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ABSTRACT

Title of thesis: Curation Bias in Domain Adaptation
Master’s Thesis

Ajinkya Baban Tejankar, Master of Science, 2020
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Department of Computer Science and
Electrical Engineering

Domain adaptation is an important problem with many practical applica-
tions. The goal is to adapt a model trained on one domain (source) to another
domain (target) with scarce or no annotation. We observe that the unlabeled target
datasets of popular domain adaptation benchmarks do not contain any categories
apart from testing categories. We believe this introduces a bias that does not exist
in many practical applications. We note that this bias can be reduced easily by
appending the datasets with images from non-testing categories. On these modi-
fied benchmarks, state-of-the-art domain adaptation methods show a large drop in
performance. Thus, raising concerns about their practical applicability. Further,
we show that a simple, two-stage method involving self-supervised task of rotation

prediction and knowledge distillation is a competitive baseline.
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Chapter 1: Introduction

Consider the following problem: we have an image classification model trained
on synthetic images (source domain) and we want to use this model to classify real
images (target domain) to the same categories. Since the model has not seen any
real images and is highly tuned to synthetic images, it does not perform well on real
images. This difference in performance between source and target domain is called
domain gap, and the technique of adapting the classifier to overcome this domain
gap is called domain adaptation (DA).

In domain adaptation, we assume that the training has access to a large scale
unlabeled data and just a small or even no annotated data from the target domain.
The goal is to adapt a model to close the domain gap by performing well on the
target domain. In general, it is assumed that the set of categories in the target
domain are the same as those in the source domain. Refer to Figure 1.1 for a typical

domain adaptation task setting.

Motivation. Recently, unsupervised domain adaptation (UDA) has become
a hot research topic due to its various applications in real world where it is difficult

and costly to annotate images in specific application domains. For instance, assume



a customer buys a household robot for which the visual perception system is trained
at the factory. However, the appearance of objects in the customer’s house may be
different from the training data due to lighting and other instance specific variations.
This will result in degraded robot vision. Hence, the robot’s visual perception can
be improved by collecting some unlabeled data from the customer’s house and then
adapting the model to this new domain using domain adaptation algorithms.

As another example, reinforcement learning (RL) has recently shown a lot of
promise in various applications. However, most RL methods require lots of trials
which are not possible in the real world due to physical limitations. Hence, most RL
methods are being trained on graphics simulators and then tested in the real world.
Clearly, the difference between synthetic and real data will lead to a domain gap in

this setting. Consequently, domain adaptation can be used to reduce the domain

gap.

Uncurated Unlabeled Data. As illustrated in above examples, we believe
that using unlabeled data for domain adaptation is a practical setting. It can be
used in many applications where collection of unlabeled data in the target domain
is easy and almost for free. In such settings, there is no effort required for data
annotation, so the data can be from any category. For instance, we train a classifier
on the synthetic data for n categories and want to adapt it to the real data to
perform classification for those n categories. However, in practice, the unlabeled
real data may come from any category, even outside the n categories of interest.

Interestingly, popular DA benchmarks in the computer vision community cre-
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Figure 1.1: Illustration of source and target dataset in a typical domain adaptation
setting. The images are from the VisDa-17 dataset. Left: images in the source
domain which are collected by rendering the 3D CAD models under different condi-
tions. Right: images in the target domain which collected by cropping objects from

the COCO dataset [1].



ate their unlabeled data by choosing images of the n categories and then removing
the labels. This strategy is used in DomainNet [2] which is a recent benchmark and
also in VisDa-17 [3] which is a well-known benchmark. Even more interestingly, in
VisDa-17 dataset, not only are the unlabeled images (adopted from MS-COCO [1]
dataset) from the same n categories of interest, but are also cropped to contain only
the bounding box of those objects of interest. Effectively, training and testing data
are exactly the same. In this work, the terms “standard” or “curated” refer to an
unlabeled dataset only containing n categories of interest, while the term “uncu-
rated” refers to an unlabeled dataset containing categories other than n categories
of interest. Refer to Figure 1.2 for a comparison of standard vs. uncurated im-
ages for VisDa-17. Also, refer to Figure 1.3 for understanding how the change from
standard to uncurated dataset changes the count of images per category.

We believe, using curated unlabeled data is not a good idea and is not aligned
with the final practical applications. Hence, it can be misleading as a benchmark.
The problem is that the process of curation can be seen as a form of weak supervision
leaked into the unlabeled training data that may not exist in the real applications.
Since some algorithms may exploit this weak supervision, the resulting benchmark
can be misleading.

For instance, the entropy minimization method [4] minimizes the entropy of
the output to encourage the model to produce a prediction with low uncertainty.
This is great in the case of curated data as we know that each unlabeled image cor-
responds to one of the known categories. However, in the case of uncurated data,
the model may be uncertain for data from other unknown categories. Thus, mini-
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mizing the entropy loss may not be a good idea. We support this hypothesis in our
experiments by adding unknown categories from the target domain to the standard
unlabeled data. Fig. 1.2 shows some samples from standard and our uncurated

VisDa-17 dataset for comparison.

DA on Uncurated Datasets. Based on the experiments conducted on our
uncurated dataset, we realize that all state-of-the-art DA methods drastically de-
grade in accuracy compared to using only the curated data. However, some methods
exploit this bias more. Motivated by this finding, we design a two stage method
to reduce the exploitation of this artificial bias. Moreover, our proposed method
is simple and yet is either better or on par with other state-of-the-art methods on
uncurated datasets. Refer to Figure 1.4 for an illustration of our proposed method.

In the first stage of our method, a self-supervised task of rotation prediction
is used to learn good representations in the target domain with unlabeled data. In
the second stage, knowledge distillation is used to train a student from scratch using
the model trained in the first stage as teacher. Note that the choice of combining
these two methods is not arbitrary. Our experiments show that when going from
standard to uncurated dataset, these two methods degrade the least. Also, they are
conceptually simple and easy to train.

We would like to note that application of these methods to domain adaptation
is not our contribution. Domain adaptation using self-supervision has been explored
in [5-7]. Training with pseudo labels, closely related to knowledge distillation, has

been explored in [8,9].
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Figure 1.2: Comparison of curated vs. uncurated unlabeled data for VisDa-17
dataset. Left (curated): random samples from the unlabeled target domain dataset
used in standard VisDa-17 benchmark. They are originally sampled from MS-COCO
dataset and then the objects of interest are cropped and centered. Right (uncu-
rated): random samples for the same categories from MS-COCO dataset without
cropping. We believe this cropping process injects bias into the unlabeled dataset
that does not exist in practical applications. Such a bias in the benchmark can
produce misleading conclusions as some methods may exploit this bias. In our un-
curated experiments, we not only use un-cropped images but also use images from

other unknown categories.
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Figure 1.3: Comparison of images per category for standard vs. uncurated dataset.
Domain adaptation needs unlabeled data from the target domain to close the domain
gap. Interestingly, most benchmarks sample images from the categories of interest
and simply remove their labels. We believe this introduces a form of curation bias
that some methods can exploit in learning. We add similar images of other categories
to reduce the curation bias. We show the number of images per category in unlabaled
target data of standard VisDA-17 (left) and our uncurated VisDa-17 (right). Note
that the first bin corresponds to images from other categories and the left histogram

is almost uniform.



Our Contributions. Inspired by above practical applications, this work
focuses on analysing a representative subset of DA methods on a more practical

benchmark. We list our key findings below:

e The process of creating an unlabeled target dataset by simply removing the
labels is artificial, but the dataset can be made less artificial by appending it
with images from categories other than testing categories. This is easy since

the datasets are sampled from a bigger dataset.

e We show that the performance of state-of-the-art DA methods degrades dras-
tically when using a less artificial unlabeled target dataset. This suggests that

the recent success of DA methods may not translate to practical settings.

e An important source for degradation is entropy minimization, a commonly
used component in many state-of-the-art DA methods [10-13]. It degrades

more than all the methods we studied.

e Rotation prediction, a self-supervised task, and knowledge distillation de-
grades the least. Inspired by these results we combine the two methods and
show that it is either better than or comparable to the state-of-the-art meth-
ods in both semi-supervised and unsupervised domain adaptation settings for

uncurated dataset. This approach is illustrated in Figure 1.4.
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and then do knowledge distillation in the second stage.



Chapter 2: Related Work

2.1 Domain Adaptation

A popular strategy for dealing with the domain gap is to learn features that are
consistent across domains. One of the most popular methods of aligning features for
both domains is adversarial training of a discriminator and a feature extractor such
that the discriminator cannot distinguish between the features of source and target
domains [11-18]. This method is illustrated in Figure 2.1. Since most of the do-
main adaptation work focuses on the unsupervised setting, semi-supervised domain
adaptation (SSDA) is not well studied. In [19], the standard unsupervised domain
adaption (UDA) methods were shown to be less effective in the SSDA setting. [19]
introduced an iterative algorithm that alternates between minimizing and maximiz-
ing the entropy of the output. Some other works have employed semi-supervised
learning. In [8], a network is trained to match the ensembled predictions of its own
output obtained at different time intervals during training. Further, combination of
adversarial training with semi-supervised techniques like entropy minimization [4]
and VAT [20] have been explored in [12,21]. An improved form of self-training with

pseudo-labels is proposed in [9].

10



ﬁ
| s ?
o o
O o
— () gt » class —|9
o o
o o
| 9 S
- \ & =/
disc —>[::

(....O.l....ﬁ.)

Figure 2.1: Illustration of standard adversarial domain adaptation method. The
image on the top is from source domain while the bottom one is from target domain.
The feature extractor f(.) is trained to produce features such that: one, disc network
cannot distinguish between source and target images, and, second, class network
can classify the source images correctly. The training of f(.) and disc is adversarial.

The image is take form [18].
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2.2 Self-supervised Learning

Numerous pretext tasks, also called pseudo tasks, have been developed for
unsupervised representation learning. [22, 23] predict image transformations. In
[24,25], spatial structure of the image is exploited to create pretext tasks. In [26],
a model is trained by enforcing count consietncy in image and its tiles. In [27], a
model is iteratively trained to classify images based on the labels obtained using
k-means clustering. In [28], a teacher network is trained on a hard pretext task and
its knowledge is transferred to a student network via k-means clustering. Recently,
another class of methods based on contrastive learning have been very successful
[20-37]. In [29,32,37], a task called instance discrimination is used. In this task,
the features from two augmented views of the same image are pulled closer to each
other as compared to a bank of negative samples.

For simplicity, we briefly evaluate the Jigsaw [25] pretext task, but focus on
the simpler, more effective pretext task of predicting rotations [23].

Aside from representation learning, auxiliary pretext-tasks can also help the
model generalize better [38-40]. In [41], self-supervision is applied to semi-supervised
learning by incorporating a supervised loss on a small amount of labeled data while
solving the pretext task on the entire dataset. In [5], a modified implementation
of the Jigsaw pretext task is used as an auxiliary task for domain generalization
from multiple source domains to any target domain. In [42], rotation prediction
and clustering tasks were used to learn good visual representations from uncurated

dataset.
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2.3 Knowledge Distillation

Knowledge distillation was originally proposed by [43], and used in [44] to
transfer the knowledge from one or more teacher networks to a single student net-
work. [45-47] show that self-distillation, where the teacher and student share the
same architecture, improves supervised learning by reducing the generalization gap.
It should be noted that the second stage of training with a teacher in [21] is fun-
damentally different from knowledge distillation. In their second stage, previous
version of a model is used to constrain the gradient step of the current model.
While, in knowledge distillation, teacher is frozen and student is initialized from
scratch. Moreover, it is possible to train the student using an ensemble of teacher

where each teacher is trained using a different method.

13



Chapter 3: Study Setup

3.1 Datasets

This section lays out various components of our study. Sections 3.1.1 and
3.1.2, provide details about the benchmarks, and section 3.2 discusses DA methods

studied in this work.

3.1.1 Standard Benchmarks

We conduct experiments on DomainNet [2] and VisDa-17 [3] datasets. Do-
mainNet is a large-scale domain adaptation dataset introduced recently. It has been
used in multi-source and semi-supervised domain adaptation settings. VisDa-17 is
a widely used dataset in UDA works.

Standard DomainNet. DomainNet [2] is a large scale domain adaptation
dataset with 6 domains (Real, Clipart, Sketch, Painting, Quickdraw, and Infograph)
and 345 categories. It contains about 0.6 million images. It surpasses all other
previous domain adaptation datasets in terms of size and diversity. We refer to the
subset of DomainNet used in [19] as standard DomainNet. This subset consists of

4 domains (Real, Clipart, Sketch, and Painting) and 126 categories. Of all possible

14



domain pairs (source-target), 7 are chosen for evaluation. Further, two different
semi-supervised settings, 1-shot and 3-shot, are created by keeping the labels for 1
and 3 samples per class while discarding the labels for the rest. We use the same
dataset splits as [19)].

Standard VisDa-17. VisDa-17 [3] is a dataset for UDA. The source dataset
consists of synthetic images obtained by rendering 3D models at different angles and
lighting conditions. The target domain consists of images filtered and cropped from
MS-COCO dataset [1] using ground truth bounding boxes to only contain objects of
interest. Both source and target domains contain 12 categories. The target dataset

has 55k images, while the source dataset has 150k images.

3.1.2 Uncurated Benchmarks

Here, we describe the uncurated versions of the standard datasets listed above.
We compare the sizes of unlabeled images in standard and uncurated versions in
Table 3.1.

Uncurated DomainNet. One of the reasons to choose DomainNet and
particularly its subset used in semi-supervised setting is the ability to simulate
true unlabeled data. We create a dataset by taking images from all 345 available
categories for 4 domains in the standard DomainNet. We discard all labels and only
use it as unlabeled images for target domain. We refer to this dataset as uncurated

DomainNet.

15
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Figure 3.1: Illustration of images in standard and uncurated DomainNet. Top:
sample images for each of the categories and 4 domains (real, clipart, sketch, and
painting). Bottom: sample images for each of the categories and domains. Note
that the categories in the uncurated DomainNet are the superset of categories in
standard DomainNet. The images from these extra categories are used to construct

an unlabeled target dataset with reduced curation bias for domain adaptation.
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Domain Standard Uncurated
DomainNet Real 70k 175k
DomainNet Clipart 18k 48k
DomainNet Sketch 24k 70k
DomainNet Painting 31k 75k
VisDa-17 Real 55k 173k

Table 3.1: Comparison of the count of unlabeled target images in standard vs.
uncurated datsaet. We add more unlabeled images from other categories to reduce

the curation bias.

Uncurated VisDa-17. Similar to uncurated DomainNet, we construct un-
curated VisDa-17 by adding all training images of MS-COCO to the target dataset.
This ensures that the uncurated, unlabeled target dataset contains more than just

training categories.

3.2 Methods

Here, we describe the general framework for domain adaptation used in this
study. We consider different state-of-the-art domain adaptation methods. First, we
describe the supervised component that is common to all the listed methods. Given
an image z° and its label y® in the source domain, an image z' and its label 3 in
the target domain, and also an unlabeled image z* in the target domain, we define

the following loss terms:

17
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S

sup 18 the supervised

where £..(.) is the cross entropy loss, f(.) is the classifier, £

t

sup 15 the supervised loss on the target domain.

loss on the source domain, and £
Both losses are optimized jointly in SSDA while L3, is absent in UDA since there is
no labeled data in the target domain. This is the supervised component of domain
adaptation. In addition, we describe various unsupervised loss terms that can be
optimized jointly with above terms in a multi-task setting.

Rotation Prediction (ROT) is a self-supervised task for learning repre-
sentations [23]. Following the RotNet method [23], given an unlabeled image, we
rotate it using a rotation angle randomly chosen from the list {0°,90°, 180°,270°},
and then define its corresponding label to be the rotated angle (1 out of 4 possibil-

ities). Then, we input rotated images to the network and optimize the network to

detect the rotation angle using the cross entropy loss function.

wi(r) = Zﬁce(T(Ta(x?))a a)

Where 7(.) is the rotation prediction classifier, and 7,(.) is an operator that
rotates the input image by an angle a € {0°,90°,180°,270°}. The value of a is
chosen randomly for each data point and iteration. Note that f(.) and r(.) share all
layers except the last one.

Knowledge Distillation (KD) is the method of transferring knowledge from

18



a teacher network to a student network [44]. We use the same architecture for both
student and teacher networks. This is similar to [45,46] except that we do distillation
on unlabeled target data rather than labeled data. Similar to [45,46], our intuition
is that this method will reduce the generalization gap caused by replacing one-hot

encoding of the ground truth with soft labels. We optimize:

L, = KL(f(x})llg(x7)

Where KL(.) is the KL divergence loss, g(.) is the student network, and f(.)
is the teacher network that is frozen during knowledge distillation. Note that f(.)
and ¢(.) share the same network architecture, but the weights in g(.) are initialized
from an ImageNet-pretrained network. Also, note that we can choose to distill from
multiple teacher networks in an ensemble setting (Table 4.4). In this work, KD(X)
refers to a student model trained using knowledge distillation where the teacher is
trained using method X.

Entropy Minimization (ENT) was initially proposed in [4] as a form of
semi-supervised learning. It works on the assumption that the model should be
confident about its prediction on the unlabeled data. Alternately, minimizing en-
tropy leads to a confident model. We can minimize the entropy of the predicted

probability on the unlabeled data using following loss function:

Where ent(p) calculates the entropy of distribution p.

19



Virtual Adversarial Training (VAT) is a regularization method introduced
in [20] that encourages a model to be smooth around each unlabeled data-point. It
calculates the adversarial example for each data-point by applying a small perturba-

tion and makes sure that the model’s output does not change with the perturbation.

Ly (f) =) max (KL(f(a})|lf(f + 7))

— lIrll<=e

Where KL(.) is the KL divergence loss, and r is a perturbation to z¥ that
maximizes the KL divergence between the perturbed and non-perturbed input.

Maximum Classifier Discrepancy (MCD) is an adversarial domain adap-
tation method proposed in [10] that involves alternating between maximizing and
minimizing the discrepancy between outputs of two different task specific heads.
Each training step is composed of multiple forward passes through the network.
This makes the method slow to train. Entropy minimization is used in this method.

Conditional Adversarial Domain Adaptation (CDAN+E) is a form of
adversarial domain adaptation proposed in [11] that leverages conditioning of the
classifier predictions. It proposes a novel conditional domain discriminator condi-
tioned on the cross-covariance of domain specific feature representations and classi-
fier predictions. CDAN+E is a variant of this method based on entropy conditioning.

Batch Sectral Penalization (BSP4+CDAN-+E) is proposed in [13] as a
regularization method to enhance the discriminability of the features learned using
adversarial domain adaptation methods. They show that the eigenvectors of a batch

with top singular values are the cause of reduced discriminability. Thus, penalizing

20



them is a good regularization method. We analyze the application of this regulariza-
tion to CDAN+E and refer to it as BSP+CDAN+E. Note that BSP+CDAN in [13]
is actually BSP+CDAN-+E.

Minimax Entropy (MME) is a domain adaptation method proposed in [19]
that alternates between updating the class prototypes by maximizing entropy and
updating the feature extractor by minimizing entropy. The method is applied in the
context of semi-supervised domain adaptation where it was shown to be significanlty
better than other state-of-the-art UDA methods.

Drop to Adapt (DTA) is a method proposed in [12] that extends the adver-
sarial dropout method [17] to convolutional layers and applies it to enforce cluster
assumption in the setting of domain adaptation. Along with their method, they also
add VAT and ENT components to the loss function. Their loss function is complex
and consists of 5 different components. Thus, to isolate their core method, we also
consider a variant of their method called cDTA+fDTA which does not have the VAT

component. It should be noted that cDTA+fDTA still has the ENT component.

In various experiments, we combine the above unsupervised losses with the
supervised loss by weighted addition. Each loss has its own hyperparameter weight

Aents Mvat, Asst, A and A\ . We assume A\ = 1 and report the other hyper-

iup? sup* sup
paramters in the implementation details 4.6. When we add two methods, we refer
to the final model as their summation, e.g., ENT4+VAT. KD(X) refers to training a

new student with a teacher trained using method X.
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We use following official source code repositories in our study:

For MME and ENT methods on DomainNet dataset, we use: https://github.

com/VisionLearningGroup/SSDA_MME

For MCD, we use: https://github.com/mil-tokyo/MCD_DA

For cDTA+fDTA and DTA, we use: https://github.com/postBG/DTA.pytorch

For BSP+CDAN+E and CDAN+E, we use: https://github.com/thuml/

Batch-Spectral-Penalization

22
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Chapter 4: Experiments and Results

Note that this section uses many abbreviations. To make it simpler: UDA and
SSDA are tasks, DomainNet and VisDa-17 are datasets, and all other abbreviations
are the methods described in the method section.

We describe UDA and SSDA experiments in detail and discuss the results.
We downloaded the official code for MME, BSP+CDAN+E, MCD, CDAN-+E, and
DTA. We reran the methods and were able to successfully reproduce the results
reported in the respective papers. We use these results for calculating degradation.
For experiments on the uncurated dataset, we only change the unlabaled target
data in all methods to uncurated data. We implement ENT, VAT, ROT, and KD
methods ourselves. Implementation details can be found in Section 4.6. Note that
the implementation of ENT method for SSDA is from the official code for MME
method [19]. We follow the evaluation protocol for SSDA in [19] and evaluate our
method on AlexNet and ResNet for 1-shot and 3-shot settings. We used ResNet34
for all SSDA experiments following [19] and ResNet101 for all UDA experiments.
The baseline for SSDA experiments is called S+T which does not use any unlabeled

target data while for UDA it is called source only.

23



(a)

VisDa-17

- = sup. baseline
B standard

s uncurated

&
(b) (©) (d) (e)
S5 DomainNet AlexNet 1-shot DomainNet AlexNet 3-shot DomainNet ResNet 1-shot 75 DomainNet ResNet 3-shot
55
-==- sup. baseline === sup. baseline » ---. sup. baseline ---- sup. baseline
= standard = standard = standard == standard
50 == uncurated mmm uncurated 70 wem uncurated 7 W uncurated

Figure 4.1: Comparison of standard vs. uncurated dataset for various methods.
Top: VisDa-17 with ResNet101. Bottom: DomainNet with Alexnet and ResNet34.
The methods are sorted by the accuracy on the standard set. All methods degrade
when the curation bias is reduced while some methods like KD(ROT) have less
degradation. Note that the y-axis is truncated around the baseline to better show

the differences.
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AlexNet ResNet
Data Method

1-shot 3—shot 1-shot 3—sh0t
S+T 40.0 434 | 56.9 60.0
DANN [19] 40.4 424 | 58.4 60.7
ADR [19] 39.2 427 | 57.6 60.4
CDAN [19] 39.1 41.0 | 62.5 66.5

Standard
ENT [19] 29.1 398 | 62.6 67.6
MME [19] 442 482 | 66.4 68.9
KD(ROT+ENT) | 46.2 50.2 | 65.3 69.9
KD(ROT) 47.2 50.4 | 63.5 65.1
ENT 28.1 373 | 55.0 60.4
MME 40.3 43.6 | 61.5 63.8

Uncurated
KD(ROT+ENT) | 42.7 46.8 | 56.3 62.8
KD(ROT) 45.7 48.0 | 62.5 64.9

Table 4.1: Results on DomainNet for SSDA task with following settings: 1-shot and
3-shot, AlexNet and ResNet34 architectures, and standard and uncurated datasets.
We report the average accuracy over all seven possible pairs of source-target do-
mains: (R to C, Rto P, PtoC, CtoS,StoP, RtoS, P toR). The results for
each pair is presented in the tables A.1,A.2,A.3 and A.4 of Appendix A. We do
experiments with both standard and uncurated datasets. Interestingly, KD(ROT),
which is a very simple method compared to SOTA models, performs very well in

the uncurated setting. The relative degradation is reported in table 4.2.
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4.1 Analysis of entropy minimization

Entropy minimization always hurts in uncurated datasets. Table 4.2
shows the results for degradation in accuracy when going from standard to uncu-
rated dataset on DomainNet. Both ENT and KD(ROT+ENT) degrade the most for
all combinations of models and number of shots. Interestingly, for ResNet, 1-shot
experiment on uncurated data, the results of KD(ROT+ENT) and ENT are worse
than baseline (S+T), which does not use any unlabaled data (Table 4.1 and Figure
4.1.) Further, all methods with ENT in Table 4.6 degrade at least more than 6%.
Note that MCD, CDAN+E, BSP+CDAN+E, cDTA+fDTA, and DTA also contain
entropy minimization component and degrade by around 10%. This clearly shows

the limitations of applying entropy minimization in the case of uncurated data.

Entropy helps ResNet but not AlexNet on standard datasets. Tables
4.1 and 4.6 show that on both standard datasets, ResNet architecture benefits from
adding ENT method to any other method. However, for AlexNet architecture, the
ENT method itself is worse than the S+T baseline (no unlabeled data) (see Fig. 4.1).
Hence for AlexNet, adding ENT to any other method degrades the performance on
the standard dataset (for DomainNet). We do not know the reason for this behaviour
and note that it has been documented in [19] too. Studying this behaviour can be

an interesting future work.
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AlexNet ResNet

Method

1-shot 3-shot 1-shot 3-shot
ENT 82%  -8.1% | -11.3%  -9.3%
MME -6.3% -5.6% | -6.0% -6.5%

KD(ROT+ENT) | -7.6% -6.8% | -13.8% -10.2%

KD(ROT) -3.2% -4.8% | -1.6% -0.3%

Table 4.2: Degradation of the accuracy when changing the unlabeled data from
standard to the uncurated one for DomainNet. Degradation percentage is relative to

the standard dataset. All methods degrade when going from standard to uncurated

data.

4.2 Analysis of knowledge distillation

Knowledge distillation is not very sensitive to curation bias. For
knowledge distillation, the teacher and student do not need to use the same dataset
(standard or uncurated). We experiment with varying this datasets to measure ro-
bustness of KD method to the curation bias in Table 4.3. We observe that KD
always improves over the teacher model regardless of what dataset is used for dis-
tillation. Interestingly, when the teacher is trained on the standard dataset, doing
KD on the uncurated deadset does not degrade the accuracy much (last column of

top section in Table 4.3.)
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Teacher Dataset | Teacher Method Teacher | Student on Std. | Student on Unec.
ROT 69.2 71.9 70.7
ROTH+ENT 73.1 74.8 74.1
Standard
ROT+VAT 71.5 73.7 73.4
ROT+ENT4+VAT 74.9 76.7 75.9
ROT 67.9 70.7 69.5
ROT+ENT 67.1 69.1 69.9
Uncurated
ROT+VAT 69.2 72.1 70.8
ROTH+ENT4VAT 67.1 68.7 68.7

Table 4.3: Effect of the dataset type on KD for VisDa-17 (ResNet101). Results of
distillation using standard and uncurated data separately. We do not observe a large
degradation in accuracy when we change the dataset of distillation from standard

to uncurated. This shows that distillation is robust to curation bias.
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Method PtoR StoP CtoS PtoC RtoP RtoC RtoS | Mean

ROT 60.4 443 415 497 499 516  40.1 | 482
ROT 60.3 452 419 496 498 514 405 | 483
ROTup s ror 502 440 426 499 497 524 413 | 484
ens(ROTyup, ROT ) 623 470 437 521 519 535 423 | 504
ens(ROT 1, ROT sy rot) 619 468 444 528 520 543 432 | 50.8

KD(ens(ROTyup1, ROTsupirt)) | 634 483 455 541 531 556 442 | 520

Table 4.4: The effect of pretraining for DomainNet. We use 3-shot standard Do-
mainNet and AlexNet for these experiments. We initialize our method with three
different pretrained models (ROTsyp1, ROTsypo, and ROTsypirot). The first two are
regular supervised pretrainings on ImageNet and the last one uses both, supervised
and rotation prediction loss, on ImageNet pretraining. We show that adding RotNet
to the pretraining helps slightly to generalize better. We also show that using this

model as one of the teachers in ensembling and distillation helps by almost 4 points.

Distilling from an ensemble is simple with knowledge distillation. As
shown above, knowledge distillation is a simple yet effective method. Moreover, it
is straightforward to distill a student from an ensemble of teachers. If the teachers
in an ensemble make errors that are orthogonal to each other, then the ensemble
will have a higher accuracy than any of the teachers. One way of coming up with
orthogonal teachers is to use different self-supervised tasks as auxiliary losses. We
show the results for this experiment in Table 4.4. Interestingly, the student model
reaches 52% ( 4 points higher than MME which is state-of-the-art) for AlexNet on

3-shot SSDA.
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Method AlexNet ResNet34

S+T 43.4 60.0
ROT+ENT 48.6 68.5
JIG+ENT 44.1 99.5

Table 4.5: Jigsaw vs. RotNet as the self-supervised task. We use solving jigsaw puz-
zles instead of rotation prediction for the SSL task. We see that even though Jigsaw
might be better than RotNet for domain generalization, as shown in [4], Jigsaw is
significantly worse than RotNet for Semi-Supervised Domain Adaptation (SSDA)
that we studied. We report mean accuracy for all 7 pairs on standard DomainNet

dataset for 3-shot setting, and both AlexNet and ResNet34 architectures.

4.3 Jigsaw vs. Rotation

Since [5] uses Jigsaw solver in domain generalization setting, here, we study
using Jigsaw instead of RotNet in our SSDA setting. We tried Ay € {0.7,1.0} and
Aent € {0.01,0.1} for the pair of real to sketch and picked the best combination.
These are the parameters used in [5]. We do not do knowledge distillation for these
experiments. We list our results in Table 4.5. We found that Jigsaw worked almost
similar to the S+T baseline. Note that Jigsaw is shown to be more effective than
RotNet in [5], but it is significantly worse than RotNet in our SSDA setting. We
empirically conclude that Jigsaw does not generalize well in the case of single source

domain.
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4.4 Comparison of methods

Most methods are equally good on uncurated data for UDA. From
Table 4.6, it can be seen that the performance of a lot of methods lies in the range
of 67-70% on uncurated data. Concretely, the standard deviation of the results of
all methods on standard dataset is 4.7 but only 2.8 for uncurated dataset. This dif-
ference in variance suggests that some methods can exploit the curation bias more,
but this boost does not translate to uncurated data. The accuracies saturate on
uncurated data. In other words, most methods are only marginally different from

each other on a more practical dataset.

KD(ROT) is a competitive baseline. We believe this due to the following
reasons: (1) It is conceptually “simple” and easy to implement. It has only one
hyperparameter (weight of the rotation prediction loss function) unlike DTA. Tt
does not need multiple forward passes or adversarial training unlike VAT, MCD, or
CDAN+E. (2) KD(ROT) is “consistently” better than the baseline on both tasks
(UDA in Table 4.6 and SSDA in Table 4.1). As an example, note that ADR is
almost 17 points better than the baseline (source only) in Table 4.6 for UDA task,
but is either worse or close to the baseline (S+T) for SSDA task in Table 4.1. (3)
It achieves “state-of-the-art results” for AlexNet on both, 1-shot and 3-shot, SSDA
tasks (Table 4.1.) This indicates that KD(ROT) might be a better method for
smaller models. (4) It “degrades the least” when going from standard to uncurated

dataset which shows that it is less sensitive to the curation bias.
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Method Reported Standard Uncurated Degradation
Source only - 57.6 57.6 0.0%
KD(Source only) - 60.9 59.8 -1.8%
VAT - 65.7 64.1 -2.4%
ROT - 69.2 67.9 -1.9%
ENT - 69.4 65.1 -6.2%
ENT+VAT - 69.8 66.9 -4.2%
ROT+VAT - 71.5 69.2 -3.2%
KD(ROT) - 71.9 69.5 -3.3%
ROT+ENT - 73.1 67.1 -8.2%
KD(ROT+VAT) - 73.7 70.8 -3.9%
KD(ROT+HENT) - 74.8 69.9 -6.6%
ROT+ENT+VAT - 74.9 67.1 -10.4%
KD(ROTH+ENT+VAT) - 76.7 68.7 -10.4%
DANN [48] 57.4 [13] - - -
MCD [10] 71.9 [13] 72.0 63.9 -11.3%
CDAN+E [11] 73.7 [13] 74.2 67.8 -9.4%
ADR [17] 74.8 [12] - - -
BSP+CDAN+E [13] 75.9 [13] 76.7 68.7 -10.4%
cDTA+{DTA [12] 77.4 [12] 78.5 68.5 -12.7%
CRST [9] 78.1 [9] - - -
DTA [12] 81.5[12]  81.1 71.8 -11.5%

Table 4.6: Results of ResNet101 on standard and uncurated datasets for VisDa-17.
cDTA+{DTA refers to DTA [12] without VAT introduced in [12]. The degradation

percentage is relative to the standard dataset. Results in standard column are ours.
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4.5 Source dataset for self-supervision

Self-supervision for domain adaptation is also studied in [7]. The central hy-
pothesis of [7] is that solving a pretext task (self-supervised) for both the source
and target domain will lead to alignment of features between the two domains. Ide-
ally, if we had labels in the target domain as well, then we could just use them
in a supervised way for inducing alignment, but since we don’t have them we can
replace supervised labels with self-supervised labels. This approach is slightly dif-
ferent from our proposed method. In Table 4.7, we perform experiments comparing
our approach with [7]. We do not find any supporting evidence for the hypoth-
esis proposed in [7]. Only doing the self-supervised task on the target dataset is

sufficient.

4.6 Implementation details

Our code is implemented in PyTorch (1.0) and closely follows the implementa-
tion of [19]. Because the focus of this work is on obtaining baselines using methods
that are easy to train, we refrain from extensive hyper-parameter tuning.

Semi-supervised domain adaptation. We use AlexNet [49] and ResNet34
[50] pre-trained on ImageNet in all of our experiments. The architectures of feature
extractor and supervised classification head are the same as [19] for fair comparison.
For self-supervised classification head (rotation prediction), we use a single fully-

connected layer for AlexNet and two fully-connected layers with a ReLU between
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Model Method RtoC RtoP PtoC CtoS StoP RtoS PtoR | Mean

ROT(t)+ENT 52.9 49.6 51.1 41.2 44.3 40.7 60.1 48.6
AlexNet

ROT(s+t) + ENT | 53.1 48.0 50.9 41.7 43.0 41.6 60.6 48.4

ROT(t)+ENT 70.4 69.4 69.9 62.8 65.8 62.3 79.1 68.5
ResNet34

ROT(s+t) + ENT | 70.9 70.0 70.4 61.2 65.0 64.0 e 68.5

Table 4.7: Comparison of using both source and target domains vs. only target
domain for self-supervised task. We study the importance of using both source and
target domains for domain alignment using self-supervised tasks as proposed in [38]
and find that this alignment does not help. We use 3-shot setting on standard Do-
mainNet. ROT(t) only uses the target dataset for the RotNet loss while ROT(s+t)
uses both source and target datasets. We show that ROT(s+t) is no better than

ROT(t) on average.
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them for ResNet34. The model is optimized using SGD with a momentum of 0.9
and weight decay of 0.0005. The initial learning rate for feature extractor is 0.001
while for both classification heads it is 0.01. We use the same learning rate annealing
schedule as in [48].

We tried Aoy € {0.1,0.01,0.05} values on Real to Sketch pair for 3-shot setting.
We use Aer = 0.01 for AlexNet and A.,,; = 0.1 for ResNet34. We use A\ = 1, Noup =
1 for all experiments. The training is run for 30k iterations and the checkpoint with
best validation accuracy is used for testing.

Unsupervised Domain Adaptation. For a fair comparison with other
works, we only use ResNet101 [50]. Apart from weights for losses, all other hyper-
parameters are the same as above. We search for A3, € {0.5,1.0} and A, €

sup

{0.05,0.01,0.1}. We use A, = 0.5, Aent = 0.01, Ayqy = 0.01 for all our experiments
when the corresponding losses are used. Also, parameters for the VAT [20] are the
same as the original work. The training is run for 30k iterations.

Knowledge Distillation. We start with an ImageNet pre-trained student.
We run the training for 10 epochs while dropping learning rate by a factor of 0.1 every
3 epochs. We intentionally keep the number of epochs for distillation small to reduce

computational time and keep the experiments simple. We don’t use temperature in

our experiments.
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Chapter 5: Conclusions and Future Work

5.1 Conclusions

We study the effect of curation bias that already exists in two well-known do-
main adaptation benchmarks using various SOTA methods. We find that reducing
the bias is easy and degrades the performance of methods. Particularly, some meth-
ods like ENT can exploit this bias effectively. We also find that some simple methods
like KD(ROT) are relatively more robust to the curation bias. We believe this is
important since the curation bias may not exist in many real world applications, so

including it in the benchmark may be misleading for the community.

5.2 Future Work

We attempted to understand the effect of curation for domain adaptation in
this work. To the best of our knowledge this is one of the first works to tackle this
problem. We expect future datasets in domain adaptation to be designed to have
reduced curation bias. More work is also needed to find novel methods that are

robust to curation bias.
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Appendix A: Expanded results for semi-supervised domain adapta-

tion on DomainNet
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Method Data | RtoC RtoP PtoC CtoS StoP RtoS P toR | Mean

S+T S 43.3 42.4 40.1 33.6 35.7 29.1 95.8 40.0
DANN S 43.3 41.6 39.1 35.9 36.9 32.5 53.6 40.4
ADR S 43.1 41.4 39.3 32.8 33.1 29.1 95.9 39.2
CDAN S 46.3 45.7 38.3 27.5 30.2 28.8 56.7 39.1
ENT S 37.0 35.6 26.8 18.9 15.1 18.0 52.2 29.1
MME S 48.9 48.0 46.7 36.3 394 33.3 56.8 44.2

KD(ROT+ENT) S 51.0 50.5 47.8 37.7 38.1 38.0 60.4 | 46.2

KD(ROT) S 49.3 49.9 48.3 39.7 443 40.0 58.7 47.2
ENT U 30.6 33.8 25.2 22.2 16.7 17.4 50.8 28.1
MME U 41.2 43.0 39.4 34.1 39.7 30.9 534 40.3

KD(ROT+ENT) U 46.4 47.2 43.7 34.3 35.8 33.3 97.9 42.7

KD(ROT) U 47.7 48.9 46.5 37.4  42.7 38.1 58.5 | 45.7

Table A.1: AlexNet 1-shot: We report the accuracies for standard and uncurated
DomainNet datasets on 1-shot setting and AlexNet. This is an expansion of the

Table 4.1.
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Method Data | RtoC RtoP PtoC CtoS StoP RtoS P toR | Mean

S+T S 47.1 45.0 44.9 36.4 38.4 33.3 58.7 43.4
DANN S 46.1 43.8 41.0 36.5 38.9 334 597.3 42.4
ADR S 46.2 44.4 43.6 36.4 38.9 324 97.3 42.7
CDAN S 46.8 45.0 42.3 29.5 33.7 31.3 598.7 41.0
ENT S 45.5 42.6 40.4 31.1 29.6 29.6 60.0 39.8
MME S 55.6 49.0 51.7 39.4 43.0 37.9 60.7 48.2

KD(ROT+ENT) S | 54.7 509 53.0 423 46.3 418  62.1 | 50.2

KD(ROT) S 54.5 51.3 52.9 43.2 46.3  43.2 61.5 50.4
ENT U | 40.5 40.9 33.3 30.7 31.6 26.9 97.5 37.3
MME U | 458 44.3 43.5 37.1 42.0 34.7 57.8 43.6

KD(ROT+ENT) U | 489 50.0 49.0 39.2 41.8 38.1 60.5 | 46.8

KD(ROT) U | 51.3 48.3 50.2 41.7  43.8 40.5 60.3 48.0

Table A.2: AlexNet 3-shot: We report the accuracies for standard and uncurated
DomainNet datasets on 3-shot setting and AlexNet. This is an expansion of the

Table 4.1.
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Method Data | RtoC RtoP PtoC CtoS StoP RtoS P toR | Mean

S+T S 55.6 60.6 56.8 50.8 56.0 46.3 71.8 56.9
DANN S 58.2 61.4 56.3 52.8 574 52.2 70.3 58.4
ADR S 57.1 61.3 57.0 51.0 56.0 49.0 72.0 97.6
CDAN S 65.0 64.9 63.7 53.1 63.4 94.5 73.2 62.5
ENT S 65.2 65.9 65.4 54.6 59.7 52.1 75.0 62.6
MME S 70.0 67.7 69.0 56.3 64.8 61.0 76.1 | 66.4

KD(ROT+ENT) S 65.6 70.4 64.8 58.1 62.6 60.0 75.8 65.3

KD(ROT) S 63.6 66.5 60.8 57.5 63.4 58.3 74.6 63.5
ENT U 52.4 59.8 53.2 49.4 54.8 45.3 70.1 55.0
MME U 59.9 64.2 60.4 56.0 63.2 94.5 72.6 61.5

KD(ROT+ENT) U 56.1 61.9 49.8 50.8 o7.4 49.0 69.2 96.3

KD(ROT) U 60.7 65.9 61.9 57.6 61.7 56.1 73.6 | 62.5

Table A.3: ResNet 1-shot: We report the accuracies for standard and uncurated
DomainNet datasets on 1-shot setting and ResNet. This is an expansion of the

Table 4.1.
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Method Data | RtoC RtoP PtoC CtoS StoP RtoS P toR | Mean

S+T S 60.0 62.2 59.4 55.0 59.5 50.1 73.9 60.0
DANN S 99.8 62.8 59.6 55.4 59.9 54.9 72.2 60.7
ADR S 60.7 61.9 60.7 o4.4 99.9 ol.1 74.2 60.4
CDAN S 69.0 67.3 68.4 57.8 65.3 59.0 78.5 66.5
ENT S 71.0 69.2 71.1 60.0 62.1 61.1 78.6 67.6
MME S 72.2 69.7 71.7 61.8 66.8 61.9 78.5 68.9

KD(ROT+ENT) S 71.6 70.8 71.2 64.1 67.4 63.6 80.7 | 69.9

KD(ROT) S 64.0 67.0 65.0 60.9 62.6 60.3 75.6 65.1
ENT U 58.2 63.2 59.8 52.7 61.5 52.3 75.2 60.4
MME U 63.1 66.6 64.5 57.1 65.5 94.5 75.0 63.8

KD(ROT+ENT) U 64.0 66.7 58.9 07.2 61.6 95.4 76.1 62.8

KD(ROT) U 64.8 67.5 63.9 60.0 64.7 57.5 76.1 | 64.9

Table A.4: ResNet 3-shot: We report the accuracies for standard and uncurated
DomainNet datasets on 3-shot setting and ResNet. This is an expansion of the

Table 4.1.
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