SIP request. It then calls the sipsenddata()

function which calls the relevant protocol handlers to

format the headers in the SIP reply.

Register Message: To process a Register message, the bare

PC SIP server parses the Via (IP address:port), From and To

(usernames@domain/IP), and Contact tags. It then calls the

function check_registered_users(). A process similar to

that described earlier is used to determine if the user is

already registered (i.e., is found in the

Registered_Users_Database). If so, only the relevant

information is updated; otherwise, the system stores all

necessary information parsed from the SIP request including

the username, IP address and port number. This information

is used to generate replies back to the UA on future

requests until the UA re-registers or one of the parameters

is updated. After the information is stored or updated, the

server generates a 200 OK message and sends the reply back

to the SIP UA.

26

Invite Message: For an Invite message, the bare PC SIP

server parses almost all of the same fields as for the

Register message. The server then sends messages to the

caller and callee. A 100 Trying message is sent back to the

caller letting the UA know that the SIP Server is

processing the request. To send this message, the server

looks up the IP address of the caller using the process

described earlier. It also looks up the registration

information for the callee and forwards the Invite message

to its UA. A SIP message exchange including Invite for call

setup and Bye for call termination is shown in Fig. 4.

Figure 4. SIP message exchange

27

SIP Authentication: The Message format for an Invite

request with authentication is shown in Fig. 5. SIP

authentication is done by challenging the initial request

(Invite or Register) sent by the SIP UA. SIP uses HTTP

authentication techniques. The bare PC SIP Server is

designed so that each request is not authorized unless it

receives the proper response for a given challenge. The

server can be configured at start-up to operate with or

without authentication. An authorization flag indicates if

a particular request is approved or denied based on

authentication.

The bare PC SIP server processes the initial request, and

then sends a challenge response back to the requesting SIP

UA. The SIP server generates a challenge response that

depends on the values of realm and nonce. The realm is

typically set to the domain of the SIP server (for example,

barepc.towson.edu or the IP address). The nonce is a string

that is randomly generated by the server. Once the server

receives the reply to the challenge, the fields in the

authorization request are parsed from the SIP packet. Then

28

the response value is computed using the MD5 algorithm and

matched against the response value sent by the SIP UA. The

response value is a hash that depends on the concatenation

of all values in the authorization request. If the computed

response matches the response sent by the SIP UA, the

request is approved (authorized) and normal SIP call flow

processing is allowed.

Figure 5. SIP Invite with auth

29

F. User Interface

The bare PC SIP Server has a simple user interface that

displays its basic configuration and state information when

the interface function sipserverstate() is called. The

displayed information includes the number of users added to

the username and password database, and the server’s

configuration mode (proxy, redirector, authentication,

stateless, or stateful). The server can also show the

username, ip address, and port for each user logged into

the system. An administrator can toggle through the list of

users, or configure the server so that the display is

triggered every time a user is added or removed from the

Registered_User_Database by calling sipserverstate() from

the Main task.

G. SIP UA

The bare PC SIP user agent (UA) is integrated with the

bare PC softphone enabling calls to be set up. Its

operational characteristics are similar to those of a SIP

UA in a conventional OS-based SIP softphone. However, the

30

UA implementation is different due to the absence of an OS

and a built-in protocol stack, and results in a UA with

less overhead and better security. The UA can also directly

communicate with a peer (without using a SIP server)

provided the peer can be contacted via a known (public)

destination IP address and port number.

H. UA Operation/User Interface

As in the case of the bare PC SIP server, only two tasks

Main and Rcv are needed for the UA, and arriving SIP

messages and responses are processed in a single thread of

execution as described earlier. When the UA is booted, if

an IP address for the UA has not been preconfigured, the UA

sends out a request for and obtains an IP address using

DHCP. If this is a private address, the UA is behind a NAT

and uses STUN [34] to learn its public IP address and port.

In this case, the UA first sends a DNS request and obtains

the IP address of a public STUN server. The Bare PC STUN

implementation is described in more detail below.

31

Figure 6. UA main menu screen

After the UA completes the initialization process it

displays the main login menu, which enables the user to

login-in to a particular SIP server or to communicate

directly with a peer as noted earlier. In case SIP server

login is selected, the UA sends a SIP Register request to

the server after performing a DNS resolution if needed.

Once the 200 OK messages are received from the SIP server,

the UA displays a “main menu” screen as in Fig. 6. The menu

has several options, which enables the user to see the IP

32

configuration information from DHCP, and NAT mappings from

STUN that show the external IP address and

internal/external SIP and RTP ports for the softphone. Such

information is useful to troubleshoot connectivity

problems. In addition, a separate option shows status and

connectivity information for the current call including

whether security is on. A “quick dial” option for selecting

specific users is also available.

The software design of the bare PC SIP UA is simple and

modular. The essential UA functionality contained in the

SIPUA object consists of 3000 lines of C++ code. This

object is supplemented by 1) objects for cryptographic and

other algorithms (such as HMAC, SHA-1, MD5, AES, and

Base64) needed for SIP authentication, and key

establishment and SRTP as described below; 2) objects

implementing the essential elements of the necessary

auxiliary protocols (STUN, DHCP, and DNS); and 3) objects

needed by the bare PC softphone including the Ethernet, IP,

and UDP objects, the RTP, audio, and G.711 objects that

handle voice data processing, recording, and playback on

33

the bare PC softphone, and the SRTP object described below

that provides VoIP security.

I. User Agent Client and User Agent Server

The bare UA consists of two independent components: the

SIP user agent server (UAS) and SIP user agent client

(UAC). The UAS is operationally similar to the bare PC SIP

server with respect to its handling of SIP packets. For

example, it listens for call requests and its actions are

activated by the Rcv task when a packet arrives as

discussed earlier for the case of the SIP server. The UAC

can be activated by keyboard input. The UA functionality is

contained in a SIPUA object that is responsible for

processing SIP messages and SDP tags, displaying the SIP UA

interface, and interacting with the user. The SIPUA object

is integrated in a single AO with several other objects

needed to implement the UA.

J. STUN/DHCP/DNS

The public IP address and port learned from the public

STUN server is used in SIP Invite requests to enable the

34

peer to communicate with the UA behind the NAT. The Bare PC

SIP UA sends out multiple STUN messages to find the

external port for its voice channel over RTP. Since the

signaling channel is proxied through the SIP server, STUN

is not needed to discover the external SIP signaling port.

After the bare PC client is booted, STUN messages for the

media channel are sent every 30 seconds until the SIP UA

establishes the call. The Invite message contains the last

known media channel external port number. Since the NAT

binding may change, the UA sends voice packets to the

destination host using a sequence of consecutive ports. The

UA stops sending on the other ports once voice packets are

received on a particular port.

Since there is no OS and no built-in protocol stack on

the bare PC softphone, the bare PC SIP UA also needs to

send DHCP messages to automatically obtain an IP address

and other essential configuration information at start-up.

The DHCP messages follow the typical DHCP call flow

(Discover, Offer, Request, and Ack). The softphone can also

send DNS requests to resolve the domain name of the SIP or

35

STUN server. As noted earlier, the implementation of the

DHCP and DNS protocols have only the minimal features

needed by the bare PC SIP softphone.

K. SRTP Implementation

As noted above, the SIP UA on the bare PC softphone is

also integrated with SRTP. SRTP allows the UA to

communicate securely with conventional SIP UAs that are

SRTP capable. The bare PC SRTP implementation is based on

the specification in [2].

The pre-defined cryptographic transforms for SRTP are AES

in counter mode or f8 mode for encryption, and HMAC-SHA-1

for message authentication. The f8 mode is not supported by

the bare PC softphone. When using AES in counter mode, SRTP

encryption (which precedes authentication) consists of

generating a pseudo-random keystream for each RTP packet

and XORing the RTP data (excluding the RTP header) with the

keystream.

36

Figure 7. SRTP processing

Fig. 7 shows the main steps in SRTP processing on the

bare PC SIP softphone. Key derivation produces the session

encryption, authentication, and salting keys, while

encryption and decryption use AES in counter mode as

described earlier. To prevent replay attacks, the receiver

checks the index of each packet using a replay list of

processed RTP packets within a window of size 64. Packets

are authenticated by using HMAC-SHA-1 with a 160-bit key

and the result is truncated to obtain an 80-bit or 32-bit

37

authentication tag that is appended to the end of the RTP

packet.

L. Key Exchange

Secure VoIP calls require the exchange and management of

keys for protection of the media sessions. The SRTP

specification provides guidelines for selection of a key

management system and mentions several standards but does

not mandate a particular system. A variety of key exchange

protocols are currently used by applications/providers with

SRTP including ZRTP [35] SDES [36], MIKEY [37] and TLS

[38]. In our experiments (described in Chapter IV), the

snom and bare PC softphones use SDES/SIP, and the Twinkle

softphone uses ZRTP for key exchange.

The SDES/SIP message exchange to set up a secure VoIP

call is the same as shown in Fig. 4 for a normal SIP INVITE

exchange. However, it also includes exchange of the master

and master salt keys, and cryptographic transforms via SDES

utilizing the SDP Offer/Answer model. Since SDES uses the

inline tag within SDP, the latter does not require any

38

protocol modifications. The bare PC UA and some

conventional SIP softphones with SRTP currently implement

this Offer/Answer model via SDES for key exchange. The keys

used to generate the session keys are Base64 encoded by the

bare PC softphone SRTP implementation prior to

transmission. The SDES key exchange in this form is

insecure since the SIP packets are sent in the clear. This

problem can be addressed by using a TLS handshake over TCP

(or DTLS over UDP) to protect the SDES key exchange over

SIP/SDP.

However, other key exchange methods may have more

overhead compared to SDES. For example, Fig. 8 shows the

ZRTP message exchange used by the Twinkle softphone. ZRTP

provides a tag within the SDP protocol for notification to

the client that it is able to support ZRTP. It then

utilizes the media channel of the VoIP call for key

establishment. Compared to SDES/SIP, ZRTP requires 5 extra

packets, which are sent over RTP, with an average size of

201 bytes. The experimental results for SRTP in Chapter IV

39

show the impact of ZRTP overhead on Twinkle softphone

performance.

Figure 8. ZRTP message exchange

M. Testing

Operational tests (with and without SIP authentication)

of the bare PC SIP server and SIP UA implementations with

and without SRTP security were conducted. The test network

40

consists of a dedicated LAN within the Towson University

network and an external network connected through an ISP as

shown in Fig. 9.

The bare PC SIP server and user agents were first tested

within the dedicated LAN. Testing was performed to verify

correct operation between the bare PC SIP server and bare

PC SIP softphones; interoperability of bare PC SIP

softphones with the OpenSER server [39]; interoperability

of the bare PC SIP server with snom360 softphones [40]; and

interoperability of bare PC SIP softphones with the snom360

softphones. Specifics of these systems are given in the

next chapter.

Figure 9. Network for operational testing

41

Similar tests were conducted over the Internet by

establishing calls between a softphone on the external

network and another on the dedicated LAN when the SIP

servers are connected to the LAN. These tests also served

to verify that the UA and the lean DHCP, STUN, and DNS

implementations on the bare PC SIP softphone work correctly

when it is connected to the Internet. In particular, the

bare PC STUN implementation was found to be adequate for

connecting between clients behind NATs on the dedicated

test LAN and on an ISP network.

42

CHAPTER IV. SIP AND SRTP PERFORMANCE

In this chapter, we describe the experimental setup and

the experiments used to evaluate SIP and SRTP performance,

and present the results. We also provide details of the

systems and software used.

A. Experimental Setup

The dedicated test LAN consists of a 100 Mbps Ethernet to

which the PCs (ordinary desktops) used for the various

experiments are connected. To evaluate SIP server

performance, the popular open source SIP workload generator

SIPp [41] was used to generate call connection requests to

the server for the SIP call flows of interest. The details

of the SIP servers, hardware, and OSs used are as follows:

SIP servers: bare PC SIP server (no OS), OpenSer SIP

Server [39] ver 1.3.2 –notls (Linux) OpenSer

(Kamailio/OpenSIPS), and Brekeke SIP Server [42] ver

2.1.6.6 (Windows) utilizing the Jakarta Web Server and Java

platform; PC hardware: Dell Optiplex GX-260 PCs with an

Intel Pentium 4 (2.4 GHz) processor, 1.0 GB of RAM and 3COM

43

Ethernet 10/100 PCI network card; OSs: Microsoft Windows XP

Professional ver. 2002 Service Pack 2 (XP SP2), and Linux

Ubuntu 8.04 Kernel 2.6.24-16.

The Test LAN used to evaluate SRTP performance is shown

in Figure 10. In addition, a Wireshark 1.0.3 packet sniffer

[43] is used to capture packets, display message exchanges

and report performance data. The PC hardware is the same as

detailed above. Calls were made using the following

softphones/UAs with SRTP: a snom softphone [38] v5.3

running on Windows XP SP2, a Twinkle softphone [44] version

1.4.2 running on Linux Ubuntu 8.04 kernel 2.6.24-16, and a

bare PC softphone with no OS. The OpenSER SIP server (see

above) is used to register user agents and set up (proxy)

VoIP calls between the softphones.

44

Figure 10. Test LAN for evaluating SRTP performance

B. SIP Server Experiments

In this section, we describe the experiments conducted to

evaluate SIP server performance. We first obtain the values

of throughput and latency (defined below) reported by the

SIPp tool for the bare PC and OS-based SIP servers

considering the register, register update, register logout,

invite, invite-not-found, and redirect SIP operations

(these operations are described below). We then measure

internal timings on the bare PC server for the register

operation.

45

For register updates, the SIP Server searches its user

database for a match and then updates the corresponding

user’s location data and registration expiration time; for

the register logout operation, it removes the user from the

database. The invite operation requires the server to

lookup the callee's contact details in its database,

forward the request to the callee, and send the response

back to the caller. The invite-not-found operation is

similar to invite except that the callee is not found in

the database. For redirect, the server receives an invite

message, but instead of forwarding the response to the

callee, it forwards a temporarily moved message back to the

caller.

For the register, register update, and register logout

operations, latency measures the delay at the user agent

between sending the register message and receiving the “200

OK” message. Latency for the invite operation measures the

sum of two delays: the time between the invite message and

“200 OK” messages; and the time between the “bye” and “200

OK” messages. Each of these operations was also tested with

46

authentication enabled, which adds processing overhead due

to verifying the MD5 hash, and extra message overhead due

to the “unauthorized” message for registration and “407

proxy authentication” message for invite (and their

responses).

Latency for registration with authentication measures the

sum of two delays: the time between the register request

and the “unauthorized message”; and the time between the

new register message with authentication credentials and

the “200 OK” message. Latency for invite with

authentication measures the sum of three delays: the time

between the invite and “407 proxy authentication” messages;

the time between the “invite with authentication” message

and the “200 OK” messages; and the time between the “bye”

and “200 OK” messages. For invite-not-found and redirect

operations, the latency is similarly measured using the

“404 not found” and “302 moved temporarily” messages.

The server throughput measures the number of calls per

second successfully handled with respect to the offered

47

load, which is the number of calls per second that are

generated and sent to the server. The peak throughput is

the highest throughput achieved under overload while the

server remains stable (and produces consistent results).

To conduct the experiments, the servers were configured

to operate in three configuration modes with and without

authentication: registrar, proxy, and redirector. In

addition, internal timings were measured by inserting

timing points within the bare SIP server. Each SIP server

was pre-loaded with 10,000 unique SIP username and password

pairs. Call flow performance for register, invite-not-

found, and redirect was measured for a maximum of 10000

unique users with rates varying from 10 to 1000 calls/s.

Call flow performance for invite was similarly measured for

a maximum of 5000 users, with rates varying from 50 to 100

calls/s. Each experiment was repeated a minimum of three

times to ensure that the results were consistent.

48

C. SIP Server Throughput

The throughput for the register and invite operations

respectively without authentication is shown in Figs. 11-

16. It can be seen that the peak throughput of the bare PC

SIP server is always higher than that of the OS-based

servers except in the case of invite redirect. The peak

throughput of the bare PC server typically exceeds that of

the Linux server by 50-125 calls/s depending on the

operation (although peak is only 10 calls/s larger for

invite, and peak is 150 calls/s smaller for invite

redirect). For example, the bare PC SIP server has a peak

throughput of 700 calls/s for register operations (without

authentication), which is better than the peak throughput

of Linux (650 calls/s); the Windows server has a much lower

peak throughput (around 200 calls/s).

49

Figure 11. SIP Throughput: Register without auth

50

Figure 12. SIP Throughput: Register Update without auth

51

Figure 13. SIP Throughput: Register Logout without auth

52

Figure 14. SIP Throughput: Invite without auth

53

Figure 15. SIP Throughput: Invite Not Found without auth

54

Figure 16. SIP Throughput: Invite Redirect without auth

The peak throughput performance of the bare PC SIP server

should be better than that of the OS-based servers, due to

its simple design and the elimination of OS overhead.

However, this performance advantage may be reduced or lost

in certain cases due to inefficient algorithms or the lack

55

of concurrency. The latter situation arises with the invite

operation. The peak throughput of the bare PC server is

only marginally higher than Linux in this case, but

introducing a separate SIP task to handle an invite

operation will improve performance. The apparent drop in

performance of the bare PC server for invite redirect is

due to a significant improvement in the performance of the

Linux server in this case.

Implementing Linux’s search algorithm on the bare PC SIP

server should improve its performance. A more efficient

search algorithm should also improve the performance for

the invite-not-found operation. The peak throughput of a

given server does not vary much across the three register

operations since the work performed in each case is

essentially the same. The increase in the peak throughput

of the Windows server for register update compared to that

for the other two register operations is possibly due to

caching.

56

Figure 17. SIP Throughput: Register with auth

57

Figure 18. SIP Throughput: Register Update with auth

58

Figure 19. SIP Throughput: Register Logout with auth

59

Figure 20. SIP Throughput: Invite with auth

60

Figure 21. SIP Throughput: Invite Not Found with auth

61

Figure 22. SIP Throughput: Invite Redirect with auth

The results in Figs. 17-22 show that peak throughput of

all servers is reduced as expected for both register and

invite operations when authentication is added. This

reduction in performance is due to the extra message

overhead noted previously, and the overhead of computing

62

and verifying the additional information needed for

authentication with a message digest [17]. The negative

impact of authentication on performance was also noted in

[18].

There are no throughput values for the Windows server for

invite-not-found with authentication since its message flow

in this case could not be compared with that of the other

two servers. It is evident that the peak throughput of the

bare PC server with authentication shows a greater

reduction versus its peak throughput without authentication

compared to the OS-based servers. Adapting the approach

used for authentication by Linux for the bare PC server

could improve its performance.

D. SIP Server Latency

Figs. 23-28 compare the latencies for bare PC and OS-

based SIP servers for the register and invite operations

respectively, with and without authentication. In most

cases, the bare PC server performs better than the OS-based

servers.

63

As seen in the figures, the highest percentage of

latencies for the bare PC server are usually in the 0-30 ms

range, and it rarely has latencies that exceed 150 ms. The

invite operation is an exception and latency performance in

this case could be improved by enabling concurrency in the

server as noted earlier. For all register operations and

invite redirect with authentication, the latency

performance of the bare PC and Linux servers is the same.

Further studies are needed to determine if the approach

used to implement authentication in the Linux server will

improve the latency performance of the bare PC server in

these cases.

64

Figure 23. SIP Latency: Register

65

Figure 24. SIP Latency: Register Update

66

Figure 25. SIP Latency: Register Logout

67

Figure 26. SIP Latency: Invite

68

Figure 27. SIP Latency: Invite Redirect

69

Figure 28. SIP Latency: Invite Not Found

E. SIP Server Internal Timings

Fig. 29 compares average values of internal timings for

the bare PC SIP server collected during the register

operation under maximum load conditions. It is seen that

FindUser, which searches for a given user, and

ParseSIPHeaders, which processes the SIP header are the

most expensive operations, although the former is twice as

70

expensive as the latter. The least expensive operation is

AddUser, which simply adds the information for a new user,

and thus takes an insignificant amount of time as would be

expected. The AuthenticateUser and FormatSIPResponse

operations have approximately the same cost, which is about

half that of ParseSIPHeaders. We conducted tests on the

OpenSER server using OProfile 0.9.5 [45], which showed that

the timings for the AddUser and ParseSIPHeaders operations

exceed the corresponding timings on the bare PC by factors

of 4 and 7 respectively.

Figure 29. SIP server internal timings

71

F. Analysis of Server Results

Further insight into the results on throughput may be

obtained by considering sustainable throughput, which is

defined as the maximum rate of calls for which the

processed call rate matches the offered call rate.

Sustainable throughput reflects the extent to which a

server can cope with the offered load, and it can be

determined from the preceding Figs. 11-22. For example, the

bare PC server’s sustainable throughput values for the

register, register update, and register logout operations

without authentication are respectively 400, 600, and 700

calls/s (for all three register operations without

authentication, the peak throughput is the same as the

latter value).

It can be seen that the sustainable throughput of the

bare PC server exceeds that of the Linux server for all

operations without authentication except for invite-not-

found when it is the same. In contrast, the sustainable

throughput for the two servers for all operations with

authentication is the same (or differs by a small amount).

72

As noted earlier, in the case of peak throughput with and

without authentication, the bare PC server’s values are

higher than those for the Linux server except for invite

redirect. Thus, both sustainable and peak throughput values

should be used to estimate server capacity with and without

authentication.

The latency performance shown in the preceding Figs. 5

and 6 may be better understood by computing a latency

coefficient p1*w1+p2*w2+p3*w3+p4*w4+p5*w5-p6, where p1, … , p6

are the latency percentages of the groups 0-30 ms, … , 121-

150 ms, and > 150 ms respectively; and w1, … , w5 are the

weights of the first 5 groups with 0<=wi<=1 and w1+…+w5=1.

The last term with a negative sign reflects the

undesirability of latencies > 150 ms. The weights w1, … , w5

can be assigned based on the relative importance of the

lower latency groups.

For example, suppose we assign w1=0.55, w2=0.445,

w3=0.004, w4=0.0007, and w5=0.0003. Then the latency

coefficients for register logout without authentication for

73

the bare PC, Linux, and Windows servers are 0.496, 0.185,

and -0.7. These values show that the latency performance of

the bare PC server in this case is much better than that of

the Linux server, whereas the performance of the Windows

server is far worse than both of them. It can also be

verified that the latency coefficient of the bare PC server

is greater than or equal to that of the Linux server except

in the case of invite with authentication and invite-not-

found without authentication. As noted above, concurrency

and use of a more efficient search algorithm may help to

improve bare PC server performance in these cases.

G. SRTP Experiments

In this section, we describe the experiments conducted to

evaluate SRTP performance on the bare PC softphone. First,

timing points as shown in Fig. 30 are inserted into the

SRTP code on the bare PC softphone to get the processing

times of major functions in SRTP including key derivation,

encryption, decryption, replay protection and

authentication, and also the time to process network

headers in incoming and outgoing SRTP packets.

74

Key derivation produces the session encryption,

authentication, and salting keys, while encryption and

decryption use AES in counter mode as described earlier.

Replay protection involves checking the index of each

packet using a replay list of processed RTP packets within

a window of size 64. Packets are authenticated by using

HMAC-SHA-1 with a 160-bit key and the result is truncated

to obtain an 80-bit or 32-bit authentication tag that is

appended to the packet. The time to process network headers

in incoming and outgoing SRTP packets is the time to

transfer packets between the Ethernet and SRTP processing

levels.

75

Figure 30. SRTP timing points

Next, VoIP call quality with and without SRTP is

evaluated by comparing maximum and mean delta (packet

interarrival time), maximum and mean jitter, and throughput

(bits/s) reported by Wireshark for calls using the snom,

Twinkle, and bare PC softphones. These values were computed

based on 10,000 VoIP packets transferred in each direction

between the softphones (i.e., about 3.5 minutes of voice

traffic). The softphones used SRTP with a 128-bit AES

encryption key and a 32-bit HMAC-SHA-1 message

76

authentication tag. The bare PC softphone implementation of

SRTP also allowed 192-bit and 256-bit encryption keys and

an 80-bit authentication tag. The softphones were

configured to use the G.711 codec and 20 ms voice packets

consisting of 160 bytes. Since AES processes 16-byte blocks

at a time, there are 10 AES invocations per packet.

H. SRTP Internal Timings

The internal timings (processing times) for various SRTP

functions on the bare PC softphone with 128, 192, or 256-

bit AES keys and a 32 or 80-bit HMAC/SHA-1 authentication

tag are shown in Figs. 31-36. The most expensive internal

step in the SRTP protocol is authentication processing. In

contrast, the encryption and decryption processes consume

much less time. It can also be seen that the times for the

key derivation and replay processing steps are negligible.

However, processing network headers on outgoing packets has

higher cost than any of the other steps. Processing time

increases by 10% when using a 192-bit AES key versus a 128-

bit key, and by 20% when using 256-bit AES key versus a

128-bit key.

77

However, since the actual amount of processing time for

all AES key sizes is very small, key size has no observable

effect on call quality or VoIP throughput as is confirmed

by the results in the next section. It can also be seen

that processing times are about the same regardless of

authentication tag size. This is because 160 bits are

produced by HMAC/SHA-1 prior to truncating to a 32-bit or

80-bit authentication tag and the increase in processing

time to compare the larger tag is insignificant compared to

the nearly constant processing time of HMAC-SHA-1. Overall,

the results clearly indicate that SRTP processing adds

negligible overhead (less than 1 ms) to RTP processing.

78

Figure 31. SRTP Timing: 128-bit encryption, 32-bit auth

Figure 32. SRTP Timing: 128-bit encryption, 80-bit auth

79

Figure 33. SRTP Timing: 192-bit encryption, 32-bit auth

Figure 34. SRTP Timing:192-bit encryption, 80-bit auth

80

Figure 35. SRTP Timing: 256-bit encryption, 32-bit auth

Figure 36. SRTP Timing: 256-bit encryption, 80-bit auth

81

I. SRTP Maximum and Mean Delta

Maximum and mean delta values are shown in Figs. 37 and

38 respectively. Maximum delta without security is close to

the ideal 20 ms value for the bare PC softphone, and 30 ms

for the snom and Twinkle softphones. However, while the

increase in maximum delta due to SRTP is less than 1 ms for

the snom and bare PC softphones, it is over 40 ms for the

Twinkle softphone. This increase in maximum delta for the

Twinkle softphone is likely due to ZRTP exchanging its keys

in the media channel as discussed in Chapter III. Mean

delta values for all three softphones with SRTP are close

to 20 ms.

82

Figure 37. SRTP Maximum delta with and without SRTP

Figure 38. Mean delta with and without SRTP

83

J. SRTP Maximum and Mean Jitter

Maximum and mean jitter values are shown in Figs. 39 and

40 respectively. For the snom softphone, maximum or mean

jitter with or without SRTP is the same (13 ms). For the

Twinkle softphone, maximum and mean jitter is 5 ms and 4 ms

without security, and increases by 6 ms and 2 ms

respectively with SRTP. Again, this performance drop in the

Twinkle softphone is possibly due to the effects of ZRTP

using the media channel. In contrast, maximum and mean

jitter for the bare PC softphone with or without SRTP is

close to zero.

84

Figure 39. Maximum jitter with and without SRTP

Figure 40. Mean jitter with and without SRTP

85

The above results for the bare PC softphone indicate that

its streamlined processing of voice packets is able to

reduce intrinsic delay and jitter with or without SRTP. Yet

it is also evident that since delta and jitter values for

all three softphones are within generally accepted limits,

SRTP overhead has little or no effect on VoIP performance.

K. SRTP Delta and Jitter for snom-to-bare Calls

We also tested SRTP interoperability and VoIP performance

when communicating between different softphones. This was

done by measuring maximum delta, and maximum and mean

jitter values on the respective softphones for calls

between a snom softphone and a bare PC softphone using a

128-bit AES key and a 32-bit authentication tag. Maximum

delta and maximum and mean jitter values with or without

SRTP for bare PC to snom calls are shown in Figs. 41-43.

These values can be compared with the corresponding values

in Figs. 37, 39, and 40 respectively.

86

Figure 41. SRTP Maximum delta for bare PC to snom

87

Figure 42. SRTP Maximum jitter for bare PC to snom

88

Figure 43. SRTP Mean jitter for bare PC to snom

Maximum delta for the voice packet stream from the snom

softphone is the same with or without SRTP but double that

for snom to snom calls. However, maximum delta values for

the stream from the bare PC softphone with or without SRTP

are not significantly different compared to bare PC to bare

PC calls. Maximum jitter values with or without SRTP are

also the same but slightly higher for the stream from the

snom softphone compared to snom to snom calls, but again,

89

differences in maximum jitter values for the stream from

the bare PC softphone are very small. Mean jitter values

with or without SRTP for the stream from each softphone are

unchanged for bare PC to snom calls. The increased values

of maximum delta and maximum jitter for the stream from the

snom softphone are possibly due to the difference in timing

between the softphones when processing voice packets. More

studies are needed to investigate these timing differences.

To evaluate the impact on VoIP performance with SRTP due

to changing the AES key size, we measured maximum delta,

and maximum and mean jitter values on a bare PC softphone

with 192-bit or 256-bit AES keys and a 32-bit

authentication tag (we were unable to test the snom

softphone as it did not appear to support alternate AES key

sizes). The results are compared with those for 128-bit AES

keys (and a 32-bit authentication tag) in Figs. 44-45. The

values of maximum delta and maximum jitter show little

variation, and do not seem to have a simple relation to key

size (the 192-bit key size has the best values and the

least variation but the differences are very small). Also,

90

the results for the two softphones are not identical.

However, mean jitter is nearly constant for both bare PC

softphones regardless of key size. Since the processing

overhead for all authentication tag sizes is the same as

explained above, the results using an 80-bit authentication

tag would not be significantly different.

Figure 44. SRTP Max delta: varying AES key size

91

Figure 45. SRTP Max jitter: varying AES key size

92

Figure 46. SRTP Mean jitter: varying AES key size

L. SRTP VoIP Throughput

VoIP throughput for all three softphones without SRTP is

81.6 kbps without SRTP, and 83.23 kbps with SRTP when using

a 128-bit AES key and a 32-bit authentication tag. Since

SRTP encryption does not increase the size of the voice

packet, the only increase in size is due to the 32-bit (or

80-bit) authentication tag. In an Ethernet, the total

93

packet size including all network headers but excluding the

CRC is 214 bytes without SRTP, and 218 bytes (or 224 bytes)

with SRTP. Thus, the 2% increase in throughput with SRTP

in our case simply reflects the 4-byte increase in packet

size due to the authentication tag i.e., the increase in

processing time due to SRTP is negligible and does not

alter the throughput. Furthermore, all three softphones

have the same throughput since their mean delta values are

the same.

94

CHAPTER V. CONCLUSION

This dissertation presents new research on VoIP systems

in a bare machine computing (BMC)/bare PC environment. The

focus of this work is the implementation of SIP, SRTP, and

other support protocols for VoIP systems on a bare PC, and

the evaluation of these systems by conducting experiments

to measure their performance. Specifically, this research

has demonstrated that the development of interoperable,

dynamically configurable and secure VoIP systems that run

on a bare PC with no OS or kernel is a viable option to its

OS-based counterparts. The bare PC VoIP SIP server and SIP

user agent/softphone with SRTP, which were the focus of

this research, are characterized by simple tasking, lean

protocol implementations, and immunity against OS-based

attacks.

We first described the design, implementation, and

operations of a bare PC SIP server and SIP user agent with

SRTP. These VoIP systems provide essential SIP and SRTP

functionality with less overhead and better system security

due to the absence of an OS. The tests conducted show that

95

the bare PC SIP server can interoperate with bare PC and

OS-based SIP softphones, and the bare PC SIP softphone can

interoperate with OS-based softphones and SIP servers.

We then evaluated the performance of a bare PC SIP server

by measuring its throughput and latency for registration,

proxying, and redirection, with and without authentication.

We compared its performance with that of an OpenSER server

running on Linux and a Brekeke server running on Windows.

We also determined timings for internal operations on the

bare PC SIP server. The results show that the bare PC

server performs better than the OS-based servers in most

cases.

The exceptions are throughput performance for the invite

redirect operation, and latency performance for the invite

operation with authentication and the invite-not-found

operation without authentication, for which the Linux

server is better. It is expected that the performance of

the bare PC server can be improved in these cases by

optimized processing techniques and the use of more

96

efficient search algorithms. The bare PC SIP server

implementation can also be modified based on internal

timings to reduce the cost of the most expensive

operations. Our results serve as a baseline to assess the

minimal overhead associated with basic SIP server

operations for both OS-based and bare PC servers, and to

help improve the performance of bare PC SIP servers. They

also indicate the feasibility of deploying bare PC SIP

servers in secure environments where OS-based

vulnerabilities are a concern.

Finally, we compared VoIP performance with SRTP on a bare

PC SIP softphone with snom and Twinkle softphones running

on Windows and Linux respectively. In particular, we

determined packet interarrival times (delta) and jitter,

with and without SRTP, for these softphones. Maximum delta

and maximum and mean jitter for the bare PC softphone,

which has no operating system, are smaller than for the

snom and Twinkle softphones. Mean delta values for all

three softphones are close to the ideal value. We also

verified that VoIP throughput on the bare PC softphone with

97

SRTP is close to the expected value. Measurement of

internal processing times for SRTP operations on the bare

PC softphone revealed that SRTP authentication is expensive

than AES encryption. However, no SRTP operation degrades

VoIP performance. Overall, the results indicate that SRTP

adds negligible overhead to VoIP processing and has no

observable effect on VoIP call quality.

Future research can investigate the use of TLS (Transport

Layer Security) by the bare PC SIP server to secure the

signaling channel, and for key exchange. An implementation

of the bare PC SIP server that runs on TCP will provide

flexibility, and further extend its capability to

interoperate with OS-based servers. A beta version of such

a SIP server exists and is being tested and improved. In

summary, we have shown that the performance of VoIP SIP

servers and softphones with SRTP may be improved with lean

protocol implementations, simple tasking, and other bare

PC-like softphone optimizations. We have also shown that

bare PC VoIP systems can co-exist with OS-based systems.

98

CHAPTER VI. REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,

J. Peterson, R. Sparks, M. Handley, and E. Schooler,

“SIP: Session Initiation Protocol,” RFC 3261, 2002.

[2] M. Baugher, D. McGrew, M. Naslund, E. Carrara and

K.Norrman,“The secure real-time transport protocol

(SRTP),” RFC 3711, March 2004.

[3] L. He, R. Karne, and A. Wijesinha, “The Design and

Performance of a Bare PC Web Server”, International

Journal of Computers and Their Applications, vol. 15, pp.

100 - 112, June 2008.

[4] G. Ford, R. Karne, A. Wijesinha, and P. Appiah-Kubi, “The

Peformance of a Bare email server”, 21st International

Symposium on Computer Architecture and High Performance

Computing, SBAC-PAD 2009, October 28-31, Sao Paulo,

Brazil, pp.143-150, 2009.

[5] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and

S. Girumala, “A Peer-to-Peer bare PC VoIP Application,”

99

IEEE Consumer and Communications and Networking

Conference (CCNC 2007), pp. 803-807, 2007.

[6] A. Alexander, A. L. Wijesinha, and R. Karne,

“Implementing a VoIP SIP Server and a User Agent on a

Bare PC,” 2
nd
 International Conference on Future

Computational Technologies and Applications (Future

Computing 2010), In Press.

[7] A. Alexander, A. L. Wijesinha, and R. Karne, “A Study of

Bare PC SIP Server Performance,” 5
th
 International

Conference on Systems and Network Communications (ICSNC

2010), In Press.

[8] A. Alexander, A. L. Wijesinha, and R. Karne, “An

Evaluation of Secure Real-Time Protocol (SRTP)

Performance for VoIP,” 3
rd
 International Conference on

Network and System Security (NSS), pp. 95-101, 2009.

[9] L. Chen, and C. Li, “Design and Implementation of the

Network Server Based on SIP Communication Protocol,”

World Academy of Science, Engineering and Technology 31,

pp. 138-141, 2007.

100

[10] S. Zeadally and F. Siddiqui, “Design and Implementation

of a SIP-based VoIP Architecture,” AINA 2004.

[11] A. Singh, A. Acharya, P. Mahadeva, and Z-Y, Shae, “SPLAT:

a unified SIP services platform for VoIP applications,”

International Journal of Communication Systems, Volume

19, Issue 4, pp. 425-444, 2006.

[12] P. Zave, E. Cheung, G. W. Bond, and T. M. Smith,

“Abstractions for Programming SIP Back-to-Back User

Agents,” IPTComm’09, 2009.

[13] S Siddique, RK Ege, SM Sadjadi, “X-Communicator:

Implementing an advanced adaptive SIP-based User Agent

for Multimedia Communication,” SoutheastCon, pp. 271-276,

2005.

[14] K. J. Kim, Y, Jang, J. W. Chung, and J. H. Seo, “Design

and implementation of SIP UA for a manufacturing

network,” International Journal of Advanced Manufacturing

Techniques, Volume 28, Number 7-8, pp. 822-826, 2006.

[15] K. Singh and H. Schulzrinne, “Peer-to-Peer Internet

Telephony using SIP,” International Workshop on Network

101

and Operating System Support for Digital Audio and Video,

pp. 63-68, 2005.

[16] K. Ono and H. Schulzrinne, The Impact of SCTP on SIP

Server Scalability and Performance, GLOBECOM, pp. 1421-

1425, 2008.

[17] S. Salsano, L. Veltri, and D. Papalilo, SIP security

issues: The SIP authentication procedure and its

processing load, IEEE Network, pp. 38-44, 2002.

[18] E. M. Nahum, J. M. Tracey, and C. P. Wright, Evaluating

SIP server performance, in: 17th International Workshop

on Network and Operating System Support for Digital Audio

and Video (NOSSDAV), Urbana-Champaign, Illinois, June

2007.

[19] M. Cortes, J. R. Ensor, and J. O. Esteban, On SIP

Performance. Bell Labs Technical Journal, 9(3), pp. 155-

173, 2004.

[20] C. Shen, H. Schulzrinne, and E. M. Nahum, Session

Initiation Protocol (SIP) Server Overload Control: Design

and Evaluation, IPTComm, pp. 149-173, 2008.

http://www.research.ibm.com/people/n/nahum/papers/nossdav07-sip-perf.pdf
http://www.research.ibm.com/people/n/nahum/papers/nossdav07-sip-perf.pdf

102

[21] V. A. Balasubramaniyan, A. Acharya, M. Ahamad, M.

Srivatsa, I. Dacosta, and C. P. Wright, SERvartuka:

Dynamic Distribution of State to Improve SIP Server

Scalability, ICDCS, pp. 562-572, IEEE Computer Society,

2008.

[22] K. Ono and H. Schulzrinne, One Server Per City: Using TCP

for Very Large SIP Servers, IPTComm, pp. 133-148, 2008.

[23] H. Jiang, A. Iyengar, E. M. Nahum, W. Segmuller, A.

Tantawi, and C. P. Wright, Load Balancing for SIP Server

Clusters, INFOCOM 2009.

[24] K. K. Ram, I. C. Fedeli, A. L. Cox, and S. Rixner,

Explaining the Impact of Network Transport Protocols on

SIP Proxy Performance, ISPASS, pp. 75-84, 2008.

[25] D.Wing, S. Fries, H. Tschofenig, and F. Audet,

“Requirements and analysis of media security management

protocols,” RFC 5479, April 2009.

[26] S. Garg, N. Singh, and T. Tsai, “SRTP+, An efficient

scheme for RTP packet authentication,” Retrieved Nov. 2,

2008 from pubs.research.avayalabs.com/pdfs/ALR-2004-001-

paper.pdf.

http://app.cul.columbia.edu:8080/ac/bitstream/10022/AC:P:29548/1/507.pdf
http://app.cul.columbia.edu:8080/ac/bitstream/10022/AC:P:29548/1/507.pdf
http://www.research.ibm.com/people/i/iyengar/INFOCOM2009-SIPlb.pdf
http://www.research.ibm.com/people/i/iyengar/INFOCOM2009-SIPlb.pdf

103

[27] S. Garg, N. Singh, and T. Tsai., “Schemes for enhancing

the denial-of-service tolerance of SRTP,” pp. 409-411,

1st Int. Conf. onSecurity and Privacy for Emerging Areas

in Communications Networks (SECURECOMM 05), 2005.

[28] S. Spinsante, E. Gambi, E. Bottegoni, “Security solutions

in VoIP applications,” IEEE International Symposium on

Consumer Electronics (ISCE 2008), pp. 1-4, 2008.

[29] R. K. Karne, K. V. Jaganathan, T. Ahmed, and N. Rosa,

“DOSC: Dispersed Operating System Computing,” 20
th
 Annual

ACM.Conference on Object Oriented Programming, Systems,

Languages, and Applications (OOPSLA ’05), Onward Track,

pp. 55-61, 2005.

[30] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to Run

C++ Applications on a Bare PC?” 6
th
 International

Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed

Computing (SNPD 2005), pp. 50-55, 2005.

[31] G. Ford, R. Karne, A. L. Wijesinha, and P. Appiah-Kubi,

The Design and Implementation of a Bare PC Email Server,

with G. Ford et. al, 33rd Annual IEEE International

104

Computer Software and Applications Conference (COMPSAC),

2009.

[32] G. H. Khaksari, A. L. Wijesinha, R. Karne, Q. Yao, and K.

Parikh, “A VoIP Softphone on a Bare PC”, Embedded Systems

and Applications Conference (ESA), 2007.

[33] G. H. Khaksari, A. L. Wijesinha, and R. Karne, “Secure

VoIP using a Bare PC”, 3
rd
 International Conference on New

Technologies, Mobility and Security (NTMS), 2009.

[34] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session

Traversal Utilities for NAT (STUN),” RFC 5389, 2008.

[35] P. Zimmermann, A. Johnston, and J. Callas, “ZRTP: Media

Path Key Agreement for Secure RTP,” Internet-Draft, March

2009.

[36] F. Andreason, M. Baugher, and D. Wing, “Session

description protocol (SDP) security descriptions for

media streams,” RFC4568, July 2006.

[37] D. Ignjatic, L. Dondeti, F. Audet, P. Lin, “MIKEY-RSA-R:

An Additional Mode of Key Distribution in Multimedia

InternetKEYing (MIKEY),” RFC 4738, November 2006.

105

[38] T. Dierks and C. Allen, “The TLS protocol version 1.0,”

RFC 2246, January 1999.

[39] Kamailio (OpenSER) SIP server,

http://sourceforge.net/projects/openser

[40] Snom VoIP phones, http://www.snom.com/download/snom360-

5.3.exe

[41] SIPp, http://sipp.sourceforge.net/doc/reference.html

[42] Brekeke SIP Server, http://www.brekeke.com/sip/

[43] Wireshark, http://www.wireshark.org.

[44] Twinkle,

http://www.xs4all.nl/~mfnboer/twinkle/index.html.

[45] Oprofile-A System Profiler for Linux, July 31, 2009.

[Online]. Available:

http://oprofile.sourceforge.net/news/. Accessed: May 28,

2010.

http://www.snom.com/download/snom360-5.3.exe
http://www.snom.com/download/snom360-5.3.exe
http://sipp.sourceforge.net/doc/reference.html
http://www.brekeke.com/sip/
http://www.wireshark.org/
http://www.xs4all.nl/~mfnboer/twinkle/index.html

106

CHAPTER VII. CURRICULUM VITA

NAME: Andre Alexander

PERMANENT ADDRESS: 1612 Chapel Ridge Ct. Hanover, MD 21076

PROGRAM OF STUDY: Applied Information Technology

DEGREE AND DATE TO BE CONFERRED: Doctor of Science, August

2010

Secondary education:

College attended Dates Degree Graduation

Coppin State College 09/1996 – 12/2001 B.S. Dec 2001

Major: Computer Science

Minor(s), if applicable: N/A

Towson University 01/2002 – 12/2003 M.S. Dec 2003

Major: Applied Information Technology

Minor(s), if applicable: N/A

Professional publications:

[1] Alexander, A. L. Wijesinha, and R. Karne, “Implementing a

VoIP SIP Server and a User Agent on a Bare PC,” 2nd
International Conference on Future Computational
Technologies and Applications (Future Computing 2010), In
Press.

[2] Alexander, A. L. Wijesinha, and R. Karne, “A Study of
Bare PC SIP Server Performance,” 5th International
Conference on Systems and Network Communications (ICSNC
2010), In Press.

[3] Alexander, A. L. Wijesinha, and R. Karne, “An Evaluation
of Secure Real-Time Protocol (SRTP) Performance for

107

VoIP,” 3rd International Conference on Network and System
Security (NSS), pp. 95-101, 2009.

Professional positions held:

1) Department of Defense, Network Engineer Feb/2002 until

Now

2) Social Security Administration, Network Engineer

(Intern Program)

