Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing <u>scholarworks-group@umbc.edu</u> and telling us what having access to this work means to you and why it's important to you. Thank you.

CHIRP User Guide

H. E. Motteler and L. L. Strow

University of Maryland Baltimore County (UMBC) Joint Center for Earth Systems Technology Atmospheric Spectroscopy Lab

July 26, 2021

Contents

1	Introduction	1
2	Quick Start	3
3	Radiances	3
4	Sampling	5
5	Quality Control and NEdN Estimates5.1AIRS-parent CHIRP QC5.2AIRS Synthetic Channels5.3AIRS-parent CHIRP NEdN5.4CrIS-parent CHIRP QC and NEdN	8 8 9 9
6	Further Information on CHIRP	11
A	Acronyms	13
В	Filename Conventions	13
С	Field Definitions C.1 Dimensions	14 14 14 15
D	Errata	22

1 Introduction

Spectra of the earth's thermal emission as measured by the AIRS [1], CrIS [2, 9], and IASI [3] hyper-spectral sounders are a significant part of the long term climate record. These instruments have broadly similar spatial sampling, spectral resolution, and band spans. But the spectral resonance functions differ in detail, leading to significant differences in observed spectra. The Climate

- Create a continuous CHIRP product for the 13:30 orbit.
- Extra CHIRP data before/after prime operational periods goes in "CHIRP CAL" products.

Figure 1: Timeline for CHIRP and component products.

Hyperspectral Infrared Radiance Product (CHIRP) provides a single, combined record of these data, by taking advantage of the similar spatial sampling, translating AIRS and CrIS radiances to a common spectral response function, and removing inter-satellite biases. CHIRP provides a stable climate-quality radiance time series spanning AIRS, CrIS, and potentially in the future, IASI radiance data. Other benefits include facilitating instrument comparisons and allowing level 2 retrievals to use a common channel set and radiative transfer algorithm.

The translation from CrIS to CHIRP is done by resampling or double Fourier interpolation. Translation from AIRS to CHIRP is more involved. AIRS is a grating spectrometer with a distinct response function for each channel, while CrIS is a Michelson interferometer with a sinc response function. We use our knowledge of the AIRS spectral response functions to deconvolve AIRS channel radiances to a resolution enhanced intermediate representation, which is then reconvolved to the CHIRP user grid. The CrIS instrument on NASA's SNPP satellite is used as the calibration standard, while a bias adjustment is applied to the other translations [8].

The CHIRP record starts with AIRS data from Fall 2002, and crosses over to CrIS SNPP and then CrIS J1 (aka NOAA-20) as shown in figure 1. This is planned to continue in the future with NOAA-21, 22, etc., with sounder crossover dates to be determined. These sounders share an ascending 1:30 PM (13:30) equatorial crossing time and are combined to make the CHIRP-1330 product. Although the primary product is a single continuous record, support products in the form of translations for other NOAA sounders are also provided as CHIRP-CAL products. These support products allow users to create radiance time series that cross over from one instrument to the next at different times than CHIRP-1330, as long as the CHIRP-CAL product exists for the desired times. For example, a valid time series could use AIRS parent radiances until AIRS ceases operation, and then switch directly to CrIS J1 (NOAA-20). SNPP's usefulness for a CHIRP CAL product ended on 25 May 2019 with the side 1 MW failure.

Section 2 is a short introduction to using the CHIRP data. This is followed by sections with more detail on radiances, sampling, quality control, and NEdN estimates, and an appendix with tables of

all variables and attributes. For more detail on the AIRS to CHIRP translation, see reference [5], and for more on bias adjustments and questions of long-term stability, see reference [8]. CrIS data used for CHIRP is from the standard full spectral resolution (FSR) CrIS L1b product [7], while AIRS data is from the AIRS L1c product [4]. The latter includes synthetic channels and other significant improvements over the AIRS L1b data.

2 Quick Start

CHIRP data is saved as a sequence of granule files, in time order, in netCDF format. A CHIRP observation, or "obs" for short, is a 1679-channel radiance vector with associated values for time, geolocation, latitude, longitude, quality control, and various other support data. The key idea is that each such obs can stand alone as a largely self-sufficient unit of information. CHIRP data is then simply a list of such obs, in time order. The CHIRP radiance data is organized as 1679×12150 array, channels by obs, while most of the supporting data is organized as 12150-vectors. The choice of 12150 obs per granule is discussed in section 4.

For example, suppose an application needs radiance, channel frequency, quality control, obs time, latitude, and longitude. The CHIRP netCDF fields, data types, and physical units are as follows:

- The CHIRP radiance field is rad, a 1679 by 12150 element single precision array, in units of mW sr⁻¹ m⁻². Channel frequency is wnum, a 1679 element double precision vector, in units of wavenumber.
- Quality control fields are chan_qc and rad_qc. chan_qc is a 1679 element int8 array, one flag per channel, with 0=OK, 1=Warn, and 2=Bad. rad_qc is a 12150 element int8 array, one flag per obs, where again 0=OK, 1=Warn, and 2=Bad.
- The time field is obs_time_tai93, a 12150 element double precision vector, seconds since 1 Jan 1993.
- The geolocation fields are are lat and lon, 12150 element single precision vectors, with units degrees north and degrees east.

The organization of other support variables is generally similar, and all CHIRP fields and attributes are defined in appendix C. The AIRS-parent CHIRP channels are a subset of the CrIS-parent channels. The wnum grid is used for both, with missing AIRS-parent channels flagged as bad. This is discussed in more detail in section 5. The parent AIRS and CrIS radiance data are organized as a sequence of granule files, ordered by scan geometry and observation time. See section 4 for details. CHIRP granules correspond with their parent AIRS or CrIS granules, and inherit most of the parent granule's attributes and supporting data. The stand-alone nature of the CHIRP obs requires some duplication of information—for example the CrIS-parent data includes the FOV number for every obs—but the overhead for this is small in comparison with the space required for the radiance data.

3 Radiances

For a long-term record we need radiance data in a single format—a single frequency grid with a common ILS, and to the extent possible, similar NEdN. CHIRP radiances are for a nominal 3-band

Figure 2: Sample AIRS and AIRS-parent CHIRP spectra, granule means for 19 Aug 2018 granule 25. The CHIRP bands are the intersection of the AIRS and CrIS bands.

Figure 3: MW detail from the same granule. Note that the data are on two different grids, and what we mainly see is the effect of the CHIRP apodization.

Figure 4: The MW CHIRP apodized ILS, together with weights for the AIRS channels, for the CHIRP channel shown. The AIRS weights are paired with the corresponding AIRS SRFs, normalized to the weight values.

interferometer with an OPD of 0.8 cm in the long-wave (LW), 0.6 cm in the medium-wave (MW), and 0.4 cm in the short-wave (SW) bands, with Hamming apodization applied to each band. The MW and SW resolutions are lower than the CrIS-parent FSR OPD of 0.8 cm, and were chosen to give an approximate match to the AIRS resolution for those bands. Figure 2 shows typical AIRS and AIRS-parent CHIRP BT spectra, the granule means for 19 Aug 2018 granule 25. The CHIRP bands are the intersection of the AIRS and CrIS bands. Figure 3 is a MW detail from Figure 2. Note that the AIRS and CHIRP data are on two different grids, and what we mainly see is the effect of the CHIRP apodization.

For CrIS-parent CHIRP, we interpolate the CrIS Full Spectral Resolution (FSR) product, with an 0.8 cm OPD for all three bands, to the CHIRP grid, and then apply Hamming apodization. The CrIS-parent CHIRP ILS is then a Hamming-apodized sinc for a 0.8 cm OPD in the LW, 0.6 cm in the MW, and 0.4 cm in the SW. Figure 4 shows this ILS for a typical CHIRP MW channel.

We want to match this ILS for the AIRS-parent data. But AIRS is a grating spectrometer with a distinct response function for each channel, while CrIS is a Michelson interferometer with a sinc response function after calibration and corrections. We use our detailed knowledge of the AIRS spectral response functions to deconvolve AIRS channel radiances to a resolution enhanced intermediate representation. This is done by taking a Moore-Penrose pseudo-inverse of the tabulated AIRS SRFs and applying this to the AIRS radiances, giving us deconvolved data at a 0.1 $\rm cm^{-1}$ grid. This is then reconvolved to the CHIRP user grid via resampling or double Fourier interpolation. The resulting translation can be shown to be more accurate than more conventional interpolation or regression [5]. Figure 4 includes the AIRS channel weights and corresponding AIRS SRFs, normalized to the weight values, for AIRS-parent data for this channel. The weights are from a row of a linearized approximation of the AIRS to CHIRP translation.

Hamming apodization (as mentioned above) and an optional bias correction are applied to both translations. Currently AIRS and CrIS J1 parent are adjusted to match CrIS SNPP [8]. After translation from CrIS, the three bands have 713, 649, and 317 channels, respectively. These are concatenated for the CHIRP product, for a total of 1679 channels. The CHIRP user grid does not have a constant step size, the frequency steps are 1/(2 OPD). The CHIRP field wnum is a 1679-vector which gives channel frequencies, and rad is a 1679 by 12150 array of radiance data. AIRS-parent CHIRP uses the same channel set. However the AIRS-to-CHIRP translation gives only 1483 channels, due to slightly different band spans. These are embedded in the 1679 channel set, with missing channels flagged as described in section 5.

4 Sampling

AIRS and CrIS spatial sampling are similar, but not identical. AIRS and CrIS are both in sunsynchronous polar orbits. The CrIS orbital period is 101.5 minutes, giving 227 orbits every 16 days. The AIRS orbital period 98.8 minutes, giving 233 orbits every 16 days. Note that 227 and 233 are both prime; there are no common factors and so no repeating subpatterns. Figure 5 shows global values for satellite subpoint for one day of AIRS and CrIS data, and figure 6 for 16 days, the full period before any repeated positions, for the Caribbean. AIRS and CrIS are cross-track scanners, and in addition to subpoint tracks we want to compare the scan geometry. Figure 7 shows the secant of zenith angles for AIRS and CrIS. The upper plot is for the full scan widths, while the lower is a near-nadir detail. The general agreement is quite good, and the main difference we see is due to the CrIS FOV grouping.

The AIRS scan geometry is organized as 90 cross-track by 135 along-track observations, giving $90 \times 135 = 12150$ obs per granule. The CrIS scan geometry is organized as 9 FOVs arranged in a

Figure 5: Global one-day subpoint track map.

Figure 6: Sixteen day subpoint track map for the Caribbean.

Figure 7: AIRS and CrIS secant of zenith angles

Figure 8: CrIS scan geometry, from the NOAA User's Guide [6]

 3×3 field of regard (FOR), giving 9 simultaneous observations. There are 30 cross-track FOR looks and 45 along-track FOR steps. So again we have $9 \times 30 \times 45 = 12150$ obs per granule. Figure 8 shows the relationship of the CrIS FOVs and FOR as the scan moves from nadir to limb. Note that the FOVs rotate within the FOR as we move toward the limbs. CHIRP provides both AIRS- and CrIS-style indexing, the AIRS-style indexing in the fields airs_strack and airs_atrack, and CrISstyle indexing, where strack and atrack are FOR rather than FOV indices, in the fields strack, atrack and fov_num. However due to the FOR rotation, we can't treat the CrIS-parent data as a simple cross-track by along-track grid, as with the AIRS-parent, for example for imaging.

5 Quality Control and NEdN Estimates

CHIRP Quality Control (QC) is straightforward. There are two QC fields per granule, rad_qc , a 12150-vector with one flag per obs, and $chan_qc$, a 1679-vector with one flag per channel. For both vectors, 0 = OK, 1 = warn, and 2 = bad. For CrIS-parent CHIRP these fields are a summary of the parent product state. For AIRS-parent CHIRP the situation is more complex, due to a significant and variable number of AIRS L1c synthetic channels, and because the set of 1483 channels from the AIRS translation are a subset of the 1679 channels from the CrIS translation.

5.1 AIRS-parent CHIRP QC

For AIRS-parent CHIRP the 1679-element vector chan_qc is set to 2 (bad) for those channels that are not part of the 1483 channel set, as translated from AIRS. This is a compromise that give us a single frequency grid for CHIRP, regardless of the parent sounder. If we begin by choosing a set of channels to work with AIRS-parent data, we can continue using that set with the change to CrISparent, with no changes in our indexing. In addition to flagging missing channels, chan_qc is set to 1 (warn) for the six channels at the translation band edges, and when the synthetic component exceeds a threshold, as described below.

The 12150-element vector rad_qc has a flag for each obs. These are set to 0 (OK) if the L1c field instrument_state is OK and radiance and geo values pass some basic sanity checks. rad_qc is always 0 or 2 for AIRS-parent CHIRP, because AIRS L1c does not have a warn flag and our added sanity checks are strictly pass/fail.

5.2 AIRS Synthetic Channels

As an alternative to a warn flag, and to fill band gaps, AIRS L1c provides synthetic values for some observations and channels. That is, for a particular observation—a radiance vector with an associated time, geolocation, and support data—some of the channels may be synthetic. Some of these channels are synthetic only occasionally, others more frequently, and some are always synthetic. These synthetic channels are flagged in the L1c file, for every observation and channel. In addition, the granule file has a per-granule summary, L1cNumSynth, for each L1c channel. This is the number of times the channel was filled with a synthetic value. L1cNumSynth can range from zero, for no synthetic values, to 12150, for all synthetic. Figure 9 shows the sum of all synthetic values by channel, for 5036 consecutive AIRS granules, approximately 21 days of data. Counts are shown on a log scale. Figure 10 shows the same data as synthetic values per channel, sorted by number of synthetic values. This shows the wide range of values, from few or no synthetic values for some channels, to entirely synthetic values for others.

For some applications we may not want a significant synthetic component. The CHIRP field synth_frac provides the AIRS synthetic component for each CHIRP channel. This can range from

Figure 9: The sum of synthetic values by channel for 5036 AIRS granules. Counts are on a log scale.

Figure 10: Synthetic values per channel, sorted by number of synthetic values. This shows the range of these values.

zero, for no synthetic component, to one, for entirely synthetic. To get this value we linearize the AIRS to CrIS translation and apply it to the AIRS field L1cNumSynth, to get a corresponding NumSynth value for CHIRP. This is normalized as a fraction and becomes the CHIRP field synth_frac. Figure 11 shows the AIRS-parent CHIRP synthetic fraction for a single representative granule. This can be used to select channels with a relatively small synthetic component. Figure 12 show the AIRS-parent CHIRP synthetic fraction, sorted by synthetic fraction magnitude. This shows the variability of synth_frac. If synth_frac > 0.25, we set chan_qc to warn.

5.3 AIRS-parent CHIRP NEdN

To find NEdN for AIRS-parent CHIRP, we start with an AIRS L1c NEdN estimate. Unfortunately the synthetic obs do not include values for NEdN. As a compromise we take the mean of valid NEdN values over an AIRS granule and interpolate over the gaps for the synthetic channels. Given the AIRS estimate, we add Gaussian noise at the AIRS NEdN to a black-body spectrum at 280K, do the translation, and measure the resulting noise. This is done repeatedly and the mean of the measurement is reported. Details are described in [5]. The correlated fraction of AIRS noise varies from module to module, and is significant for some modules. The translation will preserve this correlation. NEdN estimates for this case are a matter for future work.

Figure 13 shows typical values for AIRS and CrIS NEdN for 2018 doy 231 granules 25 and 21, respectively; two relatively warm granules. Figure 14 shows the corresponding CHIRP NEdN for AIRS and CrIS parent data, for the same granules. The noise is significantly less for the translation. This is to be expected since both apodization and down-interpolation reduce noise.

5.4 CrIS-parent CHIRP QC and NEdN

In contrast with AIRS, CrIS-parent CHIRP QC and NEdN are relatively simple. CrIS-parent CHIRP QC is determined from the CrIS parent, by combining the fields for the individual CrIS bands. chan_qc is set to 0 (OK) for CrIS-parent CHIRP. Possibly we should set chan_qc to warn at the band edges, as we do for AIRS parent, but we are not doing this now. CrIS-parent CHIRP NEdN is derived from the high res CrIS NEdN with scale factors to take into account the interpolation

Figure 11: AIRS-parent CHIRP synthetic fraction for a single representative granule. This can be used to select channels with a relatively small synthetic component.

Figure 12: AIRS-parent CHIRP synthetic fraction, sorted by synthetic fraction magnitude. This shows the variability of synth_frac.

Figure 13: Sample AIRS and CrIS NEdN for 2018 doy 231 granules 25 and 21, two relatively warm granules.

Figure 14: Sample CHIRP NEdN for AIRS and CrIS parent data, for the granules shown in figure 13. The noise is significantly less for the translations.

and apodization. These are

- LW, 0.6325, for Hamming apodization only
- MW, 0.5455, for interpolation and Hamming apodization
- SW, 0.4446, for interpolation and Hamming apodization

6 Further Information on CHIRP

Further information and help on using CHIRP, beyond what is discussed here, can be found at https://infraredclimate.org, or send email to chirp@infraredclimate.org. This web site will also contain information on the Level 1b products produced at GES-DIS for the series of CrIS instruments, starting with SNPP-CrIS and continued with the JPSS series of CrIS instruments.

References

 H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind. AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems. *IEEE Transactions on Geoscience and Remote Sensing*, 41:253–264, Feb. 2003. doi:10.1109/TGRS.2002.808356.

- [2] Y. Han, H. Revercomb, M. Cromp, D. Gu, D. Johnson, D. Mooney, D. Scott, L. Strow, G. Bingham, L. Borg, Y. Chen, D. DeSlover, M. Esplin, D. Hagan, X. Jin, R. Knuteson, H. Motteler, J. Predina, L. Suwinski, J. Taylor, D. Tobin, D. Tremblay, C. Wang, L. Wang, L. Wang, and V. Zavyalov. Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. *Journal of Geophysical Research (Atmospheres)*, 118(D17):12734, Nov. 2013. doi:10.1002/2013JD020344.
- [3] F. Hilton, R. Armante, T. August, C. Barnet, A. Bouchard, C. Camy-Peyret, V. Capelle, L. Clarisse, C. Clerbaux, P.-F. Coheur, A. Collard, C. Crevoisier, G. Dufour, D. Edwards, F. Faijan, N. Fourrié, A. Gambacorta, M. Goldberg, V. Guidard, D. Hurtmans, S. Illingworth, N. Jacquinet-Husson, T. Kerzenmacher, D. Klaes, L. Lavanant, G. Masiello, M. Matricardi, A. McNally, S. Newman, E. Pavelin, S. Payan, E. Péquignot, S. Peyridieu, T. Phulpin, J. Remedios, P. Schlüssel, C. Serio, L. Strow, C. Stubenrauch, J. Taylor, D. Tobin, W. Wolf, and D. Zhou. Hyperspectral Earth Observation from IASI: Five Years of Accomplishments. *Bulletin of the American Meteorological Society*, 93:347–370, Mar. 2012. doi:10.1175/BAMS-D-11-00027.1.
- [4] E. M. Manning, H. H. Aumann, and A. Ruzmaikin. AIRS Level 1C Product User Guide. Version 1.01, Jet Propulsion Laboratory, Mar. 2015. URL https://docserver.gesdisc. eosdis.nasa.gov/repository/Mission/AIRS/3.3_ScienceDataProductDocumentation/3. 3.4_ProductGenerationAlgorithms/AIRS_L1C_UserGuide.pdf.
- [5] H. E. Motteler and L. L. Strow. AIRS Deconvolution and the Translation of AIRS-to-CrIS Radiances With Applications for the IR Climate Record. *IEEE Transactions on Geoscience* and Remote Sensing, 57(3):1793–1803, 2018. doi:10.1109/TGRS.2018.2869170.
- [6] NOAA. Cross Track Infrared Sounder (CrIS) Sensor Data Record (SDR) User's Guide. NOAA Technical Report NESDIS 143, 2013. URL https://www.star.nesdis.noaa.gov/ jpss/documents/AMM_All/CrIS_SDR/Validated/cris_sdr_USERS_GUIDE_1p0.pdf.
- U. of Wisconsin-Madison. NASA Cross Track Infrared Sounder (CrIS) Level 1B Product Users' Guide. Version 3.01, University of Wisconsin-Madison, Nov. 2020. URL https://docserver.gesdisc.eosdis.nasa.gov/public/project/Sounder/ NASA_CrIS_L1B_Product_Users_Guide_V3.pdf.
- [8] L. L. Strow, C. Hepplewhite, H. E. Motteler, S. Buczkowski, and S. DeSouza-Machado. A Climate Hyperspectral Infrared Radiance Product (CHIRP) Combining the AIRS and CrIS Satellite Sounding Record. *Remote Sensing*, 13(3), 2021. doi:10.3390/rs13030418.
- [9] L. L. Strow, H. Motteler, D. Tobin, H. Revercomb, S. Hannon, H. Buijs, J. Predina, L. Suwinski, and R. Glumb. Spectral calibration and validation of the Cross-track Infrared Sounder on the Suomi NPP satellite. *Journal of Geophysical Research (Atmospheres)*, 118(D17):12486, Nov. 2013. doi:10.1002/2013JD020480.

A Acronyms

AIRS	Atmospheric Infrared Sounder
CHIRP	Combined Hyperspectral Infrared Radiance Product
CrIS	Cross-track Infrared Sounder
DISC	Data and Information Services Center
FOV	Field of View
FOR	Field of Regard
FSR	Full Spectral Resolution
GSFC	Goddard Spaceflight Center
ILS	Instrument Line Shape
IASI	Infrared Atmospheric Sounding Interferometer
JPSS	Joint Polar Satellite System
LW	Long-Wave
MW	Mid-Wave
SW	Short-Wave
NASA	National Aeronautics and Space Administration
NOAA	National Oceanic and Atmospheric Administration
NEdN	Noise Equivalent Differential Radiance
QC	Quality Control
SIPS	Science Investigator-led Processing System
SNPP	Suomi-National Polar-Orbiting Preparatory Project
SRF	Spectral Response Function
STAR	Center for Satellite Applications and Research

B Filename Conventions

CHIRP granule filenames are divided into fields separated by a dot character. This is best illustrated by example. The following are typical granule file names for AIRS AQUA, CrIS SNPP, and CrIS J1 (aka NOAA-20).

SNDR.	SS1330	.CHIRP	.20180901T1835	.m06	.g186	L1_AQ	.std.	v02_20	.U.2	2012191100	01.nc
SNDR.	SS1330	.CHIRP	.20180821T0129	.m06	.g016.	L1_SN	.std.	v02_20	.U.2	20091721140	03.nc
SNDR.	SS1330	.CHIRP	.20180913T2217	.m06	.g224	L1_J1	.std.	v02_20	.U.2	20121518042	23.nc
1	2	3	4	5	6	7	8	9	10	11	12

The 12 fields correspond to CHIRP attributes, and are defined in the table below. Field 7, the product_name_type_id, is of particular interest. The sub-fields AQ, SN, and J1 are two letter codes for AIRS AQUA, CrIS Sunomi NPP, and CrIS J1 (aka NOAA-20), respectively. This is the parent sounder for the granule. A suffix "CAL", for example L1_AQ_CAL, L1_NP_CAL, or L1_J1_CAL, indicates a support product, while no suffix (as in the examples above) indicates the primary CHIRP product.

Field	Attribute Name	Comment
1	product_name_project	Always "SNDR", for Sounder SIPS
2	product_name_platform	Always "SS1330", a virtual platform in a 13:30 Sun-
		Synchronous polar orbit
3	product_name_instr	Always "CHIRP"
4	gran_id	Granule start time
5	product_name_duration	Always "m06" meaning 6 minutes
6	product_name_granule_number	Granule number from g001 – g240
7	product_name_type_id	"L1_" + PL [+ "_CAL"], where PL platform code can be "AQ", "SN", or "J1". The optional tag "_CAL" marks redundant calibration data, not considered part of the main CHIRP product.
8	product_name_variant	Always "std"
9	product_name_version	For example "V02_48" for version 02.48
10	product_name_producer	"G" for data produced by NASA GSFC, "U" for unde- fined
11	product_name_timestamp	Processing timestamp
12	product_name_extension	Always ".nc"

C Field Definitions

C.1 Dimensions

Name	Size	Description
fov	9	Field-of-view dimension
obs	12,150	number of spectra in 6-minute L1 CHIRP for the 13:30 orbit. $135*90$ or $45*30*9$
wnum	1,679	IR channel number
fov_poly	8	lat_bnds, lon_bnds points defining the polygon bounding an FOV (an- ticlockwise as viewed from above)
utc_tuple	8	parts of UTC time: year, month, day, hour, minute, second, millisec, microsec

C.2 Variables

Name	Type	Dim	Description	Units	Ancillary
obs_id	string	obs	unique earth view observation identifier.		
obs_time_tai93	double	obs	earth view observation midtime for each FOV	seconds since	
				1993-01-01	
	1.0	1		00:00	
obs_time_utc	uint16	obs,	UTC earth view observation time as an array of		
		utc_tuple	integers: year, month, day, hour, minute, second,		
			millisec, microsec		
lat	float	obs	latitude of FOV center	degrees_north	bnds
lon	float	obs	longitude of FOV center	degrees_east	bnds
land_frac	float	obs	land fraction over the FOV	unitless	
surf_alt	float	obs	mean surface altitude wrt earth model over the FOV	m	
surf_alt_sdev	float	obs	standard deviation of surface altitude within the FOV	m	
sun_glint_lat	float	obs	sun glint spot latitude at scan_mid_time. Fill for night observations.	degrees_north	
sun_glint_lon	float	obs	sun glint spot longitude at scan_mid_time. Fill for night observations.	degrees_east	
sol_zen	float	obs	solar zenith angle at the center of the FOV	degree	

sol_azi	float	obs	solar azimuth angle at the center of the FOV (clockwise from North)	degree	
sun_glint_dist	float	obs	Distance from the center of the calculated sun glint spot to the center of the spot. Note that there may not be a glint for cloudy or land cases and in ocean cases the glint can move based on wind conditions. Fill for night observations.	m	
view_ang	float	obs	off nadir pointing angle	degree	
sat_zen	float	obs	satellite zenith angle at the center of the FOV	degree	
sat_azi	float	obs	satellite azimuth angle at the center of the FOV (clockwise from North)	degree	
sat_range	float	obs	line of sight distance between satellite and FOV center	m	
asc_flag	ubyte	obs	ascending orbit flag: 1 if ascending, 0 descending		
subsat_lat	float	obs	sub-satellite latitude at scan_mid_time	degrees_north	
subsat_lon	float	obs	sub-satellite longitude at scan_mid_time	degrees_east	
scan_mid_time	double	obs	TAI93 at middle of earth scene scans	seconds since 1993-01-01 00:00	
sat_alt	float	obs	satellite altitude with respect to earth model at scan_mid_time	m	
local_solar_time	float	obs	local apparent solar time in hours from midnight	hours	
utc_tuple_lbl	string	utc_tuple	names of the elements of UTC when it is expressed as an array of integers year, month, day, hour, minute, second, millisecond, microsecond		
rad	float32	obs, wnum	spectral radiance	mW/(m2 sr cm-1)	qc
synth_frac	float32	wnum	File mean fraction of signal that is attributed to synthesized AIRS Level-1C values	unitless	
nedn	float32	fov, wnum	noise equivalent differential radiance	mW/(m2 sr cm-1)	
atrack	ubyte	obs	Along-track index of Field Of Regard	unitless	
xtrack	ubyte	obs	Cross-track index of Field Of Regard	unitless	
fov_num	ubyte	obs	Field Of View number in FOR	unitless	
airs_atrack	ubyte	obs	AIRS-like along-track index of Field Of View	unitless	
airs_xtrack	ubyte	obs	AIRS-like cross-track index of Field Of View	unitless	
wnum	float64	wnum	wavenumber	cm-1	

C.3 Attributes

Name	Type	Size	Value	Description
keywords	string	1	EARTH SCIENCE, SPEC- TRAL ENGINEERING, INFRARED WAVE- LENGTHS, INFRARED RADIANCE	A comma-separated list of key words and/or phrases. Keywords may be com- mon words or phrases, terms from a con- trolled vocabulary (GCMD is often used), or URIs for terms from a controlled vo- cabulary (see also "keywords_vocabulary" attribute).
Conventions	string	1	CF-1.6, ACDD-1.3	A comma-separated list of the conven- tions that are followed by the dataset.
history	string	1		Provides an audit trail for modifications to the original data. This attribute is also in the NetCDF Users Guide: 'This is a character array with a line for each invocation of a program that has mod- ified the dataset. Well-behaved generic netCDF applications should append a line containing: date, time of day, user name, program name and command arguments.' To include a more complete description you can append a reference to an ISO Lin- eage entity; see NOAA EDM ISO Lineage guidance.

source	string	1	AIRS and CrIS instrument telemetry	The method of production of the original data. If it was model-generated, source should name the model and its version. If it is observational, source should char- acterize it. This attribute is defined in the CF Conventions. Examples: 'tem- perature from CTD #1234'; 'world model v.0.1'.
processing_level	string	1	1	A textual description of the processing (or quality control) level of the data.
product_name_type_id	string	1	L1	Product name as it appears in product_name (L1A, L1B, L2, SNO_AIRS_CrIS)
comment	string	1		Miscellaneous information about the data or methods used to produce it. Can be empty.
acknowledgment	string	1	Support for this research was provided by NASA.	A place to acknowledge various types of support for the project that produced this data.
license	string	1	Limited to Sounder SIPS affiliates	Provide the URL to a standard or spe- cific license, enter "Freely Distributed" or "None", or describe any restrictions to data access and distribution in free text.
standard_name_vocabulary	string	1	CF Standard Name Table v28	The name and version of the controlled vocabulary from which variable standard names are taken. (Values for any stan- dard_name attribute must come from the CF Standard Names vocabulary for the data file or product to comply with CF.) Example: 'CF Standard Name Table v27'.
date_created	string	1	Unassigned	The date on which this version of the data was created. (Modification of values implies a new version, hence this would be assigned the date of the most recent values modification.) Metadata changes are not considered when assigning the date_created. The ISO 8601:2004 extended date format is recommended, as described in the Attribute Content Guidance section.
creator_name	string	1	Unassigned	The name of the person (or other cre- ator type specified by the creator_type at- tribute) principally responsible for creat- ing this data.
creator_email	string	1	Unassigned	The email address of the person (or other creator type specified by the creator_type attribute) principally responsible for cre- ating this data.
creator_url	string	1	Unassigned	The URL of the person (or other cre- ator type specified by the creator_type at- tribute) principally responsible for creat- ing this data.
institution	string	1	Unassigned	Processing facility that produced this file
project	string	1	Sounder SIPS	The name of the project(s) principally re- sponsible for originating this data. Mul- tiple projects can be separated by com- mas, as described under Attribute Con- tent Guidelines. Examples: 'PATMOS- X', 'Extended Continental Shelf Project'.
product_name_project	string	1	SNDR	The name of the project as it appears in the file name. 'SNDR' for all Sounder SIPS products, even AIRS products.

publisher_name	string	1	Unassigned	The name of the person (or other entity specified by the publisher_type attribute) responsible for publishing the data file or product to users, with its current meta- data and format.
publisher_email	string	1	Unassigned	The email address of the person (or other entity specified by the publisher_type at- tribute) responsible for publishing the data file or product to users, with its cur- rent metadata and format.
publisher_url	string	1	Unassigned	The URL of the person (or other entity specified by the publisher_type attribute) responsible for publishing the data file or product to users, with its current meta- data and format.
geospatial_bounds	string	1		Describes the data's 2D or 3D geospa- tial extent in OGC's Well-Known Text (WKT) Geometry format (reference the OGC Simple Feature Access (SFA) spec- ification). The meaning and order of values for each point's coordinates de- pends on the coordinate reference system (CRS). The ACDD default is 2D geom- etry in the EPSG:4326 coordinate refer- ence system. The default may be over- ridden with geospatial_bounds_crs and geospatial_bounds_vertical_crs (see those attributes). EPSG:4326 coordinate val- ues are longitude (decimal degrees_east) and latitude (decimal degrees_north), in that order. Longitude values in the de- fault case are limited to the [-180, 180) range. Example: 'POLYGON ((-111.29 40.26, -111.29 41.26, -110.29 40.26, - 110.29 40.26, -111.29 40.26))'.
geospatial_bounds_crs	string	1	EPSG:4326	The coordinate reference system (CRS) of the point coordinates in the geospatial_bounds attribute. This CRS may be 2-dimensional or 3- dimensional, but together with geospa- tial_bounds_vertical_crs, if that attribute is supplied, must match the dimensional- ity, order, and meaning of point coordi- nate values in the geospatial_bounds_at- tribute. If geospatial_bounds_vertical_crs is also present then this attribute must only specify a 2D CRS. EPSG CRSs are strongly recommended. If this attribute is not specified, the CRS is assumed to be EPSG:4326. Examples: 'EPSG:4979' (the 3D WGS84 CRS), 'EPSG:4047'.
geospatial_lat_min	float	1	9.9692099683868690e+36f	Describes a simple lower latitude limit; may be part of a 2- or 3-dimensional bounding region. Geospatial_lat_min specifies the southernmost latitude cov- ered by the dataset.
geospatial_lat_max	float		9.9692099683868690e+36f	Describes a simple upper latitude limit; may be part of a 2- or 3-dimensional bounding region. Geospatial_lat_max specifies the northernmost latitude cov- ered by the dataset.
geospatial_lon_min	float	1	9.9692099683868690e+36f	Describes a simple longitude limit; may be part of a 2- or 3-dimensional bound- ing region. geospatial_lon_min specifies the westernmost longitude covered by the dataset. See also geospatial_lon_max.

geospatial.lon_max	float	1	9.9692099683868690e+36f	Describes a simple longitude limit; may be part of a 2- or 3-dimensional bound- ing region. geospatial_lon_max specifies the easternmost longitude covered by the dataset. Cases where geospatial_lon_min is greater than geospatial_lon_max in- dicate the bounding box extends from geospatial_lon_max, through the longi- tude range discontinuity meridian (ei- ther the antimeridian for -180:180 val- ues), or Prime Meridian for 0:360 val- ues), to geospatial_lon_min; for exam- ple, geospatial_lon_min=170 and geospa- tial_lon_max=-175 incorporates 15 de- grees of longitude (ranges 170 to 180 and -180 to -175).
time_coverage_start	string	1		Nominal start time. Describes the time of the first data point in the data set. Use the ISO 8601:2004 date format, preferably the extended format as recommended in the Attribute Content Guidance section.
time_of_first_valid_obs	string	1		Describes the time of the first valid data point in the data set. Use the ISO 8601:2004 date extended format.
time_coverage_mid	string	1		Describes the midpoint between the nom- inal start and end times. Use the ISO 8601:2004 date format, preferably the ex- tended format as recommended in the At- tribute Content Guidance section.
time_coverage_end	string	1		Nominal end time. Describes the time of the last data point in the data set. Use ISO 8601:2004 date format, preferably the extended format as recommended in the Attribute Content Guidance section.
time_of_last_valid_obs	string	1		Describes the time of the last valid data point in the data set. Use the ISO 8601:2004 date extended format.
time_coverage_duration	string	1	P0000-00-00T00:06:00	Describes the duration of the data set. Use ISO 8601:2004 duration format, preferably the extended format as recom- mended in the Attribute Content Guid- ance section.
product_name_duration	string	1	m06	Product duration as it appears in prod- uct_name (m06 means six minutes)
creator_type	string	1	institution	Specifies type of creator with one of the following: 'person', 'group', 'institution', or 'position'. If this attribute is not speci- fied, the creator is assumed to be a person.
creator_institution	string	1	Jet Propulsion Laboratory California Institute of Technology	The institution of the creator; should uniquely identify the creator's institution. This attribute's value should be speci- fied even if it matches the value of pub- lisher_institution, or if creator_type is in- stitution.
product_version	string	1	VXX.XX.XX	Version identifier of the data file or prod- uct as assigned by the data creator. For example, a new algorithm or methodology could result in a new product_version.

keywords_vocabulary	string	1	GCMD:GCMD Keywords	If you are using a controlled vocabulary for the words/phrases in your "keywords"
				attribute, this is the unique name or iden-
				tifier of the vocabulary from which key-
				words are taken. If more than one key-
				word vocabulary is used, each may be
				presented with a prefix and a following
				be prefixed with the controlled yearby
				lary key Example: 'CCMD:CCMD Key
				words CF:NetCDF COABDS Climate
				and Forecast Standard Names'.
platform	string	1	JPSS-1, Joint Polar Satel-	Name of the platform(s) that supported
protorin	Suma	-	lite System, SUOMI-NPP.	the sensor data used to create this data
			Suomi National Polar-	set or product. Platforms can be of any
			orbiting Partnership,	type, including satellite, ship, station, air-
			AQUA, Earth Observing	craft or other. Indicate controlled vocab-
			System	ulary used in platform_vocabulary.
platform_vocabulary	string	1	GCMD:GCMD Keywords	Controlled vocabulary for the names used
				in the "platform" attribute.
product_name_platform	string	1	SS1330	Platform name as it appears in prod-
				uct_name
instrument	string	1	AIRS, Atmospheric In-	Name of the contributing instrument(s)
			frared Sounder, CrIS,	or sensor(s) used to create this data set or
			Cross-track Infrared	product. Indicate controlled vocabulary
in stars and an a sharla and		1	Sounder	used in instrument_vocabulary.
instrument_vocabulary	string	1	GCMD:GCMD Keywords	Controlled vocabulary for the names used
neduct name instr	atring	1	СШРР	In the instrument attribute.
product_mane_mstr	string	1	Children	uct name
product name	string	1		Canonical fully qualified product name
productiname	String			(official file name)
product_name_variant	string	1	std	Processing variant identifier as it appears
				in product_name. 'std' (shorthand for
				'standard') is to be the default and should
				be what is seen in all public products.
product_name_version	string	1	VXX_XX_XX	Version number as it appears in prod-
				uct_name (v01_00_00)
product_name_producer	string	1	Т	Production facility as it appears in prod-
				uct_name (single character) "I" is the de-
		-		fault, for unofficial local test products
product_name_timestamp	string	1	yymmddhhmmss	Processing timestamp as it appears in
nucleust name autonaion	atuina	1		File entension on it ennears in mod
product_name_extension	string	1	nc	File extension as it appears in prod-
granula number	uchort	1		grapulo number of day (1.240)
product name granule number	string	1		granule number of day (1-240)
product_name_granule_number	string	1	gooo	day (g001-g240)
gran id	string	1	vvvvmmddThhmm	Unique granule identifier vvvvmmd-
grundu	String	1	y y y y minicia i minimi	dThhmm of granule start, including year.
				month, day, hour, and minute of granule
				start time
geospatial_lat_mid	float	1	9.9692099683868690e+36f	granule center latitude
geospatial_lon_mid	float	1	9.9692099683868690e+36f	granule center longitude
featureType	string	1	trajectory	structure of data in file
data_structure	string	1	trajectory	a character string indicating the inter-
	_			nal organization of the data with cur-
				rently allowed values of 'grid', 'station',
				'trajectory', or 'swath'. The 'struc-
				ture' here generally describes the hor-
				izontal structure and in all cases data
				may also be functions, for example, of
				a vertical coordinate and/or time. (If
				and a call to a call to a call to a call to
1	1	1	1	- cmoi_bet_cui_databet_atti10ute.)

cdm_data_type	string	1	Trajectory	The data type, as derived from Unidata's Common Data Model Scientific Data types and understood by THREDDS. (This is a THREDDS "dataType", and is different from the CF NetCDF attribute 'featureType', which indicates a Discrete Sampling Geometry file in CF.)
id	string	1	Unassigned	An identifier for the data set, provided by and unique within its naming author- ity. The combination of the "naming au- thority" and the "id" should be globally unique, but the id can be globally unique by itself also. IDs can be URLs, URNs, DOIs, meaningful text strings, a local key, or any other unique string of characters. The id should not include white space characters.
naming_authority	string	1	Unassigned	The organization that provides the initial id (see above) for the dataset. The nam- ing authority should be uniquely specified by this attribute. We recommend using reverse-DNS naming for the naming au- thority; URIs are also acceptable. Exam- ple: 'edu.ucar.unidata'.
identifier_product_doi	string	1	Unassigned	digital signature
algorithm sugging	string	1	Unassigned	The region of the elevither in what
	Sumg	1		ever format is selected by the develop- ers. After the main algorithm name and version, versions from multiple sub- algorithms may be concatenated with semicolon separators. (ex: 'CCAST 4.2; BB emis from MIT 2016-04-01') Must be updated with every delivery that changes numerical results.
production_host	string			Identifying information about the host computer for this run. (Output of linux "uname -a" command.)
format_version	string	1	v02.02.07	Format version.
input_file_names	string	1		Semicolon-separated list of names or unique identifiers of files that were used to make this product. There will always be one space after each semicolon. There is no final semicolon.
input_file_types	string	1		Semicolon-separated list of tags giving the role of each input file in input_file_names. There will always be one space after each semicolon. There is no final semicolon.
input_file_dates	string			Semicolon-separated list of creation dates for each input file in input_file_names. There will always be one space after each semicolon. There is no final semicolon.
orbitDirection	string	1		Orbit is ascending and/or descending. Values are "Ascending" or "Descending" if the entire granule fits that description. "NorthPole" and "SouthPole" are used for polar-crossing granules. "NA" is used when a determination cannot be made.

day_night_flag AutomaticQualityFlag	string	1	Missing	Data is day or night. "Day" means sub- satellite point for all valid scans has solar zenith angle less than 90 degrees. "Night" means subsatellite point for all valid scans has solar zenith angle greater than 90 de- grees. "Both" means the dataset contains valid observations with solar zenith angle above and below 90 degrees. "NA" means a value could not be determined. "Passed": all spectra are present and cal- ibrated with no quality issues; "Suspect": at least one spectrum is missing or cali- brated with quality issues; "Failed": no calibrated spectra: "Missing". no down-
AutomaticQualityFlagExplanat	ionstring	1	'Passed': all spectra are present and calibrated with no quality issues; 'Suspect': at least one spectrum is missing or calibrated with quality issues; 'Failed': no calibrated spectra; 'Miss- ing': no downlinked data.	A text explanation of the criteria used to set AutomaticQualityFlag; including thresholds or other criteria.
qa_pct_data_missing	float	1		Percentage of expected observations that are missing.
qa_pct_data_geo	float	1		Percentage of expected observations that are successfully geolocated.
qa_pct_data_sci_mode	float	1		Percentage of expected observations that were taken while the instrument was in science mode and are successfully geolo- cated.
qa_no_data	string	1	TRUE	A simple indicator of whether this is an "empty" granule with no data from the instrument. "TRUE" or "FALSE".
title	string	1	13:30 orbit L1 CHIRP	a succinct description of what is in the dataset. (= ECS long name)
summary	string	1	The CHIRP Level 1 product for the 13:30 sun-synchronous orbit consists of calibrated radi- ance spectra at a common resolution derived from hyperspectral instruments on EOS-Aqua, S-NPP, and JPSS-1/NOAA-20 plat- forms adjusted to form a continuous climate-quality record.	A paragraph describing the dataset, anal- ogous to an abstract for a paper.
shortname	string	1	SSYN1330CHIRP1 place- holder	ECS Short Name
product_group	string	1	l1_chirp	The group name to be used for this prod- uct when it is collected in a multi-group file type, like SNO or calsub
metadata_link	string	1	http://disc.sci.gsfc.nasa.gov/	A URL that gives the location of more complete metadata. A persistent URL is recommended for this attribute.
references	string	1		ATDB and design documents describing processing algorithms. Can be empty.
contributor_name	string	1	UMBC Atmospheric Spec- troscopy Laboratory: Larrabee Strow	The names of any individuals or institu- tions that contributed to the creation of this data.
contributor_role	string	1	CrIS L1B Scientist	The roles of any individuals or institu- tions that contributed to the creation of this data.
wnum_delta_lw	float	1	0.625f	Difference between adjacent wavenum- bers in longwave spectrum, in cm-1

wnum_delta_mw	float	1	0.833333333333	Difference between adjacent wavenum- bers in midwave spectrum, in cm-1
wnum_delta_sw	float	1	1.25f	Difference between adjacent wavenum- bers in shortwave spectrum, in cm-1

D Errata

In release v02_48, the variable asc_flag is defined as 1 for an ascending and 0 for a descending orbit. However for the AIRS parent data, this flag still contains the AIRS values 'A' for ascending, 'D' for descending, and 'E' when an error is encountered in trying to determine a value. This is fixed in subsequent releases.