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Using sentiment analysis to reinforce learning: The case of airport 
community engagement1 

Tony Diana 
Federal Aviation Administration, 800 Independence Avenue, SW Washington, DC, 20591, United States    

1. Introduction 

Community engagement has become critical for airport management 
and air traffic control regulators. The success of airport development 
programs often depends on the support of airport community residents. 
To maintain collaboration among all these stakeholders, airport and 
regulator officials need to understand residents’ sentiment to anticipate 
issues and concerns before they turn into problems that can stall 
important capital projects. It is not unusual to see runway construction 
projects run over decades and eventually get canceled. 

This study uses the example of a large hub airport in the Northeast of 
the United States. The case is representative of the issues and problems 
that airport community residents experience in their engagement with 
the airport authority, the regulators, elected officials, and community 
leaders. The article illustrates how residents’ sentiment expressed in 
digital prints can be leveraged to inform decision-making in community 
engagement. As agents face an uncertain environment, they must re- 
assess their strategy with little knowledge of the magnitude of benefits 
or losses related to their policy implementation. The literature on 
Reinforcement Learning often emphasizes the agent’s choice between 
‘exploiting’ a situation or ‘exploring’ new alternatives (Sutton and Barto, 
2018; Winder, 2021). 

This article establishes a link between two of the fastest-growing 
areas of Machine Learning (ML), which is a division of Artificial Intel
ligence (AI): Natural Language Processing (NLP) and Reinforcement 
Learning (RL). Humans use natural language in the forms of text, speech, 
and sign as opposed to programming language designed for computers. 
Sentiment analysis as part of NLP includes the study of sentiment, 
opinion, intent, and emotion to explain attitude and behavior. RL fo
cuses on how agents (humans or entities) learn from their environment 
to derive rewards. The digitization of newsprints and social media has 
made it possible to take advantage of sophisticated ML algorithms, 
which can provide insight into how agents behave and select courses of 
action. 

After defining the concepts of sentiment analysis and community 

engagement, we will delve into the ‘multi-armed bandit’ (MAB) problem 
and the concept of ‘contextual multi-armed bandit’ (CMAB) that adds 
the significance of the environment in an agent’s strategy selection. 
Then, we will apply a classification model to determine how the selected 
features described in a later section can predict the choice of one of three 
policy categories:  

• Exploitation: taking advantage of implemented policies and do not 
change them,  

• Exploration: innovating and experimenting with new policies to 
broaden community stakeholders’ support and attempt to reduce 
dissatisfied residents,  

• Pause: putting on hold any further action to evaluate the impact of 
implemented policies and determine future directions. 

The topic of community engagement and outreach is of great interest 
to aviation practitioners because agents as individuals or organizations 
must often make important decisions in a context of uncertainty. 
Sentiment can shift unexpectedly due to circumstances that may be 
beyond agents’ control. This article offers a unique perspective on the 
relationship because no research to the author’s knowledge has explored 
the interactions between sentiment analysis and RL in the context of 
airport community engagement. Diana (2021) studied how sentiment 
analysis could help anticipate residents’ attitudes based on changes in 
key operational factors. It showed that operational factors such as the 
use of specific runway configuration, ceiling, and visibility could predict 
variations in the sentiment of airport communities. 

Secondly, this article proposes a methodology to select a policy based 
on a classification model. The approach can be replicated by other air
ports or regulators in managing community involvement. 

2. The context of community engagement 

This paper examines how sentiment analysis may reinforce agents’ 
learning as they interact with airport communities’ stakeholders. 

1 This article is the result of independent research. No funding was provided. 
E-mail address: tony.diana@faa.gov.  
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Engagement involves policies and actions that agents implement to 
improve communication and messaging to airport community residents, 
such as workshops, formal briefings, press releases, conferences, and 
mailing. 

Together with ‘environment’ and ‘policy,’ ‘agent’ represents a key 
component in the RL framework. The main purpose of RL is to establish 
how agents can maximize their rewards/benefits (or minimize their 
regrets/losses) by learning from interactions with their environment.1 

Agents such as airport management or regulators learn through a series 
of successes and failures in their interactions with community residents. 
Based on their experience, agents select among competing courses of 
action to maximize their expected ‘rewards’ or minimize their ‘regrets.’ 

However, agents may find it difficult to predict whether they can 
‘exploit’ past policy successes, ‘explore’ new policy directions, or ‘pause’ 
to re-evaluate their engagement policy toward community residents. 
Regularly tracking the sentiment of community residents through digital 
prints and social media can minimize. A regular assessment of residents’ 
attitudes and emotions can help agents be more initiative-taking in 
responding to unexpected changes. This explains why sentiment analysis 
has become an effective tool for strategy design, policy monitoring, 
program evaluation, and decision making. At this point of the discus
sion, it is important to explain how sentiment analysis can reinforce 
agents’ learning. 

First, sentiment represents an intermediate state between feeling 
(undefined attitude on specific topics) and opinion (more definite 
perspective on specific issues and problems). When sentiment becomes 
opinion, agents must expend more energy and resources in communi
cation and messaging to change people’s minds. 

Second, sentiment analysis can effectively help agents quickly adjust 
policies, initiatives, or actions to environmental change. It serves to 
classify sentiment usually into three categories such as ‘negative,’ 
‘neutral,’ or ‘positive.’ Sentiment analysis can strengthen both policy 
monitoring and evaluation. Whereas policy monitoring is rooted in facts, 
policy evaluation is embedded into both facts and judgment (Dunn, 
2015). 

Third, sentiment analysis allows agents to grasp the manifest 
(expressed openly in media) and latent (identified through text and se
mantic analysis) concerns among airport community stakeholders. 
Topic modeling techniques such as Latent Dirichlet Allocation, Latent 
Semantic Analysis, and Probabilistic Latent Semantic Analysis are al
gorithms that serve to cluster words in collected documents into topics 
that summarize key areas of preoccupation or concern for airport 
community residents. 

Fourth, sentiment analysis can determine whether residents may 
‘exit,’ raise ‘voice,’ or remain ‘loyal.’ Residents can decide to follow one 
of the three strategies that Hirschman (1970) described in his seminal 
book Exit, Voice, and Loyalty. They can ‘exit,’ that is, refuse to stay 
engaged in a dialogue with agents. This will eventually deprive agents of 
valuable feedback to address dissatisfaction among stakeholders. Resi
dents can ‘voice’ their concerns, which alerts agents of potential ob
stacles to their policy and the need for change. Finally, residents can 
remain ‘loyal’ or supportive of agents’ current policies. 

Fifth, agents often find it difficult to measure the benefits and costs of 
policies and evaluate community residents’ satisfaction with their pol
icies. Moreover, not all stakeholders may agree with policy evaluation 

criteria.2 Communities around airports are more likely to deal with ex
ternalities, that is, benefits or costs whose residents are enjoying or 
incurring without being parties to a transaction (see Coase, 1960; Bau
mol and Oates, 1988). Externalities can be either positive (i.e., jobs 
growth generated by airport activities) or negative (i.e., noise and car
bon emissions generated by aircraft operations). Without considering 
residents’ sentiment, agents are challenged to predict future courses of 
action without any tangible baseline. As a result, they may get surprised 
that community residents may be demanding to revert past program 
implementations and resort to legal actions. 

Finally, methods such as contingent valuation to estimate use and 
non-use values may not always be effective to reveal preferences. 
Contingent valuation (CV) methods resort to ‘stated preferences’ 
methods (Bateman et al., 2002). However, CV methods can be biased 
because survey respondents do not have an incentive to reveal their true 
preferences. CV is likely to provide a biased perspective of what re
spondents say they will do or prefer as opposed to what they are 
observed to do. In some situations, the conclusions from surveys and 
interviews are no longer valid by the time they are published as senti
ment evolves fast. Similarly, panels are subject to participants’ fatigue 
and, as a result, their utility can steadily decline. Sentiment analysis is 
more effective at revealing preferences through publicly available data 
collected from digital print reports, social media, blogs, and vlogs. 

3. Methodology 

This study presents the case of a U.S. East Coast airport from 2015 to 
2021. The airspace redesign program at the case study airport started in 
2016. As a result, this study provides a pre- and post-implementation 
perspective on how the implementation influenced public sentiment 
and support. The next section details the analytical steps.  

1. Identification of Research Keywords. The collection of a sample 
depended on the selection of keywords that described the scope and 
purpose of the analysis. The keywords included ‘airport and aircraft 
noise,’ ‘air pollution,’ ‘airport community meetings and workshops,’ 
‘flight paths and procedures,’ ‘airspace redesign,’ and ‘airport com
munity residents’ complaints.’  

2. Sample Creation. Text data were collected from digital prints, social 
media, video transcripts, and press releases published by local, state, 
and federal politicians who participated in airport community 
engagement. The sample incorporated the following content: (1) 
publicly available digital prints and blogs scraped from websites, (2) 
the transcripts of videos from local news reports on issues related to 
airport community involvement, and (3) social media posts on 
Facebook and tweets from Twitter. Digital prints refer to articles 
published in state and local newspapers that reported on airport 
community events. We added social media to the digital prints data 
for a more comprehensive assessment of the airport community’s 
sentiment. Digital prints articles usually offer a better balance be
tween facts and opinions, whereas social media provide the sponta
neous emotional reactions of airport community residents to events. 

The document search criteria pertained to (1) aircraft noise issues 
related to changes in arrival and departure procedures, (2) airport/ 
resident community involvement in workshops and meetings, and (3) 
federal, state, and local politicians’ involvement in aircraft/aircraft 

1 Readers interested in an in-depth literature review on the various types of 
RL models are referred to Salvador et al. (2020). 

2 Policy makers may use performance criteria such as efficiency, effective
ness, adequacy, equity, responsiveness, and appropriateness. Others may use 
benefit/cost principles such as (1) the Kaldor-Hicks criterion (those who benefit 
in gains in efficiency compensate the losers); (2) the Rawls criterion (when a 
social state provides a gain in welfare for those who are worse off); (3) the 
Pareto criteria (when a policy creates a state in which at least one person is 
better off and no one worse off). 
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noise complaints. Digital prints were manually scraped from the Web or 
via software such as BeautifulSoup.3 The content of each extracted piece 
was validated to make sure it pertained to the search criteria.  

3. Data Processing. Texts are unstructured data. They need to be 
cleaned for punctuation, stopwords, upper cases, and digits before 
being tokenized. Tokenized words are reduced to their root through 
the process of lemmatization to be vectorized.  

4. Input Features. For each sampled year, the model described later in 
this section included the following features:  
• The percentage of angry, fearful, sad, and surprise emotions 

detected in each sample,  
• Cumulative regrets derived from 1000 simulations over 30 

periods,  
• Cumulative rewards computed as cumulated regrets, and  
• The percentage of positive, neutral, and negative sentiment.  

5. Sentiment Analysis. The cleaned data served to derive the percent 
of positive, neutral, and negative sentiment, the categories of intent, 
and emotion detected in the sample. Sentiment and emotions rep
resented features in the classification models. Sentiment, emotions, 
and intent were derived from the Komprehend4 Artificial Intelli
gence application programming interface (API), as well as the Py
thon libraries including TextBlob,5 VADER (Valence Aware 
Dictionary and sEntiment Reasoner),6 and text2emotion.7 

Sentiment analysis refers to the extraction of text, video, or sign data 
(emoticon) to measure how people feel. Sentiment analysis can leverage 
either lexicon-based or machine-learning-based algorithms. In the 
former type, a document is classified based on the counts of words that 
match the positive or negative words in a lexicon. With the former type, 
we could identify subjectivity and intent using TextBlob and text2e
motion. In the latter type, a classification model predicts whether a label 
belongs to a specific class as in the case of Komprehend API by 
leveraging neural networks.  

6. The Context of Airport Community Involvement. Contextual 
Multi-Armed Bandit is a special case of the Multi-Armed Bandit 
problem. MAB refers to the slot machine set in a casino where a 
‘bandit’ has the possibility of pulling down the lever of machines in 
search of maximizing rewards. Bandits do not know the distribution 
of rewards when they pull the lever of a slot machine. They face the 
problem of identifying the best set of actions without knowing in 
advance which one would minimize cumulative regrets. 

The MBA problem can be applied to any situation where learning is 
sequential, and the environment is uncertain. Robbins (1952) described 
the MAB problems as decision-making situations when the environment 
is uncertain and the outcomes of actions unknown. The MAB problem 
has been used in advertising (Chapelle et al., 2014), website optimiza
tion (White, 2012), clinical trials (Villar et al., 2015), recommending 
systems, and information retrieval applied to healthcare and finance 
(Bouneffouf and Rish, 2019). 

In the context of a community engagement, agents cannot always 
anticipate the reaction of residents after an engagement event. As Pal
mas et al. (2020:424) stated, “The problem […] boils down to the design 
of a learning strategy where the player needs to explore what possible 
reward values each slot machine can return and from there, quickly 
identify the one that is most likely to return the greatest expected 
reward.” Sentiment analysis can provide the information that agents 

need to learn and react quickly. 
The MAB problem is characterized by four key elements: 

• K policies to choose from (the arms of the slot machines). Our rein
forcement learning framework identified ‘exploit,’ ‘explore,’ and 
‘pause’ as policy alternatives.  

• A central agent or group of agents who pull the arms (i.e., airport 
authority, local, state, and federal elected officials, community ad
vocates, and air traffic control regulators).  

• Each arm has a specific probability distribution, which is unknown to 
agents.  

• The goal is to select the arm that minimizes regrets or maximizes 
rewards over intervals called ‘horizon.’ In our case, we have three 
levers (‘exploit,’ ‘explore,’ and ‘pause’). We ran one hundred simu
lations in thirty periods as the horizon. 

The reward associated with each agent or ‘bandit’ who pulls the arm 
follows a Bernouilli distribution characterized as follows: 

Px =

(
n
x

)

pxqn− x (1)  

where x = the number of times, 
(

n
x

)

= the number of combinations, p 

= the probability of success in a trial, q = the probability of failure on a 
single trial, and n = the number of trials. 

MAB problems mention the concepts of ‘reward’ and ‘regret.’ Bubeck 
and Cesa-Bianchi (2012) provided a detailed exposition of regrets in the 
MAB problems. If Xi,n is a random variable for 1 ≤ i ≤ i and n ≥ 1 (n 
being the number of plays and i the index that identifies the arm and 
Ti(n) is the number of times the lever i is played in the first n plays), then 
regret is defined as 

RT ​ = ​ Tμ* − μj(T)

∑K

k=1
E(Tk(T)) (2)  

with μ* = maxi = 1, …, k μj and Е(Tk(T)) is the expectation about the 
number of times the policy will play machine k. Regret is “the difference 
between the maximum possible gain (having thrown the best lever n 
times, by definition the one that returns μ* as a reward) and the actual 
gain” (Ciaburro, 2019: 77). 

To understand how agents select a policy, it is important to consider 
two functions. First, the state-value function is a matrix that represents 
the reward associated with a given state. The state-value function is 
defined as 

Vπ (s)=
∑∞

t=0
γirt+1 (3)  

where π = a policy associated with s = the state and a = the action 
π(s, a), r = the reward, and γ = a discount factor. Action is the possible 
move of an agent, whereas states are the observations from the 
environment. 

Second, the action-value function is a matrix that provides the reward 
for every state-action pair. The action-value function is defined as 

Q(s, a)= r(s, a) + γVπ δ(s, a) (4)  

where δ(s, a) is the function that determines the new state generated by 
the pair (s,a). “The state value function contains the value of reaching a 
certain state, while the action-value function contains the value for 
choosing an action in a state” Ciaburro (2019: 81). 

In the contextual multi-armed bandit framework, the state becomes 
“a description of the environment that the agent can use to carry out 
targeted actions” (Ciaburro, 2019:86). The context depends on the 
sentiment of the community residents (measured as ‘negative,’ ‘neutral,’ 
or ‘positive’ attitude in this study). In airport community engagement, 

3 See https://pypi.org/project/beautifulsoup4/.  
4 See https://komprehend.io/.  
5 See https://textblob.readthedocs.io/en/dev/quickstart.html.  
6 See https://pypi.org/project/vaderSentiment/.  
7 See https://pypi.org/project/text2emotion/. 
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there are several ‘bandits’ as an airport authority that usually collabo
rates with elected officials and the air traffic control regulator co
ordinates communication and messaging to community residents. Each 
agent learns from each other’s actions whose probability of rewards will 
differ. Whereas ‘action’ and ‘reward’ are the two areas of the k 
multi-armed bandit, a contextual bandit framework includes ‘state,’ 
‘action,’ and ‘reward’ as illustrated in Fig. 1. 

The input parameters (theta or θ) in Fig. 1 involve the class of bandit 
(a Bernoulli bandit), the type of policy (we evaluate six algorithms 
described in the next section), the agent (combination of policy and 
bandit), simulations (1000 and a horizon of 30 periods), as well as the 
context (the number of arms and the number of features per arm). A 
Bernoulli bandit refers to an optimization problem where an agent 
sequentially pulls one of two arms. At each round, each bandit behaves 
like a random variable such that Yk ~ Bernoulli(θk). 

The CMAB problem fits a community engagement environment 
because agents can compromise between exploiting known opportu
nities and exploring unknown ones while putting actions on pause to 
address uncertainty and ignorance about future actions. Van Emden and 
Kapstein (2018: 2) described the difference between CMAB and MAB in 
these terms: “In contextual bandit problems, CMAB policies differentiate 
themselves, by definition, from their MAB cousins in that they can make 
use of features that reflect the current state of the world—features that 
can then be mapped onto available arms or actions. This access to side 
information makes CMAB algorithms yet more relevant to many real-life 
decision problems than their MAB progenitors.” The current state of the 
world is reflected in the sentiment of the community residents reflected 
in the sample. 

4. Probability distributions and computation of cumulative 
regrets 

We compared the outcomes of six algorithms using the Contextual 
package in R (Van Emden and Kaptein, 2018). We focused on cumula
tive regrets and the standard deviation of cumulative regrets as a basis of 
comparison. The computation involved 1000 simulations and a time 
horizon of 30. 

Most models used in the literature of contextual bandits have been 
linear. There have been efforts to expand modeling to non-linear 
contextual bandits (Bubeck and Cesa-Bianchi, 2012; Valko et al., 
2013) and neural-linear bandits (Zahavy and Mannor, 2019). In this 
study, we compare the outcomes of different linear models.  

• Oracle. It serves as the baseline and indicates the regret probabilities 
when playing the optimal arm or selecting the optimal policy.  

• UCB1. The upper confidence bound determines the estimated regret 
of each action and helps identify the action characterized by the 
lowest estimate. Auer et al. (2002) explained the algorithm in detail. 
According to Bilgin (2020:41), “Upper confidence bounds (UCB) is a 
simple yet effective solution to exploration-exploitation trade-off. 
The idea is that at each time step, we select the action that has the 
highest potential for reward. The potential of the action is calculated 
as the sum of the action value estimate and a measure of the un
certainty of this estimate. This sum is what we call the upper 

confidence bound.” Based on Bilgin (2020), the formula to compute 
the UCB is as follows: 

At≜argmax
a

[

Qt(a)+ c√
ln t

Nt(a)

]

(5)   

• Thompson Sampling. It uses a beta-binomial model with two param
eters: alpha and beta. The outcomes generated from pulling arms in a 
previous step are sampled using the beta-binomial distribution and 
then the arm with the lowest value is selected if the goal is to 
minimize regrets. See Agrawal and Goyal (2012) for an exposition of 
Thompson sampling in MAB.  

• Epsilon Greedy. Van Emden and Kaptein (2018: 29) explained that 
“Contrary to the previously introduced ε-first policy, an ε-greedy 
algorithm […] does not divide exploitation and exploration into two 
strictly separate phases—it explores with a probability of ε and ex
ploits with a probability of 1 – ε.” Although ε-greedy action selection 
is a popular means of balancing exploration and exploitation, it 
chooses equally among all actions when it explores.  

• Softmax: The selection of the arm follows a Boltzmann probability 
distribution. It uses tau (τ) as a parameter to determine how many 
arms can be explored. A high τ value implies that all arms are 
explored equally. Softmax improves on ε-greedy because it allows to 
vary the action probabilities as a graded function of the estimated 
value. While the greedy action is still given the highest selection 
probability, all the others are ranked and weighted according to their 
value estimates. These are called ‘softmax action selection’ rules. 
Below is the Boltzmann formula: 

eQt(a)/τ
∑n

b=1eQt(b)/τ (6) 

As τ (also called the temperature parameter) tends to zero, the 
softmax action selection becomes the same as the greedy action.  

• Exp3: The algorithm uses a mixture of uniform distribution to define 
a policy and assigns each action an exponential mass distribution to 
characterize the cumulative rewards. 

The classification of sentiment into the three categories served to 
derive the expected regrets and rewards. The standard deviation pro
vided a measure of volatility. Regret represents an important concept in 
CMAB because it measures the quality of an exploration algorithm. 
Regret can be defined as the difference between a payoff (a reward or 
return) from an action and the payoff from an action that has been 
implemented. According to Lonza (2019:289), “regret is defined as the 
opportunity lost in one step that is the regret, L, at time t, is as follows: Lt 
= V* - Q(at), where V* is the optimal value and Q(at), the action-value of 
at.” As a result, when seeking to balance exploration and exploitation, 
we aim to minimize the cumulative regrets defined as 

Lt ​ = ​ Σi(V* − Q(ai)) (7) 

Among the algorithms used in the simulations, we selected the UCB1 
algorithm. According to Bilgin (2020:41), “an action is selected either 
because [the] estimate for the action value is high, or the action has not 

Fig. 1. Diagram of basic structure of the ‘contextual’ framework (Van Emden and Kaptein, 2018: 6).  
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been explored enough (i.e., as many times as the other ones) and there is 
high uncertainty about its value, or both.”  

8. Determination of Policy Strategies. The categories of sentiment 
and emotions served to predict policies in three categories: (1) 
‘exploit,’ if the percentage of positive sentiment was higher than and 
the percentage of angry emotion was less than the respective average 
over the sampled period; (2) ‘explore,’ if the percentage of positive 
sentiment was lower than and the percentage of angry emotion was 
higher than the respective average over the same period; and (3) 
‘pause’, otherwise.  

9. Classification Modeling. In this analysis, 25 percent of the data for 
each sample year were set aside for the test dataset. We used a 
stacking ensemble model to optimally combine three machine 
learning classifier algorithms, namely, the K-Nearest Neighbors 
(KNN), Random Forest (RF), and Support Vector (SVC). The stacking 
model is a meta-learner algorithm (based on a Decision Tree Clas
sifier) that combines the predictions from the three classifier algo
rithms to capitalize on the strengths of each algorithm and to 
improve the predictive accuracy of the overall model. 

The process to build the stacking ensemble model consists of (1) 
splitting the training data into two folds; (2) choosing the weak learners 
(in the KNN, RF, and SVC models) and fitting them to the training data of 
the first fold; (3) making each weak learner predict observations in the 
second fold; and (4) fitting the Decision Tree Classifier meta-model on 
the second fold by leveraging the predictions made by the three algo
rithms as inputs. The split in the dataset into two folds is designed to 
make sure that data used for the training of the weak learners are not 
used for the meta-model. Below is a brief description of the weak learner 
algorithms. A more in-depth explanation of the algorithms is out of the 
scope of this article. Readers interested to stacked generalization are 
referred to Wolpert (1992). 

The K-Nearest Neighbor is a non-parametric algorithm that calculates 
the distance between data points, find the closest neighbors, and vote for 
labels (class fit). Like Random Forest and Support Vector Machine, the 
K-Nearest Neighbor algorithm can be used for regression or classifica
tion. Fix and Hodges (1951) developed the model, which was later 
expanded by Cover and Hart (1967). 

The Random Forest tree is an ensemble machine learning model that 
fits decision tree classifiers on sub-samples of the dataset. The power of 
ensemble models is that in the case of a small sample they can generate 
uncorrelated trees working in parallel through bootstrapping. These 
trees operate as an ensemble and the algorithm identifies the solution in 
the case of classification through voting. See Breiman (2001) for an 
explication of Random Forest models. 

The Support Vector Machine algorithm constructs a hyperplane to 
identify classes based on support vectors. The SVC algorithm can 
determine the classes based on different kernels (linear, polynomial, and 
radial-based function). In our case, the optimal model based on a grid 
search model had a polynomial kernel, with C = 0.1 and gamma = 1. 
The C parameter determines the tolerance for misclassification or 
mismatch: the larger the C parameter value, the narrower the margin 
that separates classes, and the higher the model bias. The gamma 
parameter determines the outreach of the support vectors that define the 
margins. See Cortes and Vapnik (1995) for a description of SVM 
networks.  

10. Prediction of Policy Strategies. Below are the tools used to 
measure the performance of the meta-learner model: 

The first tool is the classification report that includes four key metrics 
including.  

• Accuracy ​ = True Positive+True Negative
True Positive+True Negative+False Posiive +False Negative  

• Precision ​ = True Positive
True Positive+False Posiive  

• Recall ​ = True Positive
True Positive+False Negative  

• F − 1 ​ score ​ = ​ 2 x Precision x Recall
Precision+Recall 

If the model predicted ‘exploration’ and it was true, then we quali
fied the outcome as ‘true positive.’ The classification report provides 
metrics for two types of average. In the case of macro average, each class 
is weighted equally—whereas micro average refers to the case where 
each sample is weighted equally. Weighted average considers how many 
observations of each class there were in the computation of the classi
fication metrics. 

The second tool to evaluate the performance of a classification model 
is the confusion matrix, which is a summary of the predictions by class. 
The number of correct and incorrect predictions are used to compute 
true positive/true negative and false positive/false negative scores. 

Finally, the Graphiz8 library in Python shows the outputs of the 
meta-learner in the form of a tree including the Gini impurity index. An 
impurity of zero is the best impurity outcome, which is possible when all 
elements belong to the same class. If we have C total classes and p(i) is 
the probability of picking a datapoint with class i, then the Gini impurity 
index is calculated as 

G ​ =
∑C

i=1
p(i)*(1 − p(i)) (8)  

5. Analytical outcomes 

5.1. Evaluation of sentiment, emotions, and intent 

Table 1 provides the key sentiment analysis metrics by sampled year. 
Sentiment among communities fluctuated between 2015 and 2017 and 
turned more negative from 2018 to 2021. 

The overall sentiment was positive in 2015. The data showed that 
residents expressed their appreciation for a cross-agency initiative 
involving ice rescue training exercises. They were thankful for the FAA’s 
willingness to address operational changes to mitigate aircraft noise. 
Residents expressed enthusiasm because local elected officials were 
willing to get involved in abetting noise. The joint engagement of the 
FAA and the airport authority explained why a high degree of advocacy 
was detected in the content of the sample in 205 compared with sub
sequent years (Table 2). 

Sentiment changed in 2016 when performance-based navigation 
(PBN) procedures were implemented. Satellite-guided PBN procedures 
allow equipped aircraft to follow a narrower path to and from an airport. 
PBN is designed to ensure on-time predictability and better access into 
congested metropolitan areas where large airports are closely located to 
smaller ones (mainly general aviation airports). According to collected 
data, some communities located on departure paths complained that 
they were increasingly subject to noise exposure because aircraft oper
ations were concentrated on narrower flight paths. 

The higher percentage of positive sentiment in 2017 reflected opti
mism from residents and local politicians about the possibility to work 
with the airport community and the FAA on addressing noise issues. 
Airport stakeholders were also supportive of the new air service. 
Nevertheless, a group of residents expressed opposition to early morning 
flight departures and increased concentration of flight paths over spe
cific locations. The year 2017 represented a pivotal one in the sample 
because 57.8 percent of the measured intent represented feedback, 
which could be broken up into 6.7 percent expressing some form of 
appreciation, 65.5 percent voicing complaints, and 27.9 percent sug
gesting some improvement in abating noise. 

8 See https://graphviz.org. 
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Sentiment turned more negative in 2018 and 2019. In 2018, resi
dents expressed their concerns about the effects of noise-related car
diovascular diseases as well as the impact of particle pollution from 
aircraft on the incidence of cancer, pulmonary, and other diseases. The 
publication of medical research focusing on the impact of noise on 
health triggered a debate among community stakeholders. In 2018, the 
sample contained a high informational (65.4 percent) and a high non- 
informational (13.5 percent) content that denotes reports by health 
experts on the dangers of aircraft noise in digital prints and more spam 
in social media. 

In 2019, digital prints showed that residents expressed frustration 
about perceived inaction on demanded changes in arrival and departure 
procedures. This translated into an increase in queries and questions 
about what the airport authority was doing to help mitigate noise. 

Although the pandemic caused the number of operations to decline 
drastically in 2020, the airport community remained engaged as the 
percentage of feedback and query in the sampled content indicated 
(respectively, 19.5 and 24.2 percent respectively). A higher proportion 
of the content (11 percent) expressed happiness among airport com
munity residents. Nevertheless, as more people teleworked, they were 
experiencing noise to which they were not usually exposed. This may 
explain the high proportion of fear (48 percent) and sadness (22 
percent). 

In the 2021 sample, the increase in negative sentiment analysis to 73 
percent revealed that community residents were increasingly fearful 
about noise exposure due to growing operations. High negativity 
resulted from fear about the future and sadness that their situation will 
not change. This sentiment was prevalent in social media. 

Subjectivity measures utterances on a scale from 0 percent (very 
objective) to 100 percent (very subjective). The metric indicates 
whether the content of information is more likely to reflect individual 
opinions than facts. The higher the subjectivity, the greater the 
emotional content. Table 1 shows that subjectivity has remained mostly 
stable throughout the sampled year until 2021. 

The evolution of emotions reflected an erosion of support (except in 
2017) among increasingly ‘angry’ residents, which was later supported 
by elected officials at the federal level. The proportion of ‘gloomy’ res
idents increased because they did not feel they had enough power to 
change navigational approaches and departure procedures. Sentiment 
and emotions are not sufficient to explain the relationships among 
stakeholders in a community. It is also necessary to evaluate the intent 

conveyed in the sample. Table 2 shows the categories of the intent un
derlying the sampled data. 

The intent analysis shows whether sentiment is driven by facts (high 
informational content) or emotions (high non-informational content). It 
also categorizes the content that underlies whether there is any dialogue 
among stakeholders in the forms of feedback and queries or advocacy on 
specific issues. Following the deployment of new navigation procedures 
in 2016, residents around the airports complained about increased noise 
(57.8 percent feedback), which pushed airport management and regu
lators to explain the goals of the airspace redesign and the roles of the 
new procedures through workshops reported in the press and social 
media in 2017 (80 percent of sampled data were informational). 

5.2. The computation of cumulative regrets and standard deviation 

Table 3 compares the results of 1000 simulations over a time horizon 
of thirty episodes for six algorithms. 

Bandit algorithms seek to minimize regret. Table 3 features the cu
mulative difference in the payoffs between possible and actual action 
over the simulations. In most cases, UCB1 provided the lowest standard 
deviation of cumulative regrets, which meant lower volatility. 

6. Predicting the optimal policy 

This section provides important metrics to help agents decide on a 
course of action. 

Table 4 shows overall, the meta-learner had an accuracy of 86 
percent. Individually, the KNN, the Random Forest, and the Support 
Vector classifier had an accuracy of respectively 57 percent, 85 percent, 
and 57 percent. Eighty percent of the predictions for ‘exploration’ are 
relevant and 100 percent of the total relevant prediction outcomes for 
‘pause’ are correctly classified by the meta-learner. The weighted 
average is higher than the macro one because there were fewer of one 
class (‘exploration’) in the computation of the precision, recall, and F1- 
score. The macro average does not consider the proportion for each label 
in the dataset. 

Based on the confusion matrix outputs in Table 5, we can determine 
that precision (considering weighted average) is equal to 68 ≈ 0.75. This 
means that when the model predicts ‘exploitation,’ it is correct 75 
percent of the time. Recall is equal to 6

7 ≈ 0.86. This implies that the 

Table 1 
Key sentiment analysis metrics (percent).   

Sentiment Subjectivity Emotions 

Year Positive Neutral Negative  angry fear happy sad surprise 

2015 88 11 1 44 4 48 9 20 20 
2016 5 24 71 43 5 44 8 25 18 
2017 69 27 4 41 5 46 8 21 20 
2018 22 35 43 43 4 47 9 20 20 
2019 10 26 64 44 5 41 7 23 23 
2020 13 30 57 43 4 48 11 22 15 
2021 12 15 73 47 2 51 9 21 16  

Table 2 
Intent analysis (percent).   

Intent  

Year Informational Feedback Query Advocacy Non-Informational  

2015 54.9 21.0 0.4 20.5 3.2 100 
2016 14.3 57.8 9.6 3.1 15.2 100 
2017 80.0 3.9 1.2 11.7 3.2 100 
2018 65.4 9.4 0.2 11.5 13.5 100 
2019 66.8 10.4 12.2 3.0 7.6 100 
2020 37.8 19.5 24.2 4.0 14.5 100 
2021 71.1 9.1 10.5 7.1 2.2 100  
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meta-learner identifies 86 percent of the time ‘exploitation’ when it is 
the selected policy. 

We start in a position of ‘exploitation’ as the root node (depth zero). 
The Gini index is more than zero (G = 0.571) because the seven samples 
contained within the nodes belong to different classes. The values 
[4,2,1] indicate the number of samples, that is, seven. The value of ‘4’ 
indicates the sample belongs to ‘exploitation,’ ‘2’ to ‘pause,’ and ‘1’ to 
‘exploration.’ The class shows the predictions at a given node. If the 
predictions were to end at the root node, then it would predict that all 
seven samples belonged to the ‘exploitation’ class. If the strategy is 
‘pause,’ then there are two samples and all of them are classified as 
‘pause,’ hence the Gini impurity value of 0. 

The Gini impurity index and entropy help derive the feature 
importance at each node. Entropy is a criterion for calculating infor
mation gain, which determines how a node is split. Among the features, 

the degree of ‘anger’ expressed by community residents is the most 
important one because it provides the information that an agent needs to 
choose a course of action. In the present case, an agent continues an 
‘exploitation’ strategy until the level of ‘anger’ elicits a ‘pause’ strategy 
expressed in the matrix as π = [0,1,0]. 

Finally, Table 6 shows a table of probability associated with each 
policy based on the stacking ensemble model. Over the seven intervals, 
the dominant strategy was ‘exploitation’ alternating with ‘pause.’ The 
limited choice of exploration may be explained by the fact that residents 
were vocal about fear of changes in their way of life and sadness due to 
their perceptions that politicians, the airport authority, and the regu
lator were not listening to their concerns. 

7. Final remarks 

The contextual multi-armed bandit problem made it possible to 
frame the environment of agents in community engagement and allowed 
the assessment of regrets related to the three categories of policy. In our 
study, we linked sentiment analysis with reinforcement learning 
through a stacking ensemble classification model designed to predict the 
incidence of sentiments and regrets on the classification of policy. 

This study suggests that agents were more likely to exploit at first and 
then pause. Exploration did not appear to be a viable policy because 
agents could not stem both an increase in anger and disengagement as 
the sample analysis indicated. Agents must pay attention to ‘angry’ 

Table 3 
Cumulative regrets and cumulative regret standard deviation.     

2015 2016 2017    

Cumulative Cumulative Cumulative Cumulative Cumulative Cumulative 

Algorithm t sims Regrets Regrets (sd) Regrets Regrets (sd) Regrets Regrets (sd) 
Oracle 30 1000 0.00 0.00 19.82 6.81 0.00 0.00 
UCB1 30 1000 6.78 1.27 6.31 3.27 6.10 3.69 
Thompson Sampling 30 1000 3.67 2.40 4.34 4.88 4.24 4.90 
Epsilon Greedy 30 1000 4.84 30.77 4.87 26.58 4.80 2561.00 
Softmax 30 1000 2.61 14.00 3.55 20.01 3.65 20.15 
Exp3 30 1000 14.89 11.21 11.19 10.00 9.75 10.29    

2018 2019 2020    
Cumulative Cumulative Cumulative Cumulative Cumulative Cumulative 

Algorithm t sims Regrets Regrets (sd) Regrets Regrets (sd) Regrets Regrets (sd) 
Oracle 30 1000 6.32 11.92 16.28 8.81 13.28 10.57 
UCB1 30 1000 2.59 7.65 5.73 4.17 5.09 4.84 
Thompson Sampling 30 1000 2.34 7.39 4.71 22.56 4.16 6.22 
Epsilon Greedy 30 1000 2.25 9.64 3.69 18.37 4.19 16.96 
Softmax 30 1000 2.12 8.34 3.69 18.37 3.51 14.98 
Exp3 30 1000 2.82 10.68 9.19 9.66 7.09 9.95     

2021    

Cumulative Cumulative 

Algorithm t sims Regrets Regrets (sd) 
Oracle 30 1000 6.32 11.92 
UCB1 30 1000 2.59 7.65 
Thompson Sampling 30 1000 2.34 7.39 
Epsilon Greedy 30 1000 2.25 9.64 
Softmax 30 1000 2.12 8.34 
Exp3 30 1000 2.82 10.68  

Table 4 
The classification report.  

Policy Precision Recall F1-Score 

1: Explore 0.80 1.00 0.89 
2: Pause 1.00 1.00 1.00 
3: Exploit 0.00 0.00 0.00  

Accuracy   0.86 
Macro Average 0.60 0.67 0.63 
Weighted Average 0.74 0.86 0.79  

Table 5 
Confusion matrix.    

Predicted   

Explore Pause Exploit 

Actual Explore 0 0 1 
Pause 0 2 0 
Exploit 0 0 4  

Table 6 
Stacking ensemble model predictions.  

Time Exploit Pause Explore 

1 0.80 0.00 0.20 
2 0.00 1.00 0.00 
3 0.80 0.00 0.20 
4 0.80 0.00 0.20 
5 0.00 1.00 0.00 
6 0.80 0.00 0.20 
7 0.80 0.00 0.20  
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residents whose ‘voice’ may provide some insights on what needs to be 
changed in their course of action. For instance, in 2016, out of 57.8 
percent of feedback provided in digital prints, 6.7 percent were appre
ciation, 65.5 percent were complaints and 27.9 percent were sugges
tions. Therefore, continuous monitoring of the content of media, 
sentiment, and emotion categories is necessary to monitor and evaluate 
engagement policy. 

The case study is representative of airports where the implementa
tion of new navigation procedures has resulted in more concentrated 
flight paths. In a context of strong opposition to the implementation of 
navigation procedures at a large hub airport, the classification models 
suggested that agents may not be better off by exploring new policies. 
The stacking ensemble model determined that the probability of pre
dicting the selection of exploration when it was true was zero percent. 
Based on seven years of data, the model predicted that agents would 
start with exploitation as a dominant strategy and then select pause. 

8. Conclusion 

There are many examples of key projects at airports around the 
world that have been either delayed, sometimes for decades, or even 
canceled due to strong opposition from airport community residents. 
Agents can use their experience or listen to what people around them are 
expressing in various media. 

While airlines use sentiment analysis extensively to improve pas
senger service, airports and government regulators have been lagging in 
leveraging the power of sentiment analysis to guide agents on how to 
engage communities. This research fills an important gap in the litera
ture on community engagement. Sentiment analysis can inform agents 
and measure risk before they select a specific policy. It enables agents to 
be initiative-taking and deal with issues before they become problems. It 
provides an assessment of the environment, especially when relation
ships among stakeholders are volatile and/or antagonistic. 

In this study, we proposed a policy framework to help agents select 
among policy alternatives. We demonstrated the significance of senti
ment analysis in predicting the selection of a policy. The complexity of 
relationships among the community’s stakeholders and the uncertainty 
of the environment both make it difficult to evaluate the risk of selecting 
one policy at the expense of another. Agents can ‘exploit’ the benefits 
from implemented policies, ‘explore’ new policy directions, or ‘pause’ to 
re-assess the environment before acting. 

Agents can try different policies to minimize negative payoffs. They 
can capitalize on their experience or read the polls. Eventually, they 
must operationalize sentiment and emotion to minimize risks and 
respond appropriately to environmental uncertainty. Examples around 
the world have shown that local politicians, airport authorities, and 
regulators have not always been successful to overcome popular 
discontent linked to airport expansion or noise. This article provides a 
methodology that airport community stakeholders can use to inform a 
course of action and quantify costly trial and error that may result in 
costly project delays or cancellations. 

The selection of ‘pause’ or policy re-evaluation should not be 
perceived as inaction or lack of decision-making on behalf of agents. The 
‘pause’ policy can help answer two questions: “Did the policy produce its 
intended outcome?” “Of what value is the outcome?” The worth of a 
policy is in residents’ perception of the policy benefits, which can be 
translated into sentiment. Agents should explain the purpose of ‘pause’ 
to their audience, so it is not misconstrued as inaction. This leaves the 
door open to further research on how to identify the alternate optimal 

policy. There are other modeling perspectives such as Temporal De
pendency that can be contrasted to the CMAB model presented in this 
paper. 
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