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In semiconductor spin qubits which typically interact through short-range exchange coupling,
shuttling of spin is a practical way to generate quantum operations between distant qubits. Although
the exchange is often tunable through voltages applied to gate electrodes, its minimal value can be
significantly large, which hinders the applicability of existing shuttling protocols to such devices,
requiring a different approach. In this work, we extend our previous results for double- and triple-
dot systems, and describe a method for implementing spin shuttling in long chains of quantum dots
in a nonadiabatic manner. We make use of Cartan decomposition to break down the interacting
problem into simpler problems in a systematic way, and use dynamical invariants to design smooth
nonadiabatic pulses that can be implemented in devices with modest control bandwidth. Finally,
we discuss the extensibility of our results to directed shuttling of spin states on two-dimensional
lattices of quantum dots with fixed coupling.

I. INTRODUCTION

Spins confined in semiconductor quantum dots are a
promising platform for the realization of a useful quan-
tum computer. One-qubit gate fidelities around 99.9%
fidelities are routinely achieved in Si/SiO2 [1, 2] and
Si/SiGe heterostructures [3], and two-qubit gate fideli-
ties nearing 99% for entangling neighboring qubits via
Heisenberg exchange interaction have recently been re-
ported in [4]. Entangling qubits that are separated over
long-distances can be achieved via spin-photon coupling
[5–9] by coupling the dots to to a common microwave
cavity and selectively bringing the qubits in and out of
resonance. For intermediate length scales, coherent shut-
tling of spins via adiabatic passage [10, 11] or through re-
peated SWAP operations [12] is a viable route to entan-
gle distant qubits, which can be achieved by modulating
the voltages applied to the gate electrodes without the
overhead of a resonator.

Heisenberg exchange interaction can allow direct im-
plementation of SWAP gates, provided that it can be
turned on and off between the neighboring quantum dots.
However, when there is a large variation in energy split-
ting between adjacent qubits, the Heisenberg coupling
effectively reduces to an Ising ZZ coupling in the rotat-
ing wave approximation, thus preventing the direct swap-
ping of spins without application of local driving fields.
Furthermore, in devices with an always-on exchange cou-
pling [13], implementation of any quantum gate can be
a challenge due to crosstalk [13]. Nonetheless, in certain
scenarios, such systems with high connectivity can be
systematically broken into a simpler set of noninteracting
subsystems (which may however share control degrees of
freedom) by means of Cartan decomposition [14], as ex-
emplified in [15–17] in quantum double dots and in [18]
for triple dots. However, these methods are not read-
ily applicable to networks of quantum dots with larger
number of spins, or topologies beyond a one-dimensional

chain.
In this paper, we extend the earlier works to arbitrary

long chains (> 3) of quantum dots with always-on cou-
plings, and present a method of achieving spin-shuttling
in a nonadiabatic manner using Cartan decomposition,
by using iSWAP as the primitive. We also discuss how
these results might be extended to two-dimensional lat-
tices. This paper is organized as follows. We first give
a brief review of Cartan decomposition in the context of
dynamical invariants. In Sec. III that follows, a model
describing a chain of singly loaded quantum dots that is
driven by an ESR line is given, operating in a regime that
is specified. Sec. IV starts by showing how to build the
iSWAP out of these components. Then it continues by
showing how to create the elementary gates of the iSWAP
gate using square pulse sequences. Finally, in Sec. V the
individual gates are partially implemented using smooth
pulses with modest bandwidth requirements, by param-
eterizing the problem using dynamical invariants.

II. CARTAN DECOMPOSITION AND
DYNAMICAL INVARIANTS

A dynamical invariant I(t) is an operator whose expec-
tation value is conserved, and obeys the defining equation

i∂tI(t) = [H(t), I(t)] (1)

where H(t) ∈ su(N) is the Hamiltonian of the system. It
allows expressing the time-evolution operator as

U(t; 0) =
∑
n

eiαn(t)
∑
i

|φn(t)〉〈φn(0)|, (2)

αn(t) =

∫ t

0

ds〈φn(s)| (i∂s −H(s)) |φn(s)〉 (3)

where |φn(t)〉 are the instantaneous eigenvectors of I(t)
and αn(t) are the associated Lewis-Riesenfeld phases [19].
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The eigenvalues of I(t) are constants in time. One use-
ful aspect of dynamical invariants is that they provide
a set of states that are transitionless, such that if the
system is initialized to |φm(0)〉, it will later evolve into
eiαm(t)|φm(t)〉. This form is similar to that of adiabatic
evolution of the eigenvectors of H(t), except it is valid in
the nonadiabatic regime as well [20]. The two terms in
the Lewis-Riesenfeld phase can be recognized as the geo-
metric and dynamical phase, which makes the dynamical
invariant a natural parametrization to study geometric
quantum gates [21–23].

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k. (4)

These relations have a direct implication on Eq. (1): the
dynamical invariant can be chosen to be in the same sub-

algebra k as H(t), or in the vector space p [14], where the
possible choices for k are determined by the maximal sub-
algebras of the Lie algebra su(N).

The minimal interesting example is the case of two-
qubits for which N = 4, whose maximal subalgebras are
tabulated in Table II. As we will show in the next section,
a pair of spin qubits in a double quantum dot can be de-
scribed using the following rotating frame Hamiltonian,

H =
J

4
Z1Z2 +

2∑
i=1

Ωi
2

(cos(φi)Xi + sin(φi)Yi), (5)

where σZ,i is the Z Pauli operator on the i-th qubit, J is
the strength of the exchange coupling, and Ωi, φi are the
amplitude and phase of the drive. When the qubits are
driven one at a time, say Ω2 = 0 for concreteness, the
Hamiltonian fits into the su(2) ⊕ su(2) ⊕ u(1) with the
Cartan decomposition

su(4) =span(

{
X1

1 + Z2

2
, Y1

1 + Z2

2
, Z1

1 + Z2

2

}
t
{
X1

1− Z2

2
, Y1

1− Z2

2
, Z1

1− Z2

2

}
t {Z2}︸ ︷︷ ︸

Q

t

{X1Y2, Y1Y2, Z1Y2, X2}︸ ︷︷ ︸
P

t{X1X2, Y1X2, Z1X2,−Y2}︸ ︷︷ ︸
P̄

). (6)

su(3)⊕ u(1) 80 + 10 + 3−4 + 3̄4

su(2)⊕ su(2) (3, 1) + (1, 3) + (3, 3)

su(2)⊕ su(2)⊕ u(1) (3, 1)0 + (1, 3)0 + (1, 1)0 + (2, 2)2 + (2, 2)−2

so(5) 10 + 5

TABLE I. Maximal subalgebras of su(4) [24] and the corre-
sponding partitioning of the 15-dimensional vector space in
the adjoint representation. p is partitioned into two in the
presence of a u(1).

We remark that P and P̄ are related to each other by
an infinitesimal u(1) “charge conjugation” [14]

[Q,P ] = −2iP̄ , [Q, P̄ ] = 2iP. (7)

Since su(2)⊕ su(2) does not mix P and P̄ under commu-
tation, when the Hamiltonian is missing the u(1) term,
it becomes possible to choose a dynamical invariant in
span of P or P̄ . As a result, in the 15-dimensional real
adjoint representation, the Hamiltonian becomes block
diagonal with the structure 3 + 3 + 1 + 4 + 4 [14]. Sim-
ilar arguments can be made for the density matrix ρ(t)
which also obeys the same equation as a dynamical in-
variant, although differs from I(t) by an unimportant (in
this context) term that is proportional to identity matrix
as required by the trace condition Tr(ρ) = 1.

III. MODEL

A chain ofN nearest-neighbor exchange coupled silicon
quantum dots in the presence of magnetic fields is well
known to be described by the Heisenberg model Hamil-
tonian [25]

H =

N−1∑
i=1

Ji,i+1

(
Si · Si+1 −

1

4

)
+

N∑
i=1

µgiBi · Si (8)

where Ji,i+1 is the exchange strength between neighbor-
ing dots, Si is the spin operator of the i-th qubit, µ is
the Bohr magneton, gi is the g-factor of the i-th qubit
and Bi is the magnetic field at the i-th qubit. The
exchange coupling in this paper is taken to be fixed,
always-on, and the same between each qubit meaning
Ji,i+1 = J . Additionally, in this work the magnetic
field is applied only in the Z and X-directions and will
now be described by the Zeeman energy Ez,i = µgiBz,i
for the Z-direction and the envelope, Ωi, frequency, ωi,
and phase φi, Ωi cos(ωit + φi) = µgiBx,i for the X-
direction. The Zeeman energies are taken to be large
and constant with the differences between Zeeman ener-
gies of neighboring qubits being large compared to the
other terms in the Hamiltonian as is often the case in
experiment [26]. To avoid the large Zeeman energies,
the Hamiltonian in (8) is moved to the rotating frame

R = e
i
2

∑N
i Ez,itσ

(i)
Z As a result of the large difference in
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FIG. 2. Circuit diagram of the gates which result in an iSWAP gate between two qubits. H and Aθ respectively denote a
Hadamard gate and a θ rotation around A.

FIG. 1. Schematic representation of the driving on a chain
of qubits which results in (N − 1) su(2)s. The dashed circle
indicate the qubits involved in the separate su(2)s.

Zeeman energies it is possible to apply the rotating wave
approximation to the Hamiltonian in the rotating frame
HR = RHR† + i~(∂tR)R† which results in:

HR,N ≈
N−1∑
i=1

J

4
ZiZi+1 +

N∑
i=1

Ωi
2

(cos(φi)Xi + sin(φi)Yi)

(9)
If in Eq. (9) every other qubit is locally driven, i.e., Ωi = 0
for even or odd i as represented schematically in Fig.1,
then there exists a decomposition of the Hamiltonian in
terms of N −1 su(2)s and N −1 u(1)s within this su(2N )
algebra. This can be shown by examining a three qubit
string within this Hamiltonian such as HR,3 with Ωi =
Ω(t)δi,2.

HR,3 =
J

4
(Z1Z2+Z2Z3)+

Ω(t)

2
(cos(φ(t))X2+sin(φ(t))Y2))

(10)

As was shown in Ref. [18, 27] this Hamiltonian can be
decomposed into four possible su(2) H±,±

HR,3 = H++ +H+− +H−+ +H−− (11)

where, taking the phases of the driving φi = 0,

H++ =
J

2
Z++ +

Ω

2
X++ (12)

H+− = −Ω

2
X+− (13)

H−+ = −Ω

2
X−+ (14)

H−− = −J
2
Z−− +

Ω

2
X−− (15)

and

Zs1s2 =
1

4
(Z1 + s1I)Z2 (Z3 + s2I) (16)

Xs1s2 =
1

4
(Z1 + s1I)X2 (Z3 + s2I) , (17)

with si ∈ {+,−}. H+− and H−+ in Eqs. (13) and (14)
have been further simplified to u(1)s as a result of choos-
ing Ji,i+1 = J .
IV. SEQUENCE FOR DOING AN ISWAP GATE

USING SQUARE PULSES

A. Composition of an iSWAP gate

An iSWAP gate can be created from Hadamard gates,
Z rotations and π

2 ZZ rotations using the scheme de-
signed with methods from Ref. [28, 29] and shown in
Figure 2. The Z rotations will be done virtually [30], the
Hadamard will be performed by virtual Z-gates and a π

2
X rotation and the ZZ rotations will be performed using
a sequence of X gates and turned off driving.

In Fig. 2 the individual Hadamard gates are not per-
formed simultaneously because this approach relies on
the decomposition of the Hamiltonian into su(2)s which
does not work when driving neighboring qubits simulta-
neously. There are a total of six Hadamard gates and
two π

2 ZZ rotations, which we will show below takes a
total time of tiSWAP ≈ 116/J using square pulses.

B. Individual gates

Within an SU(2) it is possible to do any rotation using
the Euler angle decomposition which only requires rota-
tions around two perpendicular axes. This is possible for
the SU(2)s generated from Eq. (12) and (15) by apply-
ing Ω = ±J in alternating fashion. For the su(2)’s that
simplify into u(1)’s in Eq. (13)-(14) it is only possible to
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do one type of rotation, however we will show that this
is sufficient for doing an iSWAP gate.

1. π
2
X rotation concurrently with identities in other

subspaces

The Pauli X operator on the second qubit is equivalent
to an equally weighted sum of Xs1s2 generators,

X2 = (X++ −X+− −X−+ +X−−) . (18)

This means a π
2 rotation around X on the second qubit is

equivalent to performing an s1s2
π
2 rotation around each

of the Xs1s2 generators. The ++ and −− Hamiltonians
are symmetric, therefore the X++ and X−− rotations
can be achieved at the same time. The desired π

2 X++

and X−− rotations are created with a pulse sequence
which implements the Euler decomposition by switching
Ω between ±J and using

e−i
Jt1
2 (Z+++X++)e−i

Jt2
2 (Z++−X++)

e−i
Jt3
2 (Z+++X++) = e−i

π
4X++ .

(19)

The solution with the minimum elapsed time is

t1 = t3 =
arctan(1/

√
2)√

2J
, (20)

t2 =
5
√

2π

3J
(21)

At the same time evolution in the +− and −+ subspaces
also happens, but this is not generally equivalent to the
intended −π2 rotation. To create the desired −π2 rotation
in these subspaces a final step is added to the sequence.
This step ensures that the pulse area under Ω (t) for the
entire sequence is equivalent to a −π2 in the +− and
−+ spaced. Additionally, the rotation in the ++ and
−− subspaces is preserved by producing an identity up
to π Z1 and Z3 rotations, which can be compensated
virtually through the phase degree of freedom[30, 31].
These conditions can be expressed as

J

2
(t1 − t2 + t3) +

Ω

2
t4 = 2mπ +

π

4
, (22)

t4

√(
J

2

)2

+

(
Ω

2

)2

= nπ. (23)

for any integers n andm. Then the solution for the length
and drive amplitude of the final time step that gives a
real solution in this case is

Ω =
J(π − 2Jτ)√

(9π − 2Jτ) (7π + 2Jτ)
≈ 0.991J, (24)

t4 =

√
(9π − 2Jτ) (7π + 2Jτ)

2J
≈ 8.926/J, (25)

where τ = t1 − t2 + t3. The total time of the X rotation
is tπ

2X
≈ 17.94/J . For a chain of N qubits it is also nec-

essary to create identities in this structure of su(2)s on
all other qubits at the same time. This can be achieved
by a two part pulse in which Ω1 = −Ω2 such that the
+− and −+ spaces create an identity. The identity in
the ++ and −− spaces is found by driving at strength

Ω = 2
√

(2nπ/t)2 − (J2 )2 for any pulse time t and integer

n that gives a real solution. Additionally, any necessary
virtual Z rotations can be done during any of the X ro-
tations sequences mentioned in this section by adjusting
the phase, φi,

e−iθ(cos(φi)Xi+sin(φi)Yi) = e−i
φi
2 Zie−iθXiei

φi
2 Zi . (26)

2. Hadamard gates and virtual Z rotation

It is possible to create a Hadamard gate, H, up to a
global phase by doing a combination of a π

2 X rotation
and two Z rotations,

Hi = e−i
π
4 Zie−i

π
4Xie−i

π
4 Zi . (27)

At this point we note that for spin shuttling in this
scheme only X rotations, ZZ rotations and Z rotations
are necessary and because ZZ rotations commute with
the Z rotations it will always be possible to resolve the
necessary Z rotations using virtual-Z rotations generated
during the X rotations.

3. π
2
ZZ rotation concurrently with identities in other

subspaces

The Z1Z2 operator is equivalent to a weighted sum of
Zs1s2 ,

Z1Z2 = (Z++ + Z+− − Z−+ − Z−−) . (28)

From the Hamiltonians in Eq. (13) and (14) it is appar-
ent that this cannot be directly created since the Z−+

and Z−+ generators are absent. It is, however, possi-
ble to acquire a phase on the Z1Z2 + Z2Z3 term in the
exponential by simply turning off the Ω driving for a
time π/2J , then performing an X3 gate, then repeating
those two steps to echo out the Z2Z3 term and produce
the desired gate, exp (−iπ/4Z1Z2). This echo works be-
cause X3 commutes with Z1Z2 and anticommutes with
Z2Z3. For a larger chain it is necessary to do identities
in all other subspaces at the same time, which is pos-
sible by using the same trick mentioned at the end of
Sec. IVIV BIV B 1 with the time being tZZ = π/J .

The X gates required to produce the π
2 ZZ rota-

tion can be composed of two π
2 X rotations as men-

tioned in Sec. IVIV BIV B 1. However, this rotation can
be performed faster by using the four-step process of
Sec. IVIV BIV B 1 for a π X rotation directly. Using
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τ = t1 − t2 + t3 the shortest real solutions for an X gate
if found with the times and qubit driving strengths

t1 = t3 =
π

2
√

2J
, (29)

t2 =
7π

2
√

2J
, (30)

t4 =

√
(5π − Jτ) (3π + Jτ)

J
≈ 9.07233/J, (31)

Ω1 = Ω3 = −Ω2 = J, (32)

Ω4 =
J(π − Jτ)√

(5π + Jτ) (3π + Jτ)
≈ 0.95843J. (33)

This results in the total evolution operator, U =

Π4
j=1e

itj( J4 (Z1Z2+Z2Z3)+ΩjX2), being equivalent to an X
gate up to a global phase. The time for this X gate is
tπX ≈ 19.07/J , which is almost twice as fast as two π

2 X
rotations. This makes the combined time for the π

2 ZZ
rotation to ≈ 41.28/J .

However, in the context of the overall circuit of Fig. 2,
instead of echoing away Z2Z3 within each of the entan-
gling segments of the circuit (which requires four X3

gates in total), we can save time by just performing an
X3 after each π/2 ZZ rotation of Fig. 2. Since qubits
that are not nearest neighbors can safely be driven si-
multaneously without ruining the su(2) decomposition
of the Hamiltonian, the X3 gate can be done at the same
time as the trailing Hadamards on qubit 1, as long as
the difference in times is accounted for with an addi-
tional identity on qubit 1 to pad the time as discussed
in Sec. IVIV BIV B 1. Thus, the entire circuit requires
six π

2 X rotations and two π X rotations in addition to
the instantaneous virtual Z rotations and the two π/2
ZZ rotations, and accounting for the fact that gates on
nearest neighbors cannot be performed in parallel, the
total time for the iSWAP using the above square pulses
is tiSWAP = 4tπ

2X
+ 2tπX + 2π/J ≈ 116/J .

4. Rotations on edge qubits

As an aside, we note that in the case where the driving
is on a qubit at an end of the linear array, the decom-
position mentioned above is not necessary because the
Hamiltonian already has the su(2) structure

Hedge =
J

4
Z1Z2 +

Ω(t)

2
(cos(φ(t))X1 + sin(φ(t))Y1)).

(34)
Using Hedge it is possible to do a π

2 ZZ rotation by simply
waiting time t = π/(4J). An identity is always possible

by driving at strengths Ω = 2
√

(2nπ/t)2 − (J4 )2 for any

integer n which yields a real result. Finally, a π
2 X ro-

tation is possible by using an Euler angle decomposition

using Ω1 = Ω3 = −Ω2 = J/2 with

t1 = t3 =

√
2 arctan(

√
2)

J
, (35)

t2 =
5
√

2π

3J
(36)

being the real solution with the shortest time.

V. SMOOTH PULSES USING DYNAMICAL
INVARIANTS

The relatively long time for the π
2 X rotation using

square pulses is the reason the iSWAP takes ≈ 116/J .
Instead of performing the π/2 X rotations and X gates
using a sequence of square pulses, it is possible to per-
form smooth controls using the dynamical invariant of
the Hamiltonian [19, 20]. Using smooth pulses instead of
square pulses is also preferable in practice, due to the lim-
ited bandwidth capabilities of arbitrary wave form gen-
erators [32, 33] and low-pass filters used to suppress the
noise from the surrounding circuitry [34, 35].

In this section it will be shown that using this dynam-
ical invariant approach the iSWAP gate can be imple-
mented in ≈ 19.5/J given a tolerance for a small error.
A dynamical invariant I(t) obeys Eq. (1). For an su(2)
Hamiltonian with controls on two Pauli generators, such
as Eq. (12) (15), the general form of I(t) is known to be
[20, 23]

I(t) =
Ωref

2
(cos(γ)Z + sin(γ)(sin(β)X + cos(β)Y )) (37)

where γ and β are the dynamical invariant parameters
and Ωref is an arbitrary constant with units of energy.
The su(2) generators Zs1s2 and Xs1s2 are chosen to be
equivalent to anX and Z Pauli matrices in Eq. (37). This
unconventional choice is made because it later simplifies
the relation of γ and β to Ω and J , the Hamiltonian con-
trol parameters in Hs1,s2 . Namely, this relation becomes

γ̇ = −J sin(β) (38)

Ω− β̇ = J cot(γ) cos(β) (39)

The evolution operator at the final time, U(tf ), can be
expressed in the initial and final values of γ, β and the
Lewis-Riesenfeld phase α,

U(tf ) = RZ(β(0))RY (γ(0))RZ(2α(tf )

−β(tf ) + β(0))RY (γ(tf ))RZ(β(tf )),
(40)

where RA(θ) is a rotation of angle θ around the A-axis.

By choosing β = arcsin(− γ̇
J ) Eq. (38) is always solved

since the exchange, J , is constant. Additionally, this
means the other Hamiltonian control parameter, Ω, is
described by

Ω =
−γ̈√
J2 − γ̇2

+ cot(γ)
√
J2 − γ̇2. (41)
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The parametrization of Ω in Eq. (41) is equivalent to
that found in Ref. [32, 36] where the dynamical invariants
were not the focus. Because the goal is to create Z,
equivalent to Xs1,s2 , rotations, we simplify the problem
by choosing γ to start and end at 0. By additionally
setting |γ̇| to start and end at J , the evolution operator
becomes RX(2α(tf )). The Lewis-Riesenfeld phase can be
expressed in terms of an integral shown from Ref. [23],

α(tf ) =
1

2

∫ tf

0

cot(β)γ

sin(γ)
dt (42)

To create an X gate in the H++ and H−− subspaces
defined in Eqs. (12)-(15) requires that α(tf ) be a multiple
of π/2 while a π/2 X rotation requires that α(tf ) is π/4,
modulo π.

We satisfy the desired conditions γ(0) = γ(tf ) = 0 and
|γ̇(0)| = |γ̇(tf )| = J by choosing

γ(t) =
J

π
sin

(
πt

tf

)
(43)

Additionally, the ansatz in Eq. (43) avoid the potential
singularities in Eq. (41) at intermediate times. Through
numerical optimization an X gate in the H++ and H−−
subspaces was found at tf ≈ 7.58/J which results in the
driving amplitude shown in Fig. 3. (The change in sign
of the amplitude can be carried out in practice by a π
phase slip.) The dynamics in the H+− and H+− spaces
can be corrected using an extra square pulse with the
method from Sec. IV B 1. The final square pulse has a
strength Ω ≈ 0.272J and time t ≈ 6.06/J . This results
in an infidelity of 10−8 which is close to the precision
of the optimization used. A π/2 X rotation is found
by driving using Eq. 43 with tf ≈ 8.25/J resulting in
driving as shown in Fig. 4 and using a final square pulse
with Ω ≈ 1.41J and t ≈ 3.63/J . If these gates are used
instead of the square gates the total time for the iSWAP
gate would be tiSWAP ≈ 54.4/J instead of ≈ 116/J using
purely square pulses.

0 1 2 3 4 5 6 7
-1.0

-0.5

0.0

0.5

1.0

t[1/J]

Ω
[J
]

FIG. 3. Pulse shape of the driving strength Ω needed to create
an X gate in the H++ and H−− subspaces.

Performing a π
2 X rotation using dynamical invariants

without the extra square pulse to fix the H+− and H−+

subspaces is possible when optimizing a function with

0 2 4 6 8
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

t[1/J]

Ω
[J
]

FIG. 4. Pulse shape of the driving strength Ω needed to create
a π/2 X rotation in the H++ and H−− subspaces.

more parameters. This can be achieved by choosing γ(t)
to have the ansatz

γ(t) =

(
Jtf
π
− 3c1

)
sin

(
πt

tf

)
+ c1 sin

(
3πt

tf

)
. (44)

The ansatz in Eq. (44) guarantees that γ starts and ends
at 0 and |γ̇| starts and ends at J . Additionally, as long
as |γ̇| ≤ J and γ does not reach nπ when |γ̇| 6= J for any
integer n a valid solution will be found [32]. A single-
shot π

2 X rotation requires not only α(tf ) = π/2 + nπ

as well as
∫ tf

0
Ω(t)dt = π/2 + mπ for any integers m

and n as longs as both are odd or both are even. At
c1 ≈ 0.0537 and tf ≈ 0.944/J a solution is found that is
close to a π

2 X rotation. The resulting pulse shape for
Ω is shown in Fig. 5. It is not an exact solution as it

has a trace infidelity 1 − F = 1 − (Tr(UU†target)/8)2 ≈
1.7× 10−4 where the target evolution operator Utarget =
ei
π
4X2 . However this method is 20 times faster than using

square pulses, taking only tf ≈ 0.944/J . The speed-up
is partly because this solution enables the use of a higher
maximum driving of Ωmax ≈ 15.3J and partly because it
does not require an extra square pulse to fix the evolution
caused by H+− and H−+. An X gate can be created
by doing this pulse shape twice. Using this method to
create an iSWAP gate would reduce the time down to
tiSWAP ≈ 13.8/J time and would have a trace infidelity
of 1− F ≈ 2.7× 10−3.

VI. EXPANDING BEYOND A LINEAR CHAIN

The decomposition of the linear chain Hamiltonian in
Eq. (9) into a set of su(2)s and u(1)s works for a larger
number of nearest neighbors as well. An array such as a
square lattice, shown in Fig. 6, where every qubit is ex-
change coupled to its four nearest neighbors will also have
a decomposition into su(2)s. This is achieved by driving
every other qubit in a checkerboard fashion, such that the
nearest neighbors of each driven qubit are undriven. In
fact, a similar approach works for any lattice configura-
tion as long as the set of nearest neighbors is disjoint with
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FIG. 5. Pulse shape of the driving strength Ω needed to create
a π/2 X rotation up to a small error.

FIG. 6. Schematic representation of the driving on 2D square
array of qubits which results in a decomposition of su(2)s.
The dashed boxes indicate the spin subsets involved in the
separate su(2)s.

the set of next-nearest neighbors. The number of su(2)s
will different depending on the configuration and the rel-
ative values of Jij . A lattice point with M connections
when driven resonantly will create a possible 2M su(2)s.
Some of these might simplify to u(1)s such as the case for
the linear chain in Sec. III when the coupling J is iden-
tical for all nearest neighbor pairs. Generally, though,
the problem becomes one of designing a pulse that car-
ries out the desired evolution in each of the su(2)s at the
same time, as in Sec. IVIV BIV B 1. A large number of
su(2)s then corresponds to having many constraints that
the pulse must satisfy.

As the simplest 2D lattice example, the honeycomb
lattice has the fewest nearest neighbors, M = 3, and
the Hamiltonian of a given “Y”-shaped four-site subset
resonantly driven on the central site decomposes into 8
su(2)s of the form,

Hs1s2s3 = (s1+s2+s3)
J

2
Zs1s2s3 +s1s2s3

Ω

2
Xs1s2s3 , (45)

with si = ± and Zs1s2s3 and Xs1s2s3 defined in analogy
to Eqs. (16)-(17), where now the central spin has three
neighbors instead of two. Fortunately, these 8 su(2)s still
contain just two unique sets of coefficients up to the signs,
corresponding to either all si being the same or one of
them being different, as in Eqs. (12)-(15). So, there are
only two sets of constraints to satisfy for each of the local
gates, the same as in Sec. IVIV B. This reduction is only

Ω1 = Ω5 t1 = t5 Ω2 = Ω4 t2 = t4 Ω3 t3

Xπ/2 0.5 J 9.77/J 0 2.57/J 1.40 J 1.93/J

Xπ 0.5 J 9.51/J 0 4.38/J -2.16 J 1.22/J√
Iπ/2 1.74 J 2.38/J 0 3.23/J 1.13 J 2.10/J√
Iπ 1.22 J 3.16/J 0 2.33/J 0.67 J 3.52/J

TABLE II. 5-piece pulse sequence parameters for local rota-
tions of a spin in a honeycomb lattice with fixed couplings.
The

√
I sequences are to be performed twice to produce an

identity with the same duration as the corresponding X ro-
tation.

possible for M < 4.
Unlike in Sec. IVIV B, none of the su(2)s simplify to

u(1)s, so the pulse design is more tedious. However, using
this decomposition and a symmetric five-piece sequence
of square pulses one can numerically find rotations of the
central spin about X by π/2 or π, as well as identity
operations of the same duration, as given in Table VI.
The iSWAP gate can be formed by interspersing these
rotations on the central spins of the subsets in between
undriven entangling periods just as in Sec. IV. The total
time for the whole iSWAP sequence using these pulses is
≈ 195/J , but these could almost certainly be greatly re-
duced by using faster smooth pulses instead of the proof-
of-principle square pulse sequence above, as in Sec. V. We
have not yet carried out this cumbersome calculation.

A square lattice (M = 4) with identical couplings
driven as in Fig. 6 is more complicated. The Hamilto-
nian decomposes into 16 su(2)s, of which three contain a
unique set of coefficients modulo the signs. The simple
square pulse form of Sec. IVIV B cannot work because
there are more constraints than free parameters. Using a
longer sequence of square pulses (as we did above for the
honeycomb lattice) or reverse-engineering a smooth pulse
using dynamical invariants as in Sec. V is necessary, and
the numerics become more challenging.

VII. CONCLUSION

In summary, we have used Cartan decomposition and
dynamical invariants to create an iSWAP gate in a chain
of always-on exchange coupled qubits which can be used
for spin shuttling. The Cartan decomposition in the
chain of always-on exchange coupled qubits is found by
driving every other qubit. This results in sets of four
su(2) Hamiltonians for every driven qubit. To imple-
ment an iSWAP gate in these Hamiltonians only π

2 X
rotations, π

2 ZZ rotations, and X gates are required if
virtual Z gates are possible. Using square pulses and Eu-
ler angle decomposition, it was shown that these gates
can be implemented. This method of creating an iSWAP
gate takes tiSWAP ≈ 116/J . To do this faster, a method
using the dynamical invariants to create smooth fields
to create an iSWAP gate was shown (we note that the
obtained dynamical invariants can in principle be used
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for other purposes, such as transitionless quantum driv-
ing of a single state). This yielded a iSWAP gate in
tiSWAP ≈ 54.4/J for an analytical solution or in only
tiSWAP ≈ 13.8/J for a numerical solution with an infi-
delity of 2.7× 10−3. The decomposition into su(2)s also
works for a 2D array of qubits with more than 2 nearest
neighbors as long as the set of nearest neighbors is dis-
joint from the set of next-nearest neighbors. In the case
of a honeycomb lattice, we have shown how to perform
directed transport of the spin state on the lattice with-
out control of the coupling. For other lattices, solutions

are expected to exist, but exploring the methods to find
them is an open task for future research.
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[16] U. Güngördü and J. P. Kestner, Phys. Rev. Res. 4,
023155 (2022), arXiv:2011.02512.
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