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Abstract—Humans interact with the environment using a
combination of perception - transforming sensory inputs from
their environment into symbols, and cognition - mapping symbols
to knowledge about the environment for supporting abstrac-
tion, reasoning by analogy, and long-term planning. Human
perception-inspired machine perception, in the context of AI,
refers to large-scale pattern recognition from raw data using
neural networks trained using self-supervised learning objectives
such as next-word prediction or object recognition. On the other
hand, machine cognition encompasses more complex computa-
tions, such as using knowledge of the environment to guide
reasoning, analogy, and long-term planning. Humans can also
control and explain their cognitive functions. This seems to re-
quire the retention of symbolic mappings from perception outputs
to knowledge about their environment. For example, humans can
follow and explain the guidelines and safety constraints driving
their decision-making in safety-critical applications such as
healthcare, criminal justice, and autonomous driving. While data-
driven neural network-based AI algorithms effectively model
machine perception, symbolic knowledge-based AI is better suited
for modeling machine cognition. This is because symbolic knowl-
edge structures support explicit representations of mappings from
perception outputs to the knowledge, enabling traceability and
auditing of the AI system’s decisions. Such audit trails are useful
for enforcing application aspects of safety, such as regulatory
compliance and explainability, through tracking the AI system’s
inputs, outputs, and intermediate steps. This first article in
the Neurosymbolic AI department introduces and provides an
overview of the rapidly emerging paradigm of Neurosymbolic
AI, combining neural networks and knowledge-guided symbolic
approaches to create more capable and flexible AI systems. These
systems have immense potential to advance both algorithm-level
(e.g., abstraction, analogy, reasoning) and application-level (e.g.,
explainable and safety-constrained decision-making) capabilities
of AI systems.

I. WHY NEUROSYMBOLIC AI?

Neurosymbolic AI refers to AI systems that seek to integrate
neural network-based methods with symbolic knowledge-
based approaches. We present two perspectives to understand
the need for this combination better: (1) algorithmic-level
considerations, e.g., ability to support abstraction, analogy,
and long-term planning. (2) application-level considerations
in AI systems, e.g., enforcing explainability, interpretability,
and safety.

Algorithm-Level Considerations
Researchers have identified distinct systems in the human

brain that are specialized for processing information related
to perception and cognition. These systems work together

to support human intelligence and enable individuals to un-
derstand and interact with the world around them. Daniel
Kahneman popularized a distinction between the goals and
functions of System 1 and System 2 [1]. System 1 is crucial for
enabling individuals to make sense of the vast amount of raw
data they encounter in their environment and convert it into
meaningful symbols (e.g., words, digits, and colors) that can
be used for further cognitive processing. System 2 performs
more conscious and deliberative higher-level functions (e.g.,
reasoning and planning). It uses background knowledge to
position the perception module’s output accurately, enabling
complex tasks such as analogy, reasoning, and long-term
planning. Despite having different functions, Systems 1 and
2 are interconnected and collaborate to produce the human
experience. Together, these systems enable people to see,
comprehend, and act, following their knowledge of the envi-
ronment. In the past decade, neural network algorithms trained
on enormous volumes of data have demonstrated exceptional
machine perception, e.g., high performance on self-supervision
tasks such as predicting the next word and recognizing digits.
Remarkably, training on such simple self-supervision tasks has
led to impressive solutions to challenging problems, including
protein folding, efficient matrix multiplication, and solving
complex puzzles [2], [3]. However, knowledge enables humans
to engage in cognitive processes beyond what is explicitly
stated in available data. For example, humans make analogical
connections between concepts in similar abstract contexts
through mappings to knowledge structures that spell out such
mappings [4]. Perhaps current generative AI systems such
as GPT-4 can acquire the knowledge structures to support
cognitive functionality from data alone [5]. The hypothesis
is that next-word prediction from many texts on the Internet
can lead to an emergent ’cognitive model’ of the world that
the neural network can use to support cognition. However,
significant concern regarding their black-box nature and the
resulting inscrutability hinders the reliable evaluation of their
cognitive capabilities. On the other hand, though unsuited
for high-volume data processing, a symbolic model is highly
suited for supporting human-like cognition using knowledge
structures (e.g., knowledge graphs). Thus, rather than depend
on one system or the other, it makes more sense to integrate
the two types of systems: neural network-based Systems 1,
adept at big-data-driven processing, and symbolic knowledge-
based Systems 2, adept at dealing with knowledge-dependent
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cognition.
Application-Level Considerations
The combination of Systems 1 and 2 in Neurosymbolic

AI can enable important application-level features, such as
explainability, interpretability, safety, and trust in AI. Recent
research on explainable AI (XAI) methods that explain neural
network decisions primarily involves post-hoc techniques like
saliency maps, feature attribution, and prototype-based expla-
nations. Such explanations are useful for developers but not
easily understood by end-users. Additionally, neural networks
can fail due to uncontrollable training-time factors like data
artifacts, adversarial attacks, distribution shifts, and system
failures. To ensure rigorous safety standards, it is neces-
sary to incorporate appropriate background knowledge to set
guardrails during training rather than as a post-hoc measure.
Symbolic knowledge structures can provide an effective mech-
anism for imposing domain constraints for safety and explicit
reasoning traces for explainability. These structures can create
transparent and interpretable systems for end-users, leading to
more trustworthy and dependable AI systems, especially in
safety-critical applications [6].

Why Neurosymbolic AI?

Embodying intelligent behavior in an AI system must
involve both perception - processing raw data, and
cognition - using background knowledge to support
abstraction, analogy, reasoning, and planning. Sym-
bolic structures represent this background knowledge
explicitly. While neural networks are a powerful tool
for processing and extracting patterns from data, they
lack explicit representations of background knowl-
edge, hindering the reliable evaluation of their cog-
nition capabilities. Furthermore, applying appropriate
safety standards while providing explainable outcomes
guided by concepts from background knowledge is cru-
cial for establishing trustworthy models of cognition
for decision support.

II. WHAT IS NEUROSYMBOLIC AI AND HOW DO WE
ACHIEVE IT?

Neurosymbolic AI is a term used to describe techniques
that aim to merge the knowledge-based symbolic approach
with neural network methods to improve the overall per-
formance of AI systems. These systems have the ability to
blend the powerful approximation abilities of neural networks
with the symbolic reasoning capabilities that enable them
to reason about abstract concepts, extrapolate from limited
data, and generate explainable results [7]. Together, these
components support both algorithm-level and application-level
concerns introduced in the previous sections. Neurosymbolic
AI methods can be classified under two main categories:
(1) methods that compress structured symbolic knowledge to
integrate with neural patterns and reason using the integrated
neural patterns and (2) methods that extract information from
neural patterns to allow for mapping to structured symbolic

knowledge (lifting) and perform symbolic reasoning. Further-
more, we sub-categorize (1) into methods that utilize (a)
compressed knowledge graph representations for integration
with neural patterns and (b) compressed formal logic-based
representations for integration with neural patterns. We also
sub-categorize (2) into methods that employ (a) decoupled
integration between the neural and symbolic components and
(b) intertwined integration between the neural and symbolic
components. These methods enable both algorithm-level and
application-level functions in varying degrees of effectiveness
spanning low (L), medium (M), and high (H) scales. Figure
1 details our categorization of neurosymbolic AI methods.

Algorithm-Level Analysis of Methods in Category 1.
For category 1(a), previous work has used two methods to

compress knowledge graphs. One approach is to use knowl-
edge graph embedding methods, which compress knowledge
graphs by embedding them in high-dimensional real-valued
vector spaces using techniques such as graph neural networks.
This enables integration with the hidden representations of
the neural network. The other approach is to use knowl-
edge graph masking methods, which encode the knowledge
graphs in a way suitable for integration with the inductive
biases of the neural network. Figure 2 illustrates the two
approaches. The ability of neural networks to process large
volumes of raw data also translates to neural networks used
for knowledge graph compression when processing millions
and billions of nodes and edges, i.e., large-scale perception
((H) in Figure 1). Utilizing the compressed representations
in neural reasoning pipelines improves the system’s cognition
aspects, i.e., abstraction, analogy, and planning capabilities.
However, the improvements are modest ((M) in Figure 1)
due to the lossy compression of the full semantics in the
knowledge graph (e.g., relationships aren’t modeled effectively
in compressed representations). Category 1(b) methods use
matrix and higher-order tensor factorization methods to ob-
tain compressed representations of objects and formal logic
statements that describe the relationships between them (such
as propositional logic, first-order logic, and second-order sit-
uation calculus), Improvements in cognition aspects follow
a similar trend as in 1(a). However, compression techniques
for formal logic are computationally inefficient and do not
facilitate large-scale perception. ((L) in Figure 1).

Application-Level Analysis of Methods in Category 1.
For category 1(a), when compressing the knowledge graph

for integration into neural processing pipelines, its full seman-
tics are no longer explicitly retained. Post-hoc explanation
techniques, such as saliency maps, feature attribution, and
prototype-based explanations, can only explain the outputs of
the neural network. These explanations are primarily meant
to assist system developers in diagnosing and troubleshooting
algorithmic changes in the neural network’s decision-making
process. Unfortunately, they are not framed in domain or appli-
cation terms and hence have limited value to end-users ((L) for
low explainability in Figure 1). Knowledge graph compression
methods can still be utilized to apply domain constraints, such
as specifying modifications to pattern correlations in the neural
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Based 
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Compressed 
Logic Representation

Based Methods

1. Knowledge Graph Embedding Based Methods (e.g.,  K-Adapter) 
2. Knowledge Graph Mask Based Methods (e.g., TDLR) 
…

1. Propositional Logic (e.g., KB-ANN)
2. First-Order Logic (e.g.,  Logical Neural Networks) 
…

Application-level Features
1. User-Explainability (L) 2. Domain Constraints (M)
3. Scalability (H) 4. Continual (H)

Algorithm-level Features
1. Large-scale Perception (L) 2. Abstraction (M) 
3. Analogy (M) 4. Planning (M) 

Application-level Features
1. User-Explainability (L) 2. Domain Constraints (L)
3. Scalability (L) 4. Continual (L)

Algorithm-level Features
1. Large-scale Perception (H) 2. Abstraction (M) 
3. Analogy (M) 4. Planning (M) 

Decoupled Integration between Neural 
and Symbolic Components

Intertwined Integration between Neural 
and Symbolic Components

1. Federated Pipeline Methods  (e.g.,  Langchain Pipelines) 
2. Serialized Pipeline Methods (e.g., Wolfram + ChatGPT) 
…

1. Program Abstraction Induction Methods  (e.g., Prob. Programs)
2. End-to-End Differentiable Methods (e.g., PK-iL) 
…

Application-level Features
1. User-Explainability (M) 2. Domain Constraints (M)
3. Scalability (H) 4. Continual (L)

Algorithm-level Features
1. Large-scale Perception (H) 2. Abstraction (H) 
3. Analogy (H) 4. Planning (H) 

Application-level Features
1. User-Explainability (H) 2. Domain Constraints (H)
3. Scalability (H) 4. Continual (H)
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a.

b.
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Fig. 1. The two primary types of neurosymbolic techniques—lowering and lifting—can be further divided into four sub-categories. Across the low (L),
medium (M), and high (H) scales, these methods can be used to provide a variety of functions at both algorithmic and application levels.
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Antioxidants
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Apple Grape Watermelon

Apple

Grape

Watermelon

1 1 0

1 1 0

0 0 1

1. Antioxidants has-1 Apple is_a Fruit
2. Antioxidants has-1 Grape  is_a Fruit
3. Watermelon is_a Fruit

Inductive Bias-level Structured Knowledge Compression

Apple

Grape

Watermelon

Representation-level Structured Knowledge Compression

Structured Knowledge 
Compression Methods

Fig. 2. The figure illustrates two methods for compressing knowledge graphs
to integrate them with neural processing pipelines. One approach involves
embedding knowledge graph paths into vector spaces, enabling integration
with the neural network’s hidden representations. The other method involves
encoding knowledge graphs as masks to modify the neural network’s inductive
biases. An example of an inductive bias is the correlation information stored
in the self-attention matrices of a transformer neural network [8], [9].

network, as depicted in Figure 2. Nonetheless, this process
has limited constraint specification capabilities, because large
neural networks have multiple processing layers and moving
parts ((M) in Figure 1). It is challenging to determine whether
modifications made to the network are retained throughout the
various processing layers. Neural processing pipelines do offer
a high degree of automation, making it easier for a system to
scale across various use cases (such as plugging in use case-
specific knowledge graphs) and to support continual adaptation

throughout the system’s life cycle (such as making continual
modifications to the knowledge graphs). This capability is
indicated by the letter (H) in Figure 1. For category 1(b),
when compressed formal logic representations are integrated
with neural processing pipelines, system scores tend to be
low across all application-level aspects of user-explainability,
domain constraints, scalability, and continual adaptation, as
denoted by the letter (L) in Figure 1. This is primarily due
to the effect of a significant user-technology barrier. End-
users must familiarize themselves with the rigor and details
of formal logic semantics to communicate with the system
(e.g., to provide domain constraint specifications).

Algorithm-Level Analysis of Methods in Category 2.
For category 2(a), the proliferation of large language models

and their corresponding plugins has spurred the development
of federated pipeline methods. These methods utilize neural
networks to identify symbolic functions based on task de-
scriptions that are specified using appropriate modalities such
as natural language and images. Once the symbolic function
is identified, the method transfers the task to the appropriate
symbolic reasoner, such as a math or fact-based search tool.
Figure 3 illustrates a federated pipeline method that utilizes the
Langchain library. These methods are proficient in supporting
large-scale perception through the large language model ((H)
in Figure 1). However, their ability to facilitate algorithm-level
functions related to cognition, such as abstraction, analogy,
reasoning, and planning, is restricted by the language model’s



What is 1 + the number of hours it takes to go from NYC,USA to LA, USA?

Assuming it takes an hour to 
prepare for the drive, how much 
time should be allotted for the 
total journey by car from NYC, 
USA to LA, USA?

How many hours  does it take to drive from NYC, USA to LA, USA? Google Serp-API

Wolfram 
Alpha-API 1 + 41 = 42

41  hours

LLM-API with 
Chain-of-Thought 

Reasoning

The driving time from New York City to Los 
Angeles is approximately 41 hours. If you add 
the one hour for preparation time, then you 
should allot around 42 hours for the total 
journey by car from NYC to LA.

Federated Pipeline Methods

os.environ["SERPAPI_API_KEY"] =  REDACTED API KEY   

tools = load_tools(["serpapi","llm-math"],llm=llm)

#see list of agent types such as "zero-shot-react-description" in the langchain documentation

federated_agent = initialize_agent(tools,

                                  llm,

                                  agent="zero-shot-react-description")

#enter a query

query = """Assuming it takes an hour to prepare for the drive,

          how much time should be allotted for the total journey by car from NYC, USA to LA, USA?"""

#run the federated agent

federated_agent.run(query)

The driving time from New York City to Los Angeles is 
approximately 41 hours.
If you add the one hour for preparation time, 
then you should allot around 42 hours for the total journey by 
car from NYC to LA.

Fig. 3. Illustrates a federated pipeline method using the Langchain library. The method employs a language model trained on chain-of-thought reasoning
to segment the input query into tasks. The language model then utilizes task-specific symbolic solvers to derive solutions. Specifically, the language model
recognizes that search and scientific computing (mathematics) symbolic solvers are necessary for the given query. The resulting solutions are subsequently
combined and transformed into natural language for presentation to the user.

comprehension of the input query ((M) in Figure 1). Category
2(b) methods use pipelines similar to those in category 2(a)
federated pipelines. However, they possess the added abil-
ity to fully govern the learning of all pipeline components
through end-to-end differential compositions of functions that
correspond to each component. This level of control enables
us to attain the necessary levels of cognition on aspects of
abstraction, analogy, and planning that is appropriate for the
given application ((H) in Figure 1) while still preserving the
large-scale perception capabilities. Figure 4 shows an example
of this method for mental health diagnostic assistance.

Application-Level Analysis of Methods in Category 2.
For the systems belonging to category 2(a), tracing their

chain-of-thought during processing immensely enhances the
application-level aspects of user-explainability. However, the
language model’s ability to parse the input query and relate it
to domain model concepts during response generation limits
this ability ((M) in Figure 1). Furthermore, the specification of
domain constraints in natural language using prompt templates

also limits the constraint modeling capability, which depends
on the language model’s ability to comprehend application
or domain-specific concepts ((M) in Figure 1). Federated
pipelines excel in scalability since language models and appli-
cation plugins that facilitate their use for domain-specific use
cases are becoming more widely available and accessible ((H)
in Figure 1). Unfortunately, language models require an enor-
mous amount of time and space resources to train, and hence
continual domain adaptation using federated pipelines remains
challenging ((L) in Figure 1). Nonetheless, advancements in
language modeling architectures that support continual learn-
ing goals are fast gaining traction. Category 2(b) methods
show significant promise as they score highly regarding all
application-level aspects, including user-explainability, domain
constraints, scalability across use cases, and support for contin-
ual adaptation to application-specific changes ((H) in Figure
1). This is due to the high modeling flexibility and closely
intertwined coupling of system components. Thus, a change
in any particular component leads to positive changes in all



Really struggling with my bisexuality which is causing chaos in 
my relationship with a girl. I am equal to worthless for her. I’m 
now starting to get drunk because I can’t cope with the 
obsessive, intrusive thoughts, and need to get out of my 
head. 

I have been there and got nothing same as my life. I have a 
gun. I’m not on a ledge or something but i have a gun on my 
lap.

Snomed Concept: 
Health Related 

Behavior Finding

Snomed Concept: 
Intrusive Thoughts

DSM-5 Definition: 
Obsessive-compulsive disorder is a disorder in which people 
have obsessive, intrusive thoughts, ideas or sensations that 

make them feel driven to do something repetitively

Suicidality Concept:
Non-specific active suicidal thoughts 

Wish to be Dead

Non-Specific 
Active Suicidal 

Thoughts

Active Suicidal 
Ideation with Any 

Methods

Suicidal 
Indication (𝐘)

Suicidal 
Ideation (𝐘)

Suicidal 
Behavior or 
Attempt (𝐘)

True

True

True

False

False

False

Map_Function(𝐗 = query, 𝐙 = concept, 𝚹1) If you are struggling with your thoughts and emotions, it 
is recommended that you seek help from a mental 
health professional, such as a therapist or counselor. 
They can equip you with the necessary resources and 
techniques to manage your mental health in a healthy 
manner. In case you feel like you may harm yourself 
immediately, please contact your local emergency 
services or the nearest emergency room for immediate 
assistance. You can also reach out to a suicide 
prevention hotline, such as the National Suicide 
Prevention Lifeline at 1-800-273-8255, for guidance and 
support.

𝐘 = Expert_Defined_Domain_Model(𝐗 = query, 𝐙 = concept)

Constrained_Response_Generation_Model
= 𝚷(𝐘, 𝚹2)

Response Constraints.
If (𝐘 in {Suicidality: [Ideation, Behavior, Attempt]}),

Output: “Please reach out to a mental health 
professional, such as a therapist or counselor, who can 
provide you with the tools and resources to cope with 
your thoughts and emotions healthily. If you are in 
immediate danger of harming yourself, please call your 
local emergency services or the nearest emergency 
room for immediate help. You can also contact a suicide 
prevention hotline, such as the National Suicide 
Prevention Lifeline, at 1-800-273-8255 for support and 
guidance.”

User-explainability
 i.e., Clinicians and Patients
+
Domain Constraints
Verify adherence to the clinical 
guideline on diagnosis which a 
clinician understands.

47%

70%

LLMs PkiL

Recorded Expert Agreement 
using Generated Responses

Continual 
Process 
Knowledge-
infused 
Learning
(PKiL)

Fig. 4. depicts a pipeline that is fully differentiable from end to end. It consists of a composition of functions corresponding to various pipeline components.
This pipeline enables the development of application-tailored AI systems that can be easily trained end-to-end. To accomplish this, trainable map functions
are applied to raw data, converting it to concepts in the domain model. The example given in the figure relates to mental health diagnosis and conversational
assistance. The map functions link fragments of raw data to decision variables in the diagnosis model, which are then used to apply constraints to the patient’s
response generated by the text generation model. Results from an existing implementation demonstrates that expert satisfaction levels reached 70% using such
a pipeline, compared to 47% with LLMs in federated pipelines, such as OpenAI’s text-Davinci-003 [10].

components within the system’s pipeline. Notably, in an imple-
mented system for the mental health diagnostic assistance use
case, shown in Figure 4, we see drastic improvements in expert
satisfaction with the system’s responses, further demonstrating
the immense potential for 2(b) category methods.

III. THE FUTURE OF NEUROSYMBOLIC AI

In this article, we compared different neurosymbolic ar-
chitectures, considering their algorithm-level aspects, which
encompass perception and cognition, and application-level
aspects, such as user-explainability, domain constraint spec-
ification, scalability, and support for continual learning. The
rapid improvement in language models suggests that they
will achieve almost optimal performance levels for large-
scale perception. Knowledge graphs are suitable for symbolic
structures that bridge the cognition and perception aspects
because they support real-world dynamism. Unlike static and
brittle symbolic logics, such as first-order logic, they are
easy to update. In addition to their suitability for enterprise-
use cases and established standards for portability, knowledge
graphs are part of a mature ecosystem of algorithms that
enable highly efficient graph management and querying. This
scalability allows for modeling large and complex datasets
with millions or billions of nodes.

In summary, this article highlights the effectiveness of
combining language models and knowledge graphs in current
implementations. However, it also suggests that future knowl-
edge graphs have the potential to model heterogeneous types
of application and domain-level knowledge beyond schemas.
This includes workflows, constraint specifications, and process
structures, further enhancing the power and usefulness of neu-
rosymbolic architectures. Combining such enhanced knowl-
edge graphs with high-capacity neural networks would provide
the end-user with an extremely high degree of algorithmic
and application-level utility. The concern for safety is behind
the recent push to hold further rollout of generative AI sys-
tems such as GPT*, since current systems could significantly
harm individuals and society without additional guardrails.
We believe that guidelines, policy, and regulations can be
encoded via extended forms of knowledge graphs such as
shown in Figure 4 (and hence symbolic means), which in turn
can provide explainability accountability, rigorous auditing
capabilities, and safety. Encouragingly, progress is being made
on all these fronts swiftly, and the future looks promising.
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