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ABSTRACT

Using natural language as a supervision for training visual recognition models holds great promise.
Recent works have shown that if such supervision is used in the form of alignment between images
and captions in large training datasets, then the resulting aligned models perform well on zero-shot
classification as downstream tasks2. In this paper, we focus on teasing out what parts of the language
supervision are essential for training zero-shot image classification models. Through extensive and
careful experiments, we show that: 1) A simple Bag-of-Words (BoW) caption could be used as
a replacement for most of the image captions in the dataset. Surprisingly, we observe that this
approach improves the zero-shot classification performance when combined with word balancing.
2) Using a BoW pretrained model, we can obtain more training data by generating pseudo-BoW
captions on images that do not have a caption. Models trained on images with real and pseudo-BoW
captions achieve stronger zero-shot performance. On ImageNet-1k zero-shot evaluation, our best
model, that uses only 3M image-caption pairs, performs on-par with a CLIP model trained on 15M
image-caption pairs (31.5% vs 31.3%).

1 Introduction

Recently, CLIP [37] showed impressive results on zero-shot learning, demonstrating the ability to generalize to unseen
image recognition tasks. CLIP achieves this by first training vision and text encoders to distinguish correct image-
captions pairs, and then using the text encoder to convert category names to embedding vectors, which serve as a
classifier’s weights. A key ingredient for the success of CLIP’s [37] zero-shot performance is to use a large-scale (400
million) dataset with paired images and captions to train the vision models. Compared with the traditional supervised
learning datasets that require human annotations, image-text data are easier to obtain. Moreover, captions also contain
much richer information about images than categorical labels. Therefore, they can provide better supervision that
leads to improved generalization.

However, information encoded in captions may be redundant or irrelevant to their paired images. For example, though
many words in an image caption are important for the syntactical and grammatical properties of a sentence, they
might not contribute to the semantics of the sentence and may be irrelevant to the content of the paired image. A
natural question is, which parts of the captions are necessary to train vision models, or more specifically, zero-shot
classification models? Can we find a simpler supervision to replace text captions in training vision models? Studying
this problem is meaningful both scientifically and practically. It can help shed light on how humans might connect

∗The work was mainly done during internship at Facebook AI.
2In this paper, zero-shot refers to the case where no labeled data is provided for downstream tasks while the category names are

known.
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Figure 1: Overview of our method: We train image and text encoders with a cross-modal contrastive loss, similar
to [48, 37], with image and caption pairs, but we design various operators to deform the intact caption. For example,
shuffling the words, removing certain words, etc. Colors except green, represents words removed by different defor-
mation operators. The resulting caption is a Bag-of-Words with only a few words from the original caption. We show
that a model trained with BoW captions performs on-par or better than the model trained with intact captions (29.5%
vs 30.1% on ImageNet-1k zero-shot).

language and vision concepts, and also help us design more efficient learning algorithms to train computer vision
models.

In this work, we investigate and tease out which parts of caption supervision is necessary for training vision models
for zero-shot classification. To be more specific, we ask: 1) Do we really need natural language captions to train vision
models? 2) If we can find a simpler supervision than text captions, can we use it to train vision models more efficiently
by leveraging large volume of images that are not aligned with text captions?

To answer the first question, we conduct experiments by deforming the text captions, changing their language prop-
erties, and observe the impact on the trained model’s zero-shot performance (see Figure 1 for an illustration of this
process). For example, we use the word shuffling operations to break a sentence to a Bag-of-Words (BoW), we drop
words in a sentence based on their positions or according to a limited vocabulary, etc. We observe that removing
syntactic information in the captions and converting them into BoW does not degrade the trained model’s zero-shot
performance. Surprisingly, we can even improve the accuracy of the model trained on BoW captions by using a simple
strategy of balancing the frequency of words. An explanation for the model’s robustness to caption deformations can
be found in the way we initialize the text encoder. In keeping with the broader theme of this work of relying less
on supervision, we use unimodal self-supervised models like BYOL [16] and BERT [10] for initializing vision and
text encoders respectively. Several studies in natural language understanding domain have shown that models based on
BERT [10] can learn good features despite input words being shuffled during inference [42] or even during pre-training
[41]. These findings suggest that deep contextual embedding models don’t rely on language syntax for learning good
representations.

For the second question, given the observation that BoW can provide supervision that is at least on-par with their
original captions, we provide a simple recipe to further boost the zero-shot performance of vision models by leveraging
images that are unaligned (without associated captions). Inspired by self-training framework [47], we use the model
pre-trained on image-caption pairs to find nearest neighbors of a given unaligned image within a set of intact captions.
Then, by ranking and filtering the words of those retrieved captions we generate a BoW caption for the unaligned
image. Finally, we train a new model on the union of the original dataset and the new dataset with pseudo captions.
Since only a subset of the data is aligned, we refer to this setting as “semi-aligned” learning similar to semi-supervised
learning.
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Figure 2: From intact captions to BoW. Above figure illustrates the process of converting intact captions to BoW.
Notice that BoW are much denser with very little distracting information. The words are first shuffled to remove
syntax by Shuffle. Next, while stop words (“all”, “were”, “the”, etc.) and non-alphabetical tokens (“:” and “.”) are
important parts of the syntax of sentences, none of them describe anything in their corresponding images. Hence, they
are removed with RmStopNalpha. Next, words like “cars”, “table”, “men”, ”rocks” etc. (orange color) are important
for describing the image, but because they already appear frequently we can remove them with RmTopFreq(1000).
Note that the model still sees and learns about them but from the small set of captions that are kept intact (base set).
Further, the blue word “mikoshi” is a rare word that does not appear in the base set vocabulary, and hence maybe
removed without hurting the model. It is removed by LimitToBaseVocab. Purple words like “utter” and “ash” are
removed by Keep(n) which may actually remove useful words, yet BoW improve the performance. Finally, some
captions will become empty since none of the words in them describe anything new. Thus, they are removed from the
dataset.

In summary, we discover that image captions with intact natural language structure are redundant for training vision
models for zero-shot classification. In fact, deforming most of the text captions and turning them into BoW can even
lead to improvements (29.5% vs. 30.1% on ImageNet-1k zero-shot). Based on this insight, we propose a method to
generate pseudo BoW labels for images without captions. We train a model with 3M image-caption pairs and 3M
unaligned images and further boost the zero-shot performance (30.1% to 31.5% on ImageNet-1k zero-shot). This
model is on-par with CLIP trained on 15M image-caption pairs (31.5% vs 31.3% in ImageNet-1k zero-shot).

2 Method

The primary question explored in this work is: what parts of language supervision are necessary for training vision
models for zero-shot (ZS) classification? Since our exploration reveals that intact captions are equivalent to their
BoW couterparts, we use this insight to further boost the zero-shot performance by leveraging additional unaligned
images (without captions). We first introduce the cross-modal contrastive pre-training framework used in all of our
experiments. Then, we introduce various techniques of deforming the text, thereby converting the captions to BoW.
Finally, we describe the process of assigning BoW pseudo-labels to additional unaligned images.

2.1 Cross-modal Contrastive Pre-training

We need to align the features of images and text before they can be used for zero-shot learning. The alignment is done
by training the model to distinguish between the correct image-caption pairs from incorrect ones. We first initialize
both image and text encoders with self-supervised learning (SSL) models trained in respective modalities, and then
align their representations by training them on a dataset of image-caption pairs.

Given a pair of image and caption, denoted as (xi, yi), we use image encoder f and text encoder g, to extract a pair
of feature embeddings as (ui, vi), where ui = f(xi), vi = g(yi). Similar to [37] and [48], we use a cross-modal
InfoNCE [35] loss. In order to increase the number of negative samples without increasing the batch size and training
memory, we follow [17] and maintain a memory bank of negative samples. Embedding vectors in the memory bank
are computed by an exponential moving average (EMA) copy of the models, which we denote as f ′, g′. We also
denote the EMA model’s output as u′i, v

′
i. Now we can write our training loss as:
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Limage
i = − log

exp(d(ui, v
′
i)/τ)∑K

j=1 exp(d(ui, v′j)/τ)
, (1)

Ltext
i = − log

exp(d(vi, u
′
i)/τ)∑K

j=1 exp(d(vi, u′j)/τ)
, (2)

L =
1

2B

B∑
i=1

Limage
i + Ltext

i , (3)

Where, B is batch size, K is the size of the memory bank, τ is a temperature parameter, and d(·, ·) is the cosine
similarity function. We use the above loss function for all of our experiments.

2.2 From Captions to Bag-of-Words

In order to understand the importance of natural language structure in captions, we design a set of operations to
change/deform the captions. Each operation removes some syntactical or structural information from the original
caption and converts it to BoW. If the lost information was used by model for zero-shot learning the model would
degrade. We use following operations in our experiments.

Shuffle: Shuffles the order of words in a given caption. The goal here is to remove syntactic information from text
and convert them into BoW. While humans may have trouble understanding language without syntax, language models
seem to be robust to text without syntax [41, 42].

RmStopNalpha: Removes stop words and non-alphabetical words from a given caption, since removing them does
not affect semantic content of a sentence. Non-alphabetical words tend to be numbers and punctuations which have
little correspondence to the object present in the image. Similarly, stop words are needed in a sentence to make it
syntactically correct but they do not correspond to objects in images like nouns or adjectives do. Since we only focus
on English captions, we use the list of stop words from NLTK library [31].

LimitToBaseVocab: Limits the words in a given caption to be from the vocabulary of a base set of captions. The
goal is explore restricting the diversity of words in captions. Hence, we randomly select a small subset of all captions,
10% in our experiments, to be the “base” captions. Then, we deform the 90% split such that any word not present in
the vocabulary of the base 10% split is removed.

RmTopFreq(t): Removes top-t most frequent words. We calculate the frequency of each word as the number of
captions from the base set in which it appears. Also, similar to LimitToBaseVocab, this deformation is only applied
on the 90% set of captions. The goal is to balance the distribution of words by keeping the most frequent words only
in the base 10% split while removing them from 90% of the captions.

Keep(n): Keeps the first n words of a given caption in order to explore removing information from captions. This
deformation is never used alone but always along with with other operations like Shuffle so that only a few random
words from the original caption are retained. Note that except Keep(n), the order in which other operations are applied
does not matter. Hence, it is always applied in the end after all other operations.

These operations can be combined in different ways to increase or decrease the strength of deformation. The default
deformation with highest strength that still works better than the intact captions baseline is the following cascade of
operations: Shuffle + RmStopNalpha + LimitToBaseVocab + RmTopFreq(1000) + Keep(4). Unless men-
tioned, this is the default deformation used for constructing BoW captions, and the resulting BoW dataset is referred to
the “default BoW” (see Figure 2 for an illustration). Note that in some cases, captions may become empty if all their
words are removed during deformation. In this case, the empty caption and the associated image is removed from the
dataset which reduces the BoW dataset size. Finally, deformations are used to create a new BoW dataset which simply
replaces the intact captions dataset during training.

2.3 Utilizing Unaligned Images

The insight that intact captions can be replaced with BoW without hurting the model’s performance opens the oppor-
tunity to use unaligned images (images without associated captions) by pseudo-labeling them with BoW in a process
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Figure 3: Intact vs. BoW on additional datasets. We compare intact and default BoW caption based models with
4 different architectures on zero-shot evaluation across 8 different datasets. The results show that for some datasets
like, Flowers102, DTD, and Pets, all BoW models improve regardless of the architecture. While, for some of the
datasets like, Caltech101, Sun397, and Food101, the accuracy of the deformed model consistently decreases. See the
supplementary material for a detailed analysis of the results.

similar to self-training [47]. The goal is to leverage unaligned data which can be easier to acquire and maintain in
comparison to aligned data. We call this setting semi-aligned learning since only a subset of data is aligned.

We first train a model with fully aligned set Sa of image-caption pairs, and then use it to generate pseudo-labels
for unaligned images. Given an unaligned image xi, we augment it c times with random cropping and resizing
to get c augmented images {xbi}b=1:c. Next, we get features for each xbi by passing it through the vision encoder
ubi = f(xbi ). Then, for each ubi , we retrieve its top-k nearest neighbors from a set of captions, and put them in a set
NNi = {yji }j=1:kc. The set of captions used for retrieval are intact and come from the set Sa which was also used
for training the fully-aligned model. Next, we use different strategies to rank the words in the NNi and then pick
first p words. The goal of these word ranking strategies is to find the set of words that best describe the image. See
supplementary material for an illustration of this process and a few example pseudo labels.

MaxCount Rank each word according to the count of times it is present at least once in a caption yji ∈ NNi.
RmTopMaxCount Each word is ranked according to the MaxCount strategy, but similar to the text deformation dis-
cussed previously, 1000 most frequent words in the Sa captions are removed. The goal is to focus more on the
infrequent words. RmTopRand Rank the words randomly in RmTopMaxCount instead of ranking them based on count.
WeightedCount Re-rank the words in MaxCount strategy by the inverse of their counts in the fully aligned caption
set Sa. Specifically, rank each word wp ∈ NNi by the ratio count(wp, NNi)/count(wp, Sa). Instead of removing
the most frequent words this strategy simply ranks them lower.

3 Experiments

We use a ResNet-50 model trained with BYOL [16] on ImageNet [38] as the image encoder and transformer models
trained with DeCLUTR (sci-base) [15], BERT (base-uncased) [10], RoBERTa (base) [30], and DistilBERT (base-
uncased) [39]. Note that although these models are trained on large unimodal datasets, their representations are not
aligned across modalities. We use Conceptual Captions (CC) [40] with (∼ 2.9M pairs) image-caption pairs as the
source of aligned data, and 3M randomly sampled images from ImageNet-21k [38] as the source of unaligned data.
We train for 20 epochs by default for CC-only experiments and 10 epochs for utilizing unaligned images (semi-aligned)
experiments. Results for all experiments with 20 epochs are averaged over 4 runs with different seeds where BoW
dataset is also constructed with a different seed. Further details can be found in the supplementary material.

Zero-Shot Evaluation: Primary zero-shot learning evaluation is done on ImageNet [38] dataset which has 1k cat-
egories. For the sake of brevity we use IN1k-ZS to refer to this evaluation. We also do zero-shot evaluation on a
set of 7 fine-grained classification datasets: Food101 [3], SUN397 [46], CIFAR100 [23], Flowers102 [34], Pets [36],
Caltech-101 [12] and DTD [8]. This is a subset of the datasets used in [6, 16] for linear evaluation while CLIP [37]
uses them for evaluating zero-shot learning. We follow the procedure in CLIP [37] for zero-shot learning. Given an
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image, we first forward it through the vision encoder to get its embedding, and find its nearest neighbor in the set
of category embeddings. Category embeddings are created by first turning a category name into a sentence with a
simple template ‘a photo of a {class name}’ and then forward this sentence through the text encoder to get the
category embedding. Unlike CLIP [37], we don’t use an ensemble of prompts for simplicity.

3.1 Baselines

First, we show that our training setup is competitive with other SOTA methods given similar number of aligned images.
We compare our model trained for 40 epochs with intact captions and DistilBERT architecture. The comparison in
Table 1 shows that our model trained on only∼ 3M aligned data points is comparable to the CLIP [37] model trained on
15M aligned data points. Moreover, our results are higher compared to those of DeCLIP [1] and CLIP (implementation
from [1]) on given same amount of aligned data. However, DeCLIP initializes their models from scratch while ours
are initialized from SSL models. We believe this difference is the reason for the better performance of our models.

Method Dataset IN1k-ZS

CLIP [37] YFCC-15M 31.3

CLIPb CC-3M 20.6
DeCLIPa [1] CC-3M 27.2
Ours CC-3M 30.3

Table 1: Comparison of our intact captions baseline with other methods. We show that we use a strong intact
captions baseline model for comparison with BoW models in following sections. Our model is better than DeCLIP
and CLIP on CC-3M, and it is close to CLIP trained on YFCC-15M. a is a concurrent work under review. b refers to
results of CLIP [37] implementation from [1].

3.2 Intact Captions vs. Bag-of-Words

In this section we experiment with deformations that convert intact captions to BoW. First, we compare the baseline
trained with intact captions against BoW captions on IN-1k-ZS benchmark while accounting for convergence, variance
due to randomness, and the effect of different text encoders. Next, we extend the comparison with two additional text
encoders and 7 additional zero-shot (ZS) datasets. Then, we build intuition as to why BoW improves the performance
when the words in them are balanced. Finally, we perform ablations over different deformations and hyperparameters.
Please refer to the supplementary material for additional results on cross-modal retrieval.

IN1k-ZS Results: We compare intact captions against the BoW captions constructed with default deformation from
Section 2.1 in Table 2. To recap, the following operations are applied to a random 90% subset of captions: Shuffle
+ RmStopNalpha + LimitToBaseVocab + RmTopFreq(1000) + Keep(4). Or, plainly, shuffle words, remove

Epochs
Avg. ∆ IN1k-ZS
Cap Dset DeCLUTR DistilBERT
Len Size

intact captions
20 10.3 0% 27.9 ±0.2 29.5 ±0.1
30 10.3 0% 28.2 29.8
40 10.3 0% 28.5 30.3

default BoW
20 3.2 -19.6% 29.1 ±0.2 30.1 ±0.1
30 3.2 -19.6% 29.3 30.4
40 3.2 -19.6% 29.2 30.7

Table 2: Intact vs. BoW on ImageNet-1k ZS. Despite disadvantages like reduced dataset size and average cap-
tion length, we find that default BoW models result in a small but consistent improvement for both DeCLUTR and
DistilBERT. The improvement is noticeably higher for DeCLUTR (+1.2 at 20 epochs). The improvement cannot be
explained by randomness specific to a particular run since there is little variance between runs. Longer training also
helps both intact captions and BoW captions.
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Figure 4: Task hardness vs. BoW. We hypothesize that removing frequent words makes the task harder since the
model cannot rely on co-occurrence statistics of the frequent words to solve the task of distinguishing correct image-
caption pairs during pre-training. The loss curves in the top figure shows evidence that supports our hypothesis. The
curve with highest loss uses the default deformations to create BoW where 1k most frequent words are removed (BoW
without frequent words). Unlike other deformations, it shifts the focus towards less-frequent concepts in the text. This
is shown in the bottom figure where the IN-1k-ZS accuracy quickly converges to its final accuracy for intact captions,
but it takes longer and reaches higher for the default deformation (BoW without frequent words). The deformation
which keeps the frequent words (BoW with frequent words) simply makes the task harder but the model can still use
frequent words to solve the task without learning other concepts.

Input
IN-1k-ZS

Freeze Train

Text Image Both

Intact captions 15.1 26.7 29.5
BoW captions 16.9 26.4 30.1

Table 3: Effect of freezing the encoders. In case of frozen text encoder, intact caption results are similar to BoW.
This shows that despite being initialized from an already trained language model, presence or absence of syntax does
not matter. Further, we find that freezing the image encoder hurts the model significantly less as compared to freezing
the text model. This indicates that training text encoder is more important than the image encoder.

stop and non-alphabetical words, limit the words to a base vocabulary, remove any word that is in the set of t =
1000 most frequent base vocabulary words, and keep n = 4 words. It is worth noting that applying these operations
leads to ∼ 20% reduction in dataset size because some BoW are empty. Overall, it also reduces the average size of
captions from 10.3 to 3.2. We observe consistent improvement in the BoW models despite 1) different architectures
(DeCLUTER and DistilBERT) 2) longer training (20, 30, and 40 epochs) 3) different training seed (averaged across 4
different runs). Also, BoW models are data efficient, since they are better despite being trained on ∼ 20% less data.

Results on other datasets and architectures: In order to further support our observation that “BoW captions do not
degrade Zero-Shot (ZS) performance significantly” we repeat our experiments on 2 additional architectures and also
do ZS evaluation on 7 additional datasets. The results are reported in Figure 3. We can see that BoW captions result
in a significantly improved accuracy on Flowers102, DTD, and Pets for all architectures, but, it consistently degrades
for Caltech101, Sun397 and Food101.

Why BoW captions help performance?: We hypothesize that the default deformation which includes
RmTopFreq(1000) operation removes words that make the contrastive task simpler when they are present. The model
can solve contrastive task by simply latching on to the co-occurrence statistics of most frequent words while ignoring
the rest. Thus, removing the most frequent words could make the contrastive task harder. Indeed, this does happen
during training. Figure 4 compares the training loss curves of three DistilBERT experiments: intact captions, BoW
with frequent words removed (default deformation), and BoW with frequent words kept (default deformation minus
the RmTopFreq(1000) operation). We can see that the second one has the highest loss. Because the task is harder, we
should also expect the model to take longer to reach its final ZS accuracy, and we indeed see this behavior in Figure
4. But, despite the task being difficult for BoW with frequent words kept, the ZS accuracy does not improve beyond
the intact captions baseline. Thus, simply increasing the difficulty of the pre-training task is not enough. The task also
has to induce the model to learn less-frequent concepts. Note that any deformation will make the task harder since the
text encoders are initialized with language models that have only seen sentences with correct syntax.
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Deformations
Avg. IN1k-ZS
Cap De Distil
Len CLUTR BERT

Intact captions 10.3 27.9 29.5

only BoW
Shuffle 10.3 25.9 26.9
+ RmStopNalpha 5.8 27.8 28.5
+ Keep(1) 1.0 16.7 18.3
+ Keep(2) 2.0 24.2 26.1
+ Keep(4) 3.8 27.3 27.9

mostly BoW
Shuffle 10.3 25.7 28.2
+ RmStopNalpha 6.3 28.2 28.9
+ Keep(4) 4.5 27.8 29.1
+ LimitToBaseVocab 4.5 28.0 29.0
+ RmTopFreq(1000) 3.2 29.1 30.1

Table 4: Ablation of deformations: Each subsequent row adds a new operation on top of a previous row with lesser
indentation. “mostly BoW” refers to the setting where 90% of text is converted to BoW while in “only BoW” all 100%
are BoW. Note that Keep(n) is always applied in the end after all other deformations.

Avg. ∆ IN1k-ZS
Cap Dset De Distil
Len Size CLUTR BERT

Intact captions 10.3 0% 27.7 29.6

RmTopFreq(0) 10.3 0% 27.8 29.1
RmTopFreq(500) 3.4 -10.3% 29.3 30.3
RmTopFreq(1000) 3.2 -19.6% 29.1 30.2
RmTopFreq(2000) 3.1 -34.1% 28.3 29.1
RmTopFreq(4000) 3.4 -53.6% 26.8 27.5
RmTopFreq(8000) 4.7 -73.5% 21.4 23.3

Table 5: Ablation for removing different number of most frequent words. We explore different paramters for
RmTopFreq(t) operation in the default deformation. We can see that removing too many frequent words reduces the
dataset size which degrades the results. The average caption length increases for t > 2000 since the overall dataset
size decreases but the 10% captions are always intact.

Ablations: We explore freezing one of the encoders in Table 3. We find that a frozen text encoder does not work
better with intact captions than BoW captions despite being trained on natural language sentence during self-supervised
training. Table 4 shows the results for ablating different BoW construction techniques. The table shows that even when
100% BoW captions are used the drop in accuracy is not significant. Moreover, keeping 10% captions intact boosts
the performance. We study the effect of removing different number of most frequent words from the base vocabulary
in Table 5. We also explore the effect of epochs, memory bank size, and text encoder architectures/initializations
on an intact captions model in Table 6. We can see that memory bank size = 8k and epochs = 20 work well for
all architectures, and longer training only helps marginally. Thus, we chose these as the default parameters for all
experiments. We chose DistilBert and DeCLUTR for other experiments since they are respectively the best and the
worst.

3.3 Semi-aligned Learning

As we observed in previous section, the zero-shot performance of the model does not degrade by using BoW captions.
Motivated by this observation we propose to generate BoW pseudo-labels for images that do not have any captions
and add them to the training dataset. This setting is inspired by semi-supervised learning [47] where unlabeled images
are also included in training by pseudo-labeling them. In addition to the fully aligned CC dataset [40] of size ∼ 3M,
we use 3M randomly sampled images from ImageNet-21k [38] during this experiment. Since only a part of the data
is aligned, we call this setting “semi-aligned”.
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Memory Epochs IN1k-ZS

DeCLUTR DistilBERT

8k 10 25.9 28.0
8k 20 27.7 29.6
8k 30 28.2 29.8
8k 40 28.5 30.3

16k 10 25.8 27.4
16k 20 28.5 29.4

RoBERTa BERT

8k 10 25.3 26.5
8k 20 28.2 28.5

16k 10 25.2 25.3
16k 20 27.3 28.0

Table 6: Ablation of training hyperparameters. All models are trained with intact captions. We can see that 8k
memory bank size and 20 epochs work well for all inits with DistilBERT being the best, and longer training only leads
to marginal gains. Thus, we select 8k memory bank size and 20 epochs as the default setting for most experiments.

Aligned Un- Epochs IN1k
aligned ZS

Aligned-only (ours) 2.3M - 20 30.1
Aligned-only (ours) 2.3M - 40 30.7
CLIP 15M - 32 31.3

RmTopRand 2.9M 3M 10 30.5
RmTopMaxCount 2.9M 3M 10 31.1
MaxCount 2.9M 3M 10 31.4
WeightedCount 2.9M 3M 10 31.5

Table 7: Semi-aligned. We explore using additional images without captions (unaligned). We experiment with various
word ranking strategies for creating BoW pseudo caption and find that WeightedCount works the best and is on-par
with the CLIP model that is trained with 15M aligned data. A model from the first row is used to for pseudo-labeling.
We also compare with a longer trained baseline for a fair comparison.

We use the DistilBERT model with 30.2% on the IN-1k-ZS benchmark for pseudo-labeling. We selcted this model
randomly from one of the 4 models trained with above configuration. It is a BoW model trained with default hyperpa-
rameters. The pseudo-labels are only calculated once at the beginning of the training after which they remain frozen.
The results are reported in the Table 7. The total number of iterations used by a semi-aligned model are larger since it
relies on an aligned-only model. Thus, we compare semi-aligned models with a longer trained baseline.

4 Related Works

Our work is mainly related to vision and language pretraining, zero-shot learning, and text as supervision works which
are described below, but our work also shares similarities with other areas. Our key idea of text deformation is also
studied in [41] and [42] for natural language understanding tasks. Our proposed semi-aligned learning is inspired from
the idea of self-training [47] in semi-supervised learning literature [5]. Also, related is the work [20] which utilizes
both paired and unpaired data for the task of image captioning. Finally, since our pre-training objective essentially
optimizes cross-modal retrieval between images and text, our work is related to cross modal retrieval [21].

Vision and language pre-training (VLP): Here, the goal is to learn generalizable cross-modal, vision and language,
(V&L) features during pre-training and then fine-tune them for complex downstream V&L tasks. A BERT-style [10]
transformer model is used to deeply fuse the representations from both modalities. VisualBERT [27] does early fusion
while, ViLBERT [32] delays fusion until later layers. ALBEF [26] uses contrastive loss to improve alignment between
features before fusing them. [2] improves the masked-language-modeling component of pre-training. [33] 12-in-1
improves the finetuning stage by multi-task training on 12 tasks. U-VisualBERT [28] explores removing paired vision
and language data during pre-training. [13] explores the extent to which the model uses cross-modal cues by deforming
individual modalities. See [4] for a more comprehensive overview of the words in this area. Unlike works in this area,
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we do not do complex modality fusion which requires parameter sharing between both modalities and focus on of
zero-shot learning for evaluation.

Zero-shot learning (ZSL): Traditionally, zero-shot learning implies a model that can classify classes without seeing
any examples (zero shot) during training [45]. Initial works like DAP [24], used semantic attribute classifiers, but
later works like DeViSE began aligning the image and word features [14, 43]. See [45] for a complete overview of
this area. Our work is most similar to [43] where unsupervised image features are projected in the representation
space of unsupervised word embeddings. Unlike traditional zero-shot learning, CLIP [37] defines it as generalization
to novel image recognition datasets where it shows impressive performance by learning representations from scratch
with a large-scale (400M) dataset of image and caption pairs. ALIGN [18] further scales-up the pre-traininig dataset
to noisier 1B data points. [7] proposes a distillation based loss to better handle the noise in the dataset. Efficient-CLIP
[44] is a concurrent work that uses text-only data to perform unimodal MLM task. DeCLIP [1] is another concurrent
work that uses multiple unimodal SSL losses in addition to removing the noise from negatives with the help of nearest
neighbors [11, 22]. Our training and evaluation is similar to [37, 1, 18], but our goal is to shed more light on the
supervision contained in aligned captions.

Text as supervision: Our work explores natural language sentences as a source of supervision. The work in [19]
uses the objective of predicting the BoW tags associated with an image to train visual features. This work is extended
in [25] to predict n-grams instead of individual words. VirTex [9] uses generative modeling of text as a data-efficient
way of training visual features. CLIP [37] improves upon these works by using a contrastive loss that converges faster.
We show that natural language sentences can be turned into BoW without hurting performance.

5 Limitations & Future Work

Our work mainly focuses on understanding which components of the natural language supervision are important. Few
directions which we could not explore in this work are as follows. What components of the text encoder architecture
make it invariant to input deformations? While [41] shows that even large-scale pre-training is invariant to word order
shuffle, we did not have the resources to verify it in our setting. Finally, limited gains from semi-aligned learning in
Table 7 indicate that it is a much harder task as compared to semi-supervised learning. All of the above limitations
are important avenues for future works. Specifically, improving semi-aligned learning with different architectures and
better pseudo-captioning techniques are important areas.

6 Conclusion

We investigate what components of the natural language supervision in aligned image-caption pairs is truly required
for zero-shot evaluation. We design various operators to deform captions and convert them into Bag-of-Words.
We find that training models with BoW captions instead of natural language captions does not noticeably hurt the
zero-shot classification performance. Furthermore, by carefully balancing the words in BoW we can even improve
the performance. We apply this insight to design a recipe for utilizing unaligned images to further boost the visual
concepts understanding. We use the model trained on aligned image-caption pairs to generate pseudo-captions BoW.
We then use this new data alongside the original fully aligned data for pre-training a visual recognition model.

Societal Impact: Since we use self-supervised models trained on large-scale datasets for initialization, our models
will inherit their biases. Specially, the text encoder is a large language model which has shown to learn the harmful
biases against certain social groups.
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MS-COCO
Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10

Zero-Shot
Visual N-Grams 8.7 23.1 33.3 5.0 14.5 21.9
Ours (BoW) 17.7 39.5 52.0 13.7 33.2 45.5
Ours (Intact) 23.0 48.2 62.2 19.0 42.0 53.8
CLIP 58.4 81.5 88.1 37.8 62.4 72.2

Finetune
Ours (BoW) 54.4 81.6 89.1 37.7 67.4 78.0
Ours (Intact) 55.8 82.5 89.8 38.9 68.3 78.8

Table 8: BoW vs Intact captions on retrieval evaluation. The task of caption retrieval is a harder task compared to
zero-shot classification. As a result, the BoW model results in a significantly worse performance compared to its intact
captions counterpart in the zero-shot setting. But, when the models are fine-tuned the gap between them is greatly
reduced. These findings are similar to those of [41, 28] which show that input deformations during pre-training do not
hurt the models when they are fine-tuned for downstream tasks. For Image to text retrieval with R@1, we see that the
gap between Ours (BoW) and Ours (Intact) is about 6 points but when both of them are fine-tuned the gap reduces to
about 1 point.

IN-1k-ZS
Avg-pooling [CLS]

RoBERTa Intact 28.3 28.3
BoW 28.7 28.9
∆ +0.4 +0.6

BERT Intact 28.4 28.1
BoW 28.2 28.4
∆ -0.2 +0.3

DeCLUTR Intact 27.9 27.9
BoW 29.1 28.9
∆ +1.2 +1.0

DistilBERT Intact 29.5 29.3
BoW 30.1 29.8
∆ +0.6 +0.5

Table 9: Average vs. [CLS] pooling: We explore the effect of using [CLS] pooling strategy to go from a list of tokens
to a sentence level embedding. Averarge pooling is the default strategy, but we show that switching to [CLS] does not
significantly change the results. The BoW models are still better than their intact counterparts by similar margins.

A Appendix

Implementation Details: We use PyTorch for implementation with SGD optimizer (weight decay = 0, momentum
= 0.9), batch size = 512, and a cosine learning rate decay with initial LR = 0.003. The model is trained on 8 A100
GPUs which requires 18hrs for 20 epochs of full 2.9M CC dataset. The temperature is set to 0.02, and the default
memory bank size is 8192 (∼ 8k). We use a linear layer on top of the vision encoder to match the dimension of its
embeddings with the text embeddings. Since the dimension of text encoder embeddings is typically 768, the linear
layer is 2048 × 768 since we ResNet-50 as the vision encoder. For the creating a single sentence level embedding
from a list of tokens, we use average pooling. We also perform an ablation over using [CLS] pooling but we did not
find any noticeably difference in performance. The comparison between average and [CLS] pooling methods can be
found in Table 9.

BoW vs intact captions on retrieval evaluation: Despite being image-to-text retrieval at the core, zero-shot eval-
uation only tests the ability of a model to distinguish between a set of categories or nouns. This is easier compared
to the task of cross-modal (image-to-text and text-to-image) retrieval on a dataset like MS-COCO [29] where the de-
scriptions can be much more complex. Thus, it is reasonable to expect a model trained on BoW text descriptions to
perform worse than its intact counterpart in the zero-shot retrieval setting. We indeed see this behaviour in Table 8
but, we also see that when both models are fine-tuned the gap between them shrinks greatly. This finding is consistent
with U-VisualBERT [28] where a vision-and-language model without any paired data has comparable performance to
the one that uses paired data for fine-tuning evaluation. Further, [41] shows that transformer based language models
are robust to word order shuffle during pre-training for fine-tuning evaluation.
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Figure 5: Generating pseudo BoW captions: We illustrate the process of constructing pseudo BoW captions for
unaligned images in this figure. A fully aligned dataset, CC [40], to train the vision and text encoders and to obtain the
intact captions used for retrieval. We find nearest neighbors in the text domain for different crops of a given unaligned
image. The retrieved captions of all crops are then aggregated into a BoW. The words are then ranked according to
one of the strategies mentioned in Section 2.3 of main text, and a few top words (4 in this figure) are chosen as the
pseudo BoW caption. We used the WeightedCount strategy in this figure.

ImageNet Food101 CIFAR100 Sun397 DTD Pets Caltech101 Flowers Mean

RoBERTa Intact 28.3 (±0.4) 17.8 (±0.3) 31.1 (±0.9) 38.6 (±0.2) 23.2 (±1.1) 17.5 (±0.7) 71.7 (±1.7) 12.8 (±0.6) 30.1
BoW 28.7 (±0.8) 15.3 (±0.7) 32.8 (±2.7) 35.0 (±0.7) 25.6 (±1.0) 22.8 (±0.8) 71.2 (±1.2) 14.2 (±0.9) 30.7
∆ +0.4 -2.5 +1.7 -3.5 +2.4 +5.3 -0.5 +1.4 +0.6

BERT Intact 28.4 (±0.2) 18.0 (±0.4) 30.9 (±1.4) 35.1 (±0.5) 26.0 (±0.6) 20.4 (±0.8) 70.5 (±1.9) 16.1 (±0.8) 30.7
BoW 28.2 (±0.1) 17.2 (±0.8) 30.8 (±2.0) 32.4 (±0.2) 30.5 (±1.1) 26.5 (±1.0) 66.8 (±1.2) 16.6 (±0.7) 31.1
∆ -0.2 -0.8 -0.0 -2.7 +4.5 +6.0 -3.8 +0.5 +0.4

DeCLUTR Intact 27.9 (±0.2) 17.6 (±0.6) 28.5 (±1.1) 36.0 (±0.3) 24.3 (±1.2) 19.7 (±0.8) 69.3 (±1.3) 15.5 (±0.8) 29.9
BoW 29.1 (±0.2) 17.2 (±0.5) 32.3 (±1.7) 33.8 (±0.2) 31.7 (±1.1) 24.9 (±0.4) 68.4 (±3.0) 19.1 (±0.7) 32.1
∆ +1.2 -0.4 +3.8 -2.1 +7.4 +5.2 -0.9 +3.5 +2.2

DistilBERT Intact 29.5 (±0.1) 17.2 (±0.4) 30.8 (±1.4) 38.0 (±0.4) 23.6 (±1.3) 20.8 (±1.0) 72.3 (±0.7) 13.5 (±0.6) 30.7
BoW 30.1 (±0.1) 17.1 (±0.5) 33.7 (±1.7) 36.3 (±0.2) 29.9 (±1.0) 25.9 (±1.0) 72.0 (±0.6) 15.6 (±0.6) 32.6
∆ +0.6 -0.1 +2.9 -1.8 +6.3 +5.0 -0.2 +2.1 +1.9

Table 10: Detailed zero-shot results: We report detailed zero-shot results here. These results were used to generate
the Figure 3 of the main text. We can see that the results are consistently improved for all architectures on Pets by
minimum ∼ 5 points and on DTD by minimum ∼ 2 points. On average, BoW is better than using intact captions by
0.6 points for RoBERTa, 0.4 points for BERT, 2.2 points for DeCLUTR, and 1.9 points for DistilBERT. This shows
that the model’s improvements with BoW are relatively higher compared to using intact captions.

Transfer linear evaluation: Similar to [37, 16, 6], we also evaluate the transferability of our trained models by
training linear layers on top of frozen vision encoders. The training and evaluation procedure is exactly the same as
MSF [22], and the results are reported in Table 11.
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Figure 6: Examples of pseudo BoW captions: We show some examples of the pseudo BoW captions generated by
the WeightedCount strategy. Each row contains images from a single category. The actual category name is listed on
the left, at the start of each row, and the pseudo captions are below each image.
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Food101 CIFAR100 Sun397 DTD Pets Caltech101 Flowers Mean

BYOL [16] - 75.3 78.4 62.2 75.5 90.4 94.2 96.1 81.7

RoBERTa Intact 77.7 (±0.2) 78.6 (±0.4) 66.4 (±0.1) 76.8 (±0.2) 90.6 (±0.1) 94.9 (±0.1) 96.5 (±0.1) 83.1
BoW 77.5 (±0.0) 78.2 (±0.1) 65.6 (±0.1) 76.0 (±0.3) 91.0 (±0.3) 94.7 (±0.2) 96.3 (±0.1) 82.8

BERT Intact 77.7 (±0.3) 79.1 (±0.3) 66.1 (±0.1) 76.7 (±0.2) 90.6 (±0.2) 94.8 (±0.0) 96.7 (±0.1) 83.1
BoW 77.8 (±0.2) 78.6 (±0.4) 65.5 (±0.0) 76.3 (±0.2) 91.1 (±0.1) 94.8 (±0.1) 96.4 (±0.1) 82.9

DeCLUTR Intact 77.9 (±0.1) 78.9 (±0.3) 66.3 (±0.1) 77.0 (±0.2) 90.7 (±0.1) 94.8 (±0.1) 96.4 (±0.1) 83.1
BoW 77.7 (±0.1) 78.5 (±0.2) 65.7 (±0.1) 76.2 (±0.3) 90.9 (±0.1) 94.6 (±0.2) 96.4 (±0.0) 82.8

DistilBERT Intact 77.8 (±0.2) 78.8 (±0.3) 66.5 (±0.1) 76.3 (±0.3) 90.3 (±0.8) 94.8 (±0.1) 96.5 (±0.2) 83.0
BoW 77.6 (±0.2) 78.2 (±0.3) 65.7 (±0.1) 75.8 (±0.3) 90.9 (±0.3) 94.7 (±0.2) 96.5 (±0.1) 82.8

Table 11: Transfer linear evaluation: We evaluate the models by training linear probes over frozen vision encoders.
We see little difference between using BoW and intact caption models. We also see little effect of the text encoder’s
architecture over the performance of the vision encoder. Note that unlike the zero-shot setting, only the vision encoder
is used during evaluation. Finally, we see that both BoW and intact caption models are better than the BYOL [16]
initialization. This suggests that natural language supervision improves the quality of the visual features.
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