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Cube-Evo: A Query-Efficient Black-Box Attack on
Video Classification System

Yu Zhan , Ying Fu , Liang Huang, Jianmin Guo , Heyuan Shi , Houbing Song , and Chao Hu

Abstract—The current progressive research in the domain of
black-box adversarial attack enhances the reliability of deep neural
network (DNN)-based video systems. Recent works mainly carry
out black-box adversarial attacks on video systems by query-based
parameter dimension reduction. However, the additional temporal
dimension of video data leads to massive query consumption and
low attack success rate. In this article, we embark on our efforts to
design an effective adversarial attack on popular video classifica-
tion systems. We deeply root the observations that the DNN-based
systems are sensitive to adversarial perturbations with high fre-
quency and reconstructed shape. Specifically, we propose a system-
atic attack pipeline Cube-Evo, aiming to reduce the search space
dimension and obtain the effective adversarial perturbation via
the optimal parameter group updating. We evaluate the proposed
attack pipeline on two popular datasets: UCF101 and JESTER.
Our attack pipeline reduces query consumption and achieves a high
success rate on various DNN-based video classification systems.
Compared with the state-of-the-art method Geo-Trap-Att, our
pipeline averagely reduces 1.6× query consumption in untargeted
attacks and 2.9× in targeted attacks. Besides, Cube-Evo improves
13% attack success rate on average, achieving new state-of-the-art
results over diverse video classification systems.

Index Terms—Adversarial examples, black-box attack, deep
learning, system testing, video classification.

I. INTRODUCTION

IN THE past few decades, videos have become indispensable
media data with the development of applications, covering

a wide range of fields, such as marketing, entertainment, and
social networks. Some reliable statistics are that Facebook’s
video content page receives over 8 billion daily views, and the
YouTube video platform will have 2.3 billion users worldwide
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by 2023. Therefore, how to manage massive video data and
improve service quality has become a popular research topic.

The deep neural network (DNN)-based video systems are
widely deployed due to the excellent performance. However,
recent work [35] has exposed their security issues with mali-
cious adversarial examples, which can make DNN-based video
systems output wrong results with high confidence (referred
to as adversarial attack). This introduces a series of threats to
some popular applications, such as face recognition [47], action
classification [12], and video surveillance [31]. In the adversarial
scenario, the potential adversary aims to upload a carefully
tampered and indistinguishable adversarial video to the victim
video system. Such videos will make the victim system output
arbitrarily wrong predictions (referred to as untargeted attack)
or predefined labels of the adversary (referred to as targeted
attack). In this article, we perform the real-world attack in a
black-box way, where the adversary cannot access the struc-
ture and parameters of the victim video system. On one hand,
real-world adversarial examples will reveal urgent problems for
video classification systems. On the other hand, they can help
researchers improve the robustness [14], [15], [16], [27] of these
DNN-based systems.

The existing black-box video adversarial attacks have two
main types: transfer attack [8], [23], [41], [42] and query at-
tack [20], [24], [40], [44], [49]. Among them, query-based
attacks are widely adopted and performed by the gradient es-
timation methods, which rely on multiple queries to find the
expected gradient with maximal similarity to the true gradient
of the system. These methods can effectively synthesize adver-
sarial videos with high success rates, such as basic iterative
method [22]. Unfortunately, as observed in [6], the number
of queries highly depends on the dimension of input data and
the number of perturbed pixels. This makes adversarial attacks
for videos much harder than images because of the temporal
information, e.g., a sequence of static images. In other words,
the adversary needs to cost more queries when attacking video
systems, and this behavior may be detected by the security
mechanism. Although the existing works tried to improve the
query-based gradient estimation methods by the data dimension
reduction mechanism, attacking video systems still face the
challenge of huge query consumption with a low attack success
rate.

Researchers have also put forward valuable observations to
improve attack efficiency. For example, the tiling strategy [19]
demonstrates that image pixels with near coordinates have a
similar adversarial gradient. Based on that, splitting the image
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as multiple squares and estimating the gradient of each square
instead of each pixel will achieve higher efficiency. Al-Dujaili
and O’Reilly[1] and Moon et al.[30] utilize a similar strategy
that divides the image into coarse grids to search for adversarial
perturbations locally. In summary, this implies that DNN-based
(e.g., convolution neural network) image systems are sensitive to
square-shaped adversarial perturbations because they conform
to the 2-D convolution filters. Furthermore, Yin et al. [48] report
that high-frequency perturbations easily affect DNN-based sys-
tems. This inspires various attacks [1], [30] to construct corners
of intersecting spheres, such as inserting bound values of data
domain (e.g., [0, 255]d for images) or randomly selecting the
perturbation value from the componentwise value sets (e.g.,
{−10, 10}). In this article, we propose a black-box adversarial
attack pipeline Cube-Evo for DNN-based video classification
systems to address the shortcoming of the huge number of
queries. Cube-Evo is devoted to searching for adversarial video,
using as few queries as possible while ensuring the perturbation
imperceptibility. Specifically, we first exploit the cube-based
partition strategy to partition the parameter group of the original
video. Then, we characterize the parameter group into two
factors: position and magnitude. The position parameter group
indicates that the group needs to perturb, and the magnitude
parameter group decides the specific perturbation value. We con-
tinuously perform the random-search-based evolution scheme
to search the optimal position parameter group and update
the magnitude group by uniformly sampling the distribution
from the component set. For detail, the random-search-based
evolution scheme aims to improve the effectiveness of the pop-
ulation set. We first initialize the population set, which contains
a collection of position and magnitude parameter groups, and
exploit a hybrid and sequential approach of recombination,
mutation, and selection operations to improve the population
quality. During searching, we update the perturbation values by
randomly sampling the componentwise sets and unifying them
as a whole pixel channel. If the binary position equals 1, we
will update the corresponding perturbation value in this way,
otherwise not. We perform the attack pipeline until the query
budget is exceeded or the adversarial examples are obtained
in the population set, which can successfully attack the victim
video classification system.

We conduct our attack pipeline on two popular datasets:
UCF101 [34] and Jester [28] datasets. Extensive experiments
demonstrate that our scheme outperforms the existing state-
of-the-art (SOTA) methods Geo-Trap-Att [24] by reducing the
fewer average number of queries (ANQ) by 37% in untargeted
attack and 66% in targeted attack and improves the average
attack success rate (ASR) by 13%. Compared to the transfer-
based attack, Cube-Evo achieves the comparative attack result
and low local resources cost. Moreover, experiments show that
our attack scheme is more robust to different video systems, and
the generated perturbations are more dispersed, which is not
easily observed by human eyes. Our main contributions can be
summarized as follows.

1) Our proposed scheme roots in the observations that video
classification systems are sensitive to the reconstructed-
shape adversarial perturbations. Continuously, we design

a cube-based tiling strategy with a sliding mask to simul-
taneously partition video pixels at the same location in
consecutive frames.

2) We design an effective attack pipeline for video classifi-
cation systems. We first partition the original perturbation
search space into cube-based parameter groups. Then, we
exploit the random-search-based evolution algorithm for
searching effective groups and updating their values with
componentwise sets.

3) We extensively evaluate our attack pipeline on two popular
datasets, i.e., UCF101 [34] and JESTER [28], based on
four video classification systems, i.e., C3D [36], Slow-
Fast [13], TPN [45], and I3D [4], with different met-
rics. Compared with the SOTA methods [24], [40], [49],
experimental results show that our method can greatly
improve the attack efficiency and synthesize adversarial
perturbations with better imperceptibility.

The rest of this article is organized as follows. We introduce
the related work in Section II and formulate our problem in
Section III. Section IV describes our proposed scheme. We
evaluate the performance of our scheme in Section V. Finally,
Section VI concludes this article.

II. RELATED WORK

A. Black-Box Adversarial Attack on Image Systems

There are three main types of image black-box adversarial
attacks. The first is to generate adversarial examples in the
pretrained local proxy system and then transfer to the victim
system [7], [26], [50] (referred to as transfer attack), but the
attack performance is unsatisfactory. The second is to estimate
the gradient by querying the victim system [6], [19] (referred to
as query attack). The third is the combination of the above two
schemes. The adversary aims to search for the cross subspace
of the local proxy system and the victim system to achieve
the attack performance [9], [17], [46] (referred to as a hybrid
attack), but it may also cost a lot of local computation resources.
In this article, we focus on the query attack because of its
low computation cost while achieving a high attack success
rate.

As for query attack works, Ilyas et al. [19] observe that
pixels with similar coordinates have similar gradients. Thus,
they design a square-based tiling strategy to divide the image
into a collection of squares to reduce the gradient estimation
dimension. Bhagoji et al. [3] use principal component analysis
and Tu et al. [37] exploit the autoencoder to search the potential
and lower dimensional parameter subspace for efficient gradient
estimation. An alternative type of query attack is the random-
search-based scheme with more promising results. Croce and
Hein [10] propose randomly selecting the modification pixels in
the range of edges that vary widely and are not aligned with the
axis. Andriushchenko et al. [2] propose randomly selecting local
square locations and updating their values by componentwise
set. Croce et al. [11] propose a general framework based on the
random search, leveraging perturbation parameters of positions
and values to achieve sparse attack (i.e., perturb partial image
pixels). Meunier et al. [29] combine the tiling strategy with the
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random search method while adding perturbations to all the pix-
els, which may lead to the low imperceptibility of perturbations.
Although random-search-based methods perform better than
gradient estimation methods, their direct application in the video
domain is hindered by the high-dimensional features of video
data. In this article, we first attempt to design a cube-based attack
tiling strategy in adversarial video attacks to exploit the temporal
and spatial pixels and reduce the parameter space dimension.
Inspired by Croce et al. [11], we characterize the parameter space
of perturbations into two types (magnitudes and positions). We
explore the evolution strategy with the high-frequency pertur-
bation to achieve comparative attack performance.

B. Black-Box Adversarial Attack on Video Systems

Although recent works have explored adversarial video at-
tacks in the white-box setting [8], [39], they are not in line
with real-world application scenarios because of its loose at-
tack restrictions, i.e., the adversary allows access to the full
parameters of the victim video systems. In the black-box setting,
the existing video adversarial attack works mainly adopt query-
based gradient estimation methods, which can be categorized
into two types. The first type leverages extra knowledge, such as
combining query-based methods with transfer-based methods or
training a local attack network for hybrid adversarial attacks. For
example, Jiang et al. [20] first obtain transferable perturbations
on local models and then correct adversarial gradients of each
frame with the query-based method. Yan and Wei [44] train
the agent model with a reinforcement learning framework and
estimate adversarial gradients only on keyframes. However,
these works consume huge local computation resources, mak-
ing the attack process inefficient. On the contrary, the second
type exploits the parameter dimension reduction mechanism to
achieve competitive attack performance with low computation
cost, i.e., without any local model or well-trained selector. Wei
et al. [40] perform the gradient search on the keyframes and
salient regions selected by the inheritance mechanism. Zhang
et al. [49] exploit the optical flow to reveal the relative motion
of regions between video frames for constructing an efficient
motion-excited sampler. Li et al. [24] employ standard geometric
transformation operations to reduce the search space and obtain
the low-dimensional structured parameter search space. In this
article, we first explore the random-search-based attack in the
video field and design an efficient attack pipeline for imple-
menting black-box query attacks without massive computational
costs.

III. PROBLEM FORMULATION

Let Fθ : V → YL be the victim video classification system.
F represents the mapping relationship with the training video
dataset V and the label space Y withL categories. θ is the system
parameter. We denote the query video clip as v ∈ RT×H×W×C ,
where T is the number of frames, and W,H , and C denote the
frame width, height, and color channel, respectively.

According to the adversary’s knowledge acquired from the
victim system, adversarial attacks can be divided into decision-
based attacks (the adversary can only obtain the top-1 label

from the system) and score-based attacks (the adversary can
obtain all the categories of prediction scores). We discuss the
score-based attack in this article. Given a query video clip v,
the victim system will output prediction scores for the label y
of video v, which can be assigned by the top-one output score,
i.e., arg maxl=1,...,LF l

θ(v) = y.
In this article, we consider a black-box setting scenario that the

adversary cannot access the system parameter θ. Given a query
video v, the potential adversary that aims to generate malicious
perturbation δ and synthesize visually indistinguishable adver-
sarial video vadv, i.e., vadv = v + δ, finally makes the system
output wrong. We mathematically formulate this problem as
follows:

argmin
δ

L (Fθ(vadv), yadv) s.t. ||vadv − v||∞ ≤ τ (1)

where L(·) is the objective function to measure the differ-
ence between the system’s output label score. yadv is the
adversarial label, which varies with attack targets. In partic-
ular, the untargeted attack tries to change the ground truth
label y predicted by the video classification system to an arbi-
trary label, i.e., arg maxl=1,...,L F l

θ(v) �= y. The targeted attack
is to change the predicted label to a specific label yt, i.e.,
arg maxl=1,...,LF l

θ(v) = yt. Note that the higher attack success
rate and fewer queries indicate better attack performance. In or-
der to achieve the imperceptibility of adversarial perturbations,
we utilize || · ||∞ norm with the perturbation budget τmax. Here,
the adversarial perturbation will be limited into [−τmax, τmax] by
the CLIP(·) function.

Based on the above settings, we summarize the goal of our
attack as follows.

1) Attack goal: The synthetic adversarial video vadv can fool
the video classification system Fθ to output the wrong
label, i.e., arg maxl=1,...,LF l

θ(v) �= y.
2) Query budget: The adversary should use as few queries

as possible to achieve the attack goal, i.e., query numbers
≤ Q, where Q is the query budget.

3) Distortion imperceptibility: The synthetic adversarial
video vadv is visually indistinguishable to the human eyes,
i.e., ||vadv − v||∞ ≤ τ , where τ is the perturbation budget.

IV. PROPOSED FRAMEWORK

In this section, we first introduce the overview of our black-
box attack framework, which is shown in Fig. 1. Then, we
describe the parameter dimension reduction mechanism based
on the cube-based partition and exploit the random-search-based
evolution algorithm to generate effective adversarial videos. Im-
portant symbols and corresponding definitions are summarized
in Table I.

A. Framework Overview

In this section, we describe our proposed framework for black-
box video adversarial attacks, called Cube-Evo. We first partition
the parameterized video pixels through the cube-based partition
strategy. Then, we initialize the perturbation magnitude param-
eter set Δ and the binary perturbation position parameter set Ω,
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Fig. 1. Illustration overview of our proposed attack pipeline. The content in the red line and red box will be executed multiple times until the attack success.

TABLE I
NOTATION AND DEFINITION

which is used to create the population set and P . Next, we start
running the iterative attack algorithm. We deploy the “random-
search-based evolutionary algorithm” for updating Ω and “uni-
formly sampling from {−τ,+τ}” for updatingΔ. For detail, the
“random-search-based evolutionary algorithm” first initializes
the population set P = {p1, . . ., pn|pi ∈ {Ωm,Δm}}. Then, it
randomly selects two individuals pj , pq and pb from the popula-
tion set P , where pj , pq �= pb, to exploit the binary differential
recombination and generate the offspring pr. The newly gener-
ated offspring pr continues to mutate for generating pm and then
obtain pm(Ωm). The magnitude parameter group pm(Δm) will
be updated according to the binary parameter group pm(Ωm)
via “uniformly sampling from {−τ,+τ}” and inherited from
pb(Δb). Continuously, we can synthesize the adversarial per-
turbation δm via pm and obtain the current iteration adversarial
video vm

adv = v+δm. Finally, we can obtain the fitness value of
pm via querying the victim model with the current adversarial
video vm

adv. We select the best population individual pb and the
worst population individual pw via its fitness value for updating
the population set P . The algorithm will continuously run until

the attack succeeds, and we summarize the attack pipeline in
Algorithm 1.

B. Reducing Search Space Dimension for Query-Based Attack

As mentioned above, we start our attack by developing the
cube-based partition strategy to transform the original parameter
search space into a lower dimension space. Given a query video
v ∈ RT×H×W×C , we formally define the video pixel coordi-
nates as (x, y, t, c), where (x, y, t) represents the coordinates of
each pixel in the tth video frame and c is the color channel index.
Therefore, we can parameterize the video pixel coordinates as
the original parameter search space of adversarial perturbations,
such as φ ∈ RT×H×W×C .

To achieve the search space reduction, we construct the sliding
mask M with predefined stride S of size r × r × r × C to ex-
tract the temporal–spatial structure of the video pixels. Here, the
sliding maskM divides the original parameter search space into
multiple sets of partition groups. We denote the partition groups
as {φG(x,y,t,c)}K , forx ∈ {1, 2, . . . , P}, y ∈ {1, 2, . . . , Q}, and
t ∈ {1, 2, . . . , L}, where P = W−r

S + 1, Q = H−r
S + 1, L =

T−r
S + 1, c is the color channel index, and K is the number of

partition groups (K = 3136 in our experiment). To simplify our
algorithm, we follow the work [11] to characterize the parameter
partition groups φG into two groups representing perturbation
positions ΩG ∈ {0, 1}K and magnitudes ΔG ∈ RK×γ , where
γ denotes the number of elements in one partition group, i.e.,
γ = r × r × r × C. Intuitively, we decompose the process of
synthesizing adversarial perturbations into pairs of binary posi-
tion parameter group (i.e., ΩG) and magnitude parameter group
(i.e., ΔG). The binary position parameter decides whether there
is need to add the perturbation, and the magnitude parameter
decides the value of added perturbation.

According to the observation in [48] that the DNN-based
system is sensitive to the high-frequency adversarial perturba-
tion, we follow the simple and effective way [2], [30] to update
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Algorithm 1. Cube-Evo.

the value of adversarial perturbation by randomly selecting the
value +τ or −τ , where τ is the perturbation budget. For detail,
if the kth group value ΩGk

is equal to 1, the corresponding
kth parameter group ΔGk

will be uniformly updated with pixel
color channel index. Specifically, the value of the color chan-
nel is randomly sampling from the distribution {−τ, τ}, such
as ΔGk(c=1) = τ , ΔGk(c=2) = τ , and ΔGk(c=3) = −τ , where
ΔGk(c=1) = τ denotes the first color channel of all the pixels
in this group and is set as τ . Hence, we can formulate the update
process of the kth parameter group ΔGk

as follows:

ΔGk(c) =

{
Uniform({−τ, τ}), if ΩGk

= 1
0, otherwise

(2)

where c is the channel index and c = 1, 2, 3. Hence, given
a query video v, we can update the parameter ΔG by (2) and
strategically set partial parameters of ΩG as 1 and finally easily
synthesize the adversarial video vadv. Notice that our parameter
search space is reduced from RT×H×W×C to K. In the next
section, we will introduce the random-search-based evolution
algorithm to quickly find the optimal solution of ΩG .

C. Synthesizing the Adversarial Video via Parameter Groups

This section describes the parameter ΔG update process and
adversarial video v synthesis after the dimension reduction of

Fig. 2. Illustration of the update process for two parameters Ω and Δ, and the
synthesis of adversarial perturbations.

parameter search space. We present the update process in Fig. 2
and introduce the synthesis in detail as follows.

1) Population Initialization: Given the partition parameters
Ω and Δ, our goal is to find the most effective parameter group
for synthesizing adversarial perturbation δ from the population
set by continuously improving the quality of the population set.
Specifically, each individual of population setP contains two pa-
rametersΩ andΔ, such asP = {p1(Ω1,Δ1), . . ., pn(Ωn,Δn)},
where n is the size of population set. All the parameters of
the individual population are initialized by zero matrices, i.e.,
none of the pixels is perturbed. In the population initialization
process, we update each population candidate by randomly
changing d bits of the parameter Ω from 0 to 1 and updating
the value of corresponding parameter Δ by (2). For instance,
if the ith group of Ωi is initialized as 1, then update the ith
group of Δi via (2), otherwise equal to 0. Finally, we synthesize
the corresponding adversarial perturbation and video of each
population candidate and make the fitness value evaluation by
querying the victim video classification system. We denote the
fitness value evaluation function as g(p) = L(Fθ(vadv), yadv),
where L is the measure similarity function, e.g., cross-entropy
function. Among the population set P , we denote the individ-
ual population with the best fitness value as pb and the worst
individual population as pw.

2) Binary Parameter Differential Recombination: The popu-
lation set diversity is the most critical element of the algorithm’s
ability for effective parameters. We consider two mainstream
evolution strategies to optimize the parameter group Ω: 1) ge-
netic algorithm (GA) and 2) differential evolution (DE) algo-
rithm. The main difference between these two strategies is that
the GA achieves the offspring diversity with the binary encoding
via the uniform crossover operation, e.g., uniformly selecting
bits from two binary inputs pj(Ωj) and pq(Ωq) to synthesize
a new candidate pr(Ωr). Hence, we first randomly select two
individualspj andpq from the population setP , wherepj,q �= pb.
Subsequently, we run the uniform recombination operation on
Ωj and Ωq by randomly selecting each bit to generate the off-
spring po(Ωo). We perform an additional step to simultaneously
retain the optimal element of the best population pb(Ωb) and the
new offspring po(Ωo) generated by pj(Ωj) and pq(Ωq). Hence,
we can generate the final recombination offspring pr, and we
formally define the kth group of the parameter pr(Ωk

r ) as

pr
(
Ωk

r

)
= pb

(
Ωk

b

)⊕ po
(
Ωk

o

)
(3)

where⊕ denotes the XOR operator. Moreover, the corresponding
magnitude parameter group pr(Δr) is updated via (2) if pr(Ωk

r )
is altered from 0 to 1, otherwise inherited from pb(Δb). We
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define the kth group of the parameter pr(Δk
r ) as

pr(Δ
k
r ) ={

Uniform({−τ, τ}), if pr(Ω
k
r ) = 1 and pb(Ω

k
b ) = 0

pb(Δ
k
b ), Otherwise

.

(4)

3) Mutation and Selection: Notice that the offspring gener-
ated only by uniform crossover is in low diversity. The mutation
operation in DE encodes the real number space and realizes
the diversity of offspring through the mutation operation, e.g.,
randomly changing the partial bits of pr(Ωr) from 0 to 1 while
we perform in the binary space. Since mutation operation is
the critical component of the evolution strategy for population
diversity, one recent work [38] proposed to combine the uniform
crossover and mutation to achieve richer offspring diversity.
Inspired by the DE algorithm and the GA, we obtain the optimal
binary parameter Ω through the uniform crossover and mutation
in a hybrid and sequential manner. We randomly select fraction
value u of pr(Ωr) (i.e., d = 5 groups in our experiment) and
change it from 0 to 1, where the kth group pr(Ω

k
r ) is not equal

to 1. Finally, we update the worst pw or best pb individual
population of the population set by the newly synthesized off-
spring pm. The fundamental idea of the evolution algorithm is
to make the optimal individual with better fitness value survive
in the population set. We run the selection operation to update
the worst fitness population pw with pm if g(pm) < g(pw) and
improve the population quality. We perform the algorithm until
the output pb, which can synthesize effective adversarial videos
(i.e., successfully attacking the video classification system).

V. EVALUATION

A. Datasets and Metrics

To evaluate the performance of our Cube-Evo black-box
adversarial attack, we introduce two popular datasets i.e.,
UCF101 [34] with 13 320 videos and 101 human action cate-
gories (e.g., Breast Stroke, Brushing Teeth, and Boxing Punch-
ing Bag) and JESTER [28] with 148 092 videos and 27 ges-
ture action categories (e.g., Rolling Hand Forward, Shaking
Hand, and Swiping Left). We follow the work [24] to randomly
select one correct prediction query video from each category
in UCF101 [34] and randomly select four correct prediction
query videos from each category in JESTER [28] because it
has less number of categories. In other words, we select 101
and 108 query videos from the UCF101 and JESTER datasets
for attacking, respectively. For targeted attack, we randomly
choose a target class for each video. We adopt three widely used
metrics to measure the performance of our black-box adversarial
example attack. The first metric is the ASR, i.e., the average
success rate of attack within the query and perturbation budget.
The second metric is the ANQ, i.e., the average queries number
of attacks on all the query videos. The higher the average success
rate and lower the queries, the better the attack performance.
The third metric is the perceptibility (PER) to measure the
imperceptibility of the synthesized adversarial perturbation, i.e,

TABLE II
PERFORMANCE OF FOUR VIDEO CLASSIFICATION SYSTEMS

PER =
∑

i=1 |vadv − v|i. The lower the PER, the better the
imperceptibility of the synthesized adversarial video.

B. Implementation Detail and Baseline

We carried out the implementation on PyTorch platform with
Intel(R) Core(TM) i7-9700 CPU@3.00 GHz and two NVIDIA
Geforce RTX 2080Ti. We take four typical video classification
systems C3D [36], SlowFast [13], TPN [45], and I3D [4] as the
victim video classification systems, and we report the classifi-
cation performance of four video systems in Table II.

Regarding hyperparameters, we set the maximum adversarial
perturbation budget τmax as 10 and start employing the flicker
loss [32] as our objective function. r and s in Section IV-B are
used to ensure the size of the mask and sliding stride, and we
set s = 4 and r = 4 according to our empirical result. We set
the number query budget as 60 000 for untargeted attacks and
100 000 for targeted attacks for computation efficiency. We set
population size p as 10, the number of altering groups d = 5,
and the mutation fraction value u = 0.005.

We compare our proposed attack pipeline to three SOTA
methods for performance comparison: 1) Heuristic-Att [40]
performs the inheritance mechanism to ensure the keyframes,
and we exploit [18] to detect the saliency region; 2) Motion-
Sampler-Att [49] performs the motion-vector-accumulation-
based sampler to estimate the gradient, and we exploit the
TVL1 flow [5] method to obtain the motion information; and
3) Geo-Trap-Att [24] performs the standard geometric trans-
formation operation for gradient estimation, and we exploit the
translation-dilation operation. As mentioned above, our attack
pipeline consists of a cube-based partition strategy and an evo-
lution algorithm to reduce the parameter search dimension. We
provide empirical evidence that our practice can achieve better
attack performance by analyzing the following two baselines:
Cube-Bandit and Cube-Rand. Cube-Bandit is based on the ban-
dit gradient estimation method [19] widely used in black-box
adversarial video attacks [24], [49]. we exploit the upsampling
strategy to add the same noise in each cube-based-group pixels
instead of every video pixels. Cube-Rand randomly selects one
cube-based partition group to add componentwise adversarial
perturbation in each iteration. We summarize the following
research questions to construct the experiments.

1) RQ1. How is the attack performance of Cube-Evo com-
pared to other baseline methods?

2) RQ2. How is the attack stability of Cube-Evo affected by
the various impact factor?

3) RQ3. How is the quality of the adversarial videos gener-
ated by Cube-Evo?
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TABLE III
UNTARGETED ATTACK

C. Attack Performance of Cube-Evo

To fully evaluate the performance of our proposed attack
pipeline, we experiment with two attack types (i.e., untargeted
attack and targeted attack) to demonstrate the method’s perfor-
mance. We conduct it on four victim video classification systems
with two datasets and report the evaluation of the results under
three metrics (i.e., ASR, ANQ, and PER).

1) Attack Performance on Untargeted Attack: Table III re-
ports the untargeted attack performance under various attack
methods. Heuristic-Att and Motion-Sampler-Att obtain com-
petitive PER results which means that it can generate more
imperceptible adversarial perturbation. However, Geo-Trap-Att
achieves the best attack success rate with the fewest queries
number without breaking imperceptibility among the SOTA
methods. Hence, we focus on it, and we have the following
conclusion.

1) Compared with the Geo-Trap-Att, our proposed method
achieves a significant performance improvement with a
higher attack success rate and fewer queries. Specifically,
Cube-Evo reduces the ANQ by 2287 (i.e., reduced by
37%), while the average attack success rate increased by an
average of 3%. Our attack pipeline decreases the average
value of PER by 0.89, which leading less adversarial
perturbation.

2) When attacking SlowFast on the UCF101 dataset, we
noticed that Cube-Evo decreases the number of queries
by 1157 (i.e., improves the query efficiency by 68%).
Similarly, Cube-Evo decreases the number of queries
by 4653 when attacking I3D (i.e., improves the query
efficiency by 79%), while C3D and TPN only decrease
the number of queries by 4295 and 2916 (i.e., improve
the query efficiency by 32% and 19%, respectively). We
conclude that the SlowFast and I3D systems are more sus-
ceptible to reconstructed-shape adversarial perturbation
than other systems because they extract both the temporal
and spatial features through the 3-D convolution filters. A

similar conclusion can be found in attacking the JESTER
dataset. In other words, we consider that the C3D and TPN
systems have higher robustness, making these two systems
insensitive to adversarial perturbation.

3) Our methods Cube-Bandit and Cube-Rand achieve com-
petitive performance. For example, when attacking the
I3D system on the UCF101 dataset, Cube-Rand reduces
3273 queries, and Cube-Bandit reduces 2985 queries with
both achieving 98% attack success rate. In particular,
Cube-Rand achieves competitive results, which prove the
advancement of the cube-based strategy and the random
search algorithm.

4) We observe that Cube-Rand obtains the best impercepti-
bility adversarial attack among all the methods, i.e., the
value of PER is the lowest. Cube-Rand only selects one
group of added perturbations at each iteration. Hence,
the generated adversarial perturbations are sparse with
accompanied by higher perturbation consumption.

2) Attack Performance on Targeted Attack: Table IV shows
the targeted attack performance of our proposed attack pipeline.
Although the targeted attack is generally considered more com-
plicated than the untargeted attack, the performance of our
proposed attack pipeline shows more robustness performance.
For example, when comparing the degree of decrease from un-
targeted to targeted attack, Geo-Trap-Att increases the number
of queries by 29 669. In contrast, Cube-Evo only increases the
number of queries by 7984. Moreover, in attacking the TPN
system in the UCF101 dataset, Geo-Trap-Att achieved an attack
success rate of 36.84% with 77 958 queries. In comparison,
Cube-Evo achieved the attack success rate of 68.42% with only
34 819 queries, significantly improving the attack performance.
This demonstrates that Cube-Evo requires fewer ANQs and
achieves better attack performance. In addition, our method
Cube-Rand also shows the prospect attack performance, which
further proves the effectiveness of our method. In summary, the
experimental results show the superior performance of Cube-
Evo in the attack on video classification systems.
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TABLE IV
TARGETED ATTACK

TABLE V
ATTACK PERFORMANCE WITH DIFFERENT PERTURBATION BUDGET τMAX

3) Answer to RQ1: Compared with other approaches, Cube-
Evo attack pipeline is efficient in generating adversarial videos
in both the attack types, capable of drastically reducing the per-
formance of video systems with high success rates. Moreover,
two baseline strategies Cube-Bandit and Cube-Evo have also
shown promising performance.

D. Ablation Study

1) Effect of Different Perturbation Budget τmax: The authors
in [22] and [35] demonstrated that the magnitude of adversarial
perturbation can affect the attack performance. In this subsec-
tion, we report the impact of different adversarial perturbation
budgets τmax as follows. Among the SOTA methods, Geo-Trap-
Att achieves the best attack performance, and we select it as our
comparison method.

Table V reports the result of execution on various perturbation
budget τmax values on Geo-Trap-Att and Cube-Evo method, and
we have the following conclusion.

1) Geo-Trap-Att and Cube-Evo conform to the regularity
that when the value of τmax increases, the performance
of corresponding three indicators (i.e., ASR, ANQ, and
PER) will improve.

2) We notice that when τmax = 10, the ANQs for Geo-Trap-
Att and Cube-Evo are 19 372 and 77 348, respectively.
Moreover, when τmax = 8, the value of the average query
number in Cube-Evo and Geo-Trap-Att increased by 5225
and 10 083, respectively. Cube-Evo should be more sus-
ceptible to the value of τmax, since the value of adversarial
perturbation is sampled from {−τmax, τmax}. It turns out
that Cube-Evo is more robust than Geo-Trap-Att. A similar
conclusion can be obtained in the line of τmax = 16.

3) We observe the implementation of the untargeted attack on
the PER metric and demonstrate the prospect of Cube-Evo.
For example, when the value of τmax = 10, the average
values of PER of Geo-Trap-Att and Cube-Evo are 8.95
and 5.98, respectively. When τmax = 16, the PER value
of Geo-Trap-Att increased by 4.34, while Cube-Evo only
increases by 1.05. These observations conclude that fewer
parameter sets will be selected for perturbation when
our proposed attack pipeline obtains a larger perturbation
budget.

2) Hyperparameter Setting (r, s): Before setting the param-
eters to s = 4 and r = 4, we perform a grid search on the
parameters r and s. Here, we randomly select 20 query videos on
the JESTER dataset with the I3D model to test the performance
of the targeted attack. Note that the sliding maskM that we set in
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TABLE VI
GRID SEARCH ON HYPERPARAMETERS (r, s)

our article finally divides the video pixels into partition groups.
We can obtain different partition group policies by adjusting the
step size s and the size r of the sliding mask M, and similar
schemes are also discussed in [43]. When s < r, the obtained
groups will contain the overlapped pixels, and the nonoverlapped
group will be obtained when s ≥ r. We present the grid search
results with the above two partition schemes through Table VI
and summarize the following conclusions.

1) Intuitively, the attack effect of the nonoverlapping param-
eter partition group is generally better than that of the
overlapping parameter partition group. This conclusion
differs from the work on image black-box attack [2], which
exploits the random selection scheme of square-shaped
pixels in the image black-box adversarial attack (i.e.,
overlapping parameter group attack).

2) In the nonoverlapping parameter group setting, r and s are
smaller, and the number of partition parameters is larger,
e.g., tilling= 200 704 is the largest when r = 1 and s = 1.
Conversely, the larger r and s, the smaller the number of
parameter groups to be partitioned, e.g., tilling = 392 is
the smallest when r = 8 and s = 8. We find that when
r = 4, s = 4 can simultaneously achieve competitive ASR
and ANQ results and achieve the best PER. We consider
that when tilling = 3136, Cube-Rand obtains sufficient
parameter search space. When tilling= 392, the parameter
search space is insufficient, leading to a larger PER value.

3) In the overlapping partition strategy, the optimal ASR
and ANQ results are achieved when s = 2 and r = 4. We
believe that the optimal attack efficiency can be achieved
when r = 4, which is consistent with the results in the
nonoverlapping partition strategy. We conclude that the
video classification system mainly extracts four consecu-
tive frames of the video and 16 pixels (r = 4) in the same
position of the corresponding frame to achieve the feature
extraction of the video.

TABLE VII
ATTACK WITH DIFFERENT SEED

3) Random Seed for Attack Influence: We consider the ran-
domness of the code program, which will cause fluctuation in
the attack performance. Hence, we report the statistical results
on the different random seeds of the program after running
the attack ten times. We collect the average result (AVG),
standard deviation (SD), and standard error (SE) and report
the result in Table VII. Cube-Evo receives statistically fewer
queries and higher attack success rates than those of the baseline
methods.

4) Local Resource Consumption: We implement the
transfer-based method in our experiments on the JESTER
dataset and I3D with the targeted attack. We show the
comparison attack results in Table VIII and present the related
local resource consumption (e.g., the number of the local model
parameters size, GPU cost, and consumption time in every
iteration). Patch-Att and Keyframe-Att require more local
resources and consumption time since they need to compute
the backward gradient or train a reinforcement learning agent
in each iteration to enhance the attack performance. Compared
to the transfer-based attack, Geo-Trap and Cube-Evo exploit
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Fig. 3. Adversarial video (six frames) synthesized by various adversarial attack methods. (Attack type: untargeted attack, victim video classification system: I3D
and dataset: JESTER).

TABLE VIII
LOCAL RESOURCE CONSUMPTION COMPARED TO TRANSFERABLE-BASED

METHODS

the geometric transformation operation to reduce the search
dimension, which is low-cost and easy to deploy.

5) Adversarial Attack Against Defense Mechanism: Defense
mechanisms against neural networks are very important in
evaluating attack performance. Overall, all the approaches to
adversarial attacks have broad usages, such as discovering po-
tential security holes in DNNs and evaluating the robustness test-
ing of DNN-based software. Developers deploying DNN-based
software in real scenarios will consider corresponding defense
mechanisms to improve software robustness. We deploy the de-
fense mechanism and detection mechanism for the I3D network
on the JESTER dataset, i.e., Adversarial training-based [33]
and Feature Squeeze [25]. We provide the attack performance
under the three scenarios (i.e., without defense mechanism,
Adversarial training-based defense mechanism, and Feature
Squeeze detection mechanism) in Table IX. The query-based
attack method can be defended by using other detection methods
such as PRADA [21]. It detects the distribution of continuous
query data from a single user. However, this defense can be
bypassed by creating Sybil users or changing the attack network
proxies. We summarize the following conclusion.

1) After adversarial training, the performance of all the attack
methods degrades to some extent. For example, the ASR
of Cube-Evo without the defense mechanism is 100%
and requires 1967 queries. The ASR drops by 1.41%,
and the number of attacks increases by 5350. Therefore,

adversarial training can enhance a certain defense effect
but cannot eliminate potential attack risks.

2) The scheme of Feature Squeeze shows effective adversar-
ial video detection performance. The detection effect of
Patch-Att is relatively poor, which adds perturbation to all
the pixels.

Answer to RQ2: Cube-Evo’s attack process is robust and
low cost, not disturbed by the impact factor (e.g., perturbation
budget, random program seed, and defense mechanism).

E. Quality of Generated Adversarial Video by Cube-Evo

This subsection briefly shows the adversarial videos generated
by the methods mentioned above. Fig. 3 shows an adversarial
visualization example. We observe that adversarial videos gen-
erated by the existing methods are indistinguishable from query
videos. Although the illustrated example obtains sparse pertur-
bation, the adversarial perturbations generated by our method
are more scattered and more imperceptible than the concentrated
perturbation.

Answer to RQ3: Cube-Evo can generate indistinguishable
adversarial videos and significantly degrade the performance
of video classification systems.

F. Novelty Statement and Future Work

This article mainly explores query-based adversarial attacks
on video classification systems in a black-box setting. We mainly
solve two main challenges: the high dimension of video data
leads to a large number of queries and a low attack success
rate. Previous work introduced relevant prior knowledge, such as
transferable-patch-based perturbation, select keyframes and key
regions, optical flow estimation, and geometric transformations.
Table X compares the difference between the baseline method of
video black-box attacks. The main contributions of this article
are divided into two points: the first is to develop a Cube-based
partition strategy to reduce the search space, and the second
is to define a reasonable parameter group framework to real-
ize the evolution-strategy-based search scheme. The partition
strategy and the parameter group framework explored in this
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TABLE IX
ATTACK AGAINST DEFENSE AND DETECTION MECHANISM

TABLE X
COMPARED TO THE OTHER BASELINE METHOD

article bring inspiration for future work, i.e., to explore more
efficient partition strategies or parameter group optimization
schemes.

Although Cube-Evo achieves comparable attack performance
and queries, the perceptual results still need to be improved.
We believe that the recombination and mutation in the random-
based search algorithm’s search strategy rapidly increase the
magnitude of adversarial perturbations (i.e., reduced impercep-
tibility of adversarial videos). Our future work will consider a
more balanced scheme that achieves both the target goal and
imperceptibility. Recent work in query-based attacks in the
image domain fully incorporates the “hot start” capability of
locally pretrained models. However, it is not directly portable in
black-box attacks in the video domain. The black-box attack on
the video classification system still requires a large number of
queries. Continuously, we will utilize the local pretrained video
classification model to achieve a hot start and a more efficient
black-box attack.

VI. CONCLUSION

In this article, we investigated the black-box adversarial at-
tack on the video classification system, improving the query
efficiency and attack success rate of the synthesized adver-
sarial video. Our attack intended to deploy the cube-based
tiling strategy and random-search-based evolution algorithm
over the attack pipeline. We extensively evaluated over two
popular datasets (UCF101 and JESTER) and four victim video
classification systems (C3D, SlowFast, TPN, and I3D) under our

sequential combination setting. Compared with SOTA methods,
experimental results showed that our proposed attack pipeline
exhibits favorable attack success rates while reducing query
consumption.
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