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Using the Fourier modal method (FMM) we report our analysis of the transmission resonances of a plasmonic
grating with subwavelength period and extremely narrow slits for wavelengths of the incoming, transverse mag-
netic (TM)-polarized, radiation ranging from 240 nm to 1500 nm and incident angles from 0° to 90°. In particular,
we study the case of a silver grating placed in vacuo. Consistent with previous studies on the topic, we highlight
that the main mechanism for extraordinary transmission is a TM-Fabry-Perot (FP) branch supported by waveguide
modes inside each slit. The TM-FP branch may also interact with surface plasmons (SPs) at the air/Ag interface
through the reciprocal lattice vectors of the grating, for periods comparable with the incoming wavelength. When
the TM-FP branch crosses an SP branch, a bandgap is formed along the line of the SP dispersion. The gap has a
Fano-Feshbach resonance at the low frequency band edge and a ridge resonance with extremely long lifetime at the
high frequency band edge. We discuss the nature of these dispersion features, and in particular we describe the
ridge resonance in the framework of guided-mode resonances (GMRs). In addition, we elucidate the connection of
the coupling between the TM-FP branch and SPs within the Rayleigh condition. We also study the peculiar char-
acteristics of the field localization and the energy transport in two topical examples. © 2011 Optical Society of
America

OCIS codes: 240.6680, 050.6624, 160.4236.

1. INTRODUCTION
Scattering of the electromagnetic radiation from metallic grat-
ings [1] has attracted much attention since the beginning of
the last century, when Wood [2] noted an uneven distribution
of the diffraction orders reflected from them under transverse
magnetic (TM) polarization of the incident light (i.e., the H

field parallel to the grooves of the grating). The phenomenon
was later explained by Ritchie et al. [3] in terms of an inter-
action between the incoming photon and a surface-plasmon
(SP) resonance at the grating surface. The interested reader
may consult [4] for an account of the influence of SP reso-
nances on the diffraction anomalies of metallic gratings.
The subject took new life approximately one decade ago when
Ebbesen and co-workers [5] experimentally verified enhanced
transmission in the optical regime through an array of strong
subwavelength holes carved in a metallic screen under TM
light polarization. The topic of the extraordinary transmission
through these kinds of structures has been the subject of an
intense theoretical and experimental investigation over the
past decade, an account of which can be found in [6,7].
The results of [5] sparked a renewed interest in the scattering
from subwavelength metallic gratings which can be consid-
ered in some ways the one-dimensional version of the holey
metallic screen studied in [5]. In [8] the authors theoretically
showed the existence of transmission resonances at wave-
lengths larger than the period of the grating for extremely nar-
row slits. In particular, they enucleated two different resonant
mechanisms for the energy transport from the input to the out-
put surface of the grating: (a) the excitation and coupling of

SP resonances at the input and output surfaces of the grating
and (b) the coupling of light through the waveguide reso-
nances located in the slits. In particular, as it is well known
[9], the fundamental transverse electric and magnetic (TEM)
mode in a planar parallel-plate waveguide made of a perfect
conductor has no cutoff and, therefore, a guided mode exists
even for strong subwavelength slits, a mechanism that allows
wave transmission through ultranarrow slits. Such propaga-
tion, instead, is not supported in the case of a rectangular
or cylindrical conducting waveguide, for which a cutoff di-
mension exists. This fact implies that waveguide modes can-
not be invoked to justify the extraordinary transmission in the
case of a holey screen, as studied in [5]. There has been some
debate on whether the coupling with waveguide modes in the
slits is sufficient to explain the extraordinary transmission in
subwavelength metallic gratings [10] or the SP resonances are
in any case essential to it [7,11], and we discuss this issue in
the following. It should be also stressed that at optical fre-
quencies metals lose some of their conductive properties,
affecting the TEM mode in parallel-plate slits, which is trans-
formed into a plasmonic TM mode with slow-wave properties.
Analogous transmission properties may be verified based on
this dominant mode, which also has no cutoff. At optical fre-
quencies the propagation loss of these TM waveguide modes
may become quite large for long propagation distances, but
the length of the waveguide slits considered here is on the or-
der of 100 nm, and significant amounts of energy may be ex-
pected to be transmitted through the slits via the waveguide
modes. In the case where there are no waveguide modes, even
evanescent
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tunneling through the apertures may be a mechanism for en-
ergy transport in specific configurations.

In this paper, we verify that the main mechanism for the
extraordinary transmission of TM waves through 1D ultranar-
row slit arrays in a metallic grating is mainly based on a Fabry-
Perot (FP) branch which depends on waveguide modes inside
each slit. We also discuss how the TM-FP branch in several
circumstances can be coupled with the surface plasmons
(SPs) supported at the input and output surfaces of the grating
through the reciprocal lattice vectors of the grating. When
the TM-FP branch interacts with these SPs, a bandgap is
formed along the line of the SP dispersion. The gap has a
Fano-Feshbach resonance at the low frequency band edge
and a ridge resonance with extremely long lifetime at the high
frequency band edge, which may be interpreted in the frame-
work of guided-mode resonances (GMRs). We elucidate the
connection of the coupling between the TM-FP branch and
SPs with the Rayleigh condition and the Wood’s anomaly.
The paper is organized as follows: In Section 2 we briefly de-
scribe the geometry of interest and the numerical tool we use
for the calculations. In Section 3 we analyze in detail the
TM-FP branch. In Section 4 we describe the coupling of the
TM-FP branch with the SPs and elucidate the connection with
the Fano-Feshbach resonance and the ridge resonance. In
Section 5 we discuss the Rayleigh condition. In Section 6
we analyze the peculiar features of the field localization
and the energy transport in two topical cases. Finally, in
Section 7 we give our conclusions.

2. MODEL
In our analysis we use the Fourier modal method (FMM) [12]
to study the transmission resonances from a silver grating
with strong subwavelength slits for a range of the incoming
radiation which encompasses the extreme UV, visible and
near-IR part of the electromagnetic spectrum, namely from
240 nm to 1500 nm, and incident angles from 0° to 90°. The
geometry studied is sketched in Fig. 1. The inset of Fig. 1
shows the dispersion of silver as reported in Palik’s handbook
[13]. The use of the FMM allows us to take directly the values
of the electric permittivity of silver from measured data avail-
able in literature [13], with no fitting procedure and no aux-
iliary equations accounting for the Drude-Lorentz dispersion
model as would be the case if one uses other numerical tech-
niques such as finite-difference time domain (FDTD) [14], for
example. Note that the oscillations in the real part of the per-
mittivity in the long wavelength region result from the overlap
of data points obtained from different experimental groups
[13]. It has been noted [15,16] that in metal-based nanostruc-
tures the values of the dispersion of silver might be different
with respect to the bulk values reported in [13]; nevertheless
the use of these more refined dispersions does not signifi-
cantly modify the results presented in this paper.

The FMM has been largely used in the past to describe the
scattering from diffraction gratings [17]. In its simplest form
the method is based on the Fourier expansion of the grating
profile and the resolution of a coupled system of damped, har-
monic-oscillator-type equations [17]. Despite its simplicity and

Fig. 1. (Color online) Metallic grating made of silver with grating thickness d, slit aperture a, and grating period Λ. The incident field is a plane,
monochromatic, TM-polarized wave where k0 ¼ 2π=λ is the wave vector, λ is the wavelength, and ϑ is the incident angle. In this case we consider air
as the incident and the output medium. The Cartesian right-handed system ðx; y; zÞ has the z coordinate in the propagation direction and the x

coordinate along the periodicity of the grating. The y coordinate is the direction along which the magnetic field H is polarized. The input grating
surface is located at z ¼ 0 and the output surface at z ¼ d. Inset, real (εr) and imaginary (εi) part of the electric permittivity of silver from data
reported in [13].
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straightforwardness, the method in the past suffered from two
serious problems which prevented its full applicability espe-
cially in the plasmonic regime. The first problem was the poor
convergence for TM polarization and the second was the nu-
merical instabilities which may arise when matching the solu-
tion inside the grating with the solution in the incident and
output medium due to the presence of evanescent modes.
The first problem was resolved almost 15 years ago in a series
of seminal papers where it was made clear that the slow con-
vergence was due to the way in which the Fourier transform
of the product of two discontinuous functions is handled [18–
20] and suggested a way to manage the expansions in the
proper manner. Further refinements of the technique for
particular cases have been subject of investigations until very
recently [21]. The numerical instabilities due to the presence
of evanescent modes can be cured in two different ways. The
first way is by resorting to the scattering-matrix (S-matrix) ap-
proach [22] instead of the classical transfer matrix approach
or by resorting to the R-matrix approach which is a slightly
different version of the S-matrix approach [22]. The S-matrix
and R-matrix approaches are both recursive methods that
achieve unconditional numerical stability [22] and require
moderate computer memory. The second, much simpler
method, nevertheless still achieving numerical stability, is
the one laid out in [23] where the boundary value problem
is resolved simultaneously at all the grating interfaces. This
second method requires more computer memory but, on the
other hand, has the advantage of a much easier and intuitive
implementation. In our version of the FMMwe follow the clas-
sical recipe suggested in [18–20] to cure the poor convergence
of the TM polarization, and we solve simultaneously the
boundary conditions at the input and output surfaces of the
grating according to [23]. The transmitted power at the output
surface of the grating is calculated by using the z-component
of the Poynting vector (Sz), namely,

Tðλ;ϑÞ ¼
RΛ
0 Szðx; z ¼ d; λ;ϑÞdxRΛ

0 S
input
z ðx; z ¼ 0; λ;ϑÞdx : ð1Þ

In other words, T is calculated by the ratio of the power trans-
mitted by the elementary cell of the grating at the output sur-
face located at z ¼ d divided by the power incident onto the
elementary cell of the grating located at z ¼ 0 (see Fig. 1).
Using the orthogonality condition of the diffraction orders [24],
Eq. (1) can be recast for TM polarization in the following form:

Tðλ;ϑÞ ¼ ninc

k0n
2
out cosϑ

X
m

jtmj2Re
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
outk

2
0 − α2m

q �
; ð2Þ

where k0 ¼ 2π=λ is the vacuum wave vector,ninc and nout are,
respectively, the refractive index of the input and output med-
ium (nin ¼ nout ¼ 1 in our case), ϑ is the incident angle of the
incoming wave on the grating, tm is the complex transmission
coefficient of the mth diffracted order, Re indicates the real
part, and finally αm is the generalized transverse wave vector:

αm ¼ k0ninc sinϑþ 2mπ
Λ m ¼ 0;�1;�2;…: ð3Þ

WehavewrittenMaxwell’s equations inmeter kilogramsecond
ampere (MKSA), nondimensional units, i.e., we write the equa-
tions as in the standardMKSAunits, but thenwe take ε0 ¼ μ0 ¼
c ¼ 1 where ε0 is the vacuum electric permittivity, μ0 is the
vacuum magnetic permeability, and c is the speed of light
in vacuo. Finally, the magnetic field incident onto the sample
is considered unitary amplitude.

3. TM-FP BRANCH: THE ROLE OF
PLASMON MODES IN THE METAL-
INSULATOR-METAL (MIM) WAVEGUIDE
Let us start by investigating in detail the TM-FP branchwhich is
themainprotagonist of the extraordinary transmission through
the geometry of Fig. 1. At this regard in Fig. 2(a) we plot the
transmission T in the ðλ; dÞ plane for normal incidence in
the case of the Ag grating with period Λ ¼ 320 nm and slits
aperture a ¼ 32 nm. In this case we let its thickness vary be-
tween d ¼ 10 nmand d ¼ 400 nm. Figure 2(a) clearly puts into

Fig. 2. (Color online) (a) Log10ðTÞ versus λ (incident wavelength) and d (grating thickness) for normal incidence. The grating parameters are
Λ ¼ 320 nm and a ¼ 32 nm. The various TM-FP branches are put into evidence. The dashed white lines represent the various FP branches cal-
culated using the FP-etalon formula with the complex effective index of the guided mode. (b) Effective index neff versus λ for the fundamental TM
mode of a planar waveguide Ag/air/Ag for different air core thicknesses. The various dimensions of the air core for the different curves from the top
to the bottom are reported at the right side of the figure. The last curve on the bottom represents instead the effective index of the SP at a single air/
Ag interface. Inset, schematic representation of the MIM waveguide.
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evidence the Fabry-Perot nature of the branch; in fact by vary-
ing the thickness of the gratingwe can see several transmission
branches located, respectively, at d ∼ λg=2, d ∼ λg, d ∼ 3λg=2
where λg ¼ λ=neff is the wavelength of the guided mode with
effective index neff , as clarified below. The white dashed lines,
reported for comparison, represent, respectively, the position
of the first, second, and third transmission branch calculated
by finding the maxima of the square modulus of the complex
transmission function of an FP-etalon interferometer with
same effective index placed in vacuo for TM polarization of
the incident light [25]:

tTMðkx;ωÞ ¼
2

2 cos
�
n̂eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −

k2x
n̂2
eff

r
d

�
− i

�n̂eff

ffiffiffiffiffiffiffiffiffiffi
k20−

k2
x

n̂2
eff

r
ε̂eff

ffiffiffiffiffiffiffiffiffi
k20−k

2
x

p þ ε̂eff
ffiffiffiffiffiffiffiffiffi
k20−k

2
x

p

n̂eff

ffiffiffiffiffiffiffiffiffiffi
k20−

k2
x

n̂2
eff

r �
sin

�
n̂eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −

k2x
n̂2
eff

r
d

� : ð4Þ

Note that in Eq. (4) the ω dependence is in the vacuum wave
vector k0 ¼ ω=c ¼ 2π=λ. The FP-etalon has thickness d and
complex effective index n̂eff ¼ neff þ iKeff ¼

ffiffiffiffiffiffiffi
ε̂eff

p
, where

neff and Keff are, respectively, the effective index and the ex-
tinction coefficient for the fundamental TM guided mode of a
subwavelength metal-insulator-metal planar waveguide [26]
made in our case by Ag/air(32 nm)/Ag. Figure 2(b) shows
the effective index of the fundamental mode for the Ag/air/
Ag waveguide, varying the thickness of the air core. The calcu-
lation has been performed using a Newton-Rapson procedure
as in [27]. Note that in the limit of a thick air core (i.e., the thick-
ness of the core is larger than the skin depth of the plasmon in
air) the dispersion of the guidedmode tends toward the disper-
sion of the single interface air/Ag SP (last curve on the bottom
of the figure) in agreementwith the results reported in [26]. The
effective index of the SP is given by [4]

neff;SP ¼ Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε̂Ag

1þ ε̂Ag

s
; ð5Þ

where ε̂Ag is the complex permittivity of silver taken from [13].
FromFigs. 2(a) and 2(b) several conclusionsmaybe drawn: (a)
The position of the FP-branches is, everything considered,well
approximated by the position of the branches in an equivalent
FP-etalon of thickness d and complex effective index
n̂eff ¼ neff þ iKeff . (b) The λg=2 branch, i.e. the first FP branch,
is pushed toward ∼λ=4 by the effective index of the waveguide
mode (for a ¼ 32 nmwe haveneff ∼ 2 in the visible range). The
same effect can be found, for example, in the nanoantennas
where the resonant frequency is shifted at λeff=2 where λeff
is the effective wavelength of the plasmonic nanodipole which
is shorter than the free space wavelength λ [28,29]. This is a
fundamental distinction with respect to the microwave or
THz region. If we had studied the same geometry (i.e., with
the dimensions scaled according to the wavelength) in the
THz or microwave range we would have found that the first
FP resonance would have been located at ∼λ=2. The fact that
we find the first FP branch at ∼λ=4ðλg=2Þ is a typical signature

of the plasmonic regime. (c) The dispersion of the guidedmode
clearly shows its plasmonic nature, given the fact that it tends
toward the dispersion of the SP of the single air/Ag interface by
increasing the thickness of the air core.

It therefore should be clear that the TM-FP branch in the
optical regime is actually ruled by a guided mode in the z di-
rection that is plasmonic in nature, as the modes studied in
[26] for the MIM planar waveguide. While at lower frequencies
(say THz and below) the differences between classical TEM
modes in a perfect conductor and these plasmonic modes be-
come much less evident, in the optical regime, that is the

range of interest of the present work, the plasmonic nature
of these modes is preponderant. In Fig. 3 we show the trans-
mission T in the ðω; kxÞ plane for the Ag grating with thickness
d ¼ 400 nm, period Λ ¼ 256 nm, and slits aperture
a ¼ 32 nm. In the figure it is also reported (black-dashed line)
the dispersion ωFPðkxÞ of the equivalent FP-etalon which is
calculated by finding the transmission maxima of
jtTMðω; kxÞj2 where tTMðω; kxÞ is given by Eq. (4). The figure
shows that the salient characteristics of the TM-FP (λg=2)
branch and the TM-FP (λg) branch are described quite satis-
factorily by the dispersion of the equivalent FP-etalon. Clearly,
this is only a qualitative analogy, which captures the position
of the maxima of transmission related to the Fabry-Perot re-
sonances of the grating, but it provides physical insights into
the optical behavior of the grating in this regime. Also visible
in the figure is the TM-FP (3λg=2) branch that is in this case
split by the dispersion of the transverse SPs which make their
appearance in the propagation region thanks to their phase
matching with the reciprocal lattice vectors of the grating.

Fig. 3. (Color online) T versus ω=ωref and kx=k0 ¼ sinðϑÞ. ωref is a
reference frequency which corresponds to λ ¼ 1 μm. The ω=ωref scale
goes from ω=ωref ¼ 0:667 (λ ¼ 1:5 μm) to ω=ωref ¼ 2:5 (λ ¼ 400 nm).
The grating parameters are Λ ¼ 256 nm, d ¼ 400 nm, a ¼ 32 nm. The
dashed line corresponds to the dispersion of the equivalent FP-etalon
for which the nearly vertical dashed line is related to the classic Brew-
ster condition of a dielectric slab.
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The detailed description of the coupling between the TM-FP
branch and the SPs at the input and output surfaces will be the
subject of the next section. For the time being let us say that
Eq. (4) gives just a rough estimation of the position of the FP
resonances; in fact it does not take into account the grating
periodicity and the possible interactions between the multiple
slits, all factors that affect the actual position of the reso-
nances. Still, even within this crude approximation, the main
features of the FP branch are recaptured in an acceptable
way. It is relevant to stress that the position of the maxima
predicted by Eq. (4) is slightly shifted compared to the calcu-
lated transmission resonances in Figs. 2 and 3. This is an ex-
pected phenomenon even in conducting slits, associated with
the fact that the phase of the reflection coefficient at the slit
apertures is in practice not purely real, as assumed in Eq. (4)
[10], even in the lossless limit. An improved model for the
effective properties of the grating in this long-wavelength re-
gime will be the subject of a future, more detailed investiga-
tion that we are currently performing. We would like to close
this section by remarking the fact that the Fabry-Perot nature
of these transmission resonances has been widely studied in
the past [11,30–37]. In particular, the first clear claim about
the transmission resonances at normal incidence following
the Fabry-Perot resonant condition d ¼ mλg=2 is reported
in [30]. An up-to-date review on the subject can be found in
[38]. Our approach here is characterized by its extreme sim-
plicity; in fact Eq. (4) is the standard Fabry-Perot-etalon for-
mula for generic angular incidence and TM polarization where
the refractive index of the Fabry-Perot-etalon is nothing more
than the complex effective index the fundamental guided
mode of the MIM waveguide. Moreover, we have clearly de-
monstrated the plasmonic nature of these Fabry-Perot trans-
mission resonances in the optical regime.

4. COUPLING BETWEEN THE TM-FP
BRANCH AND SP’S AT THE INPUT/OUTPUT
INTERFACES
When the grating period becomes comparable to the imping-
ing wavelength, the dominant TM-FP resonant branch high-
lighted above may couple with the SPs supported by the
input and output interfaces of the grating. To the end of mod-

eling this coupling, we write the energy-momentum conserva-
tion of the incoming photons for both processes:

ωphðkxÞ ¼ ωFPðkxÞ; ð6aÞ

ωphðkxÞ ¼ ΩðjkSP � GmjÞ m ¼ 0; 1; 2;…: ð6bÞ

In Eq. (6a) ωph is the energy of the incoming photon, kx ¼
k0 sinðϑÞ its transverse momentum, and ωFPðkxÞ the dispersion
of the equivalent FP-etalon. In Eq. (6b) Ω is the plasmon en-
ergy, kSP ¼ k0Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε̂Ag=ð1þ ε̂AgÞ

p
the momentum of the single

interface SP for the homogeneous (no patterning) air/silver
interface [3,4], and Gm ¼ 2 mπ=Λ is themth reciprocal lattice
vector of the grating. Equation (6b) refers to the transverse
SP, i.e., the SP that is guided along the x axis at the air/Ag
interface. In our case we deal with thick gratings (d ≥ 150 nm)
and therefore the use of the SP dispersion of the single homo-
geneous interface is a very good approximation of the SP
modes supported by the layer. Actually the plasmonic disper-
sion relation of a thin metal layer automatically converges to-
ward the dispersion of the single interface plasmon for layer
thickness greater than 50 nm, as shown in, e.g., [39]. In Fig. 4
we show two typical examples of the coupling between the
TM-FP branch and the dispersion of the SPs. In Fig. 4 the
thin-dashed line reports the dispersion of the transverse SP
Ωð−kSP þ GÞ matched with the first reciprocal lattice vector
and the black thick-dashed line is the dispersion of the TM-
FP etalon ωFPðkxÞ. It is important to realize that when the
TM-FP branch and the SP dispersion cross paths, it is the
SP that has the “right of way.” In fact, the FP branch is split
into two sub-branches separated by the line of the SP disper-
sion which in turn creates a bandgap between the two sub-
branches. The lower sub-branch has to bend following closely
the line of the plasmonic dispersion. In Fig. 4(a) this happens
for the TM-FP (λg=2), while in Fig. 4(b) the same happens for
the TM-FP (λg) branch. In Fig. 5, we show a magnification of
Fig. 4(a) near the SP dispersion line. Figure 5(a) clearly shows
that the SP dispersion line shapes the gap formed between the
two TM-FP sub-branches. In Fig. 5(b) we show in the same
zone the reflection Rðω; kÞ. The figure shows that the reflec-
tion peaks are almost coincident with the SP dispersion line.

Fig. 4. (Color online) T versus ω=ωref and kx=k0. The grating parameters common to both figures are Λ ¼ 320 nm, a ¼ 32 nm. The thickness is,
respectively, (a) d ¼ 150 nm and (b) d ¼ 250 nm. In both figures the thin-dashed line represents the dispersion of the SPs phase matched with the
first reciprocal lattice vector of the grating: Ωð−kSP þ GÞ. The thick-dashed line is the dispersion of the equivalent FP-etalon: ωFPðkxÞ.
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Note also that these peaks of reflection are effectively the
Wood’s anomalies of this geometry [2,3]. In Fig. 5(c) we also
show Log10ðTÞ from which it is clear that the minima of trans-
mission exactly follow the SP dispersion line. The concept
that the transmission minima follow the line of the SP disper-
sion will be instrumental in discussing the Rayleigh condition
in the next section.

For the time being let us analyze in detail in Fig. 6 the band
edge transmission resonances formedwhen the TM-FP branch
is split by the coupling with the SP branch. In particular, we
show in this figure a section of Fig. 4(a) taken for kx=k0 ¼
sinð80°Þ in the frequency range around the SP frequency
Ωð−kSP þ G ¼ k0 sinð80°ÞÞ. From the numerical calculation,
we can extract the parameters that we need in order to write
the various types of resonances as detailed in the figure
caption. Once these parameters are computed, the Fano-
Feshbach resonance normalized to the peak of emission
ðTMAXÞ of the actual resonance can be calculated in the usual
way [40,41]:

TF-Fðω;Ω;ΩFF;ΓFF; TMAXÞ ¼
TMAX

1þ q2
ðεþ qÞ2
ε2 þ 1

; ð7Þ

where, in this case ε ¼ 2ðω − ωFÞ=ΓFF, q ¼ 2ðωF − ΩÞ=ΓFF, and
ωF ¼ ðΩΩFF þ Γ2

FF=4Þ1=2. Here all the frequencies are intended
in units ofωref . The ridge resonance is instead described by the
following expression:

TRidgeðω;ΩRidge;ΓRidge; TMAXÞ

¼ T2
MAX

�
TB-Wðω;ΩRidge;ΓRidge; g ¼ 1Þ

þ 1
π arctan

�
4

ΓRidge
ðω − ΩRidgeÞ

�
þ 1
2

�
; ð8Þ

where TB-W is the Breit-Wigner (“Lorentzian”) resonance de-
fined as

TB-Wðω;ΩRidge;ΓRidge; gÞ ¼ g
ðΓRidge=2Þ2

ðω − ΩRidgeÞ2 þ ðΓRidge=2Þ2
: ð9Þ

Fig. 5. (Color online) (a) T versus ω=ωref and kx=k0 for the case of Fig. 4(a). This is a magnification near the SP dispersion line. (b) R (reflection)
versus ω=ωref and kx=k0. (c) Log10ðTÞ versus ω=ωref and kx=k0. Note that the SP dispersion line (dashed line) follows exactly the transmission
minima.
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Although outside the scope of the present work, the explora-
tion and the exploitation of these extremely narrow ridge-
resonances for the enhancement of nonlinear optical
phenomena will surely be a fertile ground of research. We
would like to caution the reader that our approach to the
description of the transmission resonances in terms of a
Fano-Feshbach line and a ridge resonance as described by
Eqs. (7)–(9) is a qualitative description of the coupling between
these two resonant mechanisms, with no pretension of rigor.
Our scope here is to highlight the main “ingredients” that lay
behind the physics of the enhanced transmission. A rigorous
analytical theory is beyond the scope of the present work.
Nevertheless, our analysis highlights the fact that the extraor-
dinary transmission is deeply rooted in the physics of scatter-
ing, and somehow the “universality” of this phenomenon
should be manifest. In this regard, more effective tools for
its description and interpretation could be possibly taken di-
rectly from the field of atomic and nuclear physics, see, e.g.,
[42]. It is also interesting to remark on the close similarity of
the bandgap structure shown in Fig. 6 with the bandgap struc-
ture that is created in a simple 1Dmultilayered structure as the
one studied in, e.g., [43].

Let us elaborate further on the nature of this ridge reso-
nance that appears at the high frequency band edge near
the line of the dispersion of the plasmon coupled with the first
reciprocal lattice vector. The ridge resonance may also be de-
scribed in the framework of the guided-mode resonances
found in single slab or multilayer waveguides with a grating
on it. GMRs are leaky modes with extremely sharp transmis-
sion/reflection resonances which are originated by the cou-
pling of the true guided modes of the waveguide with the
reciprocal lattice vectors of the grating. GMRs have been

widely studied in the past [44–47] and, obviously, they do
not necessarily need plasmonic guided modes or surface
waves to be generated. Indeed conventional guided modes
coupled with the reciprocal lattice vector of the grating can
be used to generate these sharp transmission/reflection reso-
nances. In this regard, in Fig. 7 we show the transmission
resonances at normal incidence for both TM and trans-
verse-electric (TE) polarization in the case of a dielectric, non-
dispersive grating of refractive index n ¼ 4:13 and thickness
d ¼ 96 nm. The grating period isΛ ¼ 320 nm and the slit aper-
ture is a ¼ 32 nm. The thickness has been chosen so that the
uniform layer supports at normal incidence a Fabry-Perot-
etalon antiresonance for d ¼ 3λ=ð4nÞ ¼ 96 nm at λ ¼ 532 nm.
For such a structure the impinging plane wave can indeed
couple with the transverse guided TE and TM modes of the
uniform layer and with its longitudinal Fabry-Perot reso-
nances through the reciprocal lattice vectors of the grating,
as verified by comparing the transmission curves of the grat-
ing to the case of the simple etalon of same thickness in Fig. 7.
This plot shows that the complex features of the coupling be-
tween transverse guided modes and longitudinal Fabry-Perot
resonances is not peculiar to surface plasmons, plasmonic
structures, or TM polarization, but instead it may be obtained
in both polarizations in simple dielectric grating geometries.
In the figure the arrows indicate the wavelength of the guided
modes coupled with the reciprocal lattice vectors of the grat-
ing. We observe the transmission resonance for TM polariza-
tion (dotted line) located in the valley of the transmission of
the Fabry-Perot etalon (dashed line) around λ ¼ 532 nm and
the spectral position of the TM0 guided mode coupled with the
reciprocal lattice vector (TM0-G) that is located near the mini-
mum of the transmission resonance, analogous to our pre-
vious results for the plasmonic scenario. Moreover, we
note the two transmission resonances for TE polarization
(continuous line) that are located in the valley of the transmis-
sion of the Fabry-Perot etalon as well. In the figure we also

Fig. 6. (Color online) T versusω=ωref at kx=k0 ¼ sinð80°Þ for the case
of Fig. 4(a). The dispersion of the SP that crosses the TM-FP branch
forms a bandgap. The low frequency band edge resonance has the form
of a Fano-Feshbach resonance, while the high frequency band edge re-
sonance has the form of a “ridge” resonance with extremely long life-
time. Numerical calculation (continuous line), comparison with the
Fano-Feshbach (F-F) resonance (dashed-dotted line), and with the
ridge resonance (dashed line). The F-F resonance and the ridge reso-
nance are calculated respectively according to Eqs. (7) and (8). Ω ¼
1:5513 is the SP frequency at kSP-G ¼ k0 sinð80°Þ. From the numerical
calculation we can extract the parameters to fit the resonances which
are ΩFF ¼ 1:4885 (resonance frequency for the F-F), ΓFF ¼ 0:06 (life-
time of the F-F), Ωridge ¼ 1:5708 (resonance frequency of the ridge cor-
responding to λ ¼ 637 nm), and ΓRidge ¼ 0:0045 (lifetime of the ridge)
corresponding to Δλ ∼ 1 nm.

Fig. 7. (Color online) T versus wavelength for TM polarization
(dotted line) and TE polarization (continuous line) at normal inci-
dence in the case of a dielectric grating with refractive index
n ¼ 4:13, thickness d ¼ 96 nm, period Λ ¼ 320 nm, and slit aperture
a ¼ 32 nm. The dashed line refers to a uniform layer with same thick-
ness and same refractive index. The arrows indicate the wavelengths
of the guided modes of the single, uniform layer (TE0, TE1, TM0, TM1)
coupled with the reciprocal lattice vectors of the grating. The ridge
resonances (guided-mode resonances) are located nearby these
wavelengths.
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report the spectral position of the corresponding guided
modes TE0 and TE1 coupled, respectively, with 2G and G.
It is evident that the extraordinary transmission for TE polar-
ization [48] could be also explained in terms of GMRs and,
more in general, the ridge resonances in the extraordinary
transmission scenario, be their nature plasmonic or not, could
be analyzed in the framework of the physics of the GMRs
[44–47].

5. RAYLEIGH CONDITION
As we have already seen, in general the plasmon-photon
energy-momentum conservation, i.e., Eq. (6b), corresponds
to the transmission minima. In the momentum space, Eq. (6b)
at normal incidence may be written as

kSPðΩÞ ¼ Gm m ¼ 1; 2;…: ð10Þ

In the ðΛ; λÞ plane Eq. (10) can be recast in the following form:

λSP ¼ Λ
m

m ¼ 1; 2;…; ð11Þ

where λSP ¼ 2π=kSP is the “SP wavelength” which in our case
takes the following simple form: λSP ¼ λ=Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εAg=ð1þ εAgÞ

p
with λ the incident wavelength. Equation (11) tells us that
at normal incidence in the ðΛ; λÞ plane there are several
branches of transmission minima, the first branch occurs
when the grating period Λ is exactly equal to the SP wave-
length λSP. Historically, the first explanation of these transmis-
sion minima was given by Lord Rayleigh [49], who attributed
the transmission minima at normal incidence to the first-order
diffracted beam becoming grazing to the plane of the grating
which occurs when

λ ¼ ΛðRayleigh conditionÞ: ð12Þ

Note that in a photon-plasmon energy-momentum conserva-
tion scenario, the Rayleigh condition (12) may be considered
as the limiting case of Eq. (11) for m ¼ 1 in the low frequency
regime, i.e., when the metal tends to behave more similarly to
a perfect electric conductor and the SP wavelength tends to-
ward the incident wavelength λSP → λ. So we may expect that,
by monitoring the transmission minima of a grating under nor-

mal incidence in the ðΛ; λÞ plane, the transmission minima will
exactly follow the law expressed in Eq. (11) and the first
branch of transmission minima will only approximately be
described by the Rayleigh condition and only in the low fre-
quency range. These considerations are indeed confirmed by
the calculation shown in Fig. 8. Our study of the Rayleigh con-
dition (12) versus its “plasmonic version” (11) shows unam-
biguously that it is the plasmonic dispersion to rule the
transmission minima, consistent with the findings in [7]. The
subject has been also analyzed in several publications for 2D
geometries, namely, in arrays of subwavelength holes, see
[50,51] for example. In the next section we will analyze the
field localization and energy transport in two topical cases,
namely, (I) the incident field is at normal incidence and it
is tuned on the first TM-FP transmission resonance at λg=2,
and (II) the incident field is tuned on the ridge resonance.

6. FIELD LOCALIZATION AND
ENERGY TRANSPORT
We start our analysis by showing in Fig. 9 the two transmis-
sion resonances that, for exposition purposes, we name,

Fig. 8. (Color online) Log10ðTÞ at normal incidence versus grating
period (Λ) and incident wavelength (λ) for a silver grating with thick-
ness d ¼ 150 nm and slits aperture a ¼ 32 nm. Note that the first
branch of transmission minima follows exactly the plasmonic law,
λSP ¼ Λ, not the Rayleigh condition λ ¼ Λ. Also visible is the second
branch λSP ¼ Λ=2 which departs quite evidently from the line
λ ¼ Λ=2.

Fig. 9. (Color online) T versus wavelength (λ) and incident angle (ϑ) for the case described in Fig. 4(a). (a) Topographic view. (b) 3-D view from a
different perspective. The Roman numbers and the black dots indicate the resonances that we analyze.
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respectively, with Roman numbers I, II. The structure is the
same as that described in Fig. 4(a). Resonance I is located
on the TM-FP (λg=2) branch for λ ¼ 640 nm and normal inci-
dence with a transmission maximum reaching∼0:6 (or equiva-
lently ∼60% of the incoming power). Resonance II is on the
ridge at λ ¼ 637 nm and ϑ ¼ 80° (this is the same ridge reso-
nance already represented in Fig. 6). These resonances are
characterized by an extremely narrow bandwidth (∼1 nm),
which makes them optimal candidates for a low-power all-
optical switching device, for example. In Fig. 10 we show
the typical characteristics for the field tuned on resonance
I. In particular, Fig. 10(a) reports the square modulus of
the magnetic field (jHj2) over the elementary cell. The mag-
netic field is strongly localized at the center of the slit. This
is the typical example of a first-order, single-bell, TM-Fabry-
Perot lossy mode that is supported by the grating for a thick-
ness d ∼ λg=2. A double-bell-shaped TM-Fabry-Perot mode
would resonate at d ∼ λg, and so on. In Fig. 10(b) we show
the z component of the Poynting vector. Obviously the energy
transport is taking place primarily through the slit, as one may
expect, with dramatic energy squeezing through the narrow
aperture. In Fig. 10(c) we show the sections, respectively,
of jHj2 (continuous line), jExj2 (continuous-dotted line), i.
e., the square modulus of the x component of the electric field,
and Sz (dashed line) taken along the x axis at the center of the

slit (z ¼ 75 nm). Note that there is a slight penetration of the
magnetic field inside themetal, while the electric field remains
well confined in the slit. This penetration of the magnetic field
inside the metal must be ascribed to the fact that we are deal-
ing with a metal in a frequency range with poor conductivity,
and therefore the mode is not a pure TEM mode, but rather a
TM plasmonic mode [26]. In Fig. 10(d) we show a section of
the same quantities taken along the z axis at the center of the
slit (x ¼ 160 nm). Note in Fig. 10(d) the complementary loca-
lization of the H and E fields which is typical of a TM-Fabry-
Perot mode with antinodes in the E field at the reflection in-
terfaces of the cavity due to the zero phase change upon re-
flection at the input and output grating/air interface. Finally, in
Fig. 11 we report analogous plots for the case of resonance II
(the ridge resonance of Fig. 5) at λ ¼ 637 nm and ϑ ¼ 80°.
Comparing the field localizations characteristic of resonance
I and resonance II, one immediately realizes that they are al-
most complementary. The magnetic field is localized inside
the slit for resonance I, while it is localized outside the slit
for resonance II [compare Figs. 10(a) and 11(a)]. In particular,
from Fig. 11(d) we see that this time the electric field is to be
strongly localized at the center of the slit, with a single-bell-
shaped envelope, in contrast to the case of Fig. 10(d). This
complementary behavior of the field localization is, again, re-
miniscent, for example, of the band edge resonances of finite

Fig. 10. (Color online) (a) Topographic view of jHj2 versus x and z in an elementary cell of the grating for the resonance I at λ ¼ 640 nm and
ϑ ¼ 0°. Superimposed (black-dashed line) is the position of the metal. The white lines that cut the figure over the medians represent the sections
over which the fields are represented, respectively, in (c) (vertical section) and in (d) (horizontal section). (b) Topographic view of Sz versus x and
z. (c) Left axis, sections of jExj2 (continuous-dotted line) and Sz (dashed line) along the x axis, both taken at the center of the slit (z ¼ 75 nm). Right
axis, section of jHj2 (continuous line) along the x axis taken at the center of the slit (z ¼ 75 nm). (d) Left axis, sections of jHj2 (continuous line) and
jExj2 (continuous-dotted line) along the z axis, both taken at the center of the slit (x ¼ 160 nm). Right axis, section of Sz (dashed line) along the z

axis taken at the center of the slit (x ¼ 160 nm).
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1D photonic crystal [43] where the electric field can be loca-
lized over the high index layers and the magnetic field over the
low index layers or vice-versa depending on whether the field
is tuned at the high frequency or low frequency band edge.
Regarding the energy transport, we note that the flux of en-
ergy inside the slit along the z direction is greater for reso-
nance I (Sz ∼ 4) than for resonance II (Sz ∼ 0:7), although
for both resonances the transmission is approximately the
same (0.6 or 60%). This fact should not be surprising if we take
into account that the incoming field for resonance I is at nor-
mal incidence, while for resonance II it is at an angle of (80°);
therefore, the incoming power along the z direction for reso-
nance II is rescaled by a factor cosð80°Þ with respect to the
incoming power for resonance I. Let us finally briefly com-
ment that it could be very intriguing to study the optical bist-
ability of these ridge resonances by filling the slit with a Kerr
medium, as we plan to do in the near future. In fact, these re-
sonances seem to show all the characteristics necessary to
achieve a low-power all-optical switching: they are very nar-
row, the electric field is highly localized in the slit, and more-
over, given their particular ridgelike nature, the switch could
take place both for positive and negative values of the χð3Þ
coefficient.

7. CONCLUSIONS
In conclusion, we have highlighted here some interesting
properties of the transmission resonances of subwavelength
metallic gratings with extremely narrow slits under TM light
polarization, elucidating the interplay between the TM-FP
branch and the SP dispersion. It is also appropriate to place
here a final note regarding the role of SPs in the enhanced
transmission from metallic gratings at lower frequencies
(far-IR, THz, microwave) [38]. In the low frequency regime
the metal becomes closer and closer to a perfect conductor
and the SPs wavelength becomes closer and closer to the in-
cident wavelength. Therefore, we expect results qualitatively
similar to those presented here, but with few caveats: (a) the
peak of transmission of the FP branch will be much closer to
the 100% transmission due to less dissipation from the lateral
surfaces of the slits during the guiding; (b) the interplay be-
tween the FP branch and the SP dispersion still continues
to be ruled by Eqs. (6), but the SP momentum kSP becomes
practically almost indistinguishable from the normal inci-
dence momentum of the incoming photon (kSP → k0) due to
the rectification of the SP dispersion; (c) the guided quasi-
TEM mode will have an effective index close to 1 (neff ∼ 1)
so that the positions of the FP transmission resonances will be
ruled approximately by the incident wavelength λ [29,30]. We

Fig. 11. (Color online) (a) Same as in the caption of Fig. 10 for the resonance II at λ ¼ 637 nm and ϑ ¼ 80°. (b) Topographic view of Sz versus x
and z. (c) Left axis, sections of jHj2 (continuous line) and Sz (dashed line) along the x axis, both taken at the center of the slit (z ¼ 75 nm). Right
axis, section of jExj2 (continuous-dotted line) along the x axis taken at the center of the slit (z ¼ 75 nm). (d) Sections of jHj2 (continuous line), jExj2
(continuous-dotted line), and Sz (dashed line) along the z axis, all three taken at the center of the slit (x ¼ 160 nm).
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believe that the results we have presented here may improve
the understanding of enhanced transmission through 1D plas-
monic or metallic gratings at optical frequencies.
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