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Abstract

The UMBC High Performance Computing Facility (HPCF) is the community-based, interdisciplinary core
facility for scientific computing and research on parallel algorithms at UMBC. Released in Summer 2014, the
current machine in HPCF is the 240-node distributed-memory cluster maya. The cluster is comprised of three
uniform portions, one consisting of 72 nodes based on 2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs from 2013,
another consisting of 84 nodes based on 2.8 GHz Intel Nehalem X5560 CPUs from 2010, and another consisting
of 84 nodes based on 2.6 GHz Intel Nehalem X5550 CPUs from 2009. All nodes are connected via InfiniBand to
a central storage of more than 750 TB.

The performance of parallel computer code depends on an intricate interplay of the processors, the architec-
ture of the compute nodes, their interconnect network, the numerical algorithm, and its implementation. The
solution of large, sparse, highly structured systems of linear equations by an iterative linear solver that requires
communication between the parallel processes at every iteration is an instructive and classical test case of this
interplay. This note considers the classical elliptic test problem of a Poisson equation with homogeneous Dirichlet
boundary conditions in two spatial dimensions, whose approximation by the finite difference method results in
a linear system of this type. Our existing implementation of the conjugate gradient method for the iterative
solution of this system is known to have the potential to perform well up to many parallel processes, provided the
interconnect network has low latency. Since the algorithm is known to be memory-bound, it is also vital for good
performance that the architecture of the nodes does not create a bottleneck.

We report parallel performance studies on each of the three uniform portions of the cluster maya. The results
show very good performance up to 64 compute nodes on all portions and support several key conclusions: (i) The
newer nodes are faster per core as well as per node, however, for most serial production code using one of the
2010 nodes with 2.8 GHz is a good default. (ii) The high-performance interconnect supports parallel scalability
on at least 64 nodes optimally. (iii) It is often faster to use all cores on modern multi-core nodes but it is useful
to track memory to determine if this is the case for memory-bound code. (iv) There is no disadvantage to several
jobs sharing a node, which justifies the default scheduling setup.

1 Introduction

The UMBC High Performance Computing Facility (HPCF) is the community-based, interdisciplinary core facility
for scientific computing and research on parallel algorithms at UMBC. Started in 2008 by more than 20 researchers
from ten academic departments and research centers from all three colleges, it is supported by faculty contributions,
federal grants, and the UMBC administration. The facility is open to UMBC researchers at no charge. Researchers
can contribute funding for long-term priority access. System administration is provided by the UMBC Division
of Information Technology, and users have access to consulting support provided by dedicated full-time graduate
assistants. See www.umbc.edu/hpcf for more information on HPCF and the projects using its resources.

Released in Summer 2014, the current machine in HPCF is the 240-node distributed-memory cluster maya. The
newest components of the cluster are the 72 nodes in maya 2013 with two eight-core 2.6 GHz Intel E5-2650v2
Ivy Bridge CPUs and 64 GB memory that include 19 hybrid nodes with two state-of-the-art NVIDIA K20 GPUs
(graphics processing units) designed for scientific computing and 19 hybrid nodes with two cutting-edge 60-core Intel
Phi 5110P accelerators. These new nodes are connected along with the 84 nodes in maya 2009 with two quad-core
2.6 GHz Intel Nehalem X5550 CPUs and 24 GB memory by a high-speed quad-data rate (QDR) InfiniBand network
for research on parallel algorithms. The remaining 84 nodes in maya 2010 with two quad-core 2.8 GHz Intel Nehalem
X5560 CPUs and 24 GB memory are designed for fastest number crunching and connected by a dual-data rate
(DDR) InfiniBand network. All nodes are connected via InfiniBand to a central storage of more than 750 TB.

The studies in this reports use default Intel C compiler version 14.0 (compiler options -std=c99 -Wall -O3)
with Intel MPI version 4.1. All results in this report use dedicated nodes with remaining cores idling using the
--exclusive option in the SLURM submission script. The default is to use --shared, which allocates all processes
to cores on one CPU, while --exclusive allocates tasks to cores on both CPUs. There is no significant advantage
to --shared for production runs, that is, performance studies are the only time that this option should be used.

This report is an update to the technical report [8], which considered the same problem on the previous cluster
tara. The problem is the numerical solution of the Poisson equation with homogeneous Dirichlet boundary conditions
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Table 1.1: Wall clock time in HH:MM:SS on maya 2013 for mesh resolution N ×N = 16384× 16384.

N ×N = 16384 × 16384 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 14:08:26 06:57:26 03:29:58 01:45:31 00:53:29 00:27:13 00:13:57
2 processes per node 07:01:30 03:31:53 01:46:36 00:54:13 00:27:20 00:14:12 00:07:15
4 processes per node 03:55:38 01:58:32 01:00:05 00:30:26 00:15:32 00:08:15 00:04:20
8 processes per node 02:55:26 01:28:52 00:44:32 00:22:30 00:11:26 00:06:23 00:03:22
16 processes per node 02:49:13 01:25:16 00:43:08 00:22:10 00:11:33 00:06:31 00:06:34

on a unit square domain in two spatial dimensions. Discretizing the spatial derivatives by the finite difference method
yields a system of linear equations with a large, sparse, highly structured, symmetric positive definite system matrix.
This linear system is a classical test problem for iterative solvers and contained in several textbooks including
[3, 5, 6, 10]. The parallel, matrix-free implementation of the conjugate gradient method as appropriate iterative
linear solver for this linear system involves necessarily communications both collectively among all parallel processes
and between pairs of processes in every iteration. Therefore, this method provides an excellent test problem for the
overall, real-life performance of a parallel computer, and we used it in the past to analyze previous clusters [1, 4, 8, 9]
These results show that the interconnect network between the compute nodes must be high-performance, that is,
have low latency and wide bandwidth, for this numerical method to scale well to many parallel processes. The results
are not just applicable to the conjugate gradient method, which is important in its own right as a representative of
the class of Krylov subspace methods, but to all memory-bound algorithms.

Table 1.1 contains an excerpt of the performance results reported in Table 4.1 of Section 4 for the studies
on the newest portion maya 2013 of the cluster. This excerpt reports the results for one mesh resolution and
using the default compiler and MPI implementation. Table 1.1 reports the observed wall clock time in HH:MM:SS
(hours:minutes:seconds) for all possible combinations of numbers of nodes and processes per node (that are powers
of 2), that is, for 1, 2, 4, 8, 16, 32, and 64 nodes and 1, 2, 4, 8, and 16 processes per node. It is conventional to restrict
studies to powers of 2, since this makes it easy to judge if timings are halved when the number of parallel processes
is doubled. We observe that by simply using all cores on one node we can reduce the runtime from approximately
14 hours to 14 minutes and by using 8 cores on 64 nodes we can reduce the runtime to under 4 minutes. This table
demonstrates the power of parallel computing, in which by pooling the memory of several compute node to solve
larger problems and to dramatically speed up the solution time. But it also demonstrates the potential for further
advances: The studies in Table 1.1 only used the CPUs of the compute nodes; using accelerators such as the GPUs
and the Intel Phi have the potential to shorten the runtimes even more.

More in detail, by reading along a row of Table 1.1, we see that the high-performance QDR InfiniBand interconnect
supports parallel scalability on at least 64 nodes optimally, since each timing halves for each doubling of numbers
of nodes. In turn, reading along a column of Table 1.1, it is clear that for jobs on a small number of nodes run
fastest when using all 16 cores of each compute node, but for jobs on larger number of nodes run fastest when using
8 cores of each compute node. As we will discuss in greater detail in Section 4, we observe less than optimal halving
of runtime by increasing the number of processes from 8 to 16 so memory usage should be tracked to determine the
correct number of processes per node to use.

The remainder of this report is organized as follows: Section 2 details the test problem and discusses the parallel
implementation in more detail, and Section 3 summarizes the solution and method convergence data. Section 4
contains the complete parallel performance studies on maya 2013, from which Table 1.1 was excerpted. Section 5
contains the parallel performance studies on maya 2010. Section 6 contains the performance studies on maya 2009
and is an update of results from [8]. Finally, Section 7 provides a historical comparison of performance of maya and
the previous clusters in HPCF. The results for maya 2013 are already contained in the report [7].
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2 The Elliptic Test Problem

We consider the classical elliptic test problem of the Poisson equation with homogeneous Dirichlet boundary condi-
tions (see, e.g., [10, Chapter 8])

−4u = f in Ω,
u = 0 on ∂Ω,

(2.1)

on the unit square domain Ω = (0, 1)× (0, 1) ⊂ R2. Here, ∂Ω denotes the boundary of the domain Ω and the Laplace

operator in is defined as 4u = ∂2u
∂x2

1
+ ∂2u

∂x2
2
. Using N + 2 mesh points in each dimension, we construct a mesh with

uniform mesh spacing h = 1/(N + 1). Specifically, define the mesh points (xk1
, xk2

) ∈ Ω ⊂ R2 with xki
= h ki,

ki = 0, 1, . . . , N,N + 1, in each dimension i = 1, 2. Denote the approximations to the solution at the mesh points
by uk1,k2 ≈ u(xk1 , xk2). Then approximate the second-order derivatives in the Laplace operator at the N2 interior
mesh points by

∂2u(xk1
, xk2

)

∂x21
+
∂2u(xk1

, xk2
)

∂x22
≈ uk1−1,k2

− 2uk1,k2
+ uk1+1,k2

h2
+
uk1,k2−1 − 2uk1,k2

+ uk1,k2+1

h2
(2.2)

for ki = 1, . . . , N , i = 1, . . . , d, for the approximations at the interior points. Using this approximation together
with the homogeneous boundary conditions (2.1) gives a system of N2 linear equations for the finite difference
approximations at the N2 interior mesh points.

Collecting the N2 unknown approximations uk1,k2
in a vector u ∈ RN2

using the natural ordering of the mesh
points, we can state the problem as a system of linear equations in standard form Au = b with a system matrix
A ∈ RN2×N2

and a right-hand side vector b ∈ RN2

. The components of the right-hand side vector b are given by
the product of h2 multiplied by right-hand side function evaluations f(xk1

, xk2
) at the interior mesh points using

the same ordering as the one used for uk1,k2
. The system matrix A ∈ RN2×N2

can be defined recursively as block
tri-diagonal matrix with N ×N blocks of size N ×N each. Concretely, we have

A =


S T
T S T

. . .
. . .

. . .

T S T
T S

 ∈ RN2×N2

(2.3)

with the tri-diagonal matrix S = tridiag(−1, 4,−1) ∈ RN×N for the diagonal blocks of A and with T = −I ∈ RN×N

denoting a negative identity matrix for the off-diagonal blocks of A.
For fine meshes with large N , iterative methods such as the conjugate gradient method are appropriate for

solving this linear system. The system matrix A is known to be symmetric positive definite and thus the method is
guaranteed to converge for this problem. In a careful implementation, the conjugate gradient method requires in each
iteration exactly two inner products between vectors, three vector updates, and one matrix-vector product involving
the system matrix A. In fact, this matrix-vector product is the only way, in which A enters into the algorithm.
Therefore, a so-called matrix-free implementation of the conjugate gradient method is possible that avoids setting
up any matrix, if one provides a function that computes as its output the product vector q = Ap component-wise
directly from the components of the input vector p by using the explicit knowledge of the values and positions of the
non-zero components of A, but without assembling A as a matrix.

Thus, without storing A, a careful, efficient, matrix-free implementation of the (unpreconditioned) conjugate
gradient method only requires the storage of four vectors (commonly denoted as the solution vector x, the residual r,
the search direction p, and an auxiliary vector q). In a parallel implementation of the conjugate gradient method, each
vector is split into as many blocks as parallel processes are available and one block distributed to each process. That
is, each parallel process possesses its own block of each vector, and normally no vector is ever assembled in full on
any process. To understand what this means for parallel programming and the performance of the method, note that
an inner product between two vectors distributed in this way is computed by first forming the local inner products
between the local blocks of the vectors and second summing all local inner products across all parallel processors
to obtain the global inner product. This summation of values from all processes is known as a reduce operation
in parallel programming, which requires a communication among all parallel processes. This communication is
necessary as part of the numerical method used, and this necessity is responsible for the fact that for fixed problem
sizes eventually for very large numbers of processors the time needed for communication — increasing with the number
of processes — will unavoidably dominate over the time used for the calculations that are done simultaneously in
parallel — decreasing due to shorter local vectors for increasing number of processes. By contrast, the vector updates
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in each iteration can be executed simultaneously on all processes on their local blocks, because they do not require
any parallel communications. However, this requires that the scalar factors that appear in the vector updates are
available on all parallel processes. This is accomplished already as part of the computation of these factors by using
a so-called Allreduce operation, that is, a reduce operation that also communicates the result to all processes. This
is implemented in the MPI function MPI_Allreduce. Finally, the matrix-vector product q = Ap also computes only
the block of the vector q that is local to each process. But since the matrix A has non-zero off-diagonal elements,
each local block needs values of p that are local to the two processes that hold the neighboring blocks of p. The
communications between parallel processes thus needed are so-called point-to-point communications, because not all
processes participate in each of them, but rather only specific pairs of processes that exchange data needed for their
local calculations. Observe now that it is only a few components of q that require data from p that is not local to
the process. Therefore, it is possible and potentially very efficient to proceed to calculate those components that can
be computed from local data only, while the communications with the neighboring processes are taking place. This
technique is known as interleaving calculations and communications and can be implemented using the non-blocking
MPI communications commands MPI_Isend and MPI_Irecv.

3 Convergence Study for the Model Problem

To test the numerical method and its implementation, we consider the elliptic problem (2.1) on the unit square
Ω = (0, 1)× (0, 1) with right-hand side function

f(x1, x2) = (−2π2)
(

cos(2πx1) sin2(πx2) + sin2(πx1) cos(2πx2)
)
, (3.1)

for which the solution u(x1, x2) = sin2(πx1) sin2(πx2) is known. On a mesh with 33 × 33 points and mesh spacing
h = 1/32 = 0.03125, the numerical solution uh(x1, x2) can be plotted vs. (x1, x2) as a mesh plot as in Figure 3.1 (a).
The shape of the solution clearly agrees with the true solution of the problem. At each mesh point, an error is incurred
compared to the true solution u(x1, x2). A mesh plot of the error u − uh vs. (x1, x2) is plotted in Figure 3.1 (b).
We see that the maximum error occurs at the center of the domain of size about 3.2e–3, which compares well to the
order of magnitude h2 ≈ 0.98e–3 of the theoretically predicted error.

To check the convergence of the finite difference method as well as to analyze the performance of the conjugate
gradient method, we solve the problem on a sequence of progressively finer meshes. The conjugate gradient method
is started with a zero vector as initial guess and the solution is accepted as converged when the Euclidean vector
norm of the residual is reduced to the fraction 10−6 of the initial residual. Table 3.1 lists the mesh resolution N of
the N × N mesh, the number of degrees of freedom N2 (DOF; i.e., the dimension of the linear system), the norm
of the finite difference error ‖u− uh‖ ≡ ‖u− uh‖L∞(Ω)

, the ratio of consecutive errors ‖u− u2h‖/‖u− uh‖ , the
number of conjugate gradient iterations #iter, the observed wall clock time in HH:MM:SS and in seconds, and the
predicted and observed memory usage in GB for studies performed in serial. More precisely, the runs used the parallel
code run on one process only, on a dedicated node (no other processes running on the node), and with all parallel

(a) Numerical solution uh (b) Error u− uh

Figure 3.1: Mesh plots of (a) the numerical solution uh vs. (x1, x2) and (b) the error u− uh vs. (x1, x2).

4



Table 3.1: Convergence study (using the Intel compiler with Intel MPI with serial code except where noted).

N DOF ‖u− uh‖ Ratio #iter wall clock time memory usage (GB)
HH:MM:SS seconds predicted observed

32 1,024 3.0128e–03 N/A 48 <00:00:01 < 0.01 < 1 < 1
64 4,096 7.7811e–04 3.87 96 <00:00:01 < 0.01 < 1 < 1

128 16,384 1.9765e–04 3.94 192 <00:00:01 0.01 < 1 < 1
256 65,536 4.9797e–05 3.97 387 <00:00:01 0.10 < 1 < 1
512 262,144 1.2494e–05 3.99 783 <00:00:01 0.81 < 1 < 1

1024 1,048,576 3.1266e–06 4.00 1,581 00:00:09 9.32 < 1 < 1
2048 4,194,304 7.8019e–07 4.01 3,192 00:01:34 94.18 < 1 < 1
4096 16,777,216 1.9366e–07 4.03 6,452 00:12:25 745.84 < 1 < 1
8192 67,108,864 4.7377e–08 4.09 13,033 01:41:07 6,067.00 2 2.02

16384 268,435,456 1.1547e–08 4.10 26,316 14:08:25 50905.78 8 8.02
32768 1,073,741,824 1.7321e–09 6.67 53,141 117:02:56 421375.93 32 32.02

*65536 4,294,967,296 8.9078e–10 1.94 107,261 *03:09:24 *11,364.40 128 *139.41
*The case N = 65536 uses 8 cores on 64 nodes; the observed memory is the total over all processes.

communication commands disabled by if-statements. The wall clock time is measured using the MPI_Wtime command
(after synchronizing all processes by an MPI_Barrier command). The memory usage of the code is predicted by
noting that there are 4N2 double-precision numbers needed to store the four vectors of significant length N2 and
that each double-precision number requires 8 bytes; dividing this result by 10243 converts its value to units of GB,
as quoted in the table. The memory usage is observed in the code by checking the VmRSS field in the the special file
/proc/self/status. The case N = 65536 requires more memory than is available on a compute node with 64 GB.
For this case, 8 cores on 64 nodes are used, with observed memory summed across all running processes to get the
total usage.

In nearly all cases, the norms of the finite difference errors in Table 3.1 decrease by a factor of about 4 each time
that the mesh is refined by a factor 2. This confirms that the finite difference method is second-order convergent,
as predicted by the numerical theory for the finite difference method [2, 6]. The fact that this convergence order is
attained also confirms that the tolerance of the iterative linear solver is tight enough to ensure a sufficiently accurate
solution of the linear system. For the two finest mesh resolutions, the reduction in error appears slightly more erratic,
which points to the tolerance not being tight enough beyond these resolutions. The increasing numbers of iterations
needed to achieve the convergence of the linear solver highlights the fundamental computational challenge with
methods in the family of Krylov subspace methods, of which the conjugate gradient method is the most important
example: Refinements of the mesh imply more mesh points, where the solution approximation needs to be found,
and makes the computation of each iteration of the linear solver more expensive. Additionally, more of these more
expensive iterations are required to achieve convergence to the desired tolerance for finer meshes. And it is not
possible to relax the solver tolerance too much, because otherwise its solution would not be accurate enough and the
norm of the finite difference error would not show a second-order convergence behavior, as required by its theory. For
the cases N ≤ 32768, the observed memory usage in units of GB rounds to within 0.02 GB of the predicted usage,
while the 64-node run for N = 65536 is larger due to the accumulation of overhead from all parallel processes. The
good agreement between predicted and observed memory usage in the last two columns of the table indicates that
the implementation of the code does not have any unexpected memory usage in the serial case. The wall clock times
and the memory usages for these serial runs indicate for which mesh resolutions this elliptic test problem becomes
challenging computationally. Notice that the very fine meshes show very significant runtimes and memory usage;
parallel computing clearly offers opportunities to decrease runtimes as well as to decrease memory usage per process
by spreading the problem over the parallel processes.

We finally note that the results for the finite difference error and the conjugate gradient iterations in Table 3.1
agree with past results for this problem; see [4] and the references therein. This ensures that the parallel performance
studies in the next section are practically relevant in that a correct solution of the test problem is computed. It also
already clear from Table 3.1 that the larger memory of the new nodes in maya allows for the first time the solution
of the N = 32768 case in serial and of the N = 65536 at all.
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4 Performance Studies on maya 2013

This section describes the parallel performance studies for the solution of the test problem on the 2013 portion of
maya. The 72 nodes of this portion are set up as 67 compute nodes, 2 develop nodes, 1 user node, and 1 management
node. Figure 4.1 shows a schematic of one of the compute nodes that is made up of two eight-core 2.6 GHz Intel
E5-2650v2 Ivy Bridge CPUs. Each core of each CPU has dedicated 32 kB of L1 and 256 kB of L2 cache. All eight
cores of each CPU share 20 MB of L3 cache. The 64 GB of the node’s memory is formed by eight 8 GB DIMMs,
four of which are connected to each CPU. The two CPUs of a node are connected to each other by two QPI (quick
path interconnect) links. The nodes in maya 2013 are connected by a quad-data rate InfiniBand interconnect.

The results in this section use the default Intel compiler and Intel MPI. The SLURM submission script uses
the srun command to start the job. The number of nodes are controlled by the --nodes option in the SLURM
submission script, and the number of processes per node by the --ntasks-per-node option. Each node that is used
is dedicated to the job with remaining cores idling, if not all of them are used using --exclusive. The assignment
of the MPI processes to the cores of the two CPUs on the node uses the default assignment, in which consecutive
processes are distributed in alternating fashion between the two CPUs.

We conduct numerical experiments of the test problem for seven progressively finer meshes of N = 1024, 2048,
4096, 8192, 16384, 32768, and 65536. This results in progressively larger systems of linear equations with system
dimensions ranging from about 1 million for N = 1024 to over 1 billion for N = 32768 and over 4 billion equations
for N = 65536. For each mesh resolution, the parallel implementation of the test problem is run on all possible
combinations of nodes from 1 to 64 by powers of 2 and processes per node from 1 to 16 by powers of 2, except for
the case of N = 65536. As shown in Table 3.1, cases up to N = 32768 take up to 32 GB of memory and fit in the
memory of one compute node with 64 GB, but the case of N = 65536 is estimated to require at least 128 GB and
does not.

Figure 4.1: Schematic of a maya 2013 node.
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Table 4.1 collects the results of the performance study. The table summarizes the observed wall clock time (total
time to execute the code) in HH:MM:SS (hours:minutes:seconds) format. The upper-left entry of each subtable
contains the runtime for the serial run of the code for that particular mesh. The lower-right entry of each subtable
lists the runtime using all cores of both 8-core processors on 64 nodes for a total of 1024 parallel processes working
together to solve the problem.

We choose the mesh resolution of 16384× 16384 to discuss in detail as example. Reading along the first column
of this mesh subtable, we observe that by doubling the number of processes from 1 to 2 we approximately halve the
runtime from each column to the next. We observe the same improvement from 2 to 4 processes. We also observe
that by doubling the number of processes from 4 to 8 there is still a significant improvement in runtime, although
not the halving we observed previously. Finally, by doubling the number of processes from 8 to 16 we observe only
a small improvement in runtime, which is a typical characteristic of memory-bound code such as this. The limiting
factor in performance of memory-bound code is memory access, so we would expect a bottleneck when the 8 processes
on each CPU attempt to access the memory through only 4 memory channels.

Reading along the first row of the 16384×16384 mesh subtable, we observe that by doubling the number of nodes
used, and thus also doubling the number of parallel processes, we approximately halve the runtime all the way up to
64 nodes. This behavior observed for increasing the number of nodes confirms the quality of the high-performance
InfiniBand interconnect.

Now, if we read along any of the other columns of this subtable, we observe similar behavior as in the first column.
By doubling the number of processes per node from 1 to 2 and from 2 to 4 we halve the runtime. By doubling the
number of processes per node from 4 to 8 we still observe a significant improvement in runtime, although less than
the halving observed previously. However, for the case of 16 processes per node the behavior changes as the number
of nodes increases. On 1, 2, 4, and 8 nodes, we still observe a small improvement in runtime from 8 to 16 processes
per node. The improvement in runtime then deteriorates as the number of nodes increases until jobs on 16, 32, and
64 nodes experience an increase in runtime from 8 to 16 processes per node.

The other subtables in Table 4.1 exhibit largely analogous behavior to the 16384×16384 mesh. In particular, the
32768× 32768 mesh subtable shows similar performance behavior, except that the performance for 16 processes per
node compared to 8 processes per node on 64 nodes deteriorates more drastically. For this reason, we restrict our
computations for the 65536×65536 mesh to the configuration of 8 processes per node on 64 nodes only, which results
in the runtime of 03:09:04 reported in Table 3.1. The underlying reason for the severe deterioration of performance for
16 processes per node compared on 8 processes per node when using 64 nodes is not clear, but memory observations
for the total memory indicate significant overhead associated with this many MPI processes, which might point to
an explanation.

The technical report [8] considers the same problem on the previous cluster tara. Both reports contain results for
meshes of N = 1024, 2048, 4096, 8192, and 16384 on 1, 2, 4, 8, 16, 32, and 64 nodes using 1, 2, 4, and 8 processes
per node. Since full results for N = 16384 are available on both clusters we will compare results for this mesh. We
observe a significant improvement in runtime from the results on tara to those on maya 2013. In fact, we observe at
least a halving in runtime on maya 2013 compared to tara for most runs on this mesh. Since the compute nodes in
maya 2013 have 64 GB of memory, a serial run for N = 32768 is possible for the first time. For this mesh, we observe
that for results available on tara, running on maya 2013 again results in at least a halving in runtime. As a result,
this report contains a complete subtable of results for N = 32768 while [8] contains results only on 64 nodes. Also,
this report contains results for 16 processes per node, which was not possible on the cluster tara since the compute
nodes on tara only contained 8 cores per node. Finally, this report contains results for N = 65536 for the first time
since the increase in memory allows these jobs to be completed in a reasonable amount of time.

Overall, we can conclude that using larger numbers of nodes shows optimal speedup up to the number of nodes
available on maya 2013. For memory-bound code, memory usage should be tracked to determine if there is any
disadvantage to using all 16 cores on a node.
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Table 4.1: Wall clock time in HH:MM:SS on maya 2013 using the Intel compiler with Intel MPI.

(a) Mesh resolution N ×N = 1024 × 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:09 00:00:03 00:00:02 00:00:01 00:00:01 00:00:00 00:00:00
2 processes per node 00:00:03 00:00:02 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
4 processes per node 00:00:02 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00 00:00:01 00:00:01
16 processes per node 00:00:01 00:00:00 00:00:00 00:00:01 00:00:01 00:00:01 00:00:01

(b) Mesh resolution N ×N = 2048 × 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:01:34 00:00:46 00:00:20 00:00:07 00:00:04 00:00:02 00:00:01
2 processes per node 00:00:47 00:00:19 00:00:07 00:00:04 00:00:02 00:00:01 00:00:01
4 processes per node 00:00:28 00:00:11 00:00:04 00:00:02 00:00:02 00:00:01 00:00:01
8 processes per node 00:00:21 00:00:08 00:00:02 00:00:02 00:00:01 00:00:01 00:00:01
16 processes per node 00:00:20 00:00:07 00:00:02 00:00:02 00:00:02 00:00:02 00:00:03

(c) Mesh resolution N ×N = 4096 × 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:12:26 00:06:18 00:03:11 00:01:32 00:00:41 00:00:15 00:00:09
2 processes per node 00:06:18 00:03:14 00:01:36 00:00:41 00:00:15 00:00:09 00:00:05
4 processes per node 00:03:30 00:01:50 00:00:57 00:00:25 00:00:09 00:00:05 00:00:04
8 processes per node 00:02:44 00:01:24 00:00:44 00:00:20 00:00:06 00:00:04 00:00:04
16 processes per node 00:02:44 00:01:25 00:00:45 00:00:17 00:00:06 00:00:12 00:00:09

(d) Mesh resolution N ×N = 8192 × 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 01:41:07 00:50:52 00:25:47 00:13:13 00:06:30 00:03:21 00:01:29
2 processes per node 00:51:00 00:25:49 00:13:09 00:06:39 00:03:25 00:01:29 00:00:35
4 processes per node 00:28:29 00:14:43 00:07:33 00:03:54 00:02:02 00:00:55 00:00:22
8 processes per node 00:21:28 00:10:56 00:05:38 00:02:58 00:01:29 00:00:41 00:00:17
16 processes per node 00:20:57 00:10:42 00:05:38 00:02:48 00:01:37 00:00:44 00:00:32

(e) Mesh resolution N ×N = 16384 × 16384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 14:08:26 06:57:26 03:29:58 01:45:31 00:53:29 00:27:13 00:13:57
2 processes per node 07:01:30 03:31:53 01:46:36 00:54:13 00:27:20 00:14:12 00:07:15
4 processes per node 03:55:38 01:58:32 01:00:05 00:30:26 00:15:32 00:08:15 00:04:20
8 processes per node 02:55:26 01:28:52 00:44:32 00:22:30 00:11:26 00:06:23 00:03:22
16 processes per node 02:49:13 01:25:16 00:43:08 00:22:10 00:11:33 00:06:31 00:06:34

(f) Mesh resolution N ×N = 32768 × 32768, system dimension 1,073,741,824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 117:02:56 56:06:06 28:16:00 14:05:44 07:04:47 03:34:15 01:49:15
2 processes per node 56:21:35 28:25:53 14:13:30 07:09:54 03:37:11 01:50:35 00:56:55
4 processes per node 32:05:13 16:08:41 08:04:43 04:01:56 02:02:31 01:02:51 00:32:32
8 processes per node 23:53:02 11:52:48 05:56:34 03:00:00 01:30:57 00:46:32 00:23:40
16 processes per node 22:53:13 11:29:47 05:47:00 02:55:12 01:29:07 00:46:37 02:55:46
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Parallel scalability is often visually represented by plots of observed speedup and efficiency. The ideal behavior
of code for a fixed problem size N using p parallel processes is that it be p times as fast as serial code. If Tp(N)
denotes the wall clock time for a problem of a fixed size parameterized by N using p processes, then the quantity
Sp = T1(N)/Tp(N) measures the speedup of the code from 1 to p processes, whose optimal value is Sp = p. The
efficiency Ep = Sp/p characterizes in relative terms how close a run with p parallel processes is to this optimal value,
for which Ep = 1. The behavior described here for speedup for a fixed problem size is known as strong scalability of
parallel code.

Table 4.2 organizes the results of Table 4.1 in the form of a strong scalability study, that is, there is one row for
each problem size, with columns for increasing number of parallel processes p. Table 4.2 (a) lists the raw timing
data, like Table 4.1, but organized by numbers of parallel processes p. Tables 4.2 (b) and (c) show the numbers
for speedup and efficiency, respectively, that will be visualized in Figures 4.2 (a) and (b), respectively. It becomes
clear that there are several choices for most values of p, such as for instance for p = 4, one could use 2 nodes with
2 processes per node or 1 node with 4 processes per node. Due to our observation that 8 processes per node performs
better than 16 processes per node in certain situations for memory-bound code, for p ≥ 8 we use 8 processes per
node, until the final p = 1024 that can only be achieved by 16 processes on 64 nodes. For p < 8, only one node is
used, with the remaining cores idle. Comparing adjacent columns in the raw timing data in Table 4.2 (a) confirms
our previous observation that performance improvement is very good from 1 to 2 processes and from 2 to 4 processes,
but not quite as good from 4 to 8 processes. Since the table collects the results using 8 processes per node, the next
columns double the numbers of nodes, and we see near-perfect halving of runtimes, except the very last column that
uses 16 processes per node on 64 nodes. The speedup numbers in Table 4.2 (b) help reach the same conclusions when
speedup is near-optimal with Sp ≈ p for p ≤ 8. For p = 16, sub-optimal speedup is clear. The speedup numbers also
indicate sub-optimal speedup for p > 16, but recall that the runtimes clearly showed halving from each column to the
next one; the speedup numbers can only give this indication qualitatively. The efficiency data in Table 4.2 (c) can
bring out these effects more quantitatively, namely efficiency is near-optimal Ep ≈ 1 for p ≤ 8, then clearly identifies
the efficiency drop taking place from p = 8 to p = 16. But for p > 16, the efficiency numbers stay essentially constant,
which confirms quantitatively the aforementioned halving of runtimes from each column to the next one. The final
column shows again the dramatic drop-off in performance when going from 8 to 16 processes on 64 nodes.

The plots in Figures 4.2 (a) and (b) visualize the numbers in Tables 4.2 (b) and (c), respectively. These plots do
not provide new data but simply provide a graphical representation of the results in Table 4.1. It is customary in
results for fixed problem sizes that the speedup is better for larger problems, since the increased communication time
for more parallel processes does not dominate over the calculation time as quickly as it does for small problems. This
is born out generally by both plots in Figure 4.2. Specifically, the speedup in Figure 4.2 (a) appears near-optimal
up to p = 512 for all problem sizes N ≥ 4096. From p = 512 to p = 1024, we see the expected dramatic decrease
in speedup that the raw run times exhibit. One would expect that the efficiency plot in Figure 4.2 (b) would not
add much clarity, since its data are directly derived from the speedup data. But the efficiency plot can provide
insight into behavior for small p, where the better-than-optimal behavior is noticable now. This can happen due
to experimental variability of the runs, for instance, if the single-process timing T1(N) used in the computation of
Sp = T1(N)/Tp(N) happens to be slowed down in some way. Another reason for excellent performance can also be
that runs on several processes result in local problems that fit better into the cache of each processor, which leads
to fewer cache misses and thus potentially dramatic improvement of the run time, beyond merely distributing the
calculations to more processes. For larger values of p, excluding the final value at p = 1024, the horizontal shape of
the lines in the efficiency plot brings out that no further degradation of performance occurs as p increases for large
N . Figure 4.2 (b) also exhibits again the significant reduction in efficiency by going from 8 to 16 processes per node
on 64 nodes.
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Table 4.2: Intel compiler with Intel MPI performance on maya 2013 by number of processes used with 8 processes
per node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, p = 4 which uses
4 processes per node, and p = 1024 which uses 16 processes per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 p = 1024

1024 00:00:09 00:00:03 00:00:02 00:00:01 00:00:01 00:00:00 00:00:00 03:00:00 00:00:01 00:00:01 00:00:01
2048 00:01:34 00:00:47 00:00:28 00:00:21 00:00:08 00:00:02 00:00:02 00:00:01 00:00:01 00:00:01 00:00:03
4096 00:12:26 00:06:18 00:03:30 00:02:44 00:01:24 00:00:44 00:00:20 00:00:06 00:00:04 00:00:04 00:00:09
8192 01:41:07 00:51:00 00:28:29 00:21:28 00:10:56 00:05:38 00:02:58 00:01:29 00:00:41 00:00:17 00:00:32

16384 14:08:26 07:01:30 03:55:38 02:55:26 01:28:52 00:44:32 00:22:30 00:11:26 00:06:23 00:03:22 00:06:34
32768 117:02:56 56:21:35 32:05:13 23:53:02 11:52:48 05:56:34 03:00:00 01:30:57 00:46:32 00:23:40 02:55:46

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 p = 1024
1024 1.00 2.78 5.24 9.05 15.80 22.73 23.90 22.73 18.64 17.58 7.58
2048 1.00 2.02 3.41 4.57 11.23 38.28 61.56 77.20 84.85 72.45 32.93
4096 1.00 1.97 3.56 4.55 8.87 16.95 37.46 125.35 189.78 203.78 82.41
8192 1.00 1.98 3.55 4.71 9.24 17.98 34.05 67.91 147.23 361.15 190.32

16384 1.00 2.01 3.60 4.84 9.55 19.05 37.72 74.18 132.78 252.07 129.32
32768 1.00 2.08 3.65 4.90 9.85 19.70 39.02 77.21 150.90 296.70 39.95

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 p = 1024
1024 1.00 1.39 1.31 1.13 0.99 0.71 0.37 0.18 0.07 0.03 0.01
2048 1.00 1.01 0.85 0.57 0.70 1.20 0.96 0.60 0.33 0.14 0.03
4096 1.00 0.99 0.89 0.57 0.55 0.53 0.59 0.98 0.74 0.40 0.08
8192 1.00 0.99 0.89 0.59 0.58 0.56 0.53 0.53 0.58 0.71 0.19

16384 1.00 1.01 0.90 0.60 0.60 0.60 0.59 0.58 0.52 0.49 0.13
32768 1.00 1.04 0.91 0.61 0.62 0.62 0.61 0.60 0.59 0.58 0.04

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4.2: Intel compiler with Intel MPI performance on maya 2013 by number of processes used with 8 processes
per node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, p = 4 which user
4 processes per node, and p = 1024 which used 16 processes per node.
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5 Performance Studies on maya 2010

This section describes the parallel performance studies for the solution of the elliptic test problem on the 2010 portion
of maya. The 84 nodes of this portion consist of 82 compute and 2 develop nodes. Each of these nodes consists of
two quad-core 2.8 GHz Intel Nehalem X5560 CPUs. Each core of each CPU has dedicated 32 kB of L1 and 256 kB
of L2 cache. All cores of each CPU share 8 MB of L3 cache. The 24 GB of the node’s memory is the combination of
six 4 GB DIMMs, three of which are connected to each CPU. Nodes are connected to by a dual-data rate InfiniBand
interconnect.

The results in this section use the default Intel compiler and Intel MPI. The SLURM submission script uses the
srun command to start the job. The number of nodes are controlled by --nodes option in the SLURM submission
script, and the number of processes per node by the --ntasks-per-node option. Each node that is used is dedicated
to the job with remaining cores idling, if not all of them are used using --exclusive. The assignment of the MPI
processes to the cores of the two CPUs on the node uses the default assignment, in which consecutive processes are
distributed in alternating fashion between the two CPUs.

We consider the test problem for six progressively finer meshes of N = 1024, 2048, 4096, 8192, 16384, and 32768.
This results in progressively larger systems of linear equations with system dimensions ranging from about 1 million
to over 1 billion equations. For each mesh resolution, the parallel implementation of the test problem is run on all
possible combinations of nodes from 1 to 64 by powers of 2 and processes per node from 1 to 16 by powers of 2, if
possible without running out of memory.

Table 5.1 provides the observed wall clock time for the default Intel compiler with Intel MPI. Simulations denoted
as OM in the remaining tables of this report represent a job that ran out of memory. We observe one advantage
of parallel computing for the 16384 × 16384 mesh subtable, where runtime decreases from over 18 hours in serial
to approximately 13 minutes on 64 nodes with 8 processes per node. Another advantage of parallel computing is
observed in the 32768 × 32768 where it is not possible to run jobs on a single node, however it is possible on 2 or
more nodes.

Reading along the first column of the 16384 × 16384 mesh subtable, we observe that by doubling the number
of processes from 1 to 2, we approximately halve the runtime. We also observe that by doubling the number of
processes from 2 to 4 and 4 to 8 there is still a significant improvement in runtime.

Reading along the first row of the 16384×16384 mesh subtable, we observe that by doubling the number of nodes
used, and thus also doubling the number of parallel processes, we approximately halve the runtime.

Now, if we read along any of the subsequent columns of this subtable, we observe similar behavior as in the first
column. By doubling the number of processes per node from 1 to 2 we halve the runtime. With the exception of
the 16 nodes case, doubling the number of processes per node from 2 to 4 causes an improvement in runtime. We
observe that with the exception of larger no cases of 32 and 64, doubling the number of processes per node from 4
to 8 causes an improvement in runtime.

There are several differences between the results for maya 2013 and maya 2010. We use here the 16384× 16384
mesh subtable concretely, since it is the last table in full on both portions of maya. We first note that for all cases
that exist on maya 2010, i.e., up to 8 processes per node, each time is faster on maya 2013 than on maya 2010.
Comparing only the case of 1 process per node, we see that for this single-core case the speed improvement of maya
2013 is modest. Comparing now either the 8 process per node cases to each other or simply comparing the cases
of all cores per node in use, we see more dramatic improvement, which indicates more efficient use of multi-core
architecture in modern CPUs. Analogous observations can be made for all other subtables, also for most entries in
the 32768 × 32768 mesh, except in situations, where the maya 2010 behavior is degraded for 8 processes per node
compared to 4 processes per node.

Table 5.2 organizes the results of Table 5.1 in the form of a strong scalability study, that is, there is one row for
each problem size, with columns for increasing number of parallel processes p. Table 5.2 (a) lists the raw timing
data, like Table 5.1, while Tables 5.2 (b) and (c) show the numbers for speedup and efficiency, respectively, that
will be visualized in Figures 5.1 (a) and (b), respectively. Comparing adjacent columns in the raw timing data in
Table 5.2 (a) confirms our previous observation that, with the exception of increasing the number of increasing the
number of processes from 4 to 8, using twice as many processes speeds up the code by a factor of two approximately,
at least for small values of p. However, the efficiency and speedup are generally poor for most values of p.

The plots in Figures 5.1 (a) and (b) visualize the numbers in Tables 5.2 (b) and (c), respectively. We observe high
variability in efficiency for small N values. In particular, we observe that performance suffers dramatically for small
p. Interestingly, we observe the best speedup and efficiency for N = 4096 rather than for the largest N = 16384.
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Table 5.1: Wall clock time in HH:MM:SS on maya 2010 using the Intel compiler with Intel MPI.

(a) Mesh resolution N ×N = 1024 × 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:16 00:00:08 00:00:03 00:00:01 00:00:01 00:00:00 00:00:00
2 processes per node 00:00:12 00:00:03 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
4 processes per node 00:00:05 00:00:02 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:05 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00

(b) Mesh resolution N ×N = 2048 × 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:02:07 00:01:03 00:00:33 00:00:16 00:00:06 00:00:03 00:00:02
2 processes per node 00:01:04 00:00:32 00:00:16 00:00:06 00:00:04 00:00:02 00:00:01
4 processes per node 00:00:48 00:00:25 00:00:11 00:00:09 00:00:02 00:00:01 00:00:01
8 processes per node 00:00:45 00:00:44 00:00:10 00:00:03 00:00:01 00:00:01 00:00:01

(c) Mesh resolution N ×N = 4096 × 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:17:00 00:08:31 00:04:17 00:02:12 00:01:10 00:00:34 00:00:13
2 processes per node 00:08:40 00:04:22 00:02:12 00:01:07 00:00:47 00:00:12 00:00:08
4 processes per node 00:06:24 00:03:16 00:01:41 00:00:52 00:00:43 00:00:07 00:00:06
8 processes per node 00:05:59 00:03:05 00:01:32 00:00:49 00:00:21 00:00:06 00:00:03

(d) Mesh resolution N ×N = 8192 × 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 02:17:01 01:08:40 00:34:37 00:17:27 00:09:11 00:04:39 00:02:22
2 processes per node 01:10:01 00:34:57 00:17:36 00:08:58 00:06:37 00:03:10 00:01:38
4 processes per node 00:50:59 00:25:56 00:13:15 00:06:46 00:05:46 00:02:53 00:01:30
8 processes per node 00:47:28 00:23:55 00:11:53 00:11:56 00:06:07 00:03:03 00:01:35

(e) Mesh resolution N ×N = 16384 × 16384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 18:23:01 09:14:09 04:38:17 02:26:04 01:10:57 00:37:06 00:18:57
2 processes per node 10:54:37 04:40:39 02:21:56 01:10:50 00:35:59 00:26:25 00:13:21
4 processes per node 08:03:43 03:30:05 01:46:33 00:53:49 00:46:35 00:23:20 00:12:14
8 processes per node 07:49:41 03:13:15 01:38:20 00:50:04 00:25:27 00:23:58 00:12:28

(f) Mesh resolution N ×N = 32768 × 32768, system dimension 1,073,741,824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node OM 84:44:18 37:25:18 19:23:11 09:26:44 04:59:46 02:31:16
2 processes per node OM 38:56:49 18:56:47 09:29:39 04:47:17 03:27:24 01:47:15
4 processes per node OM 30:33:13 15:38:12 07:07:13 03:34:13 03:07:47 01:35:05
8 processes per node OM 27:50:45 13:03:52 13:39:20 06:49:28 03:25:24 01:43:54
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Table 5.2: Intel compiler with Intel MPI performance on maya 2010 by number of processes used with 8 processes
per node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which
uses 4 processes per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:16 00:00:12 00:00:05 00:00:05 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
2048 00:02:07 00:01:04 00:00:48 00:00:45 00:00:44 00:00:10 00:00:03 00:00:01 00:00:01 00:00:01
4096 00:17:00 00:08:40 00:06:24 00:05:59 00:03:05 00:01:32 00:00:49 00:00:21 00:00:06 00:00:03
8192 02:17:01 01:10:01 00:50:59 00:47:28 00:23:55 00:11:53 00:11:56 00:06:07 00:03:03 00:01:35

16384 18:23:01 10:54:37 08:03:43 07:49:41 03:13:15 01:38:20 00:50:04 00:25:27 00:23:58 00:12:28
32768 OM OM OM OM 27:50:45 13:03:52 13:39:20 06:49:28 03:25:24 01:43:54

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512
1024 1.00 1.32 2.98 3.36 13.42 30.53 53.69 70.77 70.77 57.67
2048 1.00 1.98 2.64 2.82 2.87 12.24 50.61 108.14 110.98 142.16
4096 1.00 1.96 2.66 2.84 5.52 11.06 20.62 48.21 162.09 256.17
8192 1.00 1.96 2.69 2.89 5.73 11.53 11.48 22.42 44.96 86.24

16384 1.00 1.68 2.28 2.35 5.71 11.22 22.03 43.34 46.03 88.46
32768 OM OM OM OM 16.00 34.10 32.63 65.28 130.15 257.27

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512
1024 1.00 0.66 0.75 0.42 0.84 0.95 0.84 0.55 0.28 0.11
2048 1.00 0.99 0.66 0.35 0.18 0.38 0.79 0.84 0.43 0.28
4096 1.00 0.98 0.66 0.35 0.35 0.35 0.32 0.38 0.63 0.50
8192 1.00 0.98 0.67 0.36 0.36 0.36 0.18 0.18 0.18 0.17

16384 1.00 0.84 0.57 0.29 0.36 0.35 0.34 0.34 0.18 0.17
32768 OM OM OM OM 1.00 1.07 0.51 0.51 0.51 0.50

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 5.1: Intel compiler with Intel MPI performance on maya 2010 by number of processes used with 8 processes
per node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which
user 4 processes per node.
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6 Performance Studies on maya 2009

This section describes the parallel performance studies on maya 2009 for the solution of the elliptic test problem.
This portion consists of 84 nodes. Each of these nodes consists of two quad-core 2.6 GHz Intel Nehalem X5550
CPUs. The 24 GB of the node’s memory is the combination of six 4 GB DIMMs, three of which are connected to
each CPU. Nodes are connected to by a quad-data rate InfiniBand interconnect.

The results in this section use the default Intel compiler and Intel MPI. The SLURM submission script uses the
srun command to start the job. The number of nodes are controlled by --nodes option in the SLURM submission
script, and the number of processes per node by the --ntasks-per-node option. Each node that is used is dedicated
to the job with remaining cores idling, if not all of them are used using --exclusive. The assignment of the MPI
processes to the cores of the two CPUs on the node uses the default assignment, in which consecutive processes are
distributed in alternating fashion between the two CPUs.

We consider the test problem for six progressively finer meshes of N = 1024, 2048, 4096, 8192, 16384, and 32768.
This results in progressively larger systems of linear equations with system dimensions ranging from about 1 million
to over 1 billion equtions. The parallel implementation of conjugate gradient method is run on increasing numbers
of nodes from 1 to 64 by powers of 2 while varying the number of processes per node from 1 to 8 by powers of 2.

Table 6.1 provides the observed wall clock time for the default Intel compiler with Intel MPI. Simulations denoted
as OM in the remaining tables of this report represent a job that ran out of memory. We observe one advantage
of parallel computing for the 1638 × 16384 mesh subtable, where runtime decreases from over 18 hours in serial to
approximately 7 minutes on 64 nodes with 8 processes per node. Another advantage of parallel computing is observed
in the 32768× 32768 where it is not possible to run jobs on a single node, however it is possible on 2 or more nodes.

Reading along the first column of the 16384 × 16384 mesh subtable, we observe that by doubling the number
of processes from 1 to 2, we approximately halve the runtime. We also observe that by doubling the number of
processes from 2 to 4 and 4 to 8 there is still a significant improvement in runtime.

Reading along the first row of the 16384×16384 mesh subtable, we observe that by doubling the number of nodes
used, and thus also doubling the number of parallel processes, we approximately halve the runtime.

Now, if we read along any of the subsequent columns of this subtable, we observe similar behavior as in the first
column. By doubling the number of processes per node from 1 to 2 we halve the runtime. Doubling the number of
processes per node from 2 to 4 and 4 to 8 causes an improvement in runtime.

There are several differences between the results for maya 2010 and maya 2009. We use here the 16384× 16384
mesh subtable concretely, since it is the last table in full on both partitions of maya. We first note that on one node
the maya 2010 results are faster than maya 2009 results. This is due to the slightly faster clock rate of 2.8 GHz on
maya 2010 than the 2.6 GHz on maya 2009. However, if we compare results on more than one node, we observe that
as the number of nodes increases the difference in runtimes between the maya 2010 and maya 2009 nodes decreases.
For runs on 8 or more nodes we observe that the runtime on maya 2009 is faster than the runtime on maya 2010.
This is due to the faster quad-data rate interconnect between the maya 2009 nodes compared to the dual-data rate
interconnect between maya 2010 nodes.

Table 6.2 organizes the results of Table 6.1 in the form of a strong scalability study, that is, there is one row for
each problem size, with columns for increasing number of parallel processes p. Table 6.2 (a) lists the raw timing
data, like Table 6.1, while Tables 6.2 (b) and (c) show the numbers for speedup and efficiency, respectively, that
will be visualized in Figures 6.1 (a) and (b), respectively. Comparing adjacent columns in the raw timing data in
Table 6.2 (a) confirms our previous observation that, with the exception of increasing the number of increasing the
number of processes from 4 to 8, using twice as many processes speeds up the code by a factor of two approximately,
at least for small values of p. However, the efficiency and speedup are generally poor for most values of p.

The plots in Figures 6.1 (a) and (b) visualize the numbers in Tables 6.2 (b) and (c), respectively. We observe high
variability in efficiency for small N values. In particular, we observe that performance suffers dramatically for small
p. Interestingly, we observe the best speedup and efficiency for N = 4096 rather than for the largest N = 16384.
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Table 6.1: Wall clock time in HH:MM:SS on maya (2009) using the Intel compiler with Intel MPI.

(a) Mesh resolution N ×N = 1024 × 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:16 00:00:08 00:00:03 00:00:01 00:00:01 00:00:00 00:00:00
2 processes per node 00:00:08 00:00:03 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
4 processes per node 00:00:05 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:05 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00

(b) Mesh resolution N ×N = 2048 × 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:02:08 00:01:05 00:00:33 00:00:16 00:00:06 00:00:03 00:00:02
2 processes per node 00:01:06 00:00:34 00:00:16 00:00:06 00:00:03 00:00:02 00:00:01
4 processes per node 00:00:47 00:00:24 00:00:11 00:00:03 00:00:02 00:00:01 00:00:01
8 processes per node 00:00:44 00:00:22 00:00:10 00:00:02 00:00:01 00:00:01 00:00:01

(c) Mesh resolution N ×N = 4096 × 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:17:05 00:08:37 00:04:21 00:02:13 00:01:09 00:00:35 00:00:14
2 processes per node 00:08:49 00:04:27 00:02:14 00:01:08 00:00:34 00:00:16 00:00:07
4 processes per node 00:06:24 00:03:09 00:01:38 00:00:53 00:00:24 00:00:08 00:00:04
8 processes per node 00:05:55 00:03:00 00:01:31 00:00:48 00:00:21 00:00:08 00:00:04

(d) Mesh resolution N ×N = 8192 × 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 02:20:11 01:09:57 00:35:01 00:17:41 00:08:56 00:04:44 00:02:23
2 processes per node 01:10:54 00:35:35 00:17:51 00:09:02 00:04:36 00:02:26 00:01:13
4 processes per node 00:51:03 00:25:39 00:13:09 00:06:37 00:03:28 00:01:49 00:00:52
8 processes per node 00:48:09 00:23:55 00:12:11 00:06:22 00:03:12 00:01:43 00:00:52

(e) Mesh resolution N ×N = 16384 × 16384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 18:36:42 09:27:09 04:44:06 02:22:00 01:12:23 00:36:47 00:18:58
2 processes per node 09:33:15 04:46:01 02:23:22 01:12:30 00:36:40 00:18:43 00:09:46
4 processes per node 06:54:33 03:29:49 01:45:56 00:53:45 00:27:23 00:13:57 00:07:18
8 processes per node 06:26:39 03:14:31 01:37:42 00:49:41 00:25:09 00:13:08 00:07:03

(f) Mesh resolution N ×N = 32768 × 32768, system dimension 1,073,741,824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node OM 82:50:24 38:18:13 19:02:46 09:36:42 04:51:41 02:29:24
2 processes per node OM 38:41:05 19:24:49 09:41:51 04:53:55 02:29:03 01:16:34
4 processes per node OM 28:08:50 14:04:07 07:03:08 03:35:38 01:50:49 00:56:31
8 processes per node OM 26:11:41 13:15:14 06:39:26 03:21:31 01:42:02 00:53:47

15



Table 6.2: Intel compiler with Intel MPI performance on maya 2009 by number of processes used with 8 processes
per node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which
uses 4 processes per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:16 00:00:08 00:00:05 00:00:05 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
2048 00:02:08 00:01:06 00:00:47 00:00:44 00:00:22 00:00:10 00:00:02 00:00:01 00:00:01 00:00:01
4096 00:17:05 00:08:49 00:06:24 00:05:55 00:03:00 00:01:31 00:00:48 00:00:21 00:00:08 00:00:04
8192 02:20:11 01:10:54 00:51:03 00:48:09 00:23:55 00:12:11 00:06:22 00:03:12 00:01:43 00:00:52

16384 18:36:42 09:33:15 06:54:33 06:26:39 03:14:31 01:37:42 00:49:41 00:25:09 00:13:08 00:07:03
32768 OM OM OM OM 26:11:41 13:15:14 06:39:26 03:21:31 01:42:02 00:53:47

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512
1024 1.00 2.04 2.98 3.25 14.09 30.35 49.31 83.05 63.12 71.73
2048 1.00 1.95 2.70 2.89 5.73 12.86 53.54 101.55 152.32 168.36
4096 1.00 1.94 2.67 2.89 5.71 11.31 21.33 48.21 130.58 276.29
8192 1.00 1.98 2.75 2.91 5.86 11.50 22.05 43.81 81.94 162.79

16384 1.00 1.95 2.69 2.89 5.74 11.43 22.47 44.40 85.02 158.56
32768 OM OM OM OM 16 31.62 62.96 124.79 246.46 467.58

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512
1024 1.00 1.02 0.75 0.41 0.88 0.95 0.77 0.65 0.25 0.14
2048 1.00 0.98 0.67 0.36 0.36 0.40 0.84 0.79 0.60 0.33
4096 1.00 0.97 0.67 0.36 0.36 0.35 0.33 0.38 0.51 0.54
8192 1.00 0.99 0.69 0.36 0.37 0.36 0.34 0.34 0.32 0.32

16384 1.00 0.97 0.67 0.36 0.36 0.36 0.35 0.35 0.33 0.31
32768 OM OM OM OM 1.00 0.99 0.98 0.97 0.96 0.91

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 6.1: Intel compiler with Intel MPI performance on maya 2009 by number of processes used with 8 processes
per node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which
user 4 processes per node.
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7 Comparisons and Conclusions

Table 7.1 contains a summary of the results obtained on the cluster maya as well as a comparison to previous HPCF
clusters. The table reports results for the historical mesh resolution of N = 4096, which was the largest resolution
that could be solved on kali in 2003 (using the extended memory of 4 GB on the storage node). Also, to maintain
backward comparisons, this table is restricted to 32 nodes, since the old clusters kali and hpc had fewer nodes than
maya. The first row of the table contains the results for cluster kali. This cluster was a 33-node distributed-memory
cluster with 32 compute nodes including a storage node (with extended memory of 4 GB), containing the 0.5 TB
central storage, each with two (single-core) Intel Xeon 2.0 GHz processors and 1 GB of memory, connected by a
Myrinet interconnect, plus 1 combined user/management node. Note that for the case of all cores on 1 node, that is,
for the case of both (single-core) CPUs used simultaneously, the performance was worse than for 1 CPU and hence
the results were not recorded at the time. The second row of the table contains results for the cluster hpc which was
a 35-node distributed-memory cluster with 33 compute nodes plus 1 development and 1 combined user/management
node, each equipped with two dual-core AMD Opteron processors and at least 13 GB of memory, connected by a
DDR InfiniBand network and with an InfiniBand-accessible 14 TB parallel file system. The third row contains results
for the cluster tara which was an 86-node distributed-memory cluster with two quad-core Intel Nehalem processors
and 24 GB per node, a QDR InfiniBand interconnect, and 160 TB central storage. This cluster is now part of the
cluster maya as maya 2009, and its QDR InfiniBand network extends to the newest portion maya 2013. The fourth
row of the table contains results for maya 2009, which recomputes the results from tara using the current default
compiler and MPI implementation. The fifth row of the table contains results for the DDR InfiniBand connected
portion maya 2010, and the sixth row contains results for the QDR InfiniBand connected portion maya 2013.

On the cluster kali from 2003, we observe a factor of approximately 30 speedup by increasing the number of nodes
from 1 to 32. However by using both cores on each node we only see a factor of approximately 25 speedup. We do not
observe the expected 64 factor speedup, since both CPUs on the node share a bus connection to the memory, which
leads to contention in essentially synchronized algorithms like Krylov subspace methods. Hence, it is actually faster
to leave the second CPU idling rather than to use both [1]. Note that there are four cores on each node of cluster
hpc from 2008, compared to just two on the cluster kali, since the CPUs are dual-core. We observe approximately
fourfold speedup that we would expect by running it on four cores rather than one. By running on 32 nodes with one
core per node we observe the expected speedup of approximately 32; more in detail, the speedup is slightly better
than optimal, which is explained by the smaller portions of the subdivided problem on each node fitting better into
the cache of the processors. We see this for the first time here, but it is a typical effect in strong performance studies,
in which a problem that already fits on one node is divided into smaller and smaller pieces as the number of nodes
grows. Finally, by using all cores on 32 nodes we observe a speedup of 76.01, less than the optimal speedup of 128
[4]. On the cluster tara from 2009, we observe a less than optimal speedup of approximately 5 by running on all 8
cores rather than on one, caused by the cores of a CPU competing for memory access. By running on 32 nodes with
one core per node we observe a speedup of approximately 30. Finally, by using all 8 cores on 32 nodes we observe a
speedup of 208, less than the optimal speedup of 256 [8]. On maya 2009, we observe that by running on all 8 cores
on a single node rather than 1 core there is a speedup of approximately 3 rather than the optimal speedup of 8. By
running on 32 nodes with one core per node we observe a speedup of approximately 29. Finally, by using all 8 cores
on 32 nodes we observe a speedup of 128, half of the optimal speedup of 256. On maya 2010, we observe that by
running on all 8 cores on a single node rather than 1 core there is a speedup of approximately 3 rather than the
optimal speedup of 8. By running on 32 nodes with one core per node we observe a speedup of approximately 30.
When combining the use of all cores with the use of 32 nodes, we observe a speedup of 170, short of the optimal
speedup of 256. On maya 2013, we observe that by running on all 16 cores on a single node rather than on one core

Table 7.1: Runtimes (speedup) for N = 4096 on the clusters kali, hpc, tara, and maya.

Cluster (year) serial 1 node 32 node 32 node
(1 core) all cores 1 core per node all cores

time time (speedup) time (speedup) time (speedup)
kali (2003) [1] 02:00:49 N/A (N/A) 00:04:05 (29.59) 00:04:49 (25.08)
hpc (2008) [4] 01:51:29 00:32:37 (3.42) 00:03:23 (32.95) 00:01:28 (76.01)
tara (2009) [8] 00:31:16 00:06:39 (4.70) 00:01:05 (28.86) 00:00:09 (208.44)
maya 2009 00:17:05 00:05:55 (2.89) 00:00:35 (29.29) 00:00:08 (128.13)
maya 2010 00:17:00 00:05:48 (2.93) 00:00:34 (30.00) 00:00:06 (170.00)
maya 2013 00:12:26 00:02:44 (4.55) 00:00:15 (49.07) 00:00:12 (62.167)
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there is a speedup of approximately 5 rather than the expected speedup of 16. We observe a greater than optimal
speedup of 49.07 by running on 32 nodes with one process per node; this is caused by the relatively small problem
fitting into cache after dividing it onto 32 nodes, together with the quality of the QDR InfiniBand interconnect.
Because of our observation that using all 16 cores on 32 nodes actually leads to longer run times that when using
8 cores (and letting the remaining cores idle), we report this figure here. Thus, using 32 nodes with 8 processes per
node exhibits a speedup of 186, compared to the optimal 256.

Table 7.1 allows us to draw several key conclusions that affect the choice of scheduling rules on maya. The
high-performance interconnect supports parallel scalability optimally, with the QDR InfiniBand outperforming the
DDR InfiniBand in some cases. Even though speedup is less than optimal when using all cores in a node, it is often
still faster to use all cores, as opposed to idling some, on the modern multi-core nodes, unless the number of nodes is
very large. Finally, it is obvious and expected that the newer nodes are faster per core as well as per node, however,
for most serial production code, that uses only 1 core, using one of the 2010 nodes with 2.8 GHz is a good default,
and its DDR InfiniBand interconnect is no disadvantage for serial jobs.
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