
Personal Security Agent: KQML-Based PKI

Qi He, Katia P. Sycara
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA. 15213

qihe@cs.cmu.edu, katia@cs.cmu.edu

Timothy W. Finin
Dept. of Computer Science & Electrical Engineering

University of Maryland Baltimore County
Baltimore, MD 21250
finin@cs.umbc.edu

Abstract

Certificate management infrastructure, a.k.a. PKI (Public Key In-
frastructure), which issues and provides access to public key cer-
tificates to preserve the integrity of a public key, is fundamental for
electronic commerce and business across the Internet. To satisfy
the requirements of various applications, PKI should demonstrate
customization to user needs, interoperability and flexibility in its
implementations so it can satisfy the needs of various applications.
Particularly, due to the popularity of software agent-based appli-
cations over the Internet, security will be urgently needed by the
“agent society”. We propose to implement the authority of authen-
tication verification service systems as personal autonomous soft-
ware agents, called security agents. In this paper, we present two
aspects of KQML-based PKI: 1. the security agent concept and its
functional modules; 2. an extension of KQML, which is needed for
public key management and secure communications among secu-
rity agents and application agents.

Area: Software Agents

Keywords: security, agent architecture, PKI (Public Key Infras-
tructure), KQML, authentication, interoperability.

1 Introduction

The public key cryptosystem is playing an increasingly important
role in electronic transactions on computer networks. However,
whenever we use a public key to encrypt a message or to verify the
authenticity (digital signature) of a message, we must ensure that
the public key we are using is valid and it belongs to the claimant
rather than anyone else. This issue known as the public key in-
tegrity problem vitally determines the whole security of commu-
nication, including conducting transactions over the Internet. The
current state-of-the art solution is to establish in a hierarchical man-
ner a system to issue public key certificates, in which the princi-
pal’s public key (as well as some other information) is included
and signed by an authority, and the authority may hold a certificate
issued by a super authority, and so on up the hierarchy. This system
is the so called public key certificate management infrastructure, or
PKI (Public Key Infrastructure)[1].

However, several PKI implementations are currently evolving (such

as IETF’s PKIx(Public-Key Infrastructure,X.509)[3], PKCS(Public
Key Crypto System)[4], PGP(Pretty Good Privacy)[5], SPKI(Simple
Public Key Infrastructure) [6], SDSI(Simple Distributed Security
Infrastructure)[7], etc.), and there is no single PKI implementation
nor even a single agreed-upon standard for setting up a PKI. Even
those implementations that are based on the same standard X.509
recommendation[8] are still incompatible witheach other because
of independent interpretations in their actual implementations[9][10].
So, overcoming this incompatibility and enabling wide spread au-
thentication verification offered by the PKI is a crucial issue. It is
also one of the motivations of our work.

To resolve the PKI interoperability problem, the simplest solution
is to establish a uniform system with only one format of certifi-
cate, name space and management protocol. However, not only
is this extreme difficult to enforce in practice, but also it is unde-
sirable in many situations. For example, different circumstances
warrant holding different certificates to satisfy a variety of authen-
ticity verification requirements. For example, in a given situation,
the information of organizational relationships is needed as an ele-
ment in a certificate, but in other situations, this information is not
needed and it shouldn’t be included in the certificate for the sake
of security and privacy — this is a basic principle of security: “It
should not be possible to do more or learn more than what is spec-
ified in the protocol[11]”1. With the increasing use of agents for
different applications, increasing agent decentralization and need
for agent communication and interoperation, such flexibility is es-
sential. This has been recognized in recent securityliterature[7].
This flexibility in PKI implementation requires that multiple types
of certificates, definition of name space, and managementprotocols
tailored for various applications must be developed. In this context,
our research effort at developing a way to flexibly implement de-
centralized PKI is also a basic and critical step for decentralization
of trust management [12].

Another direct motivation of our research is that the development of
the Internet is changing the traditional paradigm of software, which
is monolithic and passively operated by humans, to the new agent-
based technology which works cooperatively and autonomously.
The new generation of software, agents, will be delegated by hu-
mans to automatically perform tasks, including digitally conduct-
ing transactions across the Internet. Security issues are identified as
critical for the success of agent-based Internet programming[14].
Agent-oriented authentication verification services must be sup-
plied for most agent-based applications. In fact, agents as primarily
human-delegated software, will be an ideal application domain of

1In fact, only the public key and a signature are the essential parameters that must
always be present in a certificate.



modern cryptography in the very near future.

Treatment of security in the agent literature has been very scant.
[17, 14] discuss some issues from the point of view of cryptogra-
phy. In particular, [17] discussed some useful principles, which,
although well-known in the security community, could be useful to
agent developers. For example, an agent developer could under-
stand that any design which depends on secrecy of the design is
guaranteed to fail and that the public cryptographic algorithms are
the right approach for agent security. In [14] language for agents
to support the secret communication was discussed based on cryp-
tography techniques. However, like the applications of public key
cryptosystem in human society, without a scalable authentication
service, all of security schemes and protocols designed for open
agent society cannot make any sense.

Further more, security protocols, operations and interoperation be-
tween principals (agents), as well as public key management are
really difficult burden for the ordinary end-users to handle. Those
routines themselves should be autonomously and cooperatively per-
formed by programs running on the Internet so that the workload
of the users can be relieved.

We propose to implement the authorities of authentication verifica-
tion service systems as autonomous software agents, calledsecurity
agents. This open implementation of agent-based PKI facilitates
interoperable, flexible, and agent-oriented authentication verifica-
tion service for various applications.

In this paper, we discuss two aspects of our flexible PKI develop-
ment: (1) The security agent concept and its functional modules —
we describe the fundamental idea of implementing PKI by means
of a security agent. (2) An extension of KQML — we propose a
new ontology, several new parameters and new performatives that
are necessary for public key management and secure communica-
tion among security agents and application agents. Such perfor-
matives and parameters are not currently available in the KQML
specification document[2] or in KQML implementations.

2 Security Agent

Existing PKI implementations began with specifying their certifi-
cate formats and the name spaces through a pre-defined hierarchies,
such as the DNS name hierarchy. This method entails inflexible im-
plementation. In our KQML-based PKI, instead of specifying the
format of certificates, name space or hierarchy structure, we are
applying agent concepts and technology toauthorities of authen-
tication service, and developing asecurity agent. this provides a
flexible framework where different applications can specify their
own certificate formats.

From the viewpoint of a user, the security agent can be thought
as a kind ofconfigurable facilitator that can be employed by any
group of users, organization, community, etc. to construct their
own authentication verification service system. What we mean by
”configurable facilitator” is that we do not pre-specify any particu-
lar certification format and hierarchical relationship in the software
(like in other traditional PKI projects), but allow the users to define
the format(s) of the certification(s) and the name space(s) as they
need (customizing). The hierarchical relationship is dynamically
formed as the agents apply/issue their certificates according to the
desires of the applications2.

From the viewpoint of PKI structure, a security agent can be thought

2Certificate formats in existing PKI implementations can be adopted if they are
suitable for an application.

of as a node in a dynamically formed hierarchy. More than one au-
thentication verification systems may cross a node, since a single
security agent can hold multiple certificates with different certifi-
cate name (such as “PGP certificate”, “RSA PKCS certificate”, “X
community certificate”, etc.), formats and name spaces-hierarchical
relationships. (refer to Figure 2.1).

Security agents, like other application agents, communicate with
each other with KQML. However, the current version of KQML
does not support many security operations needed in public key
management, although some changes were made for agent security
in [14]. We propose a security extension of KQML in this paper
and will discuss it in next section, section 3. Succinctly speaking,
our extension enable agents to identify multiple certificates and co-
operatively conduct security interoperations.

2.1 Function Modules and Architecture

In order for a security agent to manage public key certifications, it
must be capable of performing a basic set of tasks. Although there
are some difference depending on specific hierarchies, the tasks
and principles are basically the same: issue/apply a certificate, up-
date/revoke a certificate. We note that a security agent could poten-
tially provide additional capabilities, such as retrieve, transfer, or
exchange credentials among different hierarchy systems, or intro-
duce one agent to another, or delegate one agent to act on another’s
behalf, etc. Here, however, as an initial step, only the very basic
tasks are discussed, so that we can more clearly sketch the contours
of a security agent’s structure and functionality.

Every task the security agent performs involves communication
with other agents. Therefore, a security agent needs security pro-
tocols for agent communication as well as an internal databases to
store local secret information. Although when a task is carried out,
several functions may be performed asynchronously, we still func-
tionally split the system into several components, named modules,
with clear boundaries so that we can easily explain how a security
agent works.

The security agent architecture is based on the agent architecture
we have developed in the RETSINA multiagent infrastructure[13]3.
Every RETSINA agent has the following modules: communicator,
planner, scheduler, and execution monitor.

We give a brief overview of the general processing of a message by
a RETSINA agent. The modules of a RETSINA agent are imple-
mented as Java threads and operate asynchronously. However, for
simplicity of presentation we present their steps sequentially.

Suppose, a message from another agent comes to the communica-
tions module. After the message is received, it is parsed by the
parser. In the simplest situation, the message is a kind of datum
that represents a request from another agent. It is processed by the
parser, which outputs it as a task object and passes it as an objec-
tive to the agent’s planner. After the planner has planned for this
objective, the plan actions are passed to the task scheduler module
to be scheduled. Subsequently, the scheduled actions are executed
by the execution module. Results are sent back to the agent who
originated the message through the communicator.

Figure 2.2 shows the relationships and data flow among the security
agent’s functional modules. The modules in the current implemen-
tation of the security agent are as follows:

1. Communicator: it deals with communications with other agents,
including security agents or application agents. More pre-

3The RETSINA project URL is http://www.cs.cmu.edu/ softagents



Figure 2.1 Multiple Hierarchies across a agent.

Hierarchy 1
Hierarchy 2

Hierarchy 3 application agent

cisely, what the communicator module does is to accept and
parse messages (KQML packages) from outside agents, or
to pack outgoing messages into KQML packages and send
them out to intended agents.

Sometimes a message could be a cipher, an encrypted mes-
sage. In this case, the parser must recognize that the message
is encrypted. It organizes into a task object and sends it to
the planner. In some circumstances, these procedures may
necessarily be repeated several times, back and forth, for ex-
ample, if the original KQML message included embedded
KQML messages. Similarly, outgoing messages also arrive
at the parser from the agent planner or execution module. To
recursively wrap an outgoing message as a KQML package
or to send out a message in secure way, the outgoing mes-
sage is processed by the parser. The message is finally sent
out through the communicator.

2. Task Planner: The message from outside, represented as a
task object is passed to the task planner. Upon receiving
a task object, the planner initializes a process with the re-
ceived data as the input according to a specific protocol ex-
tracted from PDB (Protocol Database, see below). The pro-
tocol steps are passed to the scheduler.

3. Task Scheduler: this module schedules the protocol steps to
be executed. Since the security agent is an agent whose ser-
vices are used by many other agents, it needs to prioritize
and schedule its requests for security services that it receives
from many different agents. After the protocol steps have
been scheduled, they are passed to the execution module.

4. Execution Module: This module executes the process initi-
ated by the task scheduler step by step. The basic security
operations executed by the execution module are: encrypt,
decrypt, sign and verify a message.

5. Human-Agent Interface: Human/agent interface is designed
as an interface for user to set up system and customize the
system. More precisely, through the interface users can:

(a) design and generate public key certificates according
to their applications. Through the interface, the users
can define or choose a format of certificate they want,
name space length of their public key and algorithms of
cryptography, as well as a name of certificate.

(b) apply/issue some kind of public key certificates - The
procedure of applying or issuing a public key certifi-
cate is very important so that it must be done by a man-
ual process since some judgement is required to evalu-
ate the proposed evidence for the applicant agent owner
(the user or organization which delegates the applicant
agent to act on his/ her/its behalf).
During the application procedure, the applicant needs
the interface to talk with their agents about which se-
curity agent to apply for their certificates, which kind
of certificate he wants. When applicants receive their
certificates, they also need to confirm that the informa-
tion included in the certificate is correct and the signa-
ture is signed correctly by the intended security agent.
During the procedure of issuing a certificate, the person
who controls a security agent that issues the certificate
also need the interface to verify the authenticity of the
information of an application, then decide whether to
validate a public key certificate for applicant agent.

(c) Input the sets of security protocols for various certifi-
cate management strategies and policies of authentica-
tion service system.

6. PDB (Protocol Database): Every security agent should store
all sets of needed security protocols in its PDB for various
managements tasks (routines) required in all of the authen-
tication service systems across it. The basic protocols are
certificate update protocols, certificate revocation protocols,
certificate application/issuing protocols, etc. Given a task ob-
ject by the parser, the planner looks up the PDB, then starts
a process according to the matched protocol from PDB. Sub-
sequently, the execution module executes the protocol auto-
matically.



7. CDB (Certificate Database): There are two cases in which a
security agent (even application agent) needs a CDB:

(a) In a dynamic management of public key certification,
when the agent applies for a certificate from a security
agent, it will be given not only its certificate (in which
the public key that has been automatically generated is
included) but also achain of certificates. This chain of
certificates consists of the certificates of all the secu-
rity agents along the path from the root security agent
through the parent security agent, from which it applies
its certificate, in the authentication hierarchy. Each se-
curity agent stores its chain of certificates in its CDB.
Then, when the security agent wants to communicate
with another security agent, it does not necessarily con-
tact other higher level security agents to retrieve the
participant’s public key certificate(s). The agents can
exchange their certificate chains (or part of their chains)
to prove their authenticity according to their position in
the name space.

(b) To cut down communication costs, an agent (security
agent or application agent) may cache some most fre-
quently used certificates, i.e. certificates of agents it
has frequent dealings with. When the agent needs to
use one of the certificates, it doesn’t have to commu-
nicate with any other security agent or its participant,
but just looks up the CDB, gets the certificate for the
particular agent and uses it. In both these cases, the
CDB can reduce the overhead of communication mit-
igate the bottleneck in authentication service system,
and simplify some secure communication protocols.

3 Extensions to KQML

KQML (Knowledge Query and Manipulation Language), is a com-
munication language and protocol which enables autonomous and
asynchronous agents to share their knowledge and work towards
cooperative problem solving[2]. However, agent security issues
were not taken into consideration in the original version of KQML
specification. Some changes were made for secure communica-
tions based on KQML[14]. But it is still incomplete, especially
since it does not satisfy the requirements of public key certifica-
tion management. In order to implement KQML-based PKI, we
propose a KQML ontology, several new parameters, and new per-
formatives as follows. The new ontology is:

PKCertificate

It enable the agents, including application agents, to know that the
performative they received concerns interactions about public key
certificate management.

3.1 New parameters

The four new parameters are:

1. :certificate
The certificate of the agent sending the message will be in-
cluded as the value of this parameter in a performative. The
format of the certificate depends on the certificate name in-
cluded in the performative as the value of parameter ”lan-
guage”. For example, if the name is SPKI, then the format
will be: [5]

ISSUER : a principal or a single top-level name in a princi-
pal’s name space. The principal is identified as a public

key or the hash of that key; the corresponding private
key signs the certificate.

SUBJECT : a principal, an object or a SDSI name reducible
to either of those. The subject is the agent who receives
authority from the issuer by way of the certificate.

DELEGATION : the optional modifier, ”(propagate)”, giv-
ing the subject permission to delegate the authority pre-
sented in the certificate (or part of it) to some other Sub-
ject.

AUTHORITY : the specific authorization(s) being dele-
gated in this certificate.

VALIDITY : date ranges and/or on-line validity tests for
determining certificate validity.

SIGNATURE : a digital signature signed by ISSUER.

2. : certificateName
The value of this parameter will indicate the name of the cer-
tificate used in the performative, so that the agent receiving
the KQML message will be able to parse the information as
certificate.

3. : signature
The value of this parameter is the sender’s signature signed at
the end of the content of the KQML message. This signature
can be verified with the public key included as the value of
the parameter certificate mentioned above.

4. : certificateChain
For the dynamic management of certificates, the certificate-
Chain, in which the certificates of the agents along the path
from the root security agent through the agent that is the
holder of the certificateChain, will be needed as parameter
in the performative as mentioned in 2.1.(7).

3.2 New performatives

1. apply-certificate
In order to securely communicate with others, when an agent
is created, it will apply for a certificate in which a public key
automatically generated will be included. To apply for the
certificate from an authentication authority, a security agent,
the agent will send the following performative in the KQML
message, as its certificate application.

apply-certificate:
:language fname of certificate g
:content fall the elements of
certificate except signature

of the authority g
:ontology PKCertificate

where the content of ”content” is all the elements needed to
be included in the certificate which is applied. The content
of ”language” identifies the name of certificate, which will
enable receiver’s KQML parser to know what elements are
included as the ”content” of this performative and then ex-
tract them out.

2. issue-certificate

If an application for a certificate is approved (with the inter-
ference of humans, see also 2.1 (5)), the security agent in
charge of issuing certificates will send back a performative
as follow:

issue-certificate:
:certificateName fname of
certificate g
:content fissued certificate g



Communicator

In Out

Agent/human Interface

CDBPDB

Execution Module

KQML message KQML message

Task
Object

Task
Object

fe
e

d
b

a
ck

Figure 2.2 Structure of Security Agent.

Planner

Scheduler

:certificate fauthority’s
certificate g
[:certificateChain fthe certificate
chain of authority g]
[:signature fsignature signed by the
security agent g]
:ontology PKCertificate

Where the content of ”certificateName” also identifies the
type of certificate which should be the type intended by the
applicant agent. The issued certificate is included as the con-
tent of ”content”.

Upon receiving this performative, the agent which is apply-
ing for its certificate can extract the public key in ”certificate”
(authority’s certificate) and check the authenticity of the is-
sued certificate by means of verifying the signature in the
issued certificate.

3. renew-certificate

Each time when an agent is going to change its public key, or
other pieces of information in its certificate, it will send the
following performative to the security agent that issued the
original certificate.

renew-certificate
:language fname of certificate g
:content fcontent of new
certificate g
:certificate foriginal certificate g
:signature fsignature on content of
new certificate g
:ontology PKCertificate

When receiving the performative, the security agent will ex-
tract the public key from the original certificate and check
the authenticity of the content of new certificate by verifying
the signature with the public key. If the authenticity has been

verified, the security agent can sign the new certificate and
issue it to the applicant by sending back an issue-certificate
performative.

4. update-certificate

If a security agent updates its public key, it should inform (1)
the agents that applied for a certificate from it, and (2) the
agents whose certificates were issued by the agents to whom
the updated certificate has been sent. All these agents, upon
receipt of the update-certificate, will update their CDB and
renew their certificates. To inform others about the updated
certificate, a security agent should use the following perfor-
mative:

update-certificate:
:language fname of certificate g
:content fupdated certificate g
:certificate foriginal certificate g
:signature fsignature on updated
certificate with the public key
in the old certificate g
:ontology PKCertificate

Upon receiving the performative, the receiver will check the
authenticity of the updated certificate by verifying signature
with the public key included in the original certificate.

5. revoke-certificate

A certificate could be revoked for some reasons. If a security
agent is going to revoke its certificate, it will send the follow-
ing performative to other agents associated with it, especially
the agents that hold the certificates issued by the agent whose
certificate is to be revoked. When an agent is informed of re-
voked certificate, it should also forward the performative to
the agents that hold the certificates issued by it.

revoke-certificate:
:language fname of certificate to be



revoked g
:content fthe certificate to be
revoked g
:signature fsignature on the
certificate to be revoked g,
[:certificate fcertificate g]
[:certificateChain fcertificate-
Chain g]
:ontology PKCertificate

where the signature is signed with the public key included in
the certificate to be revoked.

These are the performatives for the basic certificate manage-
ment. If, in the future more sophisticated mcertificate management
is needed, additional performatives can be developed.

4 Conclusion

In this paper, we discussed an agent-based implementation of PKI.
Unlike the traditional way of PKI implementation, we propose to
implement the authorities of authentication verification service sys-
tems as personal autonomoussoftware agents, called security agents,
instead of building a static monolithic hierarchy. Formats of certifi-
cates for various applications can be personalized by the users or
specific applications. The authentication relationship can be dy-
namically established even across multi-certificate hierarchies by
use of the security agents. Two aspects of the implementation, the
functional structure and communication language extension, were
discussed. To summarize:

From the viewpoint of application of public key cryptosystem, our
work:

1. Makes the construction of scalable authentication system much
more feasible by employing the security agents in a bottom up fash-
ion.

2. Makes interoperation of multi-certificate authentication system
possible.

3. Can help customize certificate management while relieving the
workload for certificate users.

From the viewpoint of agent applications,

4. The implementation will lay a authentication foundation for
agent security. This is significant for application of agent technol-
ogy especially in electronic commerce.

Naturally, there remain some open problems and issues that we dis-
cuss in the next section.

5 Future Work

With the KQML-based PKI, the software agents, including security
agents and application will be able to efficiently manage their cer-
tificates, prove/verify the authentication of communications, and
encrypt/decrypt messages. However, there are some remaining is-
sues that we are going to address in future work.

Which kind of security policy can be specified so that security
agents will automatically perform transmission of credentials among
different authentication verification service systems?

How to define a suitable language for the users to describe their
security policy and security protocols so that the agent delegates of

a user can safely transact electronic business on his behalf?

Under what circumstances should a message, or part of the mes-
sage, be encrypted, or signed, or signed and encrypted?

Now that we allow the users to define the formats of their certifi-
cates and management protocols, it is necessary for agents to be
able to check the correctness and robustness against attacks. This
is another important future work. Interested readers may like to
refer[15][16].

References

[1] W. Timothy Polk, Donna F. Dodson, etc,
Public Key Infrastructure: From Theory to Implementation,
http://csrc.ncsl.nist.gov/pki/panel/overview.html, NIST

[2] Tim Finin, Yannis Labrou, and James Mayfield,KQML as
an agent communication language, in Jeff Bradshaw (Ed.),
”Software Agents”, MIT Press, Cambridge (1997).

[3] URL, Public-Key Infrastructure (X.509)(pkix),
http://www.ietf.org/html.charters/pkix-charter.html

[4] URL, RSA Laboratories, PKCS (Public Key Crypto System)
http://www.rsa.com/rsalabs/pubs/PKCS/

[5] Philip R. Zimmermann,The Official PGP User’s GuideMIT
Press 1995.

[6] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest,
Brian M. Thomas, Tatu Ylonen,Simple Public Key Certifi-
cate, http://www.clark.net/pub/cme/spki.txt

[7] Ronald L.
Rivest, Butler Lampson,SDSI - A Simple Distributed Secu-
rity Infrastructure, http://theory.lcs.mit.edu/ cis/sdsi.html

[8] URL, International Telcommunication Union, X.509,
http://www.itu.int/itudoc/itu-t/rec/x/x500up/

[9] E. Gerck,Overview of Certification Systems: X.509, CA, PGP
and SKIP,
http://novaware.cps.softex.br/mcg/cert.html.

[10] Peter Gutmann,X.509 Style Guide,
http://www.cs.auckland.ac.nz/ pgut001/x509guide.txt

[11] Bruce Schneier,Applied Cryptography, Second Edition, John
Wiley and Sons, Inc., 1996.

[12] Matt Blaze, Joan Feigenbaum, Jack Lacy,Decentralized Trust
Management, In Proceedings 1996 IEEE Symposium on Se-
curity and Privacy, May, 1996.

[13] Sycara, K., Decker, K, Pannu, A., Williamson, M and Zeng,
D., Distributed Intelligent Agents. IEEE Expert, pp.36-45,
December 1996.

[14] Tim Finin, James Mayfield, Chelliah Thirunavukkarasu, Se-
cret Agents - A Security Architecture for the KAML Agent
Communication Language, CIKM’95 Intelligent Information
Agents Workshop, Baltimore, December 1995.

[15] Darrell Kindred, Jeannette M. Wing, Fast, Automatic Check-
ing of Security Protocols, Proc. of the USENIX 1996 Work-
shop on Electronic Commerce, November 1996.



[16] Nevin Heintze, Doug Tygar, Jeannette Wing, and Hao-Chi
Wong, Model Checking Electronic Commerce Protocols,
Proc. of the USENIX 1996 Workshop on Electronic Com-
merce, November 1996.

[17] Leonard N. Foner,A Security Architecture for Multi-Agent
Matchmaking, Proceeding of Second International Confer-
ence on Multi-Agent System, Mario Tokoro, 1996


