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We are at the verge of a new era, which will be dominated by noisy intermediate-scale quantum devices.
Prototypical examples for these new technologies are present-day quantum annealers. In the present work, we
investigate to what extent static disorder generated by an external source of noise does not have to be detrimental,
but can actually assist quantum annealers in achieving better performance. In particular, we analyze the graph
coloring problem that can be solved on a sparse topology (i.e., chimera graph) via suitable embedding. We show
that specifically tailored disorder can enhance the fidelity of the annealing process and thus increase the overall
performance of the annealer.
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I. INTRODUCTION

The first concept of quantum computing was formulated
several decades ago in an attempt to faithfully simulate many-
body quantum systems, which remains conjectured to be
an impossible feat with classical computers [1,2]. However,
only very recently novel technologies have become available
that promise to make quantum computers a practical reality
[3]. Quite remarkably, already the first generation of fully
operational quantum computers is expected to outperform
(for specific tasks) even the most advanced, state-of-the-art
classical computers [3,4]. To be ready for the first physical re-
alizations of such powerful information technology, quantum
computer science has been developing a plethora of quantum
algorithms for a wide variety of optimization problems [5].
Famous examples include the Deutsch-Jozsa algorithm [6] to
evaluate a function, the Grover algorithm [7] for searches of
a (possibly large) database, or Shor’s algorithm [8] designed
for prime factorization.

In the present work we will focus on adiabatic quantum
computation (AQC) [9], which relies on quantum annealing
[10]. In comparison to other computational paradigms, AQC
is technologically slightly more advanced due to the com-
mercial availability of D-Wave’s quantum annealers [11–13].
Adiabatic quantum computing is a computational paradigm
[14] that has the potential to solve many problems that a
universal quantum computer can also solve [15]. Although a
polynomial time penalty may be necessary to achieve this,
AQC promises to outperform classical computers in many
practical cases [16].

AQC relies on the quantum adiabatic theorem [9]. In this
paradigm, a quantum system is prepared in the ground state
of an initial (“easy”) Hamiltonian Hi. Then, the system is
let to evolve adiabatically—infinitely slowly—towards the
ground state of the final Hamiltonian Hf . The latter system

encodes the problem of interest and its ground state stores the
desired solution (i.e., an answer to the problem). Devices that
can realize such evolution are called quantum annealers [10].
Quantum annealers are typically designed with one and only
one particular task in mind—namely, to solve combinatorial
optimization problems from the NP complexity class [17,18].
These problems are “very hard” to solve with classical com-
puters; however, their solutions can still be verified (in poly-
nomial time).

Scaling advantages of quantum annealing over classical
annealing have been identified [19]. However, currently avail-
able technology still exhibits hardware issues, of which the
most important one is static disorder [20–24]. Rather counter-
intuitively, however, it also has been shown that static disorder
is not always detrimental, but can rather be a valuable resource
in achieving quantum tasks [25,26].

In the present work, we study the influence of static disor-
der on the annealing dynamics and analyze its effect on the
performance of near-term quantum annealers. To this end, we
mainly focus on a selected problem of graph coloring [27].
This is a fundamental problem in modern computer science
with various applications in many different areas, e.g., in
scheduling [28], pattern [29], and frequency [30] matching,
or memory allocation [31], to name just a few.

The main objective of the graph coloring problem is to
find a minimal number of colors, chromatic number—χ (G),
that are required to color a graph G, so that no adjacent sites
share the same color. In this context, colors can encode any
arbitrary information. Typical examples are shown in Fig. 1.
Based on numerical analysis of relatively small system sizes,
we suggest that for the graph coloring problem D-Wave-like
annealers may actually be robust against certain types of
noise. Even more importantly, we will see that particular types
of disorder can assist the adiabatic computation to achieve
better performance.
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FIG. 1. Graph coloring problem exemplified with N = 4 vertices
and K = 3 colors. A different color is assigned to adjacent ver-
tices. Other configurations are not valid solutions. A binary variable
Xic = 1 represents a vertex i � N having a color c ∈ {1, 2, . . . , K}.
Otherwise, we set Xic = 0; cf. Eq. (3).

II. DISORDER GRAPH COLORING PROBLEM

The dynamics of quantum annealers is typically described
by the following Hamiltonian,

Ĥ (s) = f (s)Ĥi + [1 − f (s)]Ĥf, s ∈ [−1, 1], (1)

where f (s) ∈ [0, 1] could be an arbitrary function such that
f (−1) = 1 and f (1) = 0 [32]. Typically, f (s) = s + 1, where
s(t ) = t/τ and τ is the annealing time [23]. For the present
purposes, initial and final Hamiltonian are instances of the
Ising spin glass [10], where, in particular,

Ĥf =
∑

〈i, j〉∈E
Ji jS

z
i Sz

j +
∑
i∈V

hiS
z
i , Ĥi = 4

∑
i∈V

Sx
i . (2)

Here, the problem Hamiltonian, Ĥf, is defined on a graph,
G = (E,V ), specified by its edges, E , and vertices, V . This
simple model can already be realized with present-day quan-
tum annealers [19], where the graph G is set to reflect
the chimera [33,34] or pegasus topology [35,36]. The pro-
grammable input parameters [37] are the elements of the
coupling matrix, Ji j , and the on-site magnetic fields, hi. Spin
operators are denoted by Sz

i , Sx
i and they describe spins in the

z, x directions, respectively.
All Ising variables can admit only two values (si = ±1).

Since there are, however, typically more than two colors
necessary to solve a graph coloring problem, one cannot map
it directly onto the Ising Hamiltonian. Thus graph coloring
problems are first expressed as spin lattices, where the spins
can take more than two values. These so-called Potts mod-
els [38,39] can then be mapped onto the Ising Hamiltonian
using a suitable embedding (i.e., with the help of auxiliary
variables).

When designing quantum algorithms, it is often convenient
to work with the quadratic unconstrained binary optimization
framework or QUBO [40]. Here, we introduce a binary vari-
able Xic = 1 if a vertex i ∈ {1, 2, . . . , N} is colored with a
color c ∈ {1, 2, . . . , K} and we set Xic = 0 otherwise. Then
the graph coloring problem can be formulated in the following

simple terms (cf. Fig. 1):

ĤQ
f =

N∑
i=1

(
1 −

K∑
c=1

Xic

)2

+
∑
〈i, j〉

K∑
c=1

XicXjc, (3)

where 〈i, j〉 indicates summation over all connected vertices.
If the ground state of the Hamiltonian in Eq. (3), correspond-
ing to the energy E = 0, exists then the graph G can be
properly colored with at least K colors. The purpose of the
first term in the above Hamiltonian is to assure that each
vertex i is colored with only one specific color c, as only then∑K

c=1 Xic = 1. The second term introduces an energy penalty
whenever neighboring vertices have the same color c. Similar
encoding strategies have also been discussed in the context of
quantum error correcting codes for quantum annealers [41].

Having formulated the graph coloring problem in terms
of binary variables, one can convert it back into the Ising
Hamiltonian, which is more common for quantum annealers.
Namely,

Ĥ I
f =

N∑
i=1

Jii

∑
c1<c2

Sz
ic1

Sz
ic2

+
∑
〈i, j〉

Ji j

K∑
c=1

Sz
icSz

jc

+
N∑

i=1

hi

K∑
c=1

Sz
ic + C, (4)

where Sz
ic = Xic − 1/2 is the spin z operator indexed by

two variables (i, c); C = [1 + K (K − 3)/4]N + K|E |/4 is a
constant and |E | denotes the total number of edges. The
coefficients hi are given by

hi = K + 1

2
deg(i) − 2, Ji j =

{
2, i = j,

1, i �= j,
(5)

where deg(i) is the number of edges at vertex i.
Current quantum annealers, such as the D-Wave machine,

are imperfect due to a variety of factors, chief among them
is static disorder originating in the limited control at the
hardware level [20,42–47]. Therefore, our objective is to
investigate what happens to the quantum annealing when all
couplings Ji j and magnetic fields hi are slightly perturbed. To
be more specific, we introduce static disorder,

hi → hi + δhi, Ji j → Ji j + δJi j, (6)

where perturbations δhi and δJi j are random variables with
flat distributions and symmetric amplitudes, e.g., δJi j ∈
[−WJ ,WJ ] and δhi ∈ [−Wh,Wh] [48].

For the sake of simplicity and without any loss of gener-
ality we focus in particular on the disorder generator where
δJi j = 0 and moreover

hi →
{

hi + δhi, for hi + δhi < max{hi},
max{hi}, otherwise.

(7)

Such disorder (6) mimics to some extent a situation in which
the actual values of interaction strengths at the hardware level
differ from the input parameters provided by the programmer
operating at the software level.

It is important to emphasize that not any kind of disorder
is beneficial for quantum annealing. Rather, we will show
in the present work that some specific disorder can assist in
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dynamically separating the ground state out of the energy
spectrum, and thus protecting the ground state against para-
sitic excitations.

III. RESULTS

To investigate the dynamics and annealing of the graph
coloring problem formulated in Eq. (4), we focus on all noni-
somorphic graphs, G(E ,V ), having |V | = 3, 4, 5 vertices and
for which the chromatic number χ (G) = K > 2 [49]. We omit
the K = 2 case as one can reduce its problem Hamiltonian to
the antiferromagnetic Ising model.

The quality of a quantum computation and annealing can
be measured in various ways [50]. For instance, one may try
to count defects [23], estimate fluctuations [24], calculate the
fidelity between the final state, |ψ (τ )〉, and the true ground
state of the problem Hamiltonian [51], |φ〉, or simply de-
termine the difference between their corresponding energies,
δE = 〈ψ (τ )|Ĥ |ψ (τ )〉 − 〈φ|Ĥ |φ〉 [21].

In the present work we calculate the probability to observe
the correct final result,

P =
∑
i∈S

|〈ψ (τ )|φi〉|2. (8)

Here, S is a set that labels all possible solutions, |φi〉, of the
disorder-free problem encoded in the Hamiltonian (4). The
final state |ψ (τ )〉 is obtained by solving the time-dependent
Schrödinger equation, i∂t |ψ (t )〉 = Ĥ (t )|ψ (t )〉, numerically
[52,53]. The total Hamiltonian Ĥ (t ) is defined in Eq. (1)
with the objective Hamiltonian (encoding the graph coloring
problem) given by Eq. (4) where all couplings, Ji j , and biases,
hi, are redefined according to Eq. (6).

A priori, the disorder amplitudes Wh, WJ could be arbi-
trarily large. However, to ensure that the ground state of
the disordered problem matches at least one solution to the
disorder-free problem at all, both Wh, WJ need to be carefully
chosen. For instance, picking WJ = Wh = 0.5 guarantees 0.99
probability of this event to occur (cf. Fig. 2). For the sake of
simplicity, we choose a simple annealing protocol such that
f (t ) = t/τ . Moreover, we assume without loss of generality
that WJ ≡ 0.

A. Disordered energy spectrum

As depicted in Fig. 3, introducing the disorder to the
Hamiltonian (4) removes the degeneracy of its ground state.
As a result, a solution to the graph coloring problem can
be found not only in the degenerate ground state (as in the
disorder-free case) but also in low-energy spectrum consisting
of M � 2KN states. In principle, this effect has the potential
to increase the overall chances of finding a correct solution,
in particular close to the adiabatic limit, e.g., on a time scale
τ ∼ 1/�. Here, � := Ei0 − E0 is an effective gap, that is, the
difference between the ground-state energy E0 and the energy
of the first accessible state, Ei0 , which does not encode a
solution.

B. Disorder-assisted dynamics

In Fig. 4 we depict the probability to find the correct
answer (8) as a function of the annealing time τ for the
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FIG. 2. Influence of the disorder’s amplitudes (Wh,WJ ) on the
ground-state properties of the system’s Hamiltonian (2). Here, p
is the probability for the ground state of the disordered system
being any of the solutions to the disorder-free problem [cf. Eq. (6)].
Contours show probabilities 0.99, 0.74, and 0.49, respectively. The
result has been obtained for the triangle topology (|V | = 3).

disordered and disorder-free systems. In the adiabatic limit
where τ 
 1/�, the disorder-free system is more likely to
reach the ground state than the disordered one. Nevertheless,
introducing disorder into the system does not significantly
affect the final probability.

Figure 4 also shows “optimal” results (black dashed lines),
obtained as follows: (i) for the best found configuration, hopt

i ,
for the disorder system, i.e., with the biggest probability P, we
add a normal noise to hopt

i with zero mean and unit variance
multiplied by the factor η = 0.1; (ii) we then repeat the
simulations for different realizations of the noise; (iii) finally,
we average over all realizations.

In Figs. 5(a) and 5(b) we compare a generic [Eq. (6)] and
specific [Eq. (7)] type of disorder for different typologies by
analyzing the density ρ(P) of a random variable P. As one can
see, the density corresponding to Eq. (7) is much “narrower.”
Furthermore, its mean value is larger than the mean value
corresponding to the density for the disorder-free case.

On the other hand, for small and moderate τ we observe
that the probability to find the correct solutions is typically
larger for the disordered Hamiltonian than in the disorder-free
situation. Thus it is not far-fetched to realize that one can
always try to find τ0 such that Pfree(τ0) < Pdisorder (τ0). This
suggests a different strategy to perform computation with
noisy near-term quantum annealers. Rather then trying to
operate the annealer as adiabatically as possible, one identifies
the “sweet spot,” τ0, at which the quantum annealer has opti-
mal performance, even better than in the ideal, disorder free
case, despite the inevitable noise in the system. For instance,
Fig. 5(c) indicates a clear maximum. Quite remarkably, we
also notice that this is truly a finite-time effect. In Fig. 5(d)
we plot the optimal value of the noise amplitude as a function
of the anneal time. We observe that in the adiabatic limit the
disorder-free case is the only “good” realization.
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FIG. 3. Structure of the low-energy spectrum for the disorder-free (a) and disordered Hamiltonians [(b), (c)]; cf. Eq. (1). The ground state,
En(s = 1), is degenerate for the disorder-free case and thus encodes all different solutions (marked here as blue solid lines) to the graph coloring
problem. The degeneracy is then removed when disorder is incorporated into the system; cf. Eq. (7). Optimally, both the ground state and also
excited states encode correct solutions with no “impurities” in between (i.e., low-energy states representing incorrect solutions—marked as
red dashed lines). This situation increases the effective gap, � (defined as the difference between the ground state and the first accessible state),
decreasing the computational and annealing time, τ ; cf. Fig. 4. In contrast, nonoptimal realizations result in impurities causing the effective
gap to shrink. This leads to an increase of the annealing time τ . All plots has been obtained for the triangle topology.
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FIG. 4. Probability P to observe the correct final result defined in Eq. (8) as a function of the computational and annealing time, τ ,
for selected problem typologies. Red solid lines correspond to the disorder-free case, e.g., Wh = WJ = 0, whereas blue dashed lines depict
results for the disordered case, where magnetic fields are perturbed according to Eq. (7) with Wh = 1. Here, f (t ) = t/τ . The corresponding
low-energy spectra for all three cases are depicted in Fig. 3. Black dashed line corresponds to the optimal disorder realization—which is
obtained by averaging all realizations with additional normal noise with zero mean and unit variance multiplied by the factor η = 0.1 (added
to the best found configuration hopt

i for the disorder system)—cf. Fig. 3(b).
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FIG. 5. (a), (b) Comparison between a generic [Eq. (6)] and specific [Eq. (7)] type of disorder for different typologies (τ = 10, Wh = 1,
and WJ = 0). Here, ρ(P) denotes the density of random variable P defined in Eq. (8). (c) Influence of the disorder amplitude Wh on probability
P. Result for disorder-free case is marked with black dashed line. (d), (e) Annealing time τ dependence of optimal values W opt

h and Popt. The
result in (a), (c)–(e), and (b) has been obtained for the triangle and pentagon topologies, respectively; WJ = 0.

However, the impact of the disorder on the success prob-
ability is still relatively small. This is illustrated Fig. 5(e).
Even at optimal noise strength P is significantly larger for
slower processes. Thus we must ask whether the noise can
be modified to make it more “useful.”

C. Optimizing disorder

Note that so far we have assumed that noise in the qubit-
qubit couplings is uniformly distributed. However, we have
also already realized that at intermediate anneal times the
presence of noise actually assists the quantum annealer in
finding the correct solution. The natural question then is
whether the disorder in the system can be engineered to
further enhance this effect—in other words, how to modify
the distribution of the noise in our favor. It is then instructive
to analyze the energy diagram and dynamics of single realiza-
tions of the disordered problem.

To this end, inspect again Fig. 3. We observe that in the
disorder-free case due to the presence of the degeneracy in
the ground state the effective gap � never actually closes;
cf. Fig. 3(a). The same holds true for “good” realizations,
except that the effective gap opens even wider due to the
lack of degeneracy; compare Fig. 3(b). On the contrary, for
all the cases we identify as “bad,” we see some mixture
of correct and incorrect solutions that basically behave like
impurities causing the effective gap to shrink [cf. Fig. 3(c)].
Thus removing those impurities increases the effective gap
which causes the adiabatic threshold to decrease.

Thus minimizing the influence of the remaining, “bad”
realizations may decrease the total time necessary to find a
correct solution substantially. This is also demonstrated in
Fig. 4 where the average dynamics is computed over only
those realizations that correlate with correct solutions. This

clearly demonstrates the advantage of disordered dynamics
over the “ideal,” disorder-free situation.

IV. CONCLUSIONS

It is still a commonly accepted creed that noise and
disorder in computing hardware have exclusively negative
consequences. In the present work, we have shown that this is
not always the case and that static disorder can actually assist
quantum annealers in successfully performing their tasks.
More specifically, we have studied the graph coloring problem
[21] on disorder-free and disordered quantum annealers.

On a fundamental level, our results clearly exhibit that
moderate noise in the qubit-qubit couplings does not only
not deter the annealer from finding the correct solution, but
also that there are instances where disorder assists the an-
nealer to perform in finite time. A more thorough analysis
revealed that in truly adiabatic operation, i.e., for very large
anneal times, noise is, indeed, detrimental. However, we also
found that for short anneal times static disorder can be tuned
to significantly enhance the performance of the quantum
annealer.

Interestingly, recently a new massively parallel algorithm
for simulated annealing has been proposed [54]. This method
contains a nondeterministic element—lack of synchronization
between CUDA threads, which could be (re)interpreted as a
source of noise.

On a more practical note, our results may suggest an
answer to a conundrum about existing hardware. Systems like
the D-Wave machine are known to be subject to electrode
noise, which can lead to severe disorder in the on-site fields
and qubit couplings. Nevertheless, in particular graph coloring
problems have been shown to be solved rather accurately
[55–57]. A conjecture that can be drawn now is that the
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D-Wave machine may be operating exactly in such a disorder-
assisted regime.

Of course, further characterization of the D-Wave machine
appears necessary to verify our hypothesis. However, if this
is indeed the case, then the performance of the machine
could be dramatically enhanced by postselecting the answers
on the noise distribution (which will need to be measured
independently).

We end on a more speculative note: in the present work,
we have seen that disorder can be beneficial in small to
moderate-sized problems. We are reasonably optimistic that
this observation is generic, and that it will also survive in

large scale problems. However, only future research will tell
whether this is indeed the case.
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