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The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that
the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After
establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically.
As a main result we obtain the exact quantum work distributions for charged particles traveling through a
time-dependent vector potential evolving under Schrödinger as well as under Dirac dynamics, and for which the
Jarzynski equality is verified. Special emphasis is put on the conceptual and technical subtleties arising from
relativistic quantum mechanics.
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I. INTRODUCTION

The Jarzynski equality [1] together with subsequent
nonequilibrium work theorems, such as the Crooks fluctuation
theorem [2], are undoubtedly among the most important
breakthroughs in modern statistical physics [3]. In traditional
thermodynamics the only processes that are fully describable
are infinitely slow—equilibrium—processes [4]. For all real-
istic, finite-time—nonequilibrium—processes the second law
of thermodynamics constitutes an inequality, only stating that
some portion of the entropy is irreversibly dissipated into the
environment. Jarzynski showed that for isothermal processes
the second law of thermodynamics can be formulated as an
equality, no matter how far from equilibrium the system
is driven [1], 〈exp (−βW )〉 = exp (−β�F ). Here β is the
inverse temperature of the environment, and �F is the
free-energy difference, i.e., the work performed during an
infinitely slow process. The angular brackets denote an average
over an ensemble of finite-time realizations of the process
characterized by their nonequilibrium work W .

The discovery of these so-called fluctuation theorems
effectively opened a new field of contemporary research [5,6].
For small, but classical systems the Jarzynski equality is a
universally valid theorem [7], which has been experimentally
verified in a variety of systems [8–11]. For quantum systems,
however, the situation is more complicated. The major con-
ceptual obstacle is how to generalize the classical notion of
thermodynamic work to the quantum domain. In particular,
quantum work is not an observable in the usual sense, as there
is no hermitian operator, whose eigenvalues are given by the
classical work values [12–16].

For isolated quantum systems evolving under unitary dy-
namics the so-called two-time energy measurement approach
has proven to be practical and powerful. In this paradigm,
quantum work is determined by projective energy measure-
ments at the beginning and the end of a process induced by
an externally controlled Hamiltonian. Although this approach
has been verified experimentally [17–21] and has led to the
development of thermodynamic quantum devices [22–24], the
paradigm cannot be considered entirely satisfactory as it relies
on a rather invasive procedure—projective measurements—
and is restricted to isolated systems.

Thus, modern quantum thermodynamics has been at-
tempting to overcome these restrictions: On the one hand,

researchers have generalized the two-time energy measure-
ment approach to less invasive procedures such as generalized
measurements [25–30], or to quantum systems that are less
“isolated” such as in PT -symmetric quantum mechanics [31].
On the other hand, various notions of quantum work and
entropy production for general, open quantum systems have
been proposed [32–37], which, however, all lack the desired
universality of notions from traditional thermodynamics.

Nevertheless, due to its simplicity and practicality for
isolated quantum systems a great deal of research has been
dedicated to a careful study of the quantum work statistics from
two-time energy measurements. For instance, the quantum
work distribution has been computed for time-dependent
oscillators [38–40], a particle in a time-dependent box [41],
quantum Ising chains [42–45], the Landau-Zener model [46],
noninteracting bosons and fermions [47], diatomic molecules
[48], etc.

However, to the best of our knowledge all prior work
has focused on nonrelativistic quantum systems, while a
generalization of the Jarzynski equality to relativistic energies
has only been proposed for classical systems [49]. The present
paper aims at closing this gap and reports the generalization of
the quantum Jarzynski equality to particles evolving under the
time-dependent Dirac equation. We will see that the validity
of the Jarzynski equality together with the two-time energy
measurement approach follows directly from the unitarity
of Dirac dynamics—the only essential requirement [25].
Therefore, after briefly establishing the conceptual building
blocks, we will focus on a pedagogical and illustrative case
study, namely charged spin-1/2 particles traveling through a
time-dependent vector potential.

The purpose of the present study is twofold: We will
show that the quantum Jarzynski equality naturally holds for
dynamics described by the Dirac equation. The main part of the
following discussion, however, will provide a “recipe” of how
to compute the relativistic quantum work density. Our analysis
will put emphasis on the technical and conceptual subtleties
arising from Dirac’s equation, and we will compare our
relativistic results with the analogous Schrödinger dynamics.

II. RELATIVISTIC QUANTUM WORK

We begin by briefly reviewing the paradigm of the two-
time energy measurement approach and establish notions and
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notations. Consider an isolated quantum system with time-
dependent Schrödinger equation

i� |ψ̇t 〉 = Ht |ψt 〉, (1)

where the dot denotes a derivative with respect to time. We
are interested in describing thermodynamic processes that are
induced by varying an external control parameter λt during
time τ , with Ht = H (λt ). Within the paradigm of two-time
energy measurements quantum work is determined by the
following, experimentally motivated protocol: After prepara-
tion of the initial state ρ0 a projective energy measurement
is performed; then the system is allowed to evolve under
the time-dependent Schrödinger Eq. (1), before a second
projective energy measurement is performed at t = τ . Thus,
for a single realization of this protocol the quantum work is
given by

Wn0→nτ
= ε(nτ ,λτ ) − ε(n0,λ0), (2)

where |n0〉 is the initial eigenstate with eigenenergy ε(n0,λ0)
and |nτ 〉 with ε(nτ ,λτ ) describes the final eigenstate.

The quantum work density is then given by an average
over an ensemble of realizations, P(W ) = 〈δ(W − Wn0→nτ

)〉,
which can be rewritten as [25,34]

P(W ) =
∑∫

n0,nτ

δ
(
W − Wn0→nτ

)
p(n0 → nτ ). (3)

In the latter equation the symbol
∑∫

denotes a sum over the
discrete part of the eigenvalues spectrum and an integral over
the continuous part.

To compute P(W ) Eq. (3) explicitly, one has to determine
the transition probabilities p(n0 → nτ ) first. These can be
written as [25,31]

p(n0 → nτ ) = tr
{

nτ

Uτ 
n0 ρ0 
n0 U †
τ

}
, (4)

where ρ0 is the initial density operator of the system
and Uτ is the unitary time evolution operator, Uτ =
T> exp (−i/�

∫ τ

0 dt Ht ). Finally, 
n denotes the projector into
the space spanned by the nth eigenstate, which becomes for
nondegenerate spectra 
n = |n〉〈n|.

It is then a simple exercise to show that from the
definition of P(W ) Eq. (3) and for an initial Gibbs state,
ρ0 = exp (−βH0)/Z0, we have the quantum Jarzynski equality
[12–15],

〈exp (−βW )〉 = exp (−β�F ), (5)

where �F = Fτ − F0 and Ft = −(1/β) ln (Zt ).
It is worth emphasizing that the validity of the quantum

Jarzynski equality is not restricted to Schrödinger dynamics.
Rather, it has been shown that Eq. (5) holds for all quantum
systems, whose dynamics is at least unital [25,31,50–52].
Unital dynamics preserves the identity and can be written as a
superposition of unitary quantum maps [53].

Therefore, to check whether the quantum Jarzynski equality
holds for Dirac dynamics, one only has to verify that the
corresponding evolution equation describes unital dynamics.

Relativistic quantum mechanics: Dirac equation

The Dirac equation is a relativistic wave equation, which
describes massive spin-1/2 particles, such as electrons and

quarks. In its original formulation for free particles the Dirac
equation reads [54]

i� �̇( p,t) = (c α · p + α0 mc2) �(p,t). (6)

Here, �( p,t) is the wave function of an electron with rest mass
m and momentum p = (p1,p2,p3), and c is the speed of light.
In covariant form the matrices α = (α1,α2,α3) and α0 can be
expressed as [55]

α0 = γ 0 and γ 0 αk = γ k. (7)

The γ matrices are commonly expressed in terms of 2 × 2
submatrices with the Pauli matrices σx,σy,σz and the identity
I2, as

γ 0 =
(
I2 0
0 −I2

)
γ 1 =

(
0 σx

−σx 0

)

γ 2 =
(

0 σy

−σy 0

)
γ 3 =

(
0 σz

−σz 0

)
.

(8)

It is then easy to see that the right-hand side of Eq. (6), i.e.,
the operator c α · p + α0 mc2, is hermitian, and consequently
�( p,t) evolves under unitary dynamics.

Therefore, the quantum Jarzynski equality Eq. (5) also
holds for particles evolving under Dirac dynamics Eq. (6).
However, we expect the work density function Eq. (3) to
be dramatically different: In contrast to the Schrödinger
Eq. (1) the Dirac wave function �( p,t) is a bispinor, which
can be interpreted as a superposition of a spin-up electron,
a spin-down electron, a spin-up positron, and a spin-down
positron [55]. In addition, the momentum of Dirac particles is
confined by the light cone, whereas Schrödinger particles can
travel with arbitrary velocities.

In the remainder of this study we will analyze the conse-
quences of relativistic effects on the quantum work density for
a simple, yet elucidating example.

III. CHARGED PARTICLES IN A TIME-DEPENDENT
VECTOR FIELD

For the sake of simplicity we now restrict ourselves to a
one-dimensional system in x direction. In this case the four-
component Dirac spinor can be separated into two identical
two-component bispinors, which evolve under [56]

i� �̇(p,t) = (cp σx + mc2 σz) �(p,t), (9)

with px ≡ p. We further assume that the system is driven
by a time-dependent, but spatially homogeneous vector po-
tential At . For oscillating At this situation has been recently
solved analytically [56]. Moreover, Eq. (9) describes particle-
antiparticle production in counterpropagating laser light,
which has been proposed to be observable in an experiment
[56].

Note that the Dirac Eq. (9), as any electromagentic theory,
is gauge invariant. Here, “gauge invariance” means that a
whole class of scalar and vector potentials, related by so-called
gauge transformations, describes the same physical situation.
In particular, the dynamics of the electromagnetic fields and
the dynamics of a charged system in an electromagnetic
background do not depend on the choice of the gauge. In
the present context this means that the energy eigenvalue
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Eqs. (11) and (20) do depend on the gauge, and the Jarzysnki
equality is gauge invariant [15].

A. Schrödinger dynamics

To build intuition and as a point of reference we treat
the nonrelativistic problem first. In this case the dynamics is
described by the time-dependent Schrödinger equation, which
reads in momentum representation

i� ψ̇(p,t) = 1

2m
(p + At/c)2 ψ(p,t), (10)

where At is the vector potential, and we work in units for
which the elementary charge is set to one, e = 1.

Accordingly, the instantaneous eigenenergies are

εS(πt ,At ) = 1

2m
(πt + At/c)2, (11)

with the corresponding eigenstates,

φ(p,πt ) = δ[p − (πt + At/c)]. (12)

Here and in the following πt denotes the quantum number,
which is in the present case reduces to the eigenmomentum.
Note that the eigenstates Eq. (12) form an orthonormal basis,
since ∫

dp φ(p,π1)φ(p,π2) = δ(π1 − π2). (13)

In the present case the time-dependent Schrödinger Eq. (10)
reduces to an ordinary differential equation of first order. Thus,
a solution of Eq. (10) can be written as

ψ(p,t) = exp

[
− i

�

∫ t

0
dt ′

(p + At ′/c)2

2m

]
ψ(p,0), (14)

which follows from inspection.
Notice that in the case of Schrödinger dynamics the effect

of At manifests itself exclusively as a time-dependent phase
Eq. (14). Shortly, we will see that for the corresponding Dirac
equation the situation is much more involved.

The instantaneous eigenenergies Eq. (11) together with
the eigenstates Eq. (12) and the time-dependent solution
Eq. (14) are all ingredients necessary to compute the quantum
work density Eq. (3). In particular, the transition probabilities
Eq. (4) become,

pS(π0 → πτ ) =
∣∣∣∣
∫

dp φ(p,πτ ) ψ(p,t)

∣∣∣∣
2

pS
0 (π0), (15)

with the initial state

pS
0 (π0) = exp[−β εS(π0,A0)]/ZS

0 , (16)

and partition function ZS
0 = ∫

dπ0 exp[−β εS(π0,A0)] and
ψ(p,0) ≡ φ(p,π0). Substituting Eqs. (11) and (15) into
Eq. (3) we finally obtain after a few lines of simple algebra,

PS(W ) =√
β mc2

√
2π |A0 − 2Aτ |

exp

{
−β[2mc2 W − (A0 − 2Aτ )2]2

8mc2 (A0 − 2Aτ )2

}
.

(17)

Equation (17) constitutes our first main result. The quantum
work distribution for charged Schrödinger particles traveling

FIG. 1. (Color online) Quantum work density, PS(W ), for
charged Schrödinger particles Eq. (17), with A0 = 0, Aτ = 1, m =
1, c = 1, and β = 10 (blue, solid line), β = 1 (purple, dashed line),
and β = 0.1 (red, dotted line).

trough a time-dependent vector potential, At , is a Gaussian,
which is fully determined by the initial and final value of At .
In particular, PS(W ) is independent of the specific protocol,
as At merely induces a time-dependent phase Eq. (14). As a
point of reference and for comparison with the Dirac case in
the following subsection, we plot Eq. (17) in Fig. 1 for low,
intermediate, and high temperatures.

B. Dirac dynamics

In complete analogy to the preceding Schrödinger case we
now compute the quantum work density for charged particles
evolving under the time-dependent Dirac equation,

i� �̇(p,t) = [(cp + At ) σx + mc2 σz] �(p,t). (18)

Equation (18) can be separated into two evolution equations for
the components of the bispinor, �(p,t) = (�1(p,t),�2(p,t)),
and we have

�
2 �̈1(p,t) = −[(cp + At )

2 + (mc2)2 + i� Ȧt ] �1(p,t),

�2(p,t) = [i� �̇1(p,t) − (cp + At )�1(p,t)]/mc2.

(19)

In contrast to the previous case, Eq. (10), the solution of the
time-dependent Dirac Eq. (18) is determined by an ordinary
differential equation of second-order Eq. (19). Therefore, to
find analytical solutions of Eq. (18) we have to resort to
particular parametrizations of At . For oscillating protocols Eq.
(18) has been solved in Ref. [56], and we will see two further
examples in the following.

Before we turn to specific parametrizations, however, we
note the instantaneous (positive) eigenenergies of Eq. (18),

εD(πt ,At ) =
√

(cπt + At )2 + (mc2)2, (20)

and the corresponding, orthonormal eigenstates,

�(p,πt ) = δ[p − (πt + At/c)]√
1 + (√


2
t + 1 − 
t

)2

(
1√


2
t + 1 − 
t

)
,

(21)
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where we introduced the notation 
t = (cπt + At )/mc2. One
easily convinces oneself that these eigenstates, �(p,πt ), fulfill
the orthonormality condition Eq. (13).

For the following analysis we will assume that in the initial
state, ρ0, merely particles are present, but no antiparticles. This
assumption is in full agreement with typical situations in nature
and the mathematical treatment simplifies significantly [57].
We emphasize that this assumption merely circumvents the
conceptual issue of having to define a free energy for antiparti-
cles. It has been shown that for any normalized initial state [34]
a fluctuation theorem can be derived. However, such a general
theorem only reduces to a generalized Jarzynski equality for
thermodynamically well-defined situations [34]. Nevertheless,
for the sake of completeness, antiparticle energies and states
can be found in Appendix A.

We also emphasize that our analysis does not neglect the
existence of antiparticles completely. We merely assume that
the initial state is a thermal wave packet of particles. The
dynamics, however, is described by the time-dependent Dirac
Eq. (18), and hence governed by both positive and negative
eigenenergies. Hence, in particular the transition probabilities,
Eq. (4), are governed by both particle and antiparticle solution.

1. Linear protocol

As a first example, we consider a linearly parameterized
vector potential,

At = α t, (22)

for which a solution of Eq. (19) is given by

�1(p,t) = C1(p) D−ν

[
(i + 1)(cp + αt)√

α�

]

+C2(p) Dν−1

[
(i − 1)(cp + αt)√

α�

]
. (23)

Here, Dν(·) denotes the parabolic cylinder function [58]
of order ν = i m2c4/2α�, and C1(p) and C2(p) are time-
independent functions of momentum determined by the initial
state.

As mentioned earlier, for Dirac dynamics the solution is
mathematically more involved, and also the amplitude of
the wave function depends on the specific parametrization of
At—not only the phase as in the previous, nonrelativistic case
[Eq. (14)]. This can be understood as dynamical interference
of the two components of the bispinor. Nevertheless, the
transition probabilities can still be written as

pD(π0 → πτ ) =
∣∣∣∣
∫

dp �(p,πτ ) · �(p,t)

∣∣∣∣
2

pD
0 (π0), (24)

where the initial distribution now reads

pD
0 (π0) = exp[−β εD(π0,A0)]/ZD

0 , (25)

with which we can compute the quantum work distribution
PD(W ) [Eq. (3)].

FIG. 2. (Color online) Thermal momentum distribution for
Schrödinger Eq. (16) (green, solid line) and Dirac particles Eq. (25)
(dark orange, dashed line) with m = 1, c = 1, A0 = 0, and β = 0.1.

In Fig. 2 we plot the thermal momentum distribution for
Schrödinger particles Eq. (16) together with the distribution
for Dirac particles Eq. (25). In the Schrödinger case we have
the well-known (Gaussian) Maxwell-Boltzmann distribution.
The momentum distribution for relativistic Dirac particles is
broader due to the relativistic energy, mc2, and was first de-
scribed for classical mechanics by Jüttner [59]. The so-called
Maxwell-Jüttner distribution converges toward the Maxwell-
Boltzmann distribution Eq. (16) for low temperatures and
decays slower than a Gaussian at high temperatures [59].
The major limitation is that the Maxwell-Jüttner distribution
neglects antiparticles, which, however, serves our present
purpose.

The resulting work distribution,PD(W ), is plotted in Fig. 3,
for the same parameters and color coding as for Schrödinger
particles in Fig. 1. As anticipated, the relativistic effects change
the characteristics of the quantum work distribution signifi-
cantly. The most striking difference with the Schrödinger case
in Fig. 1 is that PD(W ) has a finite support. This, however,
can be understood intuitively: Large fluctuations in W are

FIG. 3. (Color online) Quantum work density, PD(W ), for
charged Dirac particles and the linear protocol Eq. (22) with α =
1, τ = 1, � = 1, m = 1, c = 1, and β = 10 (blue, solid line), β = 1
(purple, dashed line), and β = 0.1 (red, dotted line).
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FIG. 4. (Color online) Quantum work density, PD(W ), for
charged Dirac particles and the exponential protocol Eq. (26), with
α = e/(e − 1), τ = 1, � = 1, m = 1, c = 1, and β = 10 (blue, solid
line), β = 1 (purple, dashed line), and β = 0.1 (red, dotted line).

accompanied by large changes in momentum. However, the
momentum is limited by the light cone, and, hence, large
fluctuations in W are also “cut off” by the light cone.

Quantitatively, the finite support can be determined by
inspecting the transition probabilities Eq. (24). It is easy
to see that pD(π0 → πτ ) ∝ δ(π0 − (πτ + Aτ/c)). Hence, the
only work values contributing to PD(W ) are W = εD(π0 +
Aτ/c,Aτ ) − εD(π0,A0), and therefore W ∈ (−2 ατ, 2 ατ ).

Qualitatively, one can understand Fig. 3 by starting with
the distribution for Schrödinger particles in Fig. 1, and
“compressing” the curves into the allowed support. For low
temperatures (blue curve) the left flank is rather unaffected,
as the distribution lives “far away” from the light cone,
whereas the right flank is only slightly deformed. For higher
temperatures the effect becomes more prominent, and the
distribution becomes “jammed” at the edges of the support,
i.e., at the light cone.

2. Exponential protocol

To conclude the analysis we also compute the quantum
work density Eq. (3) for a nonlinear parametrization,

At = α[1 − exp (−t/τ )]. (26)

Also in this case the time-dependent Dirac Eq. (19) can be
solved analytically. However, the solution can no longer be
written in compact form and can be found in Appendix B.
The transition probabilities Eq. (24) and the initial distribution
remain the same by replacing Eq. (23) with the expression
(B2) everywhere.

Figure 4 illustrates the resulting quantum work distribu-
tions. We observe that the work distributions resulting from the
linear protocol Eq. (22) and the exponential protocol Eq. (26)
are nearly indistinguishable—despite the solutions, Eqs. (23)

TABLE I. Numerical verification of the quantum Jarzynski
equality Eq. (27) for the quantum work distributions for Dirac
particles described in the captions of Figs. 3 and 4.

β = 10 β = 1 β = 0.1

Linear 0.99 0.99 0.99
Exponential 0.96 0.98 1.00

and (B2), being complicated expressions of special functions.
Thus, we conclude that the effect of the light cone on the work
distribution is more prominent than the interference of the two
components of the bispinor [60].

C. Jarzynski equality

The validity of the quantum Jarzynski equality follows
from the unitarity of Dirac dynamics. Nevertheless, it is
worthwhile to numerically verify its predictions. To this end,
we numerically integrated the average exponentiated work for
the distributions in Figs. 3 and 4. Here, the Jarzynski equality
becomes

〈exp (−βW )〉 =
∫

dW PD(W ) exp (−βW ) = 1, (27)

as the free-energy difference vanishes. In Table I we summa-
rize the numerical results. We see that the quantum Jarzynski
equality Eq. (27) is, indeed, verified to very high accuracy.

The validity of the quantum Jarzynski equality Eq. (27)
explains another important feature of PD(W ). For the linear
Eq. (22) as well as for the exponential Eq. (26) protocol left and
right flank of the distribution are “exponentially asymmetric.”
This asymmetry constitutes a necessary charactertistic of
PD(W ) for Eq. (27) to hold. Note also that the asymmetry
of PD(W ) is not an artifact of assuming that the initial state is
composed of only particles, but no antiparticles. We emphasize
again that the existence of antiparticles is implicit in our
treatment as the dynamics is described by Eq. (18).

IV. CONCLUDING REMARKS

In the present study we have analyzed the validity of the
quantum Jarzynski equality and the properties of the quantum
work distribution for systems described by the Dirac equation.
For pedagogical reasons and for the sake of simplicity we
focused on an illustrative case study. However, our system
is more than a simple toy model, and it has realistic and
experimental relevance.

A. Experimental relevance

Only recently, Fillion-Gourdeau et al. [56] studied the
same model system in the context of pair production in
counterpropagating laser light. However, Ref. [56] not only
solves Eq. (18) analytically for an oscillating parametrization
of At , but also provides relevant values for the field strength,
for which the dynamics could be observed in an experiment.
It is worth emphasizing that Eq. (9) is only an approximate
description of the real physical situation with a clearly defined
range of validity [56]. Nevertheless, for all experiments for
which Eq. (9) is valid our results could be readily verified,
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where one only would have to additionally measure the
momentum distribution. From the momentum distribution one
would compute the transition probabilities Eq. (24), and build
the quantum work distribution Eq. (3) from a histogram. This
procedure is fully analogous to the cold ion trap experiment,
which verified the quantum Jarzynski equality [17,21].

B. Summary and outlook

Our present analysis has extended the scope of quantum
stochastic thermodynamics to relativistic energies. We have
shown that not only does the quantum Jarzynski equality hold
for Dirac dynamics, but we also have provided a step-by-step
“recipe” of how to compute the relativistic work distribution.
For the sake of clarity and due to its mathematical simplicity
we focused on free, charged particles traveling through a time-
dependent vector potential. Another recent reference proposed
to study pair production in a slightly more complicated, but
also more realistic system including a scalar potential [61]. Our
analysis could be straightforwardly applied to the situation of
Ref. [61] under the expense of having to compute PD(W ) fully
numerically.

ACKNOWLEDGMENTS

S.D. acknowledges financial support by the U.S. De-
partment of Energy through a LANL Director’s Funded
Fellowship.

APPENDIX A: ANTIPARTICLE ENERGY
AND EIGENSTATE

The instantaneous antiparticle solution of the time-
dependent Dirac Eq. (18) is given by

�a(p,πt ) = [p − (πt + At/c)]√
1 + (√


2
t + 1 + 
t

)2

( −1√

2

t + 1 + 
t

)
,

(A1)
with eigenenergies

εa
D(πt ,At ) = −

√
(cπt + At )2 + (mc2)2. (A2)

Note that the eigenenergies for antiparticles are negative. Thus,
the Maxwell-Jüttner distribution Eq. (25) is ill-defined for
positive temperatures.

APPENDIX B: ANALYTICAL SOLUTION OF
TIME-DEPENDENT DIRAC EQUATION

For the exponential protocol,

At = α[1 − exp (−t/τ )], (B1)

a solution of the time-dependent Dirac Eq. (19) is given by

�1(p,t) = exp

{
− i

�
[t

√
(mc2)2 + (cp)2 + 2pcα + α2 + ατ e−t/τ ]

}

×
(

C1(p) U

{
− iτ

�
[cp+α−τ

√
(mc2)2+(cp)2 + 2cpα+α2], 1 + 2i τ

�

√
(mc2)2 + (cp)2 + 2cpα + α2,

2i ατ

�
e−t/τ

}

+C2(p) L

{
iτ

�
[cp + α − τ

√
(mc2)2 + (cp)2 + 2cpα + α2],

2i τ

�

√
(mc2)2 + (cp)2 + 2cpα + α2,

2i ατ

�
e−t/τ

})
.

(B2)

Here, U (·, · ,·) is the Kummer function, and L(·, · ,·) denotes the Laguerre polynomial [58].
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