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As society becomes increasingly interconnected and dependent on computing

systems, so does the importance of cyber security and the prevention of malware.

Beyond just the home computer, smart-phones, routers, printers, and all kinds of

devices now run operating systems that could be potentially infected. This repre-

sents an explosion in the potential attack surface for a malicious actor. The tools

currently available to security professions are improving, but limited. Each tool

is designed for one software platform, making their scope limited. Adapting these

tools to new platforms and hosts requires years of effort and introduces a significant

lag time to protecting any new platforms that will arise in the future. Further,

malware often involves an adversary intentionally violating format specification and

rules. These violations may be intended to slow reverse engineering efforts, hide

intent or attribution, or simply be part of an exploit that is part of the malware’s

functionality.

In this thesis, we develop a new approach for tackling problems related to mal-

ware detection and cyber security in general. Specifically, we develop new methods



inspired by compression algorithms that support a wide range of tasks. The com-

pression background allows the methods we develop to be applied to any file format,

operating system, or platform. This provides a single method which can be used in

all circumstances, and dramatically reduces the potential lag time to protect new

platforms. Not only does this provide a wide range of flexibility, but we will also

show that our approach significantly improves upon the existing methods available

to practitioners today.
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Chapter 1: Introduction and Related Work

In this thesis we tackle the problems of detecting malware (is this file malicious

or benign?), malware classification (which family is this known malware from?), and

similarity search (given this file, have I seen one like it before?). All of these problems

are important to a malware analyst and to the broader domain of cyber security.

While tools exist today for all of these tasks, their breadth or utility is often

limited. In particular, most are built on domain knowledge based features: using

our knowledge of the file formats involved and the methods of malicious actors

to manually extract information. This requires extensive expertise and has had

difficulty scaling to the ever growing amount of malware being produced. When a

new platform emerges and needs similar protection, porting an anti-virus system

can take months and even years to re-create. By developing a new approach based

upon compression, we can circumvent this domain knowledge requirement: giving

us a tool that can be deployed into any new domain once data is available.

Before delving into the details of this thesis, we must review some pertinent

information. In particular, there does exist a relatively small body of related work

that performs malware detection using little domain knowledge. We will review

these methods related to the thesis as a whole in section 1.1, and in each chapter

1



of this work review any chapter specific related work in greater detail. While we

will discuss some of the accuracies and results that these prior works have obtained,

there exists no standard benchmark corpus in the field. This makes comparing

results across papers, and to previous work, challenging. Further still, as we will

show in chapter 3, there is a severe dataset design flaw that has been overlooked by

many prior works. For this reason we will first detail the data used in this thesis in

section 2.2.

1.1 Related Work

There is little existing work in performing malware detection with the explicit

goal of using minimal domain knowledge. Doing so requires us to work with the raw

byte contents of the binary, and there exist three primary approaches to doing so:

byte n-grams, entropy analysis, and compression distances. We will review all three

methods, as well as some related but less frequently used approaches. We note that

we will refer to the reported accuracies of a number of works, but emphasize that the

numbers are not comparable and may not even be meaningful. This is because of a

data quality issue that causes overfitting, which we will discuss more in chapter 3.

1.1.1 String Features

Possibly the simplest approach to obtaining features without exploiting any

kind of domain knowledge is to extract the ASCII or Unicode strings from a binary.

This can be done easily using the Unix strings command. One can then create

2



features based on the presence or absence of a string, and may choose to use some

kind of term and frequency weighting if a string occurs multiple times within a file.

While strings were one of the first feature types considered in initial research

by Schultz, Eskin, Zadok, et al. [1], they have not been widely used since. This is

likely because of the packing issue, which makes it trivial for the malware author

to hide all (or some) strings from trivial extraction. However there has been some

more recent works that have used string based features in conjunction with others to

improve performance though. Islam, Tian, Batten, et al. [2] combined strings with

statistics describing the functions within a binary for malware family classification.

Saxe and Berlin [3] used statistics about the strings found, rather than the actual

string values, in conjunction with three other feature types.

1.1.2 Entropy Information

A method that has not gained wide use as a detector on its own is that of

Entropy based classifiers. Given n discrete bins, and the probability of a ball falling

into bin i as pi, the entropy of the bins is given by (1.1).

Entropy = �
nX

i=1

pi log2(pi) (1.1)

At a coarse level, the entropy of an entire file (measure over all 256 possible

byte values as the bins) has a decent amount of information. At first pass, a high

entropy file is likely to be compressed or encrypted. A normal executable program

will have an entropy within a range of 4.9 to 5.3 [4]. If a file has an entropy of 2.0

3



or 7.5, this is so far outside the expected range that we would have good reason to

investigate or treat the binary suspiciously.

However, information is needed at a finer level to begin making judgments

about a binary’s potential maliciousness. The most immediate option is to create a

windowed measure of entropy, where the entropy is computed over a finite subset of

the binary. This window is then moved across the binary to create a one dimensional

time series of the file’s overall entropy.

This approach is common, and is often combined with somewhat elaborate

dynamic-programing solutions to develop a classifier [5]–[8]. Dynamic programing

suffers from considerable computational cost though, which limits its scalability.

Others have looked at Haar wavelet based approaches [9], [10], but not found them

to perform at a level congruent with state-of-the-art predictors. They however can

be used in conjunction with other features as part of a larger system or ensemble.

1.1.3 Byte N-Grams

Byte n-gramming is the most popular method of building a machine learning

model from a executable binary without using domain knowledge, and is widely

popular in general. For this reason it has a long history of use that we will review.

The method of applying byte n-grams is quite simple, which is likely a major

factor in its wide use. N-grams have been widely used in malware classification,

starting with the work of [11] that connected the methods being used with those in

the domain of Natural Language Processing (NLP). Since then, n-grams have been
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one of the most popular feature processing methods for malware classification, and

have been used for processing bytes, assembly, and API calls [12] into bag-of-words

type models. To give a more concrete example of this process, the byte sequence

0xDEADBEEF would have the 2-grams DEAD, ADBE, and BEEF. At training time

all possible 2-grams would be counted, and each 2-gram found would map to an index

in a high-dimensional feature vector. The feature vector for 0xDEADBEEF would

have 3 non-zero values, the specific values determined by some feature weighting

scheme such as TF-IDF or Okapi[13], [14], though a binary present/absent value is

popular as well.

Byte n-grams in particular just use the raw bytes of an executable file as the

source to extract n-grams from. Kephart, Sorkin, Arnold, et al. [15] provide one of

the earliest instances of byte n-grams for malware analysis, using byte 3-grams to

classify infected boot-sectors.

For the case of byte n-grams for Microsoft PE binaries, Schultz, Eskin, Zadok,

et al. [1] provide the earliest work of which we are aware. Shultz et al. consid-

ered DLL imports, Strings, and byte n-grams as features, evaluating them using a

number of different classifiers. In their work a Naive Bayes classifier had the best

overall accuracy at 97.1%, followed by an ensemble of Naive Bayes classifiers using

byte n-grams at 96.9%. Their n-gram based model also had the highest detection

rate of malware. Shultz et al. compared against a simple signature based approach,

which achieved only 49.3% accuracy, showing the importance of expanding beyond

signatures in defending against new, unseen malware. Abou-Assaleh, Cercone, Ke-

selj, et al. [11] made the connection with techniques in Natural Language Processing
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work and using a feature selection step, reporting 98% cross validation scores using

a nearest neighbor classifier.

Kolter and Maloof [16], [17] looked exclusively at byte n-grams for classifying

benign vs. malicious executables, as well as classifying malicious EXEs by payload

method. They performed their initial work on a smaller set of 1,037 files, by which

they settled on using 4-grams for their features and AdaBoost [18] with C4.5-style

decision trees[19] consistently provided the best results. In addition they used Infor-

mation Gain to prune the set of 4-grams down to the top 500 used for their model.

This approach obtained an AUC of 0.984. Testing on a larger set of 3,622 files

reached an impressive AUC of 0.996 for the benign vs malicious task. In attempts

to explore the information captured by their model, Kolter and Maloof did discover

evidence of string features being extracted by their model, but made no effort to

quantify their significance to the overall model. Their work has been regularly repli-

cated, for example, by Jain and Meena [20]. We will also replicate their work in

chapter 3, where we will more throughly evaluate the efficiency of byte n-grams.

Most work on using byte n-grams for malware classification follow the overall

method set by Kolter and Maloof: choose a value of n, use some feature ranking

scheme to select a few hundred (up to say one thousand) n-grams, and then evaluate

(using cross validation or with a random training / testing split) with one or more

classifiers. Since their work, there has been a significant amount of follow up work

using byte n-grams, often as a major component in a larger system or improving a

component of the process.

A number of works, such as Elovici, Shabtai, Moskovitch, et al. [21], Menahem,
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Shabtai, Rokach, et al. [22], and Masud, Khan, and Thuraisingham [23] have looked

at combining byte n-grams with other features. Masud, Khan, and Thuraisingham

fused byte n-grams, opcode n-grams, and DLL function imports into a larger classi-

fication system. They also evaluated on two datasets, similar to our data, which we

will discuss shortly in section 2.2. Masud, Khan, and Thuraisingham’s two datasets

have overlap with each-other, where ours are kept completely disjoint. In their

work 4 and 6-grams performed almost equally and obtained 95.4% and 93.6% on

their two datasets. The hybrid approach presented in their work obtained 96.3%

and 97.6% for 6-grams respectively, indicating that while n-grams did not perform

the best they still performed well compared to an approach which required domain

knowledge features. For feature selection and model construction Masud, Khan, and

Thuraisingham used the same approach as Kolter and Maloof. We note as well that

the assembly n-grams in Masud, Khan, and Thuraisingham perform worse than the

byte n-grams for n � 2.

Another line of research, to which this thesis is a contribution, has included

the use of larger datasets. Moskovitch, Stopel, Feher, et al. [24] pushed their dataset

up to 30,000 files for n-gramming. Masud, Al-Khateeb, Hamlen, et al. [25] used a

distributed system to process 105,388 files, obtaining an accuracy of 97.2% for their

best model. This was achieved using 2000 4-grams selected by Information Gain,

and using an ensemble of C4.5 decision trees.

Researchers have looked at building more sophisticated systems using byte n-

grams as a significant component. Though not directly comparable, the information

we discover about n-grams is relevant to the underpinning of these methods, since
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they are built upon byte n-grams. Perdisci, Lanzi, and Lee [26] developed a multi-

stage system using both whole file byte n-grams and byte n-grams from binary code

extracted via dynamic analysis, obtaining a final AUC of 0.977. Tahan, Rokach,

and Shahar [27] looked at 3-grams to select and match “segments” which were used

as their final features. Another related area that we do not compare directly against

is the task of distinguishing between subfamilies of malware using byte n-grams, as

is done by Zhang, Yin, Hao, et al. [28] and Stolfo, Wang, and Li [29].

1.1.4 Byte Sequence Distances

Another general method of comparing files is to define some distance measure

by which to compare byte sequences. Work in this area has not been wide spread,

perhaps in part due to the difficulty of the task. Defining a similarity measure over

arbitrary byte sequences is at face value daunting, and must deal with a potentially

unbounded space of possible inputs.

One approach to this has been the use of similarity preserving hash func-

tions[30]–[33]. These hash functions have been developed heuristically for forensic

purposes, and are generally designed to support a very high precision but at the

expense of low recall. They are most often used to find near exact duplicates, and

are often not widely usable as a generic measure of similarity. Their specificity

has made them usable for malware family clustering, but where out performed in

accuracy and runtime by a more classical machine learning approach [34].

A more principled approach is the Normalized Compression Distance (NCD)[35].

8



The NCD is a metric inspired by Kolmogorov complexity, and uses compression al-

gorithms as a means of approximating this uncomputable function. Li, Chen, Li, et

al. [35] provided theoretical backing for their new distance measure, showing that

it would behave like a distance metric when certain properties are meet. Given this

general purpose ability, there has been considerable interest in using the NCD met-

ric for malware classification [36]–[40]. However, NCD is not without its shortfalls.

In particular it is computationally demanding, which limits the scale at which it can

be applied. We will review the details of NCD in more detail in chapter 5, where

we will also propose a new alternative to NCD that alleviates its issues.

1.2 Outline

Given this overview of the state of domain-knowledge free learning, we can

begin the rest of this thesis. As mentioned at the begging of this chapter, data is

important and no standard benchmark exists in this space. For this reason we begin

in chapter 2 by describing the data we use throughout this work as a whole.

The first experiments and results of our work will begin with the classic n-

gram based approach. In chapter 3 we will perform an extensive evaluation of

them, improving how byte based n-gram models are built. This provides significant

performance improvement on our data compared to the classic approach, but still

shows byte n-grams not performing as well as previously thought. We extend this

in chapter 4 to show that adding domain knowledge to byte n-graming does not

necessarily improve performance. This shows the non-triviality of using domain
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knowledge and helps to justify the need for a new approach.

We develop our new compression based approach, the Lempel-Ziv Jaccard

Distance (LZJD) in chapter 5. We show that LZJD is both orders of magnitude

faster and more accurate than its inspiration NCD. We then turn LZJD into an

effective and practical malware classifier in chapter 6, providing better accuracy

than the byte n-gram approach.

This gives us tooling for classification problems like malware detection and

classification. Our next need is in similarity search. We show in chapter 7 that

LZJD outperforms prior approaches to measuring the similarity between arbitrary

files, and also introduce optimizations to LZJD to make is another 4 to 10 times

faster. Because LZJD, unlike its predecessors, is a true distance metric, we can

use metric index structures to further accelerate it. We show this in chapter 8,

while also developing new incremental construction strategies that allow us to build

metric indexes. These are necessary for the incremental construction and querying

requirements of a malware analyst.

The culmination of these chapters represents our contribution in this thesis.

The conclusion of which is presented in chapter 9.

1.2.1 Chapters and Prior Publication

This thesis represents the culmination of a number of published works. Below

we list the publications that contribute to the contents of this thesis.

1. E. Raff, R. Zak, R. Cox, et al., “An investigation of byte n-gram features
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for malware classification,” Journal of Computer Virology and Hacking Tech-

niques, Sep. 2016, issn: 2263-8733. doi: 10.1007/s11416- 016- 0283- 1.

[Online]. Available: http://link.springer.com/10.1007/s11416-016-

0283-1

• Used for chapter 2 and chapter 3.

2. R. Zak, E. Raff, and C. Nicholas, “What can N-grams learn for malware de-

tection?” In 2017 12th International Conference on Malicious and Unwanted

Software (MALWARE), IEEE, Oct. 2017, pp. 109–118, isbn: 978-1-5386-

1436-5. doi: 10.1109/MALWARE.2017.8323963. [Online]. Available: http:

//ieeexplore.ieee.org/document/8323963/

• Used for chapter 4.

3. E. Raff and C. Nicholas, “An Alternative to NCD for Large Sequences, Lempel-

Ziv Jaccard Distance,” in Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining - KDD ’17, New York,

New York, USA: ACM Press, 2017, pp. 1007–1015, isbn: 9781450348874.

doi: 10.1145/3097983.3098111. [Online]. Available: http://dl.acm.org/

citation.cfm?doid=3097983.3098111

• Used for chapter 5.

4. E. Raff and C. Nicholas, “Malware Classification and Class Imbalance via

Stochastic Hashed LZJD,” in Proceedings of the 10th ACM Workshop on Artifi-

cial Intelligence and Security, ser. AISec ’17, New York, NY, USA: ACM, 2017,
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pp. 111–120, isbn: 978-1-4503-5202-4. doi: 10.1145/3128572.3140446. [On-

line]. Available: http://doi.acm.org/10.1145/3128572.3140446

• Used for chapter 6.

5. E. Raff and C. K. Nicholas, “Lempel-Ziv Jaccard Distance, an effective alter-

native to ssdeep and sdhash,” Digital Investigation, Feb. 2018, issn: 17422876.

doi: 10.1016/j.diin.2017.12.004. [Online]. Available: https://doi.org/

10.1016/j.diin.2017.12.004

• Used for chapter 7.

6. E. Raff and C. Nicholas, “Toward Metric Indexes for Incremental Insertion

and Querying,” ArXiv, 2018. [Online]. Available: http://arxiv.org/abs/

1801.05055

• Used for chapter 8.
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Chapter 2: Data and Quality

In this chapter we will discuss the datasets that we use throughout the thesis

as a whole. A chapter is dedicated to this discussion due to the extreme importance

data plays in our results, and the challenges in obtaining it. First we will discuss the

difficulties and challenges associated with getting good labeled data in section 2.1,

and then describe the data we use in particular in section 2.2.

2.1 Data Quality Challenges

As with many applications, the first task to building a machine learning model

is to obtain data that accurately represents the distribution of binaries that will be

observed. It is indeed well known that obtaining more and better labeled data is

one of the most effective ways to improve the accuracy of a machine learning system

[47], [48]. However, by its very nature the potential scope of what a binary can do

is unbounded. There is no way for us to randomly sample from the binaries that

exist in the world and we have little way to meaningful measure how much of the

“space” of binaries we have covered with any given data-set. Beyond the unbounded

scope, the malware domain poses a number of unique challenges to data collection.

When obtaining data, it is often the case that malware is the easiest to get.
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Not only are there websites dedicated to collecting malware sent in by volunteers

[49], [50], but it is reasonable for a researcher to obtain their own malware through

the use of honeypots [51]. A honeypot is a system connected to the Internet that

intentionally tries to get infected by malware, often by leaving open security holes

and foregoing standard protections. At the same time, both of these sources of

malware can have data quality issues. Honeypots will have data biased toward

what the system is capable of collecting, as malware may require interaction from

the honeypot through specific applications in order to successfully infect a machine

[52] (e.g., a malware sample’s infection vector may rely on a specific version of Firefox

or Chrome to be running), and it may not be possible to account for all possible

application interactions. Malware may also attempt to detect that a potential target

is in fact a honeypot, and avoid infection to defer its detection [53]. The issues that

bias what malware is collected by honeypots are also likely to impact the quality of

larger malware repositories, as users may run honeypots and submit their catches

to these larger collections. Malware repositories will also have a self-selection bias

from those who are willing to share their malware and take the time to do so.

Benign data, or “goodware”, has proven to be even more challenging to phys-

ically obtain than malware. This is in part because malware actively attempts to

infect new hosts, where as benign applications do not generally spread prolifically.

As far as we are aware, no work has been done to quantify the diversity or collection

of benign samples, or how to best obtain representative benign data. Most works

take the easiest avenue of data collection, which is to simply collect the binaries

found on an instillation of Microsoft Windows. This tactic can lead to extreme

14



over-fitting, where models literally learn to find the string “Microsoft Windows” to

make a determination [41]. The population of binaries from Windows share too

strong a common bias to be able to generalize to real data, as the model learns

to classify everything that does not come from Microsoft as malware. This bias is

strong enough that even using only a subset of the information will still lead to

over-fitting [54]. This issue is particularly wide spread, and occurs in almost all

cited papers in this survey. The notable exception to this are papers produced by

corporate entities that have private data they use to develop anti-virus software.

When this goodware bias issue is combined with the fact that there is no standard

data-set for the task of malware detection, it is almost impossible to compare the

results from different papers when different datasets are used. In addition, prior

work using benign samples from clean Microsoft installications may significantly

over-estimate the accuracy of their methods.

Once data has been obtained, labeling the data must follow (when labels do

not come “for free” like they do with honeypots). The issue of labeling malware into

families, or determining if an unknown binary is or is not malware, is labor intensive

and requires significant domain knowledge and training. This is in contrast to many

current machine learning domains, like image classification, where labeling can often

be done by individuals with no expertise and with minimal time. For example, an

expert analyst can often take around 10 hours to characterize a malicious binary

[55]. This makes manually labeling large corpora impractical, and a major roadblock

to future applications.

For benign vs malicious labeling, many have attempted to circumvent this issue
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through the use of anti-virus (AV) products. One popular strategy is to upload

binary to websites like Virus Total1, which will run several dozen AV products

against each binary, and return individual results. If more than 30% of the AVs

claim a file is malicious, it is assumed malicious. If none of the AVs say it is malware,

it is assumed benign. Anything less than 30% but non-zero is then discarded from

the experiment [56]. While this selection is easy to perform, the labels will be

intrinsically biased to what the AV products already recognize. More importantly,

binaries marked by only a few AV products as malicious are likely to be the most

important and challenging examples. This middle ground will consist of either

benign programs which look malicious for some reason (false positives), or malicious

binaries that are not easy to detect (false negatives). Removing such examples

will artificially inflate the measured accuracy, as only the easiest samples are kept.

Removing such difficult to label points will also prevent the model from observing the

border regions of the space between benign and malicious. This issue also hampers

effective model evaluation, as we are skewing the data and thus the evaluation to

an easier distribution of benign and malicious samples. This causes an artificially

high accuracy to be reported.

Inferring labels from AV output is even more problematic for determining

malware family, as such labels are not standardized and different AV products will

often disagree on labels or type [57]. While more advanced methods exist than

simple thresholding for determining benignity [58] and malware family [59], the use

of many AV products remains the only scalable method to obtain labels.
1
https://www.virustotal.com/
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Beyond the issue of collecting data, there is also the fact that binaries exhibit

concept drift, meaning the population as a whole changes over time. This is true of

both benign and malicious binaries, as changes will percolate through the population

as the API of Windows changes, code generation changes with newer compilers,

libraries fall in and out of favor, and other factors. It then becomes important to

investigate the performance of a classification system as change occurs [25], which

is not widely explored. The distribution of malware in particular drifts at a faster

rate, as malware authors attempt to modify their code to avoid detection. This is

referred to as an adversarial scenario, and only further complicates the development

of a long term solution [60], [61].

2.2 Data for Experiments

As we have now discussed, the issue of data quality is paramount to obtaining

good results. For this reason we take care to be explicit with how and where we

obtained our data.

Our primary data is divided into two higher level groups, Public and Industry,

that are collected in different manners and from different sources. Every file in both

datasets is a valid PE binary for either x86 or x64 Windows. We do not intermingle

these data for training and keep them separate when testing so that we can better

evaluate the generalization of our models. We do this because evaluating on held-out

data that was collected in the same manner as training data may not adequately

evaluate generalization, since both sets are biased by the same collection mechanism.
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Having separate sets collected in different ways helps avoid this issue. Since not all

of our training and test sets have the same ratio of benign to malicious files, we

always report a weighted accuracy such that the two classes have equal total weight

in the score. Across all training and testing sets, no two samples in our data have

the same MD5 checksum.

Public’s malware is taken from Virus Share [49], and we also use data from

Open Malware [50] as a separate malware only test set. Public’s benign files (or

“goodware”) mostly come from various Microsoft Windows operating systems, in-

cluding Windows XP, Window 7, and Windows 10. A smaller collection of goodware

files were also downloaded from portablefreeware.com and from the Cygwin and

MinGW installations. We use a held out test set from Windows 8.

We arbitrarily chose Windows 8 for the test set. We wanted to avoid having

files from the same version of Windows in both the training and testing set to

minimize any potential information leakage across the sets. We used as many files

from VirusShare in the training set as we could given our computational resources,

and used the remainder that we had downloaded for testing. The split of Virus

Share in training and testing was random, since we had no additional information

to improve the way data was split. During evaluation, Open Malware is reported as

a separate line and is not included in the Public numbers. Again, this is so we can

better judge generalization since no data from Open Malware was in the training

set. The Open Malware data is collected in a manner similar to the Virus Share

data, so we would expect their data to be more similar to each other than our other

data.
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The use of a public malware corpus combined with Windows files and a selec-

tion of other commonly installed applications is the same strategy used to build the

training and testing sets in most previous work [e.g., 1], [16], [24], [26], [62]. Our

results for models trained on the Public data should be representative of the results

other works would have obtained.

During initial testing, models trained on Public were not performing well on

new data, despite encouraging cross validation scores. We sought out an industry

partner to share data of a higher quality and more representative of the larger

population, and is the source of our Industry data. Santos, Penya, Devesa, et al.

[63] also used a private corpus from an industry partner, sampling 1,000 benign and

malicious files. We received data from our partner in two batches. The testing set

represents the first batch of data obtained, while the second and larger batch was

used as the training set.

Both groups of data were randomly sampled from a larger set of benign and

malicious EXEs that are meant to be representative of what is often seen on desktop

computers (excluding Microsoft EXEs). The total number of files for all our data,

Groups A and B, can be found in Table 2.1.

2.2.1 Industry Label Quality

Since the Industry data is not publicly available, we attempt to provide extra

details about the contents for readers who are interested. The results of the n-gram

analysis convince us that the resulting model has more utility than one constructed
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training testing

Public malicious benign malicious benign

Virus Share 175,875 — 43,967 —
Open Malware — — 81,733 —
MS Windows — 268,236 — 21,854
Misc. — 1,195 — —
total 175,875 269,431 125,700 21,854

Industry

Industry Partner 200,000 200,000 40,000 37,349
total 200,000 200,000 40,000 37,349

Table 2.1: Breakdown of the number of malicious and benign training and testing examples
in each data group, along with the sources they were collected from. “Misc.”
comprises portablefreeware.com, Cygwin and MinGW.

from Public style data, as many prior works have done. One may wonder then how

much of the generalization gap incurred by the Industry model is due to differences in

the data distribution, rather than the weaknesses of byte n-grams, or potential label

errors. Fully answering such a question is beyond the scope of this work, however

we hope the additional details may be of use to the reader to better understand the

results as a whole and dissuade any concern of label quality.

To obtain a rough estimate of label errors we ran all Industry data (goodware

and malware) through ClamAV.2 We chose ClamAV because it is freely available to

everyone and usable on all operating systems. If the labels are correct, we expect

to see that most goodware is not flagged by ClamAV and that most malware is.

Because ClamAV is not the most advanced of anti-virus (AV) products, we upload

a random sample of 50 files in which ClamAV’s output disagreed with our labels

to Virus Total for further confirmation. Virus Total uses an ensemble of anti-virus
2
https://www.clamav.net/
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systems to asses each sample it is given. This produces more reliable labels, as well as

giving us a proxy for confidence in those labels: a file which is identified as malicious

by 20 of Virus Total’s constituent programs is more likely to be malignant than one

identified by only a single anti-virus program. While it would have been preferable

to upload all of our data to Virus Total, a rate limit on the API means it would take

multiple months to process the entire corpus. The results of this examination can

be seen in Table 2.2. The first line shows the percentage of files marked as malware

by ClamAV, and the remaining lines are the statistics of potentially mislabeled data

sent to Virus Total (VT).

Industry Train Industry Test Public Train Public Test

Label Goodware Malware Goodware Malware Malware Malawre

ClamAV says Malware 0.4% 81.2% 1.4% 78.3% 66.6% 66.5%

#
sa

y
m

al
w

ar
e 0 AVs 82% — 12% — — —

[1,5] AVs 12% — 22% — — 6%
[6,15] AVs 6% — 36% 12% 2% —
[16,25] AVs — 96% 24% 10% 2% —
26+ AVs — 4% 6% 78% 96% 94%

Table 2.2: Percentage of Industry data, and Public Malware, marked as malware by Cla-
mAV. Cases where ClamAV and the label disagreed were uploaded to Virus
Total to help confirm the label quality.

We can see for the goodware Industry data, ClamAV marks almost all files as

benign, with the test dataset having a higher conflict of 1.4% of the data. Even if all

of such data was in fact mislabeled malware, the percentage would be small enough

that a robust machine learning system should be able to learn from it. From the

sample sent to Virus Total, we can see that most files had no or only a handful of

anti-virus systems flag the files, giving us confidence that ClamAV was throwing false

positives on the goodware data it identified as malicious. We note as well that anti-
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virus products may, in general, throw false positives for more challenging benign

samples. A benign application with more sophisticated code (e.g, for performing

encryption, just-in-time compilation, or disk formatting) may seem malicious to an

AV product for good reason, despite having no malicious purpose as an application.

We have observed that a number of the Industry test goodware files, marked by

multiple AVs, are products for encryption that do not have a clear malicious intent.

We avoid explicitly naming these products due to privacy concerns.

While the Industry goodware samples sent to Virus Total are more anomalous

compared to those from the training set, we are still confident in the majority of the

labels since we obtained. If we assume that all samples marked by 6 or more AVs is in

fact malware, then Industry’s test set goodware would contain only 0.9% mislabeled

files. The maximal change in test accuracy is thus less than one percentage point,

and then would not meaningfully impact any of the results or conclusions of our

work.

For the malware datasets, ClamAV fails to recognize a much higher percentage

as malicious: around 19% of files for Industry and 33% for Public. When uploading

samples that were not caught by ClamAV, every sample was marked by at least one

anti-virus. Most were marked by a plethora of products (26 or more), with only a

handful being marked by less than 10. This again gives us confidence that our labels

are correct, and that ClamAV is throwing false negatives.

As mentioned in section 2.1, the construction and evaluation of a high quality

dataset for this task is still an open problem. We believe we have provided ample

evidence that our Industry data is of a better quality than the datasets normally
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used (i.e., Public type data), but there is room for improvement in validating and

constructing yet larger corpora for this task.

Table 2.3: ClamAV labels found in only the malware portion of the Public and Industry
data. “Assorted Other” includes obscure labels that had 5 or fewer occurrences
in any dataset.

ClamAV Label Industry Train Industry Test Public Train Public Test

Dos.Trojan 0 0 18 4
BC.Win.Trojan 0 4 32 8
BC.Win.Virus 217 26 0 0
Heuristics.Encrypted 0 1 9 4
Heuristics.Trojan 1 10 400 104
Heuristics.W32 1 478 59 15
Js.Adware 16 0 0 0
Html.Trojan 0 14 0 99
Legacy.Tool 0 0 9 2
Legacy.Trojan 140 133 604 145
Pdf.Exploit 0 1 8 2
Win.Adware 77,613 7,551 1,924 454
Win.Downloader 306 353 14,250 3,599
Win.Dropper 74 67 2,834 672
Win.Exploit 15 16 588 180
Win.Ircbot 0 0 83 15
Win.Joke 0 0 63 26
Win.Keylogger 0 0 7 4
Win.Malware 10 3 5 4
Win.Proxy 0 0 148 31
Win.Spyware 75 285 8,579 2,089
Win.Tool 12 1 455 110
Win.Trojan 83,701 18,672 80,246 20,033
Win.Virus 52 573 177 42
Win.Worm 191 3,132 6,181 1,589
Assorted Other 5 1 15 6

We also look at the labels ClamAV produces for the files it does recognize as

malignant in the malware data. These are shown in Table 2.3. We caution that the

labels should not be taken as an absolute ground truth; ClamAV did not recognize a

significant percentage of each dataset as malware, and anti-virus products in general
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do not always agree on the type of, or label for, an individual specimen. It is

also important to note that some of the labels are quite unexpected, indicating

JavaScript, PDF, and HTML malware. We reiterate that all files in all of our

datasets are valid PE files. These labels are either faulty in their designation, or an

indication of our executables containing malware of a considerably different nature

would be anticipated.

Looking at the Public and Industry data separately, and comparing within

group train and test sets, we see fairly consistent patterns. Looking across groups,

we do see some distributional similarities and differences. Both Public and Industry

are comprised mostly of Trojans, and do contain a significant amount of Adware.

In Industry, Adware is a close second for the malware type, where Droppers make a

distant second for Public. Public seems to have, in general, a wider array of malware

types. It is possible that the differences in distribution account for some portion of

the decrease in generalization when applying a model trained on Industry to data

from Public. At the same time, it is also important for a model to generalize to

novel data, which in this case includes malware of a type never seen before.

2.2.2 Other Datasets Used in Experiments

While our Public and Industry data covers the majority of experiments in

this thesis, we will also make sure of some additional datasets for malware family

classification. This is a highly related problem to malware detection. Instead of

determining if a binary is benign or malicious, we are given a known malicious
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binary and attempt to identify which family it belongs to. We use these additional

datasets to show that some of the new methods developed in this thesis have utility

wider than just the domain of windows binaries without domain knowledge. Doing

so increases confidence in our results for malware detection, as it provides evidence

that our newly developed algorithms are not overfit to the primary problem of

interest.

2.2.2.1 Microsoft Kaggle Malware Data

In 2015 Microsoft provided a corpus of malware data for a Kaggle competition

[64]. This dataset contains 9 malware families in 10,868 training files at 50.8GB

in size. We will use two different feature options that were provided as part of

the competition. First is the raw byte contents of the files3 which can be used for

byte n-grams, NCD, or any other similar approach. We will refer to this version as

“Kaggle Bytes”.

Microsoft also provided the disassembled versions of each file using industry

standard software IDA Pro. These disassembled versions contain ASCII represen-

tations of not only the assembly from binary code (.text sections), but ASCII rep-

resentations of all other sections of the binary as well. This includes additional

human-readable annotations when possible (such as resolving import names and

function signatures). The disassembled version of the dataset takes up 147GB of

disk space, and we refer to it as “Kaggle ASM”.
3Microsoft provided the raw contents, but with the file header removed so that one could not

accidentally run the malware samples. Since these headers are not recoverable, we used these
header-less versions.
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2.2.2.2 Android Drebin Malware

We will also make use of a dataset of Android APK malware called Drebin

[65], but for practicality we will remove any malware family that has less than 40

samples4, unless stated otherwise. This leaves us with 20 malware families and 4664

files with a collective size of 6.4 GB. Android programs are referred to as Android

application packages (APKs). APKs are in fact zip files, which may include some

level of compression, of the Dalvik bytecode and other application resources. We

note that the default Android toolkit often applies little or no compression when

creating the zip files. For this reason we use the dataset in two ways, one with the

raw APK files and one with the APKs uncompressed and its contents combined

into a single tar archive (i.e., no compression). We refer to these versions as “Drebin

APK” and “Drebin TAR” respectively. Drebin TAR is 8.6 GB uncompressed. We

note that three of the files could not be unzipped due to a malformed APK, and

these three files were removed).

Having described the data that will be used throughout this work, we now

move to on to our analysis of that data.

4Many of the malware families had less samples then cross-validation folds, which would have
made evaluation difficult
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Chapter 3: Weakness of Byte N-Grams

Byte n-grams have been used as features in a number of works, and are one of

the most common feature types used for static malware analysis [66]. By treating

a file as a sequence of bytes, byte n-grams are extracted by looking at the unique

combination of every n consecutive bytes as an individual feature. Most experiments

from other works range from n = 1 to n = 8 bytes, and are generally reported to

be effective for any n � 2 with papers determining various different values of n as

performing the best [66]. Byte n-grams are particularly attractive since they require

no knowledge of the file format, do not require any dynamic analysis, and could

potentially learn information from both headers and the binary code sections of an

executable[67]. This would satisfy our desires both for a method that is effective at

malware detection, and avoids the use of potentially expensive domain knowledge.

Given these benefits combined with reported accuracies of 95% or better, in

this chapter we investigate what features are learned by byte n-grams and why

they seem to perform so well. Our experiments will examine their performance for

n 2 {4, 6}. We find 6-grams to perform best, and use them as the basis of our

investigation into what concepts are actually being learned by our model.
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Overview of chapter contributions

Some of the potential shortcomings with byte level n-grams in the realm of

malware classification have been discussed before [68], but we are not aware of

any work that attempts to assess their true effectiveness or generalization to new

data sets. To do this assessment, we use multiple separate sources of data for our

experiments, divided into two higher level groups (Industry and Public) and as

described in section 2.2. Doing so allows us to show that prior works have likely

suffered from considerable overfitting by using data in the style of Public.

We begin our investigation by attempting to reproduce previous work, but our

larger collection of data results in more potential features. For this reason we per-

formed an evaluation of feature selection methods (section 3.1). As part of improving

the feature-selection process we used Elastic-Net regularized Logistic Regression as

our classifier, which performs implicit feature selection. In subsection 3.1.1, we ex-

amine both the final model performance, and the regularization path, where we

discover significant over-fitting of our n-gram models and a possible methodological

flaw in the data-collection process of some, if not most, previous papers.

In section 3.2 we investigate the nature of our features, and determine why

they don’t work as well as expected. We present evidence that our n-grams are

learning string-like features rather than information from the code or other sections

of an EXE file. Based on these results, we devise the Multi-Byte Identifier in

subsection 3.2.1 as a technique to help further evaluate n-grams for EXE files. The

final experiment in our investigation is covered in subsection 3.2.2, where we provide
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evidence that most of the generalizable information may be coming from ASCII

strings. Given these surprising results, we discuss what we believe are the major

weaknesses of the byte n-gramming approach in section 3.3.

3.1 Feature Selection and Model Building

An issue not adequately addressed in previous work is the feature selection

process. For the 400k total files in Industry’s training set, there are 4,289,759,510

unique 4-grams and 35,953,973,975 unique 6-grams observed. Storing the 6-grams

naively, with 32 or 64-bit integers for count information, would take 503 or 791 GB

of RAM, respectively. This issue alone is a significant road-block to applying byte

n-gram features in practice.
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Figure 3.1: From training-set of Industry, the number of 6-grams that occurred in x many
files.

The feature selection process is made somewhat easier by the frequency of

individual n-grams, as shown in Figure 3.1. We observe that they tend to follow a

power-law type distribution, with 87.72% of 6-grams occurring only once, 97.58%
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6-grams occurring ten or fewer times, and 99.61% with 100 or fewer occurrences.

This is not surprising, since n-grams from NLP applications tend to follow a power-

law (Zipfian) distribution as well. We felt the presence of such a distribution was

worth confirming, since there is no reason n-grams would have to follow such a

distribution when applied to different domains. We can reduce our set of candidate

n-grams in general by selecting a minimum number of occurrences based on coverage

in our dataset. For example, selecting 6-grams that occur in at least 1% of the

aforementioned 400k files results in just under 1.6 million 6-grams (a reduction of

more than 99.99%).

Learning from 1.6 million 6-grams is still a computational burden and provides

strong potential for over-fitting, so additional feature selection is necessary. Most

previous work [e.g., 20], [26] use Information Gain criteria (3.1) or some other simple

ranking scheme to select a fixed subset of n-grams. Our approach is to first do a

coarse feature selection down to 200k n-grams, followed by a final feature selection

during model construction.

We compared a number of ranking schemes to choose a subset of 200k n-grams

which we list and briefly describe. For the equations below, gj indicates the presence

of n-gram j, and mj and bj are the number of malware and benign files that had

gj present. M denotes the malware class, B denotes the goodware or “benign” class,

and P(x) is the probability of x given the training data. NM and NB indicate the

number of n-grams found in malicious and benign files respectively. We tested each

of the below methods, such as Information Gain (3.1), to select the initial 200k
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subset of n-grams.

IG(gj) =
X

v2{gj ,¬gj}

X

C2{M,B}

P(v, C) · log2
✓

P(v, C)

P(v) · P(C)

◆
(3.1)

As an alternative to Information Gain, we introduced two simple scores that

prefer features occurring in only one of the classes. Malice Score (3.2), which is

biased toward features more common in malware and Benign Score (3.3) to favor

features found in goodware.

Malice Score(gj) = P(gj|M)� P(gj|B) (3.2)

Benign Score(gj) = P(gj|B)� P(gj|M) (3.3)

To test favoring lop-sided occurrence rate in either direction we added the

Absolute Malice Score (3.4). A simple variant on the Absolute Malice Score is Root

Malice Score (3.5), which prefers more “pure” features based on the class in which

it occurred.

Absolute Malice Score(gj) = |P(gj|M)� P(gj|B) | (3.4)

Root Malice Score(gj) =
����
q

P(gj|B)�
q

P(gj|M)

���� (3.5)

We also evaluated ranking based on the Gini coefficient (3.6) and KL-divergence
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(3.7). Our Gini tests add c artificial observations to each n-gram, because without

this modification many millions of n-grams all received the same maximal score.

Ginic(gj) =
2(mj + c)(bj + c)

(mj + bj + 2c)2
(3.6)

KL(gj) =
mj

mj + bj
· log2

mj(NM +NB)

NM(mj + bj)

+
bj

mj + bj
· log2

bj(NM +NB)

NM(mj + bj)

(3.7)

Much previous work used feature ranking schemes like these to do all of their

feature selection. A shortcoming of this approach is the need to then estimate how

many features to select. Prior works usually selected only a few hundred to one

thousand n-grams, and then trained a model on the selected subset. Determining

the appropriate value of k becomes its own expensive process, as noted in Kolter

and Maloof [16] where the number of n-grams was chosen based on analysis of a

subset of the data. In our approach (detailed in 3.1.1), the initial coarse feature

selection is mostly for computational convenience. This is because we have chosen

a Machine Learning model that does implicit feature selection as part of the model

building process.

To compare these feature selection methods, we built models using each of

them according to the method described in subsection 3.1.1 and sorted the models

by their cross validated (CV) accuracy. The results are shown in Table 3.1. We see

that simply selecting the n-grams that occurred in the most files performed best,

with most methods resulting in only a minor difference. Specifically, all of the tested
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feature selection methods, except the Gini measure (3.6) and KL-divergence (3.7),

obtained 90%+ accuracy. We note that of the simple sorting methods we tested

— equations 3.2 through 3.5 — the Root Malice Score did slightly worse than the

others. The square root term in (3.5) causes a slight preference for purity of label,

that is to say the equation prefers to select n-grams that occur only in benign or

malicious files but not both. This is a property shared by (3.6) and (3.7). Overall

this would seem to indicate a need for common, high-frequency n-grams in order for

our models to perform well.

Much of the previous work [16], [24] in using n-grams has suggested the use

of Information Gain (3.1) based on its success in text classification and other NLP

domains. Our results indicate that while Information Gain does work well, we can

use much simpler approaches by choosing a model that has feature selection built-in

to the model’s training.

Selection Method CV Accuracy

Frequency 96.6%
Malice Score 96.3%
Abs Malice Score 96.3%
Benign Score 96.3%
Info Gain 95.2%
Root Malice Score 94.6%
Gini32 85.0%
KL 78.7%
Gini256 77.2%

Table 3.1: 10-fold CV accuracy rate on Industry training data using the top 200k features
selected by different methods. Test set errors had similar ranking.

A downside not addressed in previous works is that adding more data does not

significantly change the number of n-grams that become viable model features, caus-
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ing diminishing returns as data is added. This is counter to the argument presented

in Schultz, Eskin, Zadok, et al. [1]. For example, for the results of our whole model

building process: a model built from the training set of Industry obtains a weighted

accuracy of 87% on all data, excluding Open Malware, from Public. Training from

the much smaller test-set of Industry gets an accuracy of 84.4% on the same data.

Evaluating the recall on only the Open Malware data, the performance only drops

from 81% to 80%. This puts n-grams in a poor place, as doubling the amount

of data can double the amount of resources required but produces only marginal

improvement in outcome. This makes it difficult to exploit the phenomena that

adding more data tends to provide significant improvements to accuracy [47], [48],

[69], which is what we would normally expect. The minor increase in accuracy could

be an indication that our features do work well or are nearing the representational

capacity of our features and model. We don’t believe this is the cause, as we observe

evidence of overfitting in the remainder of this section, as exemplified in Table 3.2

and discussed through the rest of this chapter.

3.1.1 Elastic-Net Models of N-Grams

We build our models with Logistic Regression using either of two different

regularization methods: Lasso (also called L1) [70] and Elastic-Net [71]. The objec-

tive function of both can be defined using equation 3.8: for Lasso, ↵ = 1 and for

Elastic-Net, ↵ = 1
2 . The value C in the loss function is our regularization param-

eter. Larger values of C decreases the strength of the regularization. As C ! 1,
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(3.8) approaches the behavior of standard Logistic Regression. Smaller values of C

reduce the flexibility and effective degrees of freedom of the model, encouraging the

solution vector w to approach zero.

f(w) = ↵||w||1 + (1� ↵)1
2
||w||22+

C

NX

i=1

log(1 + exp(�y · wT
xi))

(3.8)

We use these methods for two reasons. First, they provide a principled method

of feature selection that is robust to extremely high dimensional data with many

irrelevant features [72] while also being computationally tractable. Their feature

selection property is a direct result of the model building process, as exact zeros will

occur in the optimal solution of w as a result of the ↵||w||1 term in the objective

function. Second, we can compute a regularization path, where we look at the

properties of the model (e.g. accuracy, number of non-zero weights, or coefficient

values) as a function of C. This regularization path provides insights into the model’s

performance and the quality of the selected features.

For our training process, we start with the 200,000 6-grams based on total

number of files they occurred in (i.e., an n-gram is counted only once per file).

Feature vectors are constructed as binary vectors, with zero indicating the absence

of the feature in the file, and one indicating its presence.

We also experimented with using a larger number of features to start (up to

one million), with using TF-IDF style weightings for occurrences, and with counting

n-grams by total number of occurrences in a file when considering the top selection.
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None of these experiments resulted in a noticeable change in accuracy, or the behav-

ior of the regularization path when trained. Any one of these changes could result

in a different subset of n-grams being selected by our final model, with up to 50%

of them changing. We are concerned that up to half of the selected features could

change with no discernible impact on accuracy and believe this is an indication of a

weakness of byte n-gram features.

To create our regularization path, we need a minimum and maximum value

for C to consider. We first compute C0, the value of C that would result in a

weight vector of all zeros as specified in Yuan, Chang, Hsieh, et al. [73]. We then

use a starting value of 2C0 as the strongest regularization we evaluate, and set

the weakest regularization to be 2C0 ⇥ 105. We compute the regularization path

along 300 logarithmically spaced points along this range, following the basic warm-

start strategy in Friedman, Hastie, and Tibshirani [74]. The warm-starting strategy

allows us to build these models sequentially at only incremental cost. However, our

search is over five orders of magnitude, where Friedman’s search only covered two

orders of magnitude. We use this larger range due to unusual behavior observed in

the regularization path, and highlight the issues below. We confirmed our results

using two implementations of Elastic-Net Logistic Regression, one an extension of

the new GLMNET [75] to the Elastic-Net case and another using the extension to

OWL-QN presented in Gong and Ye [76].

In Figures 3.2 and 3.3, we show the number of non-zero values in the weight

vector and the accuracy over the regularization path using 6-gram features. These

results give us several reasons to suspect that our n-gram features are over-fitting
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the data.
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Figure 3.2: Average number of non-zero weights in solution vector based on 3-fold cross
validation across regularization path.
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Figure 3.3: Average accuracy based on 3-fold cross validation across regularization path.

Our data requires extreme levels of regularization to obtain an informative

regularization path, which is the main reason we use such a large search range

for C. In Yuan, Ho, and Lin [75] the smallest regularization value considered is

2�4, which is already near the maximum of our evaluated range and at the point

37



of diminishing returns. If we had used the ranges suggested in other papers our

regression model would have exhibited almost no change in the weight vector for all

tested values.1

Even if we ignore the abnormally high amount of regularization, the behavior of

the regularization paths of both Public and Industry models are irregular. Looking

at Figure 3.2, the most pronounced issue is the step-ladder addition of features in

large groups at a time, rather than more continuous additions of features a few at a

time. This behavior is obvious in the Public models, but also occurs in the Industry

models. In Figure 3.3, the Public models exhibit higher accuracies over the whole

range of regularization, much higher than we would expect. The differences between

the models’ CV error rate gives a strong indicator of data quality issues.

In addition, we note that the L1 Industry model in Figure 3.3 has a CV

accuracy of 71% using an average of only four features. The L1 Public model gets

91% using just ten. The Elastic-Net Industry & Public models use a similarly

small 40 features to obtain 72% and 94% accuracy respectively. A priori, it seems

highly unreasonable that as few as ten 6-grams should be able to obtain such high

accuracies. Both Industry models are entering a plateau of 95% accuracy by 10,000

features, and both Public models plateau of 99%+ by just 2,000 features. If n-grams

were effectively learning features from the binary sections of an executable, it seems

unlikely that millions of malware and goodware EXE files would be forced to use

such a small subset of binary code. We confirm in section 3.2 that the n-grams are
1In extended testing, neither the accuracy or number of non-zeros increased when testing larger

values of C.
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not effectively learning binary features.

Public Industry
L1 (%) Elastic (%) KM (%) L1 (%) Elastic(%) KM (%)

6-
gr

am

OM 96.9 97.2 96.2 81.1 81.2 49.5
Public Test 99.7 99.6 99.1 87.3 87.0 72.8
Industry Test 68.1 68.1 62.0 94.5 92.5 85.5

4-
gr

am

OM 97.0 97.3 97.3 67.1 64.1 52.6
Public Test 99.6 99.6 99.3 84.9 84.7 74.3
Industry Test 70.5 68.8 65.8 90.6 89.7 86.6

Table 3.2: Performance of Kolter and Maloof (KM), L1 and Elastic-Net regularized models
trained on both groups of data, and applied to all testing data. Open Malware
(OM) is recall, others are weighted accuracy. Column indicates which data was
used for training the model used. Row indicates the test set and whether 4 or
6-gram features were used.

The final testing accuracy is shown in Table 3.2. We use a weighted accuracy

so that the malware and benign samples in the test set have equal total weight.

Since the Open Malware test set comprises only malicious files, we list the recall

rate rather than accuracy. The Open Malware files are not included in the Public

Test scores.

In our results the models trained on Public do not generalize to the data in

Industry, getting an accuracy much lower than what was achieved in all previous

works. Due to the bias in how Public’s data was collected, we believe that the Public

model has actually learned an “is it a windows executable?” classifier, rather than

“is it malware?”. This would explain the high recall on Open Malware. The model

learns to say “no, not Windows” (i.e. malware) for all the data, since none of it came

from Windows and the whole collection is malware. However, saying “no” for the

Industry goodware (which also did not come from Windows) results in an error rate

approaching random guessing. The lopsided errors in the Industry test set corrobo-
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rate our suspicion that the models defaults to classifying most inputs as malware by

default, and then use features present to switch to a decision of goodware. This is

further confirmed by looking at the false-positives on the portablefreeware, Cygwin,

and MinGW files. Since these were a part of the training set, we would expect them

to be predicted correctly by the model. However we found that MinGW and Cygwin

had a false positive rate of 39%, and portablefreeware data had a false-positive rate

of 43%. These values are extraordinarily high and do not reflect the Public test set

accuracies, providing strong evidence that the model is not accurately learning the

desired concept.

Models trained on Industry generalize better to Public testing than vice versa,

though the accuracy on the Public test set is lower than the Industry test set, and

the recall on Open Malware is down to the low 80s. Despite the drop, this overall

behavior is consistently better — as it is generalizing past the training distribution.

This indicates the 6-gram model trained on this data has meaningfully captured

some information. The spread in test set performance, combined with the behavior

exhibited in Figures 3.2 and 3.3 give us reason to suspect that there may still be some

level of over-fitting occurring. This is corroborated by the higher CV accuracies in

Table 3.1, and suggests that the I.I.D. assumption of cross validation is too strongly

violated in our corpora to be used for evaluation. Given the similarity of our Public

data to others, and its increased scale, this brings many previous results into question

— especially when used as the only validation as in Abou-Assaleh, Cercone, Keselj,

et al. [11]. We also note that the Industry test performance drops to around 81%

accuracy when considering the generalization to the Open Malware data. While
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this does not necessarily represent the accuracy we would expect when deploying

this model to various users, it is considerably below the mid to high 90s that are

reported by most others. This indicates that the true effectiveness of binary n-grams

for malware classification has been considerably over-estimated.

Comparing to the baseline approached used in Kolter and Maloof [16] (KM),

our use of Elastic-Net and Lasso regularized Logistic Regression has provided a

dramatic performance improvement when trained on the Industry data. Because

KM use boosted decision trees, which can learn non-linear decision surfaces, we know

the difference in accuracy is not a capacity issue of the chosen model since we used

a simpler linear model. The KM approach trained and tested on Industry performs

worse, likely due to a lack of features. By using a model with the feature selection

process built in, our performance has improved generalization and simplified the

feature selection task. We also note that the KM’s approach loses generalization

accuracy at a quicker rate when moving from the Industry test data to Public

test, and from Public test to Open Malware. Considering the extreme levels of

regularization we are using for a linear model, it is likely that the KM approach’s

difficulty in generalizing past the training data is caused by the use of a more

powerful and flexible discriminative model. That is to say, the non-linear model

used in KM has greater capacity to overfit the data — which we believe to be the

issue since our simpler model is also showing evidence of overfitting.
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4-gram vs 6-gram Performance

On the issue of n-gram size, we note that there is no significant difference in

the overall behavior of the regularization path between 4 and 6-grams, though there

is an apparent difference in generalization accuracy. In Figure 3.4 (corresponding

to Figure 3.2) we see the same general pattern of the Industry models initially

selecting more features than the Public models, before reaching a common plateau.

In Figure 3.5 (corresponding to Figure 3.3) we again see that the models trained on

Public immediately reach a higher accuracy, with the Industry models not reaching

as high and taking longer to reach their plateau. We note that the cross validation

scores on the Industry data are reaching higher accuracies for 4-grams (97.4%) than

was obtained for the 6-grams (95.6%). Yet 4-grams have lower test set accuracies

than 6-grams in Table 3.2. This means the 4-grams are exhibiting even higher

degrees of overfitting compared to 6-grams.
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Figure 3.4: Average number of non-zero weights in solution vector based on 4-gram features
and 3-fold cross validation across regularization path.
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Figure 3.5: Average accuracy based on 4-gram features and 3-fold cross validation across
regularization path.

Looking at the numbers in Table 3.2, we see that despite having the same

general behavior — 6-grams trained on Industry generalized considerably better

than 4-grams to the Open Malware data, with 4-grams trailing by 14 percentage

points. The difference is not as large for the Public and Industry test sets, but the

6-grams do continue to perform better by 2 to 4 points. This would seem to validate

our general preference for 6-grams over 4-grams. Looking only at the models trained

on Public, the difference in accuracy mostly disappears. Considering that the Public

models are overfitting to the Microsoft Windows data, it is understandable that their

performances would converge. This would also explain why most prior works, using

data similar to Public, have shown little performance difference for n-grams when

testing various values of n.
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3.2 N-Gram Evaluation

Given the poor level of performance compared to previous results when given

more data, we sought to evaluate what the n-grams extracted were actually learning.

The starting point of this was to use the 6-grams selected by the Elastic-Net model

trained on Industry to obtain some simple statistics. We use the 6-gram model since

6-grams had better performance than 4-grams in subsection 3.1.1.

First, we look at the entropy of where our 6-grams occurred. Because different

modalities of information have different average entropies [4], looking at these statis-

tics gives us an idea of what information may be captured by the n-grams. Since 4

and 6-grams are too small to compute a meaningfully entropy measure, we estimate

the entropy of an n-gram from a window of bytes around where it occurred in a file.

We compute the Shannon entropy (1.1, repeated below for reference), where pi is

the proportion of byte i in the given window.

S = �
256X

i=1

pi · log (pi)

In our testing we used a window of 128 bytes, though results were not sensitive to

exact window size. The distribution of n-gram entropies are presented in Table 3.3.

26% of our n-grams occurred in entropy regions more often associated with plain-

text (i.e. S  4) [4]. From this table, it would appear that up to 74% of our

n-grams are occurring in entropy regions associated with executable code (that may

be packed or encrypted). This is initially encouraging, as it indicates our 6-grams
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do occur in regions associated with code and hence, may be learning to discriminate

between benign and malicious code.

We also looked at how well distributed our features are among the test data.

In Figure 3.6 we plot the fraction of 6-grams the model selected that occurred in

the Industry testing data. If our 6-gram features are working effectively, we would

like to see a relatively even distribution of feature occurrences, but the unfortunate

trend is that our 6-grams are not evenly distributed through the test data. Instead

a few files have a significant fraction of features present, quickly trailing off toward

almost none of the features being present. For n-grams to generalize well, we need

to see our features occur in new files on a consistent and regular basis, as they are

intrinsically critical to making the classification decision. The likelihood of observing

our n-grams can only decrease when tested on data from a different source, making

this trend a significant issue.

Entropy Proportion Cumulative

0 0.4% 0.4%
1 1.5% 1.9%
2 3.8% 5.7%
3 11.1% 16.8%
4 9.2% 26.0%
5 19.2% 45.2%
6 48.3% 93.5%
7 5.7% 99.2%
8 0.8% 100%

Table 3.3: Percentage of n-grams that occurred within an entropy window (rounded to
nearest integer).

These statistics give us some higher level information, but do not explain any of

our results. Since so few features are needed to obtain high CV accuracies, and based
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Figure 3.6: Fraction of 6-grams used in the model that are observed in each testing point.

on the proportion of our n-grams occurring in low entropy regions, we examined the

ASCII decoding of the n-grams selected at the beginning of the regularization path.

A subset of the 4 and 6-grams selected by the L1 regularized models are presented

in Table 3.4. Sixteen 6-grams and 4-grams were selected by the models trained

on Public; thirteen 6-grams and 27 4-grams were selected for the models trained

on Industry. Note, the number of non-zero features selected is larger than what is

shown in Figure 3.2 because those numbers are the average number of non-zeros

from the CV models, whereas this is the actual model trained on all data at that

regularization strength.

Looking at the ASCII decodings, we can see that the models trained on Public

are selecting parts of the text “Microsoft Corporation”, which is embedded in most

of the executables that come with any installation of Microsoft Windows, often if

not always with symbols such as “®” and “©”. Because L1 regularization does

not like selecting highly correlated features [71], it has difficulty obtaining the n-
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grams to complete the string. This overfitting to the concept of “from microsoft”

was hypothesized by Seymour [77] who showed prior published models trained in

this manner did not generalize to new benign files.

The model trained on Industry 6-grams appears to be picking up items from

the header and import tables, selecting most of the import “KERNEL32.DLL” and

a GetProcess function. By looking at the Elastic-Net 6-grams, since it has no issue

selecting correlated features, we can confirm that our hypothesis is correct and that

this behavior extends out into the beginning of the regularization path’s search (such

tables can be found in the appendix). The model trained on Industry 4-grams is

still picking up string information, but seems to prefer some different information. It

does not tend to select strings that make function imports, like the 6-grams do. We

suspect this is an issue with the smaller 4-grams matching too many other tokens as

well, losing some of their discriminative ability. The items selected by the 4-grams

are generally selected by the 6-gram model later in the regularization path. Overall,

the most discriminative items being selected appear to be string features. This result

appears to contradict Schultz, Eskin, Zadok, et al. [1], which posited that n-gram

features provide additional robustness to the model since they are harder to avoid

than string-based features.

3.2.1 Multi-Byte Identifiers

Based on the behavior of the n-grams observed in Table 3.4 we develop the

hypothesis that informative malicious or benign segments in the data are longer than
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Public Industry
6-gram ASCII 6-gram ASCII

20004D006900 �Mi 000047657450 GetP

00720070006F rpo 657450726F63 etProc

006F00720070 orp 00004C6F6164 Load

43006F007200 Cor 6B65726E656C kernel

000100560061 Va 00004B45524E KERN

004400000001 D 4C33322E444C L32.DL

4-gram ASCII 4-gram ASCII

4D006900 Mi 69726541 ireA

7400AE00 t® 6C3D2272 l="r

00720070 rp 3C736563 <sec

20004300 �C 2E637274 .crt

00010056 V 696F6E3E ion>

72794100 ryA 3C2F7365 </se

Table 3.4: Selection of 4 and 6-grams chosen by the most strongly regularized L1 models.
Whitespace denoted using the ‘�’ symbol

our n-grams. If this is the case, we should see sequences of adjacent or overlapping

n-grams when processing our files, and it would explain why increasing n to even

higher values does not tend to cause any significant drop in performance. We call

any such sequence a Multi-Byte Identifier, or MBI. We search for MBIs using the

subset of n-grams chosen by our Elastic-Net model, since any larger sequences of

n-grams will be highly correlated and thus less likely to be selected by Lasso.

It is difficult to manually evaluate how n-grams are being used as more are

added to the model. MBIs can help us to better understand what higher level

concepts are being learned by our model. After manually inspecting MBIs from a

few files, we used a simple heuristic to separate MBIs into three categories: Strings,

Simple, and Other. Examining the contents and statistics of these categories helps

us better understand what types of information are being captured by our n-gram
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models.

1. Strings: Any MBI where more than half of the bytes are ASCII printable

characters.

2. Simple: Any MBI whose hex representation has two or less distinct ASCII

characters.

3. Other: Any MBI not in the other two categories.

Using this simple strategy, we find that 16.8% of all extracted MBIs are strings,

43.0% are simple, and 40.2% belong to “other”. If restricted to unique MBIs, we

get 20.6%, 26.8%, and 52.7% respectively. The changes in percentage of MBIs come

mostly from the simple section, which has the most repetition. Of the string MBIs,

most are learning to find items like “GetProcAddress” and “WIN32.DLL” that are

detecting imports or section names such as “.text” and “.rsrc”.2 Some strings

appeared in data or code sections, an example being “PADDINGXX” repeated 26

times. Most simple MBIs were interleaved sequences of 0x00 and 0xFF of varying

lengths, sometimes over 1 KB in size. We were not able to ascertain the nature of

the other MBIs. An attempt was made to disassemble these MBIs, but they did not

always produce meaningful assembly code. While we were able to occasionally find

useful MBIs in this category,3 we were not able to determine how meaningful this

larger category was as a whole.
2Amusingly, we discovered one instance of malware using the non-standard “.virus” section

name
3An interesting example is the MBI 0x33C9B104014C24, which we discovered is used by Cla-

mAV as a signature (see https://github.com/eqmcc/clamav_decode/blob/master/db/daily.

ndb#L363).
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These results indicate that n-grams may not be learning strong features. The

percentage of MBIs that are very simple is especially concerning given how fre-

quently they appear in both benign and malicious files. We believe many such

MBIs, like 0xFF00FFFF000000, are an artifact of the overfitting we have observed.

In generalizing to new data, they would then act as noise in the decision process.

We note that there is the possibility for meaningful MBIs in the simple category,

such as 0x0C0C0C0C [78] or the sequence 0xCCCCCCCC for repeated int3 calls

to interfere with a debugger. Unfortunately we did not tend to see these in the

MBIs our models learned, though they do exist in our data set.

Objectively, any MBIs found in the code section of a file will be brittle, es-

pecially if they call any function, as the addresses called can easily change based

on changes in the header. In this case, our n-grams would act more as a signature

for previously seen malware rather than a feature to predict novel malware. The

accuracy on Industry’s test set could be partially explained by the model learning a

set of smaller signatures, which are applicable to test data from the same collection.

While this could be useful for systems such as the one in Griffin, Schneider, Hu, et

al. [79], signatures are intrinsically not generalizable features. Given the number of

string MBIs and the n-grams chosen by our models in Table 3.4, we suspect that

n-grams are obtaining most of their generalizable information from the PE header

and plain-text strings present in the file, similar to the features used in Shafiq,

Tabish, Mirza, et al. [68]. We also note that while n = 6 bytes is large enough to

capture the instruction and operands for about 97.6% of instructions[80], a valid

x86 instruction can be up to 15 bytes in length. The variable-length nature of the
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instructions appears to be a general mismatch for fixed-length n-grams.

We were able to obtain the same MBI results using the n-grams from our L1

regularized models as well. We hypothesize that this is an artifact of the lack of

informative features. The L1 model, as C increases, is forced to select increasingly

larger groups of correlated features simultaneously. This would explain the unusual

regularization paths in Figure 3.2 and the plateau in Figure 3.3 and that we are able

to obtain MBIs with Lasso. However more testing is needed to be conclusive. Given

these results, it may be interesting to explore using MBIs as features themselves in

future work.

3.2.2 String Features

To determine how much of the discriminative power comes from n-grams pick-

ing up on string features, we perform another test using the occurrence of strings

as features. We use the GNU strings command to extract all ASCII strings � 4

characters from our training sets. We then create a regularization path using Lasso

and Elastic net in the same way we did for n-grams, and plot the cross-validated

accuracy as well as the test accuracies on Public and Industry as a function of C.

For comparison, in each plot are two dashed lines representing the performance of

the 6-gram features on the Public and Industry test sets.

Once trained, we note that both models used a comparable number of string

features as compared to the n-gram features. Both models trained on Public strings

selected around 5,500 out of 200,000 strings and the models trained on Industry se-
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Figure 3.7: 3-fold CV and test set accuracy using string features. Trained using L1 regu-
larization from Public data

lected around 24,000. In Figure 3.7 we see the cross-validated and test set accuracies

of training an L1 regularized model on Public training data using string features.

As C increases, we see the test set accuracies reach the same values as the n-gram

results. However, in the same plot in Figure 3.8 we see the CV score go above previ-

ous results, while the test set scores both fail to reach the same accuracies achieved

when trained with n-grams.

Based on these results, it seems reasonable to conclude that n-gramming does

learn some non-string features, but can degrade to learning only string features when

given poor data. This further calls into question all previous results collected in the

same manner as our Public data. The gap in performance between n-grams and

strings features trained from Industry does open the possibility that n-grams are

learning some useful features that are not strings.

Another potential explanation of the performance gap is that exact extraction
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Figure 3.8: 3-fold CV and test set accuracy using string features. Trained using L1 regu-
larization from Industry data

of strings fails to capture certain information that is captured by n-grams of strings.

Some sub-strings may be more generalizable than the whole string they come from.

Many of our strings are also sub-strings of larger strings we extracted. A most-

common-substring may better capture their relationship and match other instances

appended with characters that we had not seen, and therefore would not catch.

Normalizing by common sub-string could also move items up in total count and

therefore warrant consideration in the model, when it would have been removed for

being too infrequent before. A similar issue we see is strings that are mostly the

same, but have an edit distance of one or two. In some sense, n-grams learning from

strings better handle these problems by limiting themselves to a fixed size, though

we must rely on the model building process to adequately select enough components

of these strings and properly weight them. We have not yet tested this hypothesis

as a detailed analysis of string-based features is beyond the scope of this work.
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3.3 Discussion

We have performed a significant investigation into the performance of n-grams,

and found them to be learning less and performing worse than previous work would

have suggested. We hypothesize that n-grams, at least used on the whole executable,

have a number of intrinsic issues that have not been adequately discussed.

First is the discovered issue that n-grams appear to be learning mostly from

string content in an executable, and items from the PE header (which also contains

strings). We believe this is an issue intrinsic to n-grams. While there are billions

of potential n-grams, we need to select the features that occur frequently enough

to occur in new data as well. Selecting with a predisposition to frequency then

encourages us to select lower entropy features, which consist primarily of strings

and padding. However padding alone is not a particularly strong signal, and as

mentioned, strings could have been obtained in a much simpler fashion.

As mentioned in subsection 3.2.1, a possible preference for 6-grams may be

that they are large enough to regularly capture a whole x86 instruction, but still

fall short 2.4% of the time. This makes processing with n-grams problematic in

creating a mismatch between our features and the data. This is important since,

assuming no instruction in isolation is an indicator of maliciousness, we need to

capture multiple instructions in a single feature. To even attempt to consistently

capture three sequential assembly instructions we would need to produce and process

n-grams of at least 12 bytes in length for most cases, and up to 45 for extreme cases.

This alone is simply too computationally demanding a task to perform. Even if we
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had the computational resources to do so, there would still be a problem of trading

off between specificity and generalization. We want our features to be large enough

that they are not likely to occur by chance in a new file, but small enough that they

are not specific to the training data as this would degenerate into a signature-based

approach, which would have maximum specificity but no generalization. When

considering the aforementioned frequency bias, it becomes even harder to imagine

a large n-gram being selected by the model.

Another intrinsic issue is the loss of location information when using n-grams.

Given our observed performance and the common use of string features, we believe

that this limitation is likely playing a role in their weakness. For example, in our

Public malware we observed that at least 5% of the data had inconsistent section

names compared to the permissions set in the PE header (e.g. a section named

.data but marked as executable in the header).4 The occurrence of a feature in a

non-executable section, when normally it would be found in an executable section,

could have a significantly different meaning that would never be recognized by n-

gram approaches. This type of location mismatch could occur both based on a

section’s string name in the header, and what the section’s true identity is based on

the permissions set.

Finally, we believe that the drop in generalization performance from our In-

dustry model can be explained in part by an intrinsic brittleness to n-gram features.

Regardless of what our n-grams learn, to apply them we must obtain an exact
4We did not perform an exhaustive test for consistency; this was merely a property found when

testing some simple hypotheses. The true number could be much higher.
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match when classifying a new datum. This means any minor change will make

the feature “disappear” in terms of its impact on our model. Consider that we see

GetProcAddress as a common MBI in Industry, indicating that this Windows func-

tion is a common feature of malware. We would then like to see our n-grams learn to

identify the call or jmp instructions, followed by the address of the GetProcAddress

function as a feature. However, in the import table to the PE the address of any

function can be arbitrary defined, thus making it impossible for any of our n-grams

containing a call or jmp plus an address to generalize to new files.

The other part to the lack of generalization is an intrinsic potential for over-

fitting that will be found with n-grams. Estimating model parameters when the

number of features is near or larger than the number of samples is a classic sce-

nario for over-fitting due to the curse of dimensionality [81]–[83]. Since each file

is one sample and based on the power-law observation of the n-gram distribution,

we should reasonably expect that every new executable will give us thousands to

tens of thousands of previously unobserved n-grams (depending on the size of the

file). Thus we are in a scenario that will always produce many more features than

samples. We selected Lasso and Elastic-Net for their robustness in this scenario and

many of the features can be removed by frequency counts, but these techniques are

not entirely immune to the curse of dimensionality.
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3.3.1 On Using Multiple Training and Testing Sets

Because the issue of overfitting is critical to our results we also discuss why

we have used multiple, independent datasets for our evaluation, which may seem

unusual at first. This is important to understand, a a theme that will occur in

multiple chapters of this work. We do this because the space of possible malware and

goodware is extraordinarily large, and it is not possible for us draw a well-distributed

random sample of real files from this space. Executables from Microsoft Windows

are the most readily available source of benign files. Since these all come from the

same source, they all share a strong common bias. Another collection strategy is

to include commonly installed applications, such as third-party web browsers, as a

source of goodware. This obtains only a few thousand EXEs, which is not enough to

represent the larger population of different miscellaneous applications people may

have. If such limited data were an adequate representation of the class of goodware

then it would be easy enough to construct a white list of known safe applications.

It is easier to obtain large amounts of Malware thanks to resources such as

Virus Share and Open Malware, and from the use of honeypots. Yet these sources are

also biased. They are run by volunteers, and the samples are provided by volunteers.

So each source already has an intrinsic bias in the malware that is provided by those

who make the effort to do so. There may be individuals or organizations that see

malware and are not able or willing to share it, and thus that data won’t make it

into the collection. Private data collections used by anti-virus corporations, such

as our industry partner, are also biased by their data collection mechanism and
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contractual agreements with clients and customers.

Given all of these potential biases and the large space of possible EXEs, we

must be careful in our inference of the true generalization of our results. Using mul-

tiple evaluation sets that avoid sharing common biases helps us to better determine

generalization. For example, if Public was sufficient to learn the benign versus mal-

ware problem, we would expect a model’s cross validated accuracy on Public and

test set accuracy on Industry to be similar; however, it is not. Said another way, we

want to see models trained on one dataset generalize to new datasets. If the model

is able to generalize to a completely new dataset, that gives us higher confidence it

will continue to perform well on new and novel malware. If it fails to do so, then we

have little confidence that the model will continue to perform well against new and

novel malware.

If we instead merged all our data into one larger dataset, and performed cross

validation, the aforementioned biases will be in all folds, and we would obtain little

information about the true generalization of the model. This is an issue with the

assumption that data is independently and identically distributed. While the I.I.D.

assumptions is rarely entirely true in practice, it is violated in too strong a manner

for cross validation to be valid for our data. If it were appropriate to merge our

Public and Industry data and use cross validation, we would expect to see similar

performance across datasets and similar features learned. We have shown in subsec-

tion 3.1.1 that the performance is not consistent across datasets, and in section 3.2

that the features learned are different depending on the training dataset.

Having explained the importance of this evaluation strategy, we will use it
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repeatedly through this thesis. This gives us valuable information about the gener-

alization of our models that would not necessarily be detectable otherwise.

3.4 Conclusions

Previous work has reported byte n-grams to be highly effective for malware

classification. The goal of this chapter was to investigate this feature type and

determine how it performed so well on such a difficult task. By applying and evalu-

ating Elastic-Net and L1 regularized Logistic Regression and the novel Multi-Byte

Identifier to the n-gramming of a corpus of previously un-reported size, we have

shown significant issues with the use of n-gram features. They are computationally

expensive, exhibit diminishing returns with more data, are prone to over-fitting, and

do not seem to carry information much stronger than what is more readily available

from the PE header and ASCII strings. While n-grams do have some merit as a

feature for executable files, their results have been significantly over-estimated in the

literature. Overall, it seems that we could obtain the same performance using much

simpler and more interpretable techniques. We have also observed a larger issue,

to wit, many papers are evaluating with a corpus of benign files collected mostly

from Windows installations, which is too simple a subset to accurately represent the

goodware vs malware problem. Our work highlights the importance of investigating

what a model has actually learned, rather than simply accepting held out or cross

validated scores as true performance.

The information present in n-grams are still not fully explored, and may still
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be useful in a more restricted context. For example, while using only n-grams is not

very effective, can n-gramming a limited portion of an executable be informative

in conjunction with other features? It is also an open question as to whether n-

gramming with domain knowledge could improve results, where n-grams extracted

from the .text section of a EXE file are processed and treated differently then n-

grams from other sections. Of course this may nullify one of the prime advantages

of n-gramming, to wit, that it requires no domain knowledge to apply. Future

avenues of research include evaluating the viability of n-grams in other domains,

and exploring what other approaches may work for EXE files but require limited or

no domain knowledge. Based on the information we have extracted, we plan to do

an investigation in the use of n-grammed disassembled instructions combined with

the header information that were used by the n-grams. The results based on our

multiple data sources also leads to a larger open question: how do we evaluate the

quality of an executable corpus?

While we have looked at the effectiveness of n-grams without domain knowl-

edge. An intuitive follow-on item is to ask, how could n-grams be improved by the

application of domain knowledge? We will investigate this in the next chapter.
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Chapter 4: N-Grams With More Domain Knowledge

In the chapter 3 of this work, we performed an extensive investigation into

the use of byte n-grams for malware detection. In this chapter, we extend this

investigation to answer the question: can n-grams be improved via the application of

domain knowledge? The surprising answer is that predictive accuracy may actually

decrease when applying some obvious “better” approaches to the use of n-grams in a

static analysis setting. This non-intuitive result highlights the potential difficulties

in applying domain knowledge to the problem of malware detection, and highlights

why we wish to have domain-knowledge free alternatives.

4.1 Introduction

In this chapter we provide two primary contributions to the understand of

what n-grams can learn, both for byte n-gramming and assembly n-grams. First,

we provide evidence that byte n-grams are able to learn from the code sections of

a binary if forced to learn from only the code sections. However, the information

learned from the code regions seems to be highly correlated with that of the import

and header sections of PE binaries, suggesting the actual amount of information

learned about the assembly instructions may be limited. Further, subdividing the
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byte n-grams into section types based on the PE header reduces predictive accuracy.

Second, we note that the discriminative ability of assembly n-grams is less than that

of byte n-grams from the code section. By using multiple datasets that do not share

common biases, we observe that assembly n-grams seem to suffer from severe over-

fitting, by being unable to generalize past data similar to the training distribution.

This suggests that the disassembly process and n-gramming strategies commonly

used may be losing important discriminative information, and not learning what

was previously thought. The overall takeaway from this extended investigation is

that there is, contrary to conventional wisdom, considerable predictive ability in us-

ing domain knowledge free approaches. Our assumptions about what should work

better may be wrong in significant ways, leading to worse performance for Windows

EXE data and restricting the approach to only Windows EXEs. This is not to say

that adding domain knowledge can not our should not improve model performance.

The point is that it is not a forgone conclusion, and the application of domain

knowledge for malware detection is subtler and more difficult to use effectively.

The remainder of this chapter is organized as follows. In section 4.2 we review

relevant related work. Next we give an overview of the byte n-gram approach in

section 4.3, and detail which sub-regions we use and how we extracted them. In

section 4.4 we will discuss the different ways in which assembly n-grams may be

extracted, and introduce an additional novel representation. In section 4.5 we will

review the classification algorithms that will be used in this work and training

and parameter tuning procedures. The evaluation methodology and results will be

presented in section 4.6, followed by a discussion of those results and conclusions in
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section 4.7 and section 4.8 respectively.

4.2 Related Work

Many works have looked at the use of byte n-grams for malware detection, and

were considered in the first work on Microsoft Windows malware detection Schultz,

Eskin, Zadok, et al. [1]. One of the most thorough previous investigations of byte n-

grams was done by Kolter and Maloof [16], who evaluated several different linear and

non-linear classification and feature selection algorithms to use with byte n-grams.

A number of works follow the same general approach of Kolter and Maloof when

using byte n-grams: pick a feature selection method similar to Information Gain

on 4 or 6-grams, followed by a non-linear classifier [20], [21], [62]. Work by Raff,

Zak, Cox, et al. [41] sought to explore this feature type more deeply, and discovered

evidence that prior results were overfitting. We use the model building strategy

suggested in their work in ours, using byte 6-grams and elastic-net regularization to

perform implicit feature selection with a linear model.

This same general strategy has also been used for assembly (and opcode)

based classification. In the static analysis case, the binary is disassembled using

some tool, such as IDA Pro, and the extracted assembly features are used to create

n-grams. It is often the case that creating n-grams from a whole instruction (with its

arguments) is not efficient, and so a number of variants have been used in practice,

which we discuss more in section 4.4. This basic strategy is similar to the byte

n-gram approach but at a higher level of representation, and has been popular in
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practice [84]. Also popular for assembly instructions is to use Hidden Markov Models

(HMMs) [85], [86]. The Markov assumption is that one item in a sequence can be

predicted with information from only the previous m items. Thus a HMM approach

of the m
th order has many functional similarities to the n-gram approach explored

in this work.

There have been a few works attempting to combine assembly n-grams with

byte n-grams and other feature types. These works have all focused on building

a system with higher accuracy, where in our work our goal is to determine what

kinds of information are being learned or used. Masud, Khan, and Thuraisingham

combined these with function imports into one larger feature set, and found it to

perform better than binary of assembly features independently. On one of their

datasets, they report accuracies of 96.5%, 94.6% 87.1% when using the combined

features, byte, and assembly features respectively. They obtained similar perfor-

mance for both boosted decision trees and Support Vector Machines. Masud, Khan,

and Thuraisingham’s work is similar to our own in combining features of different

types, though it differs in method and reasoning. No analysis was given in their

work to determine which type of feature had more or less impact on the improved

performance. Similarly, Menahem, Shabtai, Rokach, et al. [22] combined a wider

array of feature types and classification algorithms into one larger ensemble to max-

imize performance, but did not attempt to investigate which features contributed in

which ways. Though not combining feature types, Yan, Brown, and Kong [87] also

looked at both byte and assembly n-grams for malware detection. They performed

a wide search over feature selection and classification methods to determine which
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configuration worked best, but used only 300 binaries for their experiments.

The aforementioned works all used static analysis, as we do in this work. It is

also possible to obtain assembly instructions via dynamic analysis, which has been

popular as well. More closely related to our work, Damodaran, Troia, Visaggio,

et al. [86] looked at using assembly instructions to train Hidden Markov Models

(HMMs) from both static and dynamic analysis (among other approaches as well).

While they did not perform the same type of malware detection, they found dynamic

analysis could increase the detection effectiveness, as measured by Area Under the

Curve (AUC), by as much as 20 percentage points. They also found that dynamic

analysis reduced the number of distinct opcodes observed, which reduces the training

time and indicates that many instructions present in a static analysis may not be

relevant to functionality.

In conducting the literature review for this work, we did not find any previous

malware detection work that uses data similar to Industry (i.e., production data from

a corporation) and uses static assembly features[3], [12], [88], [89]. This is important,

as most works use benign data from Microsoft Windows installations, which can

result in overfitting to the concept of “Microsoft vs not-Microsoft”. We believe the

overfitting that occurs when using Microsoft binaries for training and testing may

be the root of positive results with assembly-grams for malware detection that have

been previously reported. This gives us some optimism that the issues we discover is

not a problem with our data, but that a weakness with assembly-gram features was

not published due to a bias against negative results [90], [91]. The lack of publicly

available, high quality, datasets for this task will be a hindrance toward reaching a
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consensus on this issue.

4.3 Sectional Byte N-Gram Features

The primary effort of this work looks at byte n-grams and what types of

information can be learned from them. To investigate this, we perform byte n-

gramming on sub-sections of the PE file that correspond to different regions and

thus types of data. The PE format specifies a variety of different sections types for

storing information needed for the program to execute. Some typical sections found

in many PE files are: .text for the section of an EXE that contains executable

code, .data data for initialized variables, .rodata data for read-only variables, and

.idata for the import table.

However, the name for any given section is arbitrary and does not impact how a

section is loaded or used. Some compilers put the executable code in a .code section

instead of the traditional .text. This makes the section name an unreliable method

of determining type. Instead, one can use the information encoded in each section

to more accurately determine a section’s purpose. Each section has a number of flag

bits which indicate properties of the section, particularly if it is: (1) Executable,

(2) Read-only, or (3) Read-write. Newer versions of Windows don’t allow a section

that is marked executable to be also marked as read-write. To separate out the

executable section, all that is needed is to find sections marked as executable. Most

files have just one such section, although some have two or more. In the case of

UPX-packed binaries, the executable sections are .UPX0 and .UPX1. Using these
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section flags, and the other fields of the PE header, we perform byte n-gramming on

four high level section types: PE-Header, data, imports, and executable code. We

obtain the bytes for these four sections in the following manner.

For the parsing of the PE files, we use the PortEx library PortEx to discover

all sections and the section offsets in the raw file. This library was also used to

process the section bit flags needed for the other portions of this work. Once iden-

tified, we concatenated all the bytes associated with the PE-Header into one longer

sequence. This sequence was then used as the PE-Header feature source for byte

n-grams. It generally corresponds to low-entropy information, but is encoded in

variable length fields (some fields are single bits, some are multi-bit flags, and some

are integers varying between 4 and 64 bits in length). This makes it a good match

for byte n-grams in terms of being low entropy, but a poor match in terms of the

variable length nature with respect to the fixed size n for n-gramming.

For the executable sections of a binary, we checked every section within the

binary for whether or not its executable bit was set. All sections found with such

a property were concatenated together. For most files there was only one section

marked executable. This corresponds to the theoretical worst case for byte n-grams.

The contents of the executable regions are higher entropy, and the encoding of x86

instructions is variable length. Our expectation is that this section will have the

worst performance.

The remaining two region types we are interested in are imports and data. In

general, the vast majority of sections that were not marked executable corresponded

to either a data section or an import section. For benign applications, it is usually
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easy to separate the two, as the PE-Header will point to the section in which imports

are stored. This was not true in all cases for goodware though, and was rarely true

for malware. For example, many samples had the import table address point to an

address beyond the file size, to areas partway into an existing section, or areas that

did not appear to contain any imports at all after manual inspection. If the import

table address was present, the address was used as an offset into the section. From

the offset to the end of the section was treated as the import table.

To remedy the situation when the import table offset wasn’t valid, we used

rudimentary string matching to detect regions of the binary that appeared to be con-

taining import information. This was done by comparing the byte content with fre-

quent DLL and function names, and deciding that these sections are import sections.

This approach successfully extracted 90% of the imports from the non-executable

data, which was verified by manual inspection of randomly selected binaries.

Finally, after identifying the byte sequences corresponding to the PE-Header,

executable, and import sections of a binary, all other sections were assumed to be

data sections. This gives us all four regions of interest for our experiments. We note

that these extractions are not perfect, but are more than accurate enough to allow

for informative experiments.

4.4 Assembly N-Gram Features

Before creating n-grams of assembly instructions, we must first select a sub-

set of base n-gram representations to choose from. In assembly code, each line is
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generally represented by the instruction name and a number of parameters for the

instruction. Just as n-grams are a sliding window of consecutive bytes, we define

n-grams of assembly as a sliding window of lines of assembly code. A number of

options have been proposed, which we will review below.

The relationship between byte and assembly n-grams has been noted before

[23], [84]. An important consideration not widely discussed is that not all instruc-

tions with the same name map to the same binary opcode1. To illustrate, the cmp

instruction’s binary opcode can begin with 0x3C, 0x3D, 0x3A, 0x3B, 0x80, 0x81,

0x83, 0x38, or 0x39, depending on the arguments given. In this and all previous

works in malware detection known to us, these are all treated as the same instruc-

tion based on the common cmp name. We will refer to distinguishing instructions

based on their binary opcode as disambiguation. Little work has been done with

such disambiguated opcodes in related tasks of malware family classification[92] and

function identification[93], but neither work quantifies the importance or significance

of using opcodes. We perform the first such comparison to determine the impact

of disambiguation assembly n-grams in subsection 4.6.3, where we will show their

impact is critical to obtaining generalizable results.

4.4.1 Instruction Only

The simplest approach is to capture only the instruction used as the base.

If encountering the instruction mov eax, 4 we simply reduce it to mov. This ap-
1Some works have used the term “opcode” to describe the instruction name, such as cmp.

We avoid this terminology, and instead use “opcode” only to refer to the binary encoding of the
instruction.
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proach is used by Shabtai, Moskovitch, Feher, et al. [84]. They argue that this

representation will generalize better, as small perturbations in the arguments (due

to a change in location) can be functionally equivalent, but no longer found by an

n-gram. For brevity, we will refer to this form of assembly n-grams as “OI” for “Only

Instructions”.

4.4.2 Instructions with Parameter Type

This method was used by Masud, Khan, and Thuraisingham [23], and gen-

erally appears to be a common preference [94], [95]. They noted that an instruc-

tion will have some number of parameters and each parameter is coalesced into

a location type, either memory, register, or constant corresponding to where the

parameter came from: either an access to memory, directly from a register, or

the immediate value from the call to an instruction. For example, the instruction

mov eax, 4 would be coalesced to mov.register.constant and mov [eax], 4 to

mov.memory.constant. We note that in this form it does not matter that a regis-

ter was used in the first parameter, it is that the parameter came from a memory

accesses that determines the type. We will refer to this form of assembly n-grams

as “IPT” for “Instructions with Parameter Type”.

4.4.3 Instructions with Function Resolution

Many works have noted that the APIs called also have predictive power [23],

[96], and we have found that byte n-grams tend to pick up on these features as
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well[41]. Inspired by these observations, we developed a novel feature representation

of assembly where all matching constants are replaced with the function name being

called, when available from the import table. All other operands are left in their

raw form, and we attempt to match exact instruction sequences, with numerical

constants replaced by the function name when a match is detected. This is a more

viable alternative to using the raw pointer values, as the pointer to a function

may change from one binary to the next, even if calling the same function. Our

shorthand for this type of assembly n-gram will be “IFR” for “Instructions with

Function Resolution”. Doing so allows us to perform tests using as much of the raw

disassembly as possible, and reducing many instructions to a canonical form. These

instructions sequences are logically equivalent between binaries, but would not have

been matched correctly if the addresses were not resolved.

4.5 Machine Learning Models

Now that we have reviewed the features that will be used in this chapter, we

discuss the method of using them. At a base level, we will be continuing to use

the Elastic-Net regularized Logistic Regression from the previous chapter. This was

defined in (3.8), and has the benefit of automatic feature selection and robustness

to irrelevant features [72]. For simplicity, we will only investigate ↵ = 1
2 in this

chapter.

More important, we introduce the ensemble method we will use to combine

models for our byte n-gram results. Creating ensembles is a common method in
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call 0x401040 ; address that was not found in the import table
lea edx, [esp + 0x20]
lea eax, [esp + 0x120]
push edx
push 0x4c2244
push eax
call 'MSVCRT.dll:sprintf' ; direct call to function
mov ecx, 0x40
xor eax, eax
lea edi, [esp + 0x2c]
add esp, 0x14
rep stosd es:[edi], eax
mov edi, 'KERNEL32.dll:GetPrivateProfileStringA' ; indirect call to

function, first loaded into edi register,!

lea ecx, [esp + 0x118]
push ecx
lea edx, [esp + 0x1c]
push 0x100
push edx
push 0x4cceb0
push 0x4c223c
push 0x4c223c
call edi ; then called via register later

Figure 4.1: Excerpt of our diassembly with function resolution

machine learning to produce a more accurate model by exploiting the uncorrelated

errors made by members of the ensemble [97], [98].

Stacking

Given that we want to understand if the information being learned in each

section is different, or some variant of the same information, we also apply the

Stacking ensemble technique [99] to combine the models from all four byte regions.

When performing Stacking, we have a set of base classifiers that make the ensemble,

which are all trained independently. The predictions of these classifiers are then

used to create a new feature set, of dimension equal to the number of base models
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used. Any other classifier can be used as the combiner, which uses this new feature

set to learn the same problem. The combiner model can be as simple or complex as

desired. It is common to use a linear model for the combiner, in which case stacking

learns what is essentially a weighted average vote of the constituent base classifiers.

Stacking is often an effective method to increase the predictive performance

for a problem, at the cost of using multiple models (and thus more memory and

compute time). Though the connection to stacking was not made, the strategy has

been applied to malware detection before [100]. Like most ensemble methods, it

relies on the base classifiers having some degree of variation and performs best if

their errors are uncorrelated. We tested this with a number of combiners, including

Random Forests (RF) [101], Linear Support Vector Machines (SVM) [102], and a

simple Neural Network (NN). Given this wide array of stacking models, if the errors

are uncorrelated and useful, either in a linear or non-linear way, we should see a

boost in performance.

4.6 Evaluation and Results

As in the previous chapter, we will use the same Public and Private data

corpora. All models will be evaluated with both balanced accuracy [103] and Area

Under the ROC Curve (AUC) [104]

During feature processing, many binaries could not be disassembled. Many

of these errors occurred due to the binary in question having no sections as being

marked executable. These binaries ended up being DLL files with translation strings
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for localized copies of Windows, or DLL files containing icons or other data for

applications. Some errors can also occur due to the dissembler erring on challenging

inputs. Any file with such an issue was removed from both the training and testing

datasets. Since balanced accuracy and AUC are not sensitive to class proportion,

we can meaningfully compare those metrics with the results from our byte n-gram

experiments. We note that we have confidence in our extracted disassembly, as

we are able to resolve addresses across binaries to which function they are calling.

These would not resolve or make sensible disassembly if we had an error in our

disassembly process. We also removed .Net files, as these files don’t contain machine

readable code, but rather are interpreted by the .Net or open-source Mono runtime

environments.

4.6.1 Byte 6-Gram Results

We use byte 6-grams for our evaluation as they were found to perform best

compares to 4-grams, and larger values are beyond our computational capacity. We

compare using byte 6-grams on the entire file as the control, versus byte 6-grams

extracted from one of only four sub-regions of the binary. All five models were

trained in the same manner as outlined in Raff, Zak, Cox, et al. [41], and the results

can be found in Table 4.1. This also includes the results of using Stacking to combine

the four different section types with various different combiner models.

We note that in all cases the 6-grams of the entire binary performed best in

both accuracy and AUC. For the second best model, the PE-Header was best when
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Public Industry Open Mal

PE-Section Acc (%) AUC (%) Acc (%) AUC (%) Acc (%)

PE Header 76.4 98.2 87.7 95.6 53.9
Data 69.6 94.9 84.4 92.9 52.7
Import 83.8 92.9 88.7 94.0 74.3
Code 80.5 94.6 88.1 95.2 60.7
Whole File 87.0 98.4 92.5 97.9 81.2

Stacking SVM 80.8 78.4 87.8 88.4 56.2
Stacking NN 83.1 81.4 89.0 89.8 60.7
Stacking RF 83.6 81.6 89.8 90.4 62.9

Table 4.1: Accuracy and AUC when using byte 6-grams. First four rows are results using
6-grams from only one section of a PE file, with the fifth row showing result
from 6-gramming the whole file. Best numbers in bold, second best in italics.
Last three rows show results when using Stacking (with different models for the
combiner) to combine models from all four feature sections.

using the AUC metric, and the Import section best when considering accuracy.

While it may seem unusual for these metrics to differ, this is not an uncommon sce-

nario [105]. The best sub-region for 6-grams region was generally 3 to 5 percentage

points behind that of using the whole file. We also note that the near 50% accuracies

for Open Malware are not indicative of the model randomly guessing, as the Open

Malware set contains only malware. It is likely those models are biased towards

declaring a binary as benign, and so would get considerably higher accuracy rates

if there were benign files to include with the Open Malware files. This is confirmed

by looking at the precision on other datasets. For example, the PE-Header model

had a precision of 99.7% and recall of 72.8%.

Regarding the hypothesis that byte n-grams only learn from the import and

header sections, our evidence argues against this hypothesis . The 6-gram models

were able to learn reasonable models from all four section types, though the models

75



from the Import and PE-Header were the ones that performed best. That these

two sections would perform best is not unreasonable, as the lower entropy content

of these regions means that an n-gram found in the training set is more likely to be

found in the testing set.

What is more interesting is that the Stacking models, which combine the

predictions of each of the four section-based models into a final prediction, generally

perform worse than models built on only the import and PE-Header sections. Due

to how we portioned each binary into the four sections, the entirety of information

available to the Stacking model and a byte-gram model trained on the entire binary

should be equivalent. Theoretically, the Stacking model has an advantage in intrinsic

information about region type from the constituent ensemble members.

The decrease in test accuracy from ensembling suggests that the predictions of

the models are highly correlated, as we would expect performance to increase if the

predictions were uncorrelated. Differences in prediction output (and confidence)

then act only as a noise in the decision process, rather than as signal that helps

improve accuracy. We suspect that this means the 6-grams from the code section

of a binary are learning the same kind of information that is contained within the

Import and Header sections of the binary. This information leakage could potentially

be assembly instructions or operands that are correlated with particular functions

or settings that may be found in those sections, respectively.
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4.6.2 Assembly N-Gram Results

Given that we have evidence that byte n-grams can learn from the code sections

of a binary, we wish to compare and understand the performance differences in

what byte n-grams from code learn and what n-gramming of the disassembled code

sections. We evaluate the three assembly n-gram strategies discussed in section 4.4

on the same datasets, using Industry for training. We emphasize that an assembly

n-gram does not correlate well with a byte n-gram in terms of how much information

is captured in a single features. A single assembly instruction can range in size from

one byte to an extreme of 15 bytes, and so we do not concern ourselves with trying

to compare bytes vs assembly based on the value of n. For each assembly n-gram

type, we evaluate up to and including the largest value of n that we could manage

in terms of memory on our workstation2.

The results for all assembly grams are given in Table 4.2. The most striking

result of these accuracy numbers is a dramatic drop in performance compared to

the byte 6-grams. We also observe considerable overfitting when using the assembly

features, where the Industry test set performance is reasonable (yet still lower than

the byte grams), and drops in accuracy and especially AUC when evaluated against

the other test sets. Our expectation would have been that assembly grams would

perform equal to or better than byte grams of assembly, as the disassembled version

is a higher level representation of the data. Assembly-grams obtaining an AUC lower

than 50% (which would be the threshold of random guessing), combined with the
2The workstation used for this experiment has 128GB of RAM
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Assembly-gram Public Industry Open Mal

Type n Acc (%) AUC (%) Acc (%) AUC (%) Acc (%)

IFR 1 67.6 44.0 76.5 86.8 30.0
2 67.9 42.6 78.1 88.5 35.7

IPT

1 64.0 37.8 69.0 78.6 31.6
2 68.1 44.2 76.8 87.3 36.6
3 67.1 41.1 76.8 87.8 34.6
4 64.8 36.0 76.3 87.9 20.9

OI

1 61.6 33.3 64.3 70.3 30.8
2 65.0 38.4 73.6 85.4 26.5
3 66.7 40.6 77.8 88.6 28.7
4 65.5 37.5 77.6 88.3 24.6
5 64.7 35.9 76.1 87.2 21.5
6 64.0 34.2 75.5 87.3 19.2

Table 4.2: Balanced Accuracy and AUC for each test set, with models trained on Industry.
Using assembly n-grams of varying types.

behavior of marking most binaries as benign, indicates the assembly model trained

on Industry has no actual generalization to the other datasets.

Given this surprising result, we hypothesize a number of ways in which discrim-

inatory information may have been lost for assembly-grams compared to byte-grams.

These stem from differences in assumption between performing byte n-gramming

and assembly n-gramming.

First we note, as discussed in subsection 4.4.1, that different byte op-codes

get mapped to the same higher level assembly instruction when performing the

disassembly process. It is possible that the specific version of an instruction is in

fact discriminative, and is thus lost when using the assembly grams. We will test

this first hypothesis in the following section.

Second, we observe that byte n-grams may start and end in the middle of an
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assembly instruction, where as an assembly n-grams will cover exactly n assembly

instructions. This gives byte n-grams an odd form of flexibility and specificity. A

byte-gram could start at one instruction, and reach into only the op-code of the

next instruction (touching some or none of the operands). Or a byte n-gram could

start in the middle of a instruction, considering the lower order bits of the operands

of one instruction and then whole or part of the preceding instruction.

4.6.3 Assembly-Grams with Disambiguation

Existing code infrastructure allows us to test the importance of opcode dis-

ambiguation with relative ease. The Capstone Engine API we used for disassembly

allows us to obtain the first byte of the opcode for a particular instruction, and

so we can produce an “enhanced” disassembly, an example of which can be seen in

Figure 4.2. While the first byte of the opcode may not be sufficient in all cases,

it already allows us to distinguish between multiple different versions of the same

instruction. We treat these as a new instruction set, and repeat our assembly ex-

periments on the same data.

We note that the disambiguation necessarily increases the size of the feature

space. This intrinsically makes learning harder for the algorithm, as the impact of

the curse of dimensionality is only increasing. Thus any additional discriminative

information from disambiguation must be non-trivial in order to increase perfor-

mance. This also increases computational burden and memory use, which prevents

us from testing n-gram sizes as large as the preceding section.

79



jmp_eb 0x4010eb

push_68 0x10024b78

lea_8d ecx, dword ptr [esp + 4]

call_ff dword ptr [MFC71.DLL:None]

push_53 ebx ; three different pushes
push_56 esi

push_57 edi

push_68 0x10024c05

lea_8d ecx, dword ptr [esp + 0x14]

call_ff dword ptr [MFC71.DLL:None]

lea_8d ecx, dword ptr [esp + 0x24]

mov_bb ebx, 1

push_51 ecx

mov_88 byte ptr [esp + 0x20], bl

call_e8 0x41f8ec

mov_8b edx, dword ptr [eax]

Figure 4.2: Example of disassembly with opcode disambiguation. Note that it is now clear
four different push instructions are being called, two different call instructions,
and three different mov instructions.

Assembly-gram Public Industry Open Malware

n-gram type n Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%)

IFR 1 65.5 (+2.1) 69.2 (+25.2) 78.1 (+01.6) 86.4 (−00.4) 48.4 (+18.4)
2 69.8 (+1.9) 69.2 (+26.6) 78.8 (+00.7) 85.4 (−03.1) 44.7 (+09.0)

IPT
1 66.1 (+2.1) 73.7 (+35.9) 78.1 (+09.1) 88.4 (+09.8) 46.9 (+15.3)
2 70.8 (+2.7) 73.7 (+29.5) 80.4 (+03.6) 90.9 (+03.6) 42.9 (+06.3)
3 66.0 (−1.1) 66.9 (+25.8) 79.6 (+02.8) 90.4 (+02.6) 31.1 (−03.5)

OI

1 61.9 (+0.3) 69.4 (+36.1) 74.4 (+10.1) 84.5 (+14.2) 46.1 (+15.3)
2 69.7 (+4.7) 72.9 (+34.5) 76.6 (+03.0) 89.9 (+04.5) 43.8 (+17.3)
3 65.8 (−0.9) 68.3 (+27.7) 80.1 (+02.3) 91.3 (+02.7) 39.2 (+10.5)
4 64.9 (−0.6) 63.5 (+26.0) 77.6 (+00.0) 89.2 (+00.9) 26.9 (+02.3)

Table 4.3: Balanced Accuracy and AUC for each test set, with models trained on Industry.
Using assembly n-grams of varying types with partial opcode disambiguation.
Difference in scores from Table 4.2 in parentheses.

The results can be seen in Table 4.3, where the disambiguated opcodes had an

almost uniformly positive impact. Most notably, the AUC on the Public test data

improved dramatically, by at least 25 points in every case. A large positive impact

was also obtained on the Open Malware test set, and in general for every statistic on

every test set when considering 1-grams. This indicates that the specific opcode of
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the instruction, and not just the instruction type, contains significant discriminative

information for malware detection. The disambiguation has improved assembly

grams from overfitting to the training data with almost zero generalization ability,

to being able to show moderate generalization, but still subject to a non-trivial

amount of overfitting.

4.7 Discussion

We have now tested byte n-grams by section type, to help us better understand

what byte n-grams have learned. In this process we also tested assembly n-grams as

a comparison point to byte n-grams of the executable sections of a binary. In doing

so we have discovered a number of interesting results not previously reported, as far

as we are aware, for both byte and assembly n-grams.

By byte n-gramming different sections of the binary, we were able to show

that they can learn discriminative information from executable regions, which prior

work hypothesized was not possible [41]. However, a surprising result is that they

do not appear to be learning much about the code contents, but rather, leaked

information about imports, strings, and any other lower entropy feature content

that was discovered previously. We can draw evidence for this conclusion from

the lack of improved accuracy (and in-fact, degraded accuracy), when creating an

ensemble of classification models. If the information content used was different,

errors should be uncorrelated with byte n-grams from other regions, and thus result

in an improved model. In future work we hope to test and better understand the
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correlations between different types of feature information. One hypothesis as to

how this information may be leaked, is that certain imports are strongly correlated

with certain code patterns that get reused. This may not be broadly informative

about higher level information such as malware author or source language, but are

correlated enough with the imports to allow use as a proxy for the import itself.

Ultimately, it seems that byte n-grams are robust in their ability to learn,

but weak in what types of information they are able to learn. That is to say, our

results seem to confirm that byte n-grams are beholden to using certain types of low

entropy information that can already be more easily extracted from the imports and

PE-header sections of a binary. But regardless of where byte n-grams are applied, if

such information exists or is leaked from other features, it appears byte n-grams will

be able to find, extract, and use that information (though with potentially reduced

effectiveness).

Somewhat more surprising, and not part of the original goal of this work,

was what was learned about the effectiveness of assembly n-grams. It appears that

assembly-grams, at least when obtained from static analysis, are uniformly less

effective than byte n-grams. This is due to significant overfitting to the Industry

data distribution, with a failure to generalize well to the other test sets. We have

obtained significantly improved results by incorporating opcode disambiguation, a

strategy which we are not aware of any prior works using for malware detection.

Even with our improved disambiguated instructions, their performance still lags

that of byte n-grams on the executable sections of a binary.

This result is counter to our intuition, as we would believe disassembly to be
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raising the feature representation up to a higher level, and thus making the job of

the learning algorithm easier. Yet our disambiguation results clearly indicate that

this may be inadvertently hiding important discriminative information. It is also

possible that the higher level representation afforded by assembly grams is in some

way enabling greater overfitting to the original data. If so, this could indicate a bias

in the Industry data that is highly specific.

As discussed in subsection 4.6.1, byte n-grams also have the unique property

that they do not care about instruction alignment. It is thus common to have a

byte n-gram that starts in one instruction, and ends in another. It is possible that

this accounts for the remainder of the performance gap between byte and assembly

n-grams, and we hope to explore this in future work. Given that a byte 6-gram

can be representing less information than an assembly 1-gram, we suspect that this

scenario is a significant component of byte n-gram’s learning ability when forced to

learn from only the code section of a binary.

Our results are also impacted by the existence of files that could not be dis-

assembled, which has happened before [106]. There may also be files with varying

portions of erroneous disassembly, as disassembly of malware is not trivial. The

difficulties and potential obfuscations that can prevent accurate disassembly is rec-

ognized as a challenging problem [107]–[111]. Others have noted there are different

methods to performing disassembly that may produce differing results [87], with no

one method being necessarily “better” than another. It seems clear from our work

that a more thorough investigation of assembly n-grams is warranted, including use

of different disassemblers, using disassembly obtained from dynamic analysis (which
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was not studied in this work), figuring out the best method for handling failure

cases, and collective impacts these situations have on malware detection.

It would also be good to further evaluate assembly n-grams in the context of

malware family classification. While some have used assembly-grams successfully for

this task before [85], [112], a more thorough investigation is warranted. In particular,

we hypothesize that assembly-grams may be more effective for family classification

then for malware detection. We come to this theory by noting that the Industry

test accuracies, which are from the same training distribution, provide reasonable

performance. If assembly features processes greater specificity, this may be advan-

tageous in family identification, where the classification labels are intrinsically more

specific than the broader benign vs malicious task we have evaluated.

4.8 Conclusions

Following our results from chapter 3, we have delved further into understanding

what types of information they can learn from Microsoft executable binaries. In

doing so we make two unexpected conclusions. First, that byte n-grams can learn

from higher entropy regions, such as the code section, of a binary — though it may

not be learning much information beyond than what is found in the PE-Header and

Import sections. Getting byte-grams to learn from these sections required limiting

them to only these sections. Second, that assembly n-grams do not appear to

generalize to new data, performing worse than byte n-grams learned from the code

regions of a binary. Further, that the standard approach to creating assembly-grams
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is throwing away useful discriminative information.

These results help to further elucidate the need for new approaches to learning

without domain knowledge. The methods used in this chapter represent “obvious”

approaches to “improve” classification performance for malware, yet result in de-

graded accuracy — dramatically so on the case of assembly features. As such we

now have evidence that the common wisdom of building malware detectors has been

lead astray by the use of Public style data. For the remainder of this thesis, we will

show that forgoing these assumptions will allow us to build a system that is more

flexible, faster, and more accurate.
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Chapter 5: Lempel Ziv Jaccard Distance

The Normalized Compression Distance (NCD) [35] is a general purpose method

of measuring the similarity between any two arbitrary objects. The NCD works via

the use of compression algorithms, using the sizes of compressed objects, individually

and then when concatenated, to compute a similarity between the two input objects.

The NCD algorithm will be described in detail a little later in this chapter. Since

compression is the basis of the NCD, it has proven effective for comparing a wide

variety of data objects, and requires no domain knowledge to apply. In addition

to its intuitive appeal, the NCD also has theoretical underpinnings in terms of

Kolmogorov complexity that may inspire additional confidence in it.

These practical and theoretical properties make the NCD appealing in the con-

text of malware detection and malware family classification, which we will jointly

refer to as malware classification. Malware detection is a binary classification prob-

lem in which one tries to determine if a binary is benign or malicious, and family

classification attempts to label a known malicious binary as a member of one (or

more) malware families. A number of others have used the NCD to do these tasks

successfully using different features, including API call sequences and the raw byte

contents of a file [36], [38]–[40]. We are particularly interested in NCD for mal-
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ware since it can be used on raw bytes, requiring the use of little, if any, domain

knowledge.

The minimization of domain knowledge is desirable for this task for a number of

other reasons as well. Particularly, malware classification is subject to concept drift,

meaning the nature of malware changes over time. This means our feature extraction

process must often change with it, requiring some level of ongoing maintenance work.

Malware itself will often intentionally break rules regarding format specification or

attempt undefined behavior, requiring additional overhead for feature extraction

which is compounded by the changing nature of malware. The more advanced

domain knowledge approaches use dynamic analysis, which involves running the

malware in a virtualized environment. This adds significant complexity in practice,

as malware can detect that its in a virtiualized environment and alters its behavior,

and the virtual environment may have many inconsistencies with real environments

that prevent a system from generalizing in practice [113].

Malware classification is also an excellent test bed for any-purpose metrics

such as NCD. Not only is malware classification an important problem in improving

cyber security, but it is a domain for which recent advanced in Machine Learning

and Deep Learning have yet to yield significant gains. This is in contrast to problems

such as image and signal processing, where NCD has been applied previously but

is no longer needed [114], [115]. The nature of a real malicious adversary makes

feature selection and engineering particularly difficult for this domain, which NCD

can partially side-step through its use of compression.

Unfortunately there exists a number of shortcomings with the NCD that make
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its application to malware classification difficult. While the theoretical underpin-

nings of NCD say it will behave like a metric if certain conditions are meet, it is

often difficult to meet these conditions in practice [116]. The nature of how com-

pression algorithms work also causes problems for larger input sequences [37]. Most

critically though, the computation time for the NCD is significant. This has lim-

ited its application to malware datasets of 10,000 samples or less [39]. We resolve

the runtime and metric issues of NCD with the new Lempel-Ziv Jaccard Distance

(LZJD), which is a valid distance metric (i.e., obeys identity, symmetry, and triangle

inequality properties) and computationally efficient enough to use in practice. We

perform extensive validation of our new technique by using multiple datasets (with

over 500,000 files), with different byte representations, for both malware detection

and family classification, and for both Microsoft and Android malware. In contrast,

most works in malware classification use only one dataset (often 40,000 samples or

less), choose one representation, and for one operating system [e.g. 1], [16], [68],

[117].

The remainder of this chapter is organized as follows. We will review the

definition of NCD in section 5.1, and then introduce our new distance metric in

section 5.2. Focused on malware classification, we provide several experiments in

section 5.3 that show our new distance to be more accurate and orders of magnitude

faster to apply in practice. Given the accuracy advantage we observe with our new

LZJD metric, we analyze two theoretical differences in behavior of NCD and LZJD

in section 5.4. Our conclusions are then presented in section 5.5.
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5.1 Normalized Compression Distance

The inspiration for the NCD comes from Kolmogorov complexity. Given some

arbitrary sequence x and its length |x|, the Kolmogorov complexity function K(x)

will return the length of the shortest possible program that outputs x as a result

of its execution. Similarly, the conditional Kolmogorov complexity function K(x|y)

will return the length of the shortest possible program that outputs x, given y as

an input to the function that it may use. Intuitively, the Kolmogorov functions

capture notions of compression, entropy, and their relationships. The closer |x| and

K(x) are, the more random or uncompressable the sequence x must be. Using these

notions, Li, Chen, Li, et al. [35] define the Normalized Information Distance (NID)

(5.1), which returns a distance in the range [0, 1].

NID(x, y) =
max (K(x|y), K(y|x))
max (K(x), K(y))

(5.1)

Intuitively, given two items that are near duplicates, the second can be repre-

sented as a small set of changes from the first, which would result in a small increase

in compressed size (and thus a small distance). Given two inputs that are purely

random, and do not have any overlap, one gives us no information about the other.

Thus the sizes will remain large, and the numerator will become equal to the de-

nominator (as K(x|y) = K(x) if y gives no information about x), resulting in the

maximal distance. The NID is a valid distance metric, in the sense that for any

possible inputs x, y, and z, the following properties of metrics hold:
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• d(x, y) = 0 if and only if x = y. (identity)

• d(x, y) = d(y, x) (symmetry)

• d(x, y) + d(y, z) � d(x, z) (triangle inequality)

Unfortunately, since K(·) and K(·|·) are uncomputable functions, the NID

cannot be used in practice. Given this issue, Li, Chen, Li, et al. [35] proposed to

approximate the function K(·) using any compression algorithm. Defining a new

function C(x), which returns the compressed length of x in bytes, we get the NCD

distance (5.2), where C(xy) indicates the compressed size of sequences x and y

concatenated together.

NCD(x, y) =
C (xy)�min (C(x), C(y))

max (C(x), C(y))
(5.2)

The quality of this approximation to NID depends on the compression al-

gorithm used for C(·), where a better compression algorithm will result in better

accuracy. For malware analysis, it has generally been found that LZMA [118] and

similar compression algorithms tend to work best [36], [37]. Regardless of the com-

pression algorithm used, in practice the NCD is not a true distance metric, since

from time to time all three properties listed above may be violated. Li, Chen, Li, et

al. [35] realized this and also introduced the concept of a normal compressor, and

showed that the NCD will behave like a distance metric so long as the compressor

used maintains certain normalcy properties. These properties are not intrinsic to

any compression algorithm, but are a function of the compression algorithm and the
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input given. For this reason, many have found that empirically the normal com-

pressor properties do not hold in practice [37], [116]. It is even the case that NCD

often returns values larger than the theoretical maximum distance of one [119]. A

compounding issue is that the NCD is computationally expensive. While the values

C(x) and C(y) can be computed once for each datapoint, the conjoined term C(xy)

cannot be pre-computed, and is the most computationally demanding of the terms

in (5.2). This has made it difficult to apply NCD to larger datasets.

Despite these issues NCD has been quite popular for many domains, including

classification and clustering of EEG signals, pose estimation, text datasets, and

more [115], [120]. The use of compression distances also has strong ties to Machine

Learning, where compression distances can be seen as a new feature space[121] and

the concept of compression can be used for learning bounds[122], [123]. Numerous

works have proposed modifications of the terms in NCD, but it has been found

that most of these changes will result in equivalent orderings and only change the

normalizing terms [121]. Given the wide success of NCD, we seek to address its

major issues of computational overhead and lack of metric properties.

5.2 Lempel-Ziv Jaccard Distance

Inspired by the use of compression in NCD, we develop a new distance metric

called the Lempel-Ziv Jaccard Distance (LZJD). We base this new distance on two

insights about the use of NCD, which allow us to simplify the process as a whole.

First, that the most accurate compression algorithms for NCD, such as LZMA,
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make use of the Lempel-Ziv (LZ) technique for creating a compression dictionary

of previously seen sub-sequences[124], [125]. Second, that we do not care about

the actual compressed output of any compression algorithm when computing NCD.

Compression is merely a means to the end goal of measuring similarity or distance

between two objects.

Algorithm 1 Simplified Lempel-Ziv Set
1: procedure LZSet(Byte sequence b)
2: s ;
3: start 0
4: end 1
5: while end  |b| do
6: bs  b[start : end]
7: if bs 62 s then
8: s s [ {bs}
9: start end

10: end if
11: end end+ 1
12: end while
13: return s
14: end procedure

This second insight allows us to ignore the many technical details of LZMA

used to efficiently represent the encoding, bookkeeping needed for decoding, block

sizes for efficiency, and any additional steps required for effective compression. In-

stead we can focus on just the act of obtaining a LZ dictionary. Thus we use a

simplified version of the LZ77 [124] to get a set of sub-sequences, as shown in Al-

gorithm 1, which defines the LZSet method to convert a byte sequence into a set

of byte sub-sequences. This method works by building a set of previously seen se-

quences. The set starts out empty, and a pointer starts at the beginning of the file

looking for a sub-sequence of length one. If the pointer is looking at a sub-sequence

that has been seen before, we leave it in place and increase the desired sub-sequence
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length by one. If the pointer is at a sub-sequence that has not been seen before,

it is added to the set. Then the pointer is moved to the next position after the

sub-sequence, and the desired sub-sequence length reset to one.

Once we have the LZSet method, we can turn any sequence of bytes into a set

of sub-sequences. The similarity between two sets can then be measured using the

familiar Jaccard similarity,

J(A,B) =
|A \B|
|A [B| (5.3)

The Jaccard similarity is the cardinality of the intersection of two sets divided

by the cardinality of their union (5.3). The Jaccard Distance, which is a valid

distance metric, is simply DJ(A,B) = 1 � J(A,B). We can then combine the

Jaccard similarity and the LZSet algorithm to produce our new Lempel-Ziv Jaccard

Distance (LZJD),

LZJD(x, y) = 1� J(LZSet(x),LZSet(y)) (5.4)

Since the LZSet method consistently maps any byte sequence to a set, and the

Jaccard distance is a valid distance metric, then the LZJD is also a valid metric.

Because we are unconcerned with the extra work of performing full compression,

the LZJD turns out to be faster to compute in practice.
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5.2.1 Storage and Compute Efficient LZJD via Min Hashing

The set of sub-sequences extracted by LZJD requires memory proportional to

the size of the input strings. This makes it impractical to store all the resulting sets

in memory for every data point, forcing us to do redundant computations. While

this can be partially alleviated through caching schemes, we can instead exploit

one of many approximation algorithms for the Jaccard similarity. In this way we

can compute an approximate LZJD with high accuracy, throughput, and minimal

memory usage. In particular, we use min-hashing to create compact representations

of the input strings, and the same min-hashing lets us approximate the distances

between sets of sub-sequences.

Let h(a) be a hash function that returns an integer given some object a, and

hmin(A) = mina2A h(a) returns the minimum hash value over every object a in a set

A. Then it is known that [126]

P (hmin(A) = hmin(B)) = J(A,B)

That is, for two sets A and B, the probability that the min hash value of A and

B are the same is equal to the Jaccard similarity of the sets. This observation could

be used to approximate the Jaccard similarity by collecting multiple hash values

for different hash functions. Instead, we can be more computationally efficient by

selecting the minimum k hashes from the set [127]. Using h
n

min
(A) for the n’th

smallest hash value from the set A, we then get
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J(A,B) ⇡ J
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We can use this approximation to reduce time and memory requirements for

computing LZJD. The error of this approximation is probabilistically bounded above

by O(1/
p
k) if the minimum k hash values are used. We can then use k = 1024

to reduce the approximation error to around 3%. Each dictionary d (derived from

LZSet applied to some input string) is mapped to a new dictionary d
k which contains

the k smallest hash values. This means that any string we wish to use as input to

LZJD will take on the order of 4KB to store in memory, which is much smaller

than the multiple megabytes binary files may require. This gives us the following

procedure for a faster and more memory efficient approximation:

1. Convert byte sequence Bi to sub-sequence set Ci using Algorithm 1

2. Convert Ci to a set of integers, via some hash function h(·)

3. Obtain integer set C
k

i
by keeping only the k smallest values from the set

4. Approximate LZJD(Bi, Bj) as ⇡ 1� J(Ck

i
, C

k

j
)

We will denote our min-hash approximation of LZJD as LZJDh. By reducing

the memory use to just a fixed 4KB, we are able to greatly reduce both the storage

and compute requirements for our approach. We also note that since LZJD is a

metric, so is the approximation LZJDh. To see this, note that the min-hash set used

is a fixed function converting one set into another set. The approximate distance is
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then computed using the Jaccard similarity, which is a metric, and so LZJDh is also

a metric.

5.3 Experiments

Having defined the LZJD distance, we describe a number of experiments which

show that LZJD is competitive with NCD in terms of quality of results, while having

superior run-time characteristics. In all experiments we will apply NCD and LZJD

to the raw byte contents of a binary as our features, unless stated otherwise. We will

generally use the k-Nearest Neighbor algorithm (k-NN) [128] in these experiments

to perform classification. This is a well-known algorithm that is intuitive, and a

good fit for our distance metrics. Given a query point q, we find the k training

data-points closest to q. The label we assign the query is then the majority label for

the k nearest neighbors, where ties are broken arbitrarily. For all experiments, we

do not perform a search for the most accurate value of k as it is time intensive to

run experiments for NCD and normal LZJD, and results were generally insensitive

to changes in k.

For our NCD implementation, we use the XZ compression algorithm1. XZ is

a container for LZMA and LZMA2 compression, and has an additional compression

filter specifically for binary code data. This makes it an especially good fit for our

goal of malware classification from raw binaries. The per-file compression sizes were

cached after first use to avoid redundant computation.

We implemented LZJD and LZJDh in Java, without any significant attempt
1
https://tukaani.org/xz/
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at performance optimization. For computing the min-hash sets we used the MD5

hash function. All results were run on a single machine with 64 CPU cores and

2TB of RAM, and we report the time taken as the time spent on all CPU cores

added together (which is reported by the unix time command). This form of mea-

surement is valid for this task as the k-NN and distance computations can be done

independently, meaning there is minimal communication overhead. This is done

in part to avoid differences in load balancing, where differing file size lengths and

compressibility can result in uneven distribution of workloads. In terms of perfor-

mance comparisons, our setup gives the maximal advantage to NCD (which is using

an optimized implementation of XZ compression), where our LZJD implementation

is naive and unoptimized. LZJD’s run-time could be further enhanced by using a

disk based cache of the LZSet instead of re-computing for each distance compar-

ison. Both LZJD and LZJDh could enjoy further speedup by the use of a rolling

hash function to compute the LZSet. Given the time intensive nature of our experi-

ments, we tested NCD and LZJD on random sub-samples of each dataset. For each

method, the maximum subset size was determined by a one week runtime limit on

individual runs. When a dataset was sub-sampled, both the training and testing

data were sub-sampled. Otherwise the test-set sizes alone would exceed our runtime

capacities.
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(a) Results on Public test set
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Figure 5.1: Balanced Accuracy and AUC on the y axis, presented for the Public and In-
dustry test datasets. The same legend applies to each plot. Solid lines are
for balanced accuracy, dashed lines are for AUC. Values with a smaller frac-
tion of training data had higher variance, but runs were not repeated due to
computational burden.

5.3.1 Microsoft Malware Detection

We first demonstrate the performance of LZJD with the task of malware detec-

tion, where we try to distinguish between benign and malicious binaries. While most

prior results have restricted the use of NCD to data-sets of 2000 or less samples, we

use the much larger data from Industry for training, and test on Public, Industry,

and Open Malware test sets. We will report run-times when using Industry training

data, and evaluating against all 3 test sets. These results represent a data-set two

orders of magnitude larger than what NCD has ever, to our knowledge, been used

with before.

For this experiment we use balanced accuracy [103] and Area Under the Curve

(AUC) to evaluate on the test sets for this task. For k-NN, we choose k = 9 over

smaller values of k so that we can more accurately measure the AUC, which is not
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well defined for k = 1.

In Figure 5.1, we can see the balanced accuracy of all three distances run

on training subsamplings of varying sizes. We use the balanced accuracy where

each class receives equal total weight in the calculation, to ease comparisons across

datasets. As can be seen, the LZJD metric has higher accuracy than NCD across

all sample sizes and comparable AUC. For the Industry test set (5.1(b)), we can see

that all distances have increasing accuracy as the sample size increases. This is to be

expected, as k-NN theory indicates that the error rate approaches the Bayes optimal

error rate as the training set size increases. While the accuracy of NCD closes the

gap with LZJD with larger samples, its computational cost means it cannot reach

the same accuracies as LZJDh. The Public test set (5.1(a)) does not have quite the

same behavior, since its data comes from a different distribution, but we still see

the same overall trend: LZJD obtains better accuracies and LZJDh allows us to use

more data.

The large variation in Figure 5.1 comes from sub-sampling both the training

and testing distribution. This was a requirement due to the extreme computational

burden of running NCD against even the whole test set. The purpose of this ex-

periment is to show that the LZJD variants generally dominate NCD’s performance

across the spectrum of dataset sizes.

We point out that LZJDh has no significant impact on the classification accu-

racy of our approach. In terms of AUC, LZJD and NCD tend to go back and forth,

with relatively minor differences. The exception being early on the Industry test

set, where NCD performs much worse than LZJD in all respects.
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(a) Results on Public test set
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Figure 5.2: Balanced Accuracy and AUC on the y axis, presented for the Public and In-
dustry test datasets. The same legend applies to each plot. Here we use the
whole test set at every fraction, and look at the variance of the accuracy as
more data is used.

In the aforementioned plots, the fractioning of data also used a fraction of

the test set. This was a computational requirement due to the extensive compute

required for NCD and LZJD. Because LZJDh is computationally tractable, it does

not have this same restriction. Thus we can look at the average accuracy and AUC

for LZJDh measured against the whole test set as a fraction of the amount of training

data used. We run this test 10 times for each fraction of data in order to produce a

mean and standard deviation, and is plotted in Figure 5.2.

This allows us to unambiguously show the accuracy improvement as more data

is used, and that the variation present in Figure 5.1 is purely a function of the sub-

sampled test set combined with the sub-sampled training set. LZJDh’s performance

improves uniformly as more data is used.

The accuracies at 2% and 100% of the data from Figure 5.1 are shown in

Table 5.1. In every case LZJD performs better than NCD, and performance improves
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2% of data 100% of data

Test Set NCD LZJD LZJDh LZJDh Byte 6-grams

Public 64.9 74.0 74.1 77.4 87.3
Industry 76.8 81.8 79.3 85.9 94.5
Open Malware 21.9 64.1 59.5 67.8 81.1

Table 5.1: Balanced accuracy results for distance metrics on all three test sets. Results
given for using 2% of training (and test) data and 100% of data. Includes best
byte n-gram results from chapter 3 in last column

as more data is used. While the byte n-gram approach used in chapter 3 performs

better than LZJD, LZJD allows a wider variety of uses in clustering, similarity search

and requires less effort to apply2. Because LZJD is a distance metric, we can apply

it to various existing techniques, but such questions are beyond the scope of this

thesis. The increased practicality will also allow investigating improved classification

methods, such as Radial Basis Function networks, that were too expensive with

NCD.
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Figure 5.3: Time taken to perform 9-NN classification on Public, B, and Open Malware
test sets with the Industry training set.

2The byte n-graming approach is computationally demanding, and requires multiple days of
out-of-core processing for the same data. This makes scaling problematic.
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The total single-threaded run-time for this evaluation is presented in Fig-

ure 5.3, again as a function of how much of the corpus was used. At 0.1% of the

corpus, LZJDh is 216 times faster than NCD to perform the classification. It is also

clear that LZJDh has a lower slope than NCD, and by 2% of the corpus, LZJDh was

3,572 times faster than NCD. This shows that LZJDh is several orders of magnitude

faster than NCD, making it practical for larger datasets. In addition, creating the

min-hash set of the data took 90.2% of the computational time. For a system that

will classify new items against an existing database, the min-hashing is a one-time

cost, making deployment of LZJDh more realistic as well.

5.3.2 Malware Family Classification

In our second set of experiments we consider malware family classification,

where we are given known malware and need to determine what family of malware

a sample belongs to. We will evaluate this with two data sets, one for Windows

binaries and one for Android applications. For each dataset the distribution of

families is skewed, so we use k=1 for k-NN. Larger values of k tended to reduce the

resulting accuracy since most samples belong to only a small set of malware families.

Each dataset is evaluated using 10-fold cross validation with balanced accuracy as

the target metric. Due to the computational time required for NCD and LZJD, we

only evaluate them on 10% of each dataset. For LZJDh we evaluate on 10% and

100% of each dataset, since it is much faster than NCD or LZJD.

Staying with Microsoft PE files, we will use the 2015 Microsoft Kaggle data
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discussed in subsubsection 2.2.2.1. Similar to subsection 5.3.1, we use the raw byte

contents of the Kaggle Bytes version of the dataset to evaluate how well NCD

handles the same type of data (Microsoft binaries), but with a different task. We

will also evaluate on the Kaggle ASM data, to show that the approach developed is

not overfit to binary content, but can work on ASCII disassembly as a feature type

as well.

We will also use the Drebin dataset discussed in subsubsection 2.2.2.2. Doing

so provides additional evidence that the approach is not overfit to Microsoft and

x86 data. The performance difference between the Drebin APK and Drebin TAR

versions of the dataset is also particularly informative for comparing LZJD and

NCD. This is because the Drebin APK version has some level of compression due

to the zip format, which raises entropy. NCD is known to be sensitive to higher

entropy sequences, and since the only difference between Drebin APK and Drebin

TAR is compression, it provides information about the relative robustness of NCD

and LZJD to its impact.

10% of data 100% of data

Dataset NCD (%) LZJD (%) LZJDh (%) LZJDh (%)

Kaggle Bytes 58.1 (3.6) 98.2 (1.2) 94.4 (5.0) 97.6 (1.5)
Kaggle ASM 71.8 (6.1) 92.9 (4.6) 95.6 (4.1) 97.1 (2.0)
Drebin APK 67.2 (7.8) 81.4 (5.5) 80.5 (5.8) 80.8 (2.6)
Drebin TAR 81.0 (6.5) 85.0 (6.6) 82.0 (7.0) 87.2 (2.8)

Table 5.2: Balanced accuracy results on each data and feature set. Evaluated with 10-fold
CV, standard deviation in parenthesis.

The results of running 1-NN on these datasets are given in Table 5.2, where

we can see two major trends. First, the NCD distance performs significantly worse
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than both variants of LZJD. Second, LZJDh typically performs slightly worse than

LZJD when using only 10% of the data.

The performance difference between LZJD and LZJDh is always within a stan-

dard deviation, with two cases where LZJD performs better and two where it per-

forms worse. Additionally, being able to use 100% of the data with LZJDh naturally

reduces the variance of the error. We suspect the slightly reduced performance of

LZJDh is caused by errors when the nearest neighbor with the correct label, and

a second nearest neighbor with an incorrect label, are almost equidistant from the

query. Because some of the malware families in each corpus are related to each

other, this is a source of errors even when not using the approximated distances.

This situation could easily change the nearest neighbor due to the 3% approxima-

tion error of LZJDh, which can cause a significant change in output since we only

consider the nearest neighbor. When comparing accuracy to NCD, we will refer to

the worse accuracy result between LZJD and LZJDh as just “LZJD” for brevity.

For the Kaggle data set NCD’s performance using the raw binaries and as-

sembly is better than the random guessing rate of 11%, but is still 21 to 36 whole

percentage points behind LZJD. This dramatic drop in accuracy would be an indi-

cation that the compression is simply not effective when trying to distinguish the

finer details between malware families. We see evidence of this when examining the

classification errors made by NCD. For example, on the Kaggle Bytes dataset, NCD

could not distinguish between Kelihos version 3 and version 1, which resulted in

errors both ways. For Kaggle ASM such errors were not as prevalent, but NCD still

had difficulty with the malware families that had few samples being miss-classified

104



as other, larger, families. We note that while NCD gains over 13 percentage points

by using the more verbose disassembled Kaggle dataset, LZJD is relatively unaf-

fected by the change, especially when run on 100% of the data. This suggests that

NCD is more sensitive to the data’s representation than desired, and that LZJD

possesses a greater invariance to the data encoding.

On the Drebin datasets, NCD performs better, but still trails LZJD in ac-

curacy. When tested with the uncompressed Drebin TAR data, NCD is within a

percentage point of LZJD’s accuracy. But NCD is over 6 points behind when we

consider that we can use all of the data for LZJDh. Consistent with prior results,

moving from Drebin TAR to the compressed Drebin APK causes the performance

of NCD to trail LZJD by nearly 14 percentage points, making it considerably worse

than LZJD in all cases. This also provides additional evidence that LZJD is more

robust in the face of higher entropy data, as the drop in accuracy from Drebin TAR

to Drebin APK is not as dramatic, losing only 6.4 points when the whole dataset is

used.

10% of data 100% of data

Dataset NCD LZJD LZJDh LZJDh

Kaggle Bytes 1.20⇥ 107 2.95⇥ 106 1.22⇥ 103 1.73⇥ 104

Kaggle ASM 2.83⇥ 107 1.16⇥ 107 4.94⇥ 103 4.85⇥ 104

Drebin APK 1.79⇥ 105 4.22⇥ 105 7.41⇥ 102 7.17⇥ 103

Drebin TAR 3.59⇥ 105 4.41⇥ 105 8.33⇥ 102 7.65⇥ 103

Table 5.3: Total evaluation time for each method 10-fold CV. Time presented in seconds.

In Table 5.3 the CPU time on each dataset is given in seconds. Our un-

optimized implementation of LZJD is sometimes faster and sometimes slower than
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NCD, depending on the dataset. But our ability to apply min-hashing makes LZJDh

orders of magnitude faster. In every case, LZJDh can perform 10 fold CV on all the

data faster than NCD can be applied to one tenth the amount of data. The speedup

of LZJDh ranges from 241 to 9,836 times that of NCD, nearly four orders of magni-

tude, with the larger speedups being obtained on the larger Kaggle datasets. This

runtime improvement greatly extends the utility of LZJD over NCD, representing

the difference between 327 CPU days for the Kaggle ASM dataset to under two

CPU hours.

5.4 Differences Between NCD and LZJD

We have shown that the LZJD distance, for byte-based malware classification,

has superior accuracy to NCD. Combined with min-hashing, it is also orders of mag-

nitude faster while retaining the desirable properties of being a metric. Superficially,

it may seem surprising that the NCD and LZJD have meaningfully different results,

given that in practice they both use the Lempel-Ziv compression scheme as a core

component. Here we present two ways in which the behavior of these two distances

are different.

5.4.1 High Entropy Files

One important difference between LZJD and NCD is the value returned when

faced with a compressed, encrypted or otherwise random looking file. Such process-

ing results in a high byte entropy, and is a common scenario for malware classifi-
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cation. Malware will often encrypt or compress portions of itself to obfuscate its

true intentions and reduce its footprint to avoid detection. This is referred to as

packing, and over 90% of Microsoft malware uses some form of packing [129]. We

will first discuss how NCD and LZJD differ in this scenario, and then explain how

the impact can be seen on our results.

When NCD encounters high entropy regions that cannot be compressed, these

areas will become additive constants to the compressed size of each file, and neither

file will have information that can help compress the high entropy areas of the

other (assuming the high entropy regions in the two files are not near duplicates).

This will result in an increase in their distance. When two different files cannot be

compressed, the maximal possible distance (of 1.0) is returned. We emphasize that

because a single high entropy file will not help compress or be further compressed

by any other file (including ones that are not compressed), high entropy files will

become maximally far and equidistant from all other data points in practice.

For LZJD, we build the LZ dictionary which, in the presence of non-compressible

randomness, will begin collecting all possible shortest length sequences into the set.

This is because each sequence is equally likely to be observed, and corresponds to

the worst case scenario for LZ compression. This will generate a dictionary set with

a maximal number of elements. Since we use the Jaccard distance between these

sets, two different files composed of random sequences will likely have a near-zero

distance from each other, which is the opposite behavior of NCD. In contrast, when

computing the distance between a high and low entropy file, LZJD’s distance will

become larger (but not maximal), the value of which will depend on the ratio of
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small to large sub-sequences in the non-compressed sequence. The lower entropy

a sequence is, the easier it is to accumulate longer sub-strings, thus increasing the

distance to higher entropy sequences. Thus, LZJD will tend to compute very small

distances between two compressed files, but not between a compressed file and a

non-compressed file.

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

Byte Entropy of File

P
D

F
(v

ia
K

D
E

)

Benign Data
Malicious Data
LZJDh errors
NCD errors

Figure 5.4: Distribution of file entropy for datapoints that were misclassified (solid lines)
in the test set, and benign vs malicious sub-sets (dotted lines). Results with
respect to all three test sets from subsection 5.3.1.

The impact of these entropy-related effects is clearly evidenced by our results

with the Android Drebin malware, where the only difference between Drebin TAR

and Drebin APK is compression (at a ratio of 1.34). NCD has a nearly 14 point

drop in performance on the compressed Drebin APK dataset compared to the TAR

version. This is a significant performance gap for what amounts to two versions of

the same data. LZJD is considerably more robust to the change, with only a 2-6

point drop in performance. Because the only difference between these two versions

is compression, we can attribute the better performance of LZJD to the manner in

which it handles higher entropy (caused by compression) data.
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The better performance of LZJD can also be seen by looking at the entropy

of files which are misclassified, as shown in Figure 5.4 for the malware detection

results from subsection 5.3.1. The Probability Density Function (PDF)3 is shown

for the test data, and compared against the PDF of the misclassified test data for

each metric. Recall that the PDF is normalized to integrate to one, and so we are

comparing the shapes of PDF curves, not their magnitude.

Since NCD has difficulty with high entropy files, it is more likely to misclassify

those files as compared to files of lower entropy. This results in the highest proportion

of errors near the rightmost end of the distribution. The PDF for NCD thus also

increases with entropy, as NCD(a,b) approaches 1 when either a or b are of sufficiently

high entropy.

Because many, if not most, high entropy binaries (� 7 entropy) are malicious,

it is easier for LZJD to properly classify many of these files. Under LZJD such

high entropy files will have a small distance from each other, but a larger distance

compared to the lower entropy files. The majority of neighbors will then be malicious

based on the population density, and give the label of malicious (which is usually

correct). Errors will then come from high entropy benign files, which can be seen in

Figure 5.4. The test PDF errors for LZJDh in the � 6 entropy range matches the

shape of the benign data (dashed green line), indicating that LZJD’s errors with

high entropy files are failures in separating the minority of benign packed files.

The behavior of LZJD in this case results in improved accuracy, but could be
3PDF is estimated with a Kernel Density Estimator using a Gaussian kernel, bandwidth selected

using Silverman’s method.
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seen in both a positive and negative light. On one hand, two files that are com-

prised of different random bytes are intrinsically different and have no overlapping

similarity — thus making it appropriate that they receive the maximal possible dis-

tances from each other. At the same time, both files are similar in the fact that

they appear random and incompressible, making it appropriate to place them closer

together distance wise. While there may be other datasets and domains where the

way LZJD handles high entropy sequences is undesirable, it has clearly resulted in

improved accuracy for malware classification and provides more meaningful nearest

neighbors compared to NCD.

5.4.2 Sensitivity to Sequence Length Repetition

While the behavior of LZJD with high entropy sequences can be argued in

either direction, there is one way in which the theoretical behavior of LZJD does

not match our intuition of how a distance metric should behave. This is when we

are given two sequences where one sequence is a repetition of the other. We have no

reason to suspect this scenario occurs in our data or constitutes a significant impact

on our data and results, but find the exercise informative to the differences between

NCD and LZJD. NCD has the desired theoretical behavior in this scenario, as we

will show below, but does not deliver upon this behavior in practice. LZJD lands

in the middle ground, where its behavior is not what we would desire but is better

than NCD in practice. Devising ways to rectify this theoretical shortcoming may

be a way to improve LZJD as a whole in future work.
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Let us assume we have a sequence of bytes ↵, and represent the duplication of

a sequence n times as ↵(n), where ↵(1) = ↵. Intuitively, we would desire the distance

between ↵(n) and ↵ to be small, as they are intrinsically similar. There is effectively

no true difference in content, only in repetition of the same data.

Using the theoretical Kolmogorov complexity K(·), NCD does match this in-

tuition. We would expect that 8n > 1, NCD(↵,↵(n)) < ✏. This is because, for most

cases, K(↵(n)) ⇡ K(↵)+log(n), as we can generally represent the duplication of the

string ↵ with a minimal amount of additional programming that repeats the original

sequence, and simply need to know how many times to repeat that sequence (the

value of which takes a logarithmic number of bits to represent)4. Then applying this

to NCD we expect to get

NCD
�
↵,↵

(n)
�
=

K(↵↵(n))�min(K(↵), K(↵(n)))

max(K(↵), K(↵(n)))

=
K(↵(n+1))�K(↵)

K(↵(n))

 K(↵) + log(n+ 1)�K(↵)

K(↵) + log(n)

=
log(n+ 1)

K(↵) + log(n)

It is easy to see that limK(↵)!1
log(n+1)

K(↵)+log(n) = 0. Thus, the NCD between two

files that are of widely different lengths, that differ only in how many times the same

sequence ↵ is repeated, should result in a small distance. The distance will increase
4This is not true in all cases, so we avoid absolute statements. But for most files this will be

approximately correct
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slowly as the repetition n increases, due to the log terms. This behavior matches our

intuition that ↵ and ↵(n) should have a small distance and are intrinsically similar.

This is the result with the theoretical Kolmogorov complexity K(·). In prac-

tice, we have to use some compression algorithm C(·), in which case for large inputs

↵, C(↵(n)) ⇡ nC(↵). This is due to the fact that compression algorithms (like

LZMA) usually use a window size for compression, and for larger sequences the

window size will be smaller than the length of the files. By the time the win-

dow reaches into the second sequence, information from the first is mostly out

of the window. This means little information about one sequence is used for

the compression of the second [37]. Using this we would instead get the result

NCD
�
↵,↵

(n)
�
⇡ (n+1)C(↵)�C(↵)

nC(↵) = 1. This is the opposite of the theoretical behavior

we would expect.

We have now shown that NCD has a theoretically desirable behavior, but in

practice has the worst possible behavior. We now show that LZJD’s behavior (which

does not have a disconnect between theoretical and real performance) falls between

these two opposing ends. It does not match our intuition for what good behavior is,

but avoids marking sequences as equidistantly maximally far away. By the definition

used in Algorithm 1, it is easy to see that the dictionary is monotonically increasing

in size, irrespective of the amount of repetition in the source sequence. For a minimal

increase in the dictionary size (and thus, minimal change in distance), we want a

sequence of all the same character. This means the size of the next sub-string added

to the dictionary will always increase by 1. If the length of a string ↵ is |↵|, and

k is the minimal number of items added to a set, we get |↵| =
P

k

i=1 i. Solving for
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k reveals that we get at least 1
2(
p

8|↵|+ 1 � 1) sub-strings. Applying this to the

Jaccard distance we obtain a lower bound on the distance

LZJD
�
↵,↵

(n)
�
= 1� |LZSet(↵) \ LZSet(↵(n))|

|LZSet(↵) [ LZSet(↵(n))|

= 1� |LZSet(↵)|
|LZSet(↵(n))|

� 1�
p
8|↵|+ 1� 1p
8n|↵|+ 1� 1

By taking the limit lim|↵|!1 1 �
p

8|↵|+1�1p
8n|↵|+1�1

= 1 � 1p
n
, we see that the distance

will start off near 0.3 for just one repetition, and grow relatively quickly as the

repetition is increased. Repeating this with assumptions on a faster growth rate of

the dictionary size increases the value of the limit and increase the distance between

↵
(n) and ↵.

This is in many ways counter to our intuition that ↵ and ↵(n) are intrinsically

similar, and so should receive a small distance. The LZJD distance also grows more

rapidly with repetition than it does in the case of NCD. This is worse than NCD in

theory, but better in practice since C(·) is often not a good enough approximation of

K(·) when dealing with large sequences like binaries. More succinctly, with regards

to this scenario, LZJD is worse than NCD in theory, but better than NCD in practice.

This is because the theoretical behavior of NCD is unobtainable. Fortunately the

scenario of duplicated sequences does not seem to occur in practice, but the results
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are informative to the behaviors of these distances. Understanding and rectifying

this theoretical weakness this may allow us to devise improvements to LZJD in

future work.

5.5 Conclusions

In this chapter we have introduced the novel LZJD distance as an alternative

to NCD when dealing with large byte sequences, particularly for malware classifica-

tion. LZJD has comparable or better accuracy than NCD, when using raw bytes for

Microsoft Windows files and Android applications, ASCII disassembly, and moder-

ately compressed Android APKs. We have also shown two theoretical differences

in behavior between these distances, despite similar inspiration. Our new distance

allows the use of min-hashing to obtain speed improvements of up to four orders

of magnitude. This has allowed us to apply LZJD to datasets orders of magnitude

larger than were previously possible with NCD. This comes with improved accuracy

compared to NCD, yet retains the desirable distance metric properties that NCD

lacks.
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Chapter 6: Malware Classification and Class Imbalance via Stochastic

Hashed LZJD

Given our new LZJD metric, we now have am alternative to NCD that is

faster and more accurate for malware classification. However, it is not yet practical

for use with large training sets due to the nearest-neighbor search. This issue will

be remedied in this chapter, providing a LZJD based classifier with inference time

independent from the training set size. Simultaneously, we will also improve LZJD

to handle class imbalance directly, a common problem in the malware space that

will make LZJD applicable to a wider array of sub-problems in this space.

6.1 Introduction

In chapter 5 we developed the new Lempel-Ziv Jaccard Distance. LZJD avoids

the challenges of extracting features by ignoring any domain knowledge, and instead

measures the similarity between arbitrary byte sequences (such as the raw binaries

themselves). LZJD improved upon the Normalized Compression Distance (NCD)

[35], which has been used for a number of malware related tasks [e.g., 37]–[40] by im-

proving on the runtime and accuracy of NCD. LZJD was shown to be more effective

in a nearest-neighbor classifier for both types of malware classification problems:
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malware detection (is this file benign or malicious?) and malware family classifi-

cation (given a malicious binary, which family is it from?). LZJD is also a true

distance metric, unlike its predecessor NCD, allowing it to be used for similarity

search, clustering, and other applications. However, LZJD does not lend itself to

building a compact malware classifier. Nearest neighbor search time will increase

linearly with the training set size, and the use of SVMs only delays the growth in

inference time.

In this chapter, we extend LZJD to further increase its accuracy for malware

classification and improve inference time to be invariant to training set size. In

addition, we will also address the class-imbalance problem. Class imbalance occurs

when there is significantly more training data from one class compared to the others.

This problem occurs naturally in the malware domain [66], and thus is important

to resolve. We do all of this in a single framework. Our new algorithm will work by

altering LZJD to produce a fixed length, sparse feature vector that can be used effec-

tively with algorithms like Logistic Regression. We call this algorithm SHWeL, for

Stochastic Hashed Weighted Lempel-Ziv. Its derivation will be given in section 6.3,

where we will also explain how we leverage SHWeL to tackle the class imbalance

problem via a novel over-sampling strategy. In section 6.4 we will evaluate several

datasets to show that SHWeL vectors improve upon LZJD when used for nearest-

neighbor classification, work well with Logistic Regression as a classifier, and obtain

further improved accuracy via our new over-sampling technique. In section 6.5 we

will discuss how our SHWeL algorithm is able to outperform existing approaches,

followed by our conclusions in section 6.6. But first, we will review the related work
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in this area in section 6.2.

6.2 Related Work

We take a moment to discuss the important prior work related to class imbal-

ance. While the primary Industry training data used throughout this thesis has the

benefit of being balanced, this is not an appropriate assumption in the general case.

Indeed, our malware family datasets have high levels of class imbalance as well.

Class imbalance issues have been noted for both malware family problems

[113], and malware detection [41], [130]. Despite this problem, it has been noted

that there is surprisingly little work in the malware space on tackling the issue at

training time [131]. The Machine Learning community has studied this problem on a

more general level, and developed a number of methods for tackling this problem —

primarily through the application of over- or under-sampling the training data [132],

[133]. In particular, the SMOTE algorithm [134] has become one of the most popular

and successful methods in this space. SMOTE works by over-sampling the minority

class to improve the training balance, and interpolating the oversampled points with

their neighbors to increase diversity. Many variants of SMOTE have been proposed,

and we also consider one of the more popular of those variants, namely Borderline-

SMOTE [135] (B-SMOTE). B-SMOTE improves upon SMOTE by restricting the

set of points used to over-sample to data points near the border of the classes.

One weakness of the many Machine Learning based solutions to class imbalance

is that they have been developed for use with small datasets. Let N+ be the size
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of the majority dataset, N� be the size of the minority class, and N = N+ + N�

be the size of the whole training set. The SMOTE algorithm then takes O(N�
2),

which is acceptable assuming that the minority class is small. But for our domain,

N� could be in the range of a million samples, with N+ in the tens to hundreds of

millions. This situation gets worse with B-SMOTE, which increases the complexity

to O(N ·N�). In contrast, the approach presented here will require only O(N) time,

while simultaneously providing better results than either version of SMOTE.

While we focus on class imbalance at training time, since obtaining diverse

benign training data is difficult, this space also exhibits class imbalance at inference

time. Individual computers may be likely to see more benign files than malicious,

while externally facing networking equipment may see more malicious files than be-

nign. Moskovitch, Stopel, Feher, et al. [24] looked at the problem of determining

what ratio of training data, rt would provide the best performance when encoun-

tering a different ratio, ri 6= rt, at inference time. Others have taken an approach

with balanced training sets, and built classification systems focused toward the im-

balanced test environment [136]. Another less satisfying approach is to restrict the

training set to have the same class proportions as one expects at test time [137].

All of these approaches are predicated on having a specific amount of training data,

and could benefit from the methods we develop here.
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6.3 Stochastic Hashed Weighted LZJD

While LZJD has been shown to be an effective distance metric and has good

accuracy in a nearest-neighbor style classifier, such classifiers are not always optimal

for practical use. Of particular importance is the use in scenarios with large datasets,

as the amount of malware is growing at an exponential rate. For this reason we

desire a method that can exploit LZJD’s accuracy but provides faster inference

than a nearest neighbor search.

Our second goal is a classifier that is robust to class imbalance. By the nature

of the problems present in the cyber security domain, extreme class imbalance is a

common scenario. For malware detection, it is easy to obtain terabytes of malware,

but good and representative benign data is difficult to come by. For malware family

classification, different malware families naturally have differing number of variants,

with some malware intentionally designed to be prolific and others designed to be

subtle. We develop a strategy for vectorizing data items with LZJD that addresses

both of these challenges.

Our strategy for achieving these goals can be broken down into three steps of

modifications to the original LZJD algorithm. We will review these three steps in

more detail below.

1. Incorporate subsequence length into the similarity measure to capture addi-

tional information and improve accuracy.

2. Convert byte sequences to vectors so that we can exploit faster algorithms,
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and efficiently incorporate the weights discussed in step 1.

3. Introduce a stochastic component to the vectorization, so that we can over-

sample a byte sequence to tackle class imbalance.

6.3.1 Incorporating Weights into LZJD

We first note that we can potentially improve the effectiveness of LZJD by

incorporating the concept of sequence length into the algorithm. To see how weights

can be incorporated into LZJD, we note that LZJD breaks a larger byte sequence A

into a set of m sub-sequences ↵1...m, such that 8i 2 [1,m],↵i 2 A. In LZJD, the set

of subsequences ↵ is an unweighted set. However, each sub-sequence ↵i may have a

different length, and intuition says that it is more interesting if two binaries share

a subsequence that was 100 bytes long than if they share a subsequence that was

only 3 bytes long.

Thus we propose to improve LZJD into a weighted LZJD by giving each sub-

sequence ↵i a weight w↵i = log(|↵i| + 1). Using a log term for the length’s weight

has the same inspiration as TF-IDF weighting schemes, in that as the length of the

sequence increases, the importance of its increased length begins to diminish. This

is a practical assumption for the malware domain due to issues like padding, which

can intentionally place thousands of simple byte patterns into a binary. Ideally, we

would use these weights with the Weighted Jaccard Similarity (6.1) instead of the
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standard Jaccard currently used.

WJS(a, b) =

P
8i2a[b min(ai, bi)P
8i2a[b max(ai, bi)

(6.1)

The problem with using the Weighted Jaccard approach is that we lose the fast

min-hashing afforded by the Jaccard similarity. If a byte sequence A produces m

subsequences and we want a digest with k hashes, LZJD takes only O(m+ k log k)

time to create the min-hash used. There exist digest strategies for the weighted

scenario, but all take O(km) time in order to produce a hash of size k [138]–[140].

Because m is in the millions to tens of millions for many binaries, these strategies

are not practical even for our smallest tests.1

6.3.2 Incorporating Hashing

Instead we look at linearizing the LZJD feature vector, a strategy that has

been used to improve the runtime performance of both the Weighted Jaccard simi-

larity [141] and the normal Jaccard similarity [142] used by LZJD. Because building

a weighted hash is too computationally demanding, we instead use the hashing

trick [143].

The hashing trick works by indexing into a vector x 2 Rd, where d is a hyper-

parameter we control. The vector starts out as all zeros, and for each feature ↵i we

want to consider, we index into x based on some hash function h(·). Normally this

would be done with all features, and thus would produce a vector with m non-zero
1Initial testing of ICWS hashing algorithm took hours for just a few thousand files.
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values. Instead, we continue to restrict ourselves to only the k smallest hash values

as they would have been computed in normal LZJD. This gives us a vector x which

will have exactly k non-zero elements, the values of which are determined by the

weights wi specified above.

Our choice to continue using the minimum k entries from the Lempel-Ziv dic-

tionary allow us a principled way of ensuring that the subset of features selected will

also be selected when processing new files. While the selected features are intrinsi-

cally biased toward maintaining the Jaccard similarity between two sequences, using

the weighted values allow us to incorporate a behavior closer to that of the Weighted

Jaccard case. This heuristic interpolation between methods does not have the same

theoretical backing as Confidence Weighted Sampling algorithms for weighted min-

hashes, but we find it allows us to uniformly improve upon the accuracy of LZJD

while avoiding the computational shortcomings of weighted min-hashing approaches.

6.3.3 Incorporating Stochasticity

The final step to our new approach is to incorporate a stochastic behavior

into the Lempel-Ziv process. When constructing the LZ dictionary [124], [125], the

entires are added in a sequential manner, and items can only be added to the set

if they have not been seen previously. This means the z th entry added into the

dictionary is dependent on all previously seen dictionary members. Thus a single

byte change early in the dictionary creation process has the potential to propagate

forward, causing significant changes in the content of the dictionary itself, and thus
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the final set of k subsequences used in our hash. To give a concrete example of

this impact, consider the bit-string 01010110111, which will generate the LZ set

{0,1,01,011,0111}. If we remove the first “0” from the original string, the generated

LZ set will become {1,0,10,11,01}. Thus a one bit change in the input string has

removed the two longest sub-strings and replaced them with two new (and in this

case shorter) sub-strings.

This sensitivity can be seen as a weakness of the LZJD approach. In this work,

instead of attempting to correct this weakness, we instead turn it into a strength

by intentionally perturbing the dictionary produced by the LZ process. Using these

perturbations we can obtain multiple distinct vectors or “realizations” for a single

byte sequence. These multiple different samplings can then allow us to over-sample

the minority classes until each class has an equal number of training vectors. This

is similar in spirit to the seminal SMOTE algorithm, which produces new synthetic

examples from the minority class by linearly interpolating between points and their

nearest neighbors [134]. In our case, the over-sampled vectors are as real and valid as

any other feature vector, where the SMOTE over-sampling can produce unrealistic

or improbable feature vectors.

To perturb our LZ process, we add a stochastic “false-seen” chance p to the

construction process. This is the probability that we will falsely indicate that we

have previously seen the given subsequence. When we check the current set for the

current subsequence, then with probability p we will behave as if the subsequence

was seen before, even if it was not. Regardless of the result of this step, we still add

the subsequence to the current set. The whole procedure is shown in Algorithm 2.
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Algorithm 2 Stochastic Hashed Weighted Lempel-Ziv (SHWeL)
Require: False-Seen probability p, target dimension d, hash size k
1: procedure SHWeL(Byte sequence b)
2: x ~0 2 Rd

3: s ;
4: start 0
5: end 1
6: while end < |b| do .perform Lempel-Ziv set creation

7: bs  b[start : end]
8: Sample f ⇠ U(0, 1) .false-seen chance

9: if bs 62 s ^ f > p then
10: start end
11: end if
12: s s [ {bs} .has no effect if seen before

13: end end+ 1
14: end while
15: sk  k entires of s with the smallest hash values
16: for all bs 2 sk do .set non-zero values

17: x [h (bs) mod d] x [h (bs) mod d] + log(|bs|+ 1)
18: end for
19: return x
20: end procedure

This new approach allows us a direct method to tackle class imbalance by

over-sampling. Instead of over-sampling the feature vectors, we generate multiple

feature vectors from each raw file. Because of our stochastic SHWeL algorithm,

these feature vectors will contain some variable number of differences. To create

a balanced dataset, we determine the ratio r between the majority class and each

minority class, and then sample each minority file r times. This allows us a more

effective method of oversampling the minority classes than offered by SMOTE or

naive oversampling or re-weighting. We call this new strategy for oversampling with

SHWeL vectors Over-sampling via SHWeL (OSL).

By incorporating a stochastic decision at this step, we also enforce two impor-

tant properties. First, that the LZ dictionary contains only subsequences ↵i that
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can be found in the source sequence A. Second, that every byte of A can be found

in some subsequence ↵i. In this way we can be confident that, despite producing

multiple vectors for a single byte sequence, each vector does represent that byte

sequence. If we were to randomly inject or alter bytes within the sequence A, it is

possible that we would produce false and spurious correlations to other files, or waste

one of our k non-zero entries on representing a subsequence that never appeared in

any file. Our strategy avoids such undesirable properties.

6.4 Experiments

Having developed our new method for vectorizing byte sequences, we will

evaluate our new approach on multiple datasets for malware family classification

in subsection 6.4.1, and malware detection in subsection 6.4.2. We will use the

balanced accuracy as our target metric on all datasets. Balanced accuracy re-weights

the contributions of each data point toward the final score based on the class label,

such that the score produced gives equal total weight to each class. This allows us

to compare results in a more meaningful way across datasets, and emphasizes the

importance of learning low-frequency classes [103]. For the binary malware detection

problem, we will also consider the Area Under the ROC Curve (AUC) [104], as it

relates well to the triage scenario.

For each method we will show the original LZJD’s performance as a nearest-

neighbor classifier, using SHWeL vectors in a k-nearest neighbor (kNN) classifier

with cosine distance, and using SHWeL vectors with Logistic Regression (LR). We
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will also test the kNN and LR classifiers when using our OSL approach, and when

doing so, will denote them as “kNN-OSL” and “LR-OSL” to avoid confusion. As a

baseline for handling class imbalance, we compare against the SMOTE algorithm

[134], and the extension Borderline-SMOTE (B-SMOTE) [135] that attempts to im-

prove performance by only oversampling minority samples near the decision border.

In each case we will use the Logistic Regression classifier when using either version

of SMOTE,2 with our SHWeL vectors as the feature representation.

All code for the below experiments was written in Java using the JSAT library

[144]. Tests were run on a workstation with 128 GB of RAM, 4 TB of SSD storage,

and an Intel Xeon E5-2650 CPU at 2.30 GHz. For both LZJD and SHWeL we

use k = 1024. For SHWeL we use a false-seen probability p = 1% and target

dimension d = 220. SHWeL’s performance was insensitive to all of these parameters

in extended testing. We will see that for malware classification, our new SHWeL

vectors outperform LZJD universally, outperform SMOTE for dealing with the class

imbalance problem, and allow us to produce a higher accuracy classifier that can be

used with large data sets with lower inference time.

6.4.1 Malware Family Classification

Our evaluation starts with malware family classification, and so we continue

to use the Android Drebin and Microsoft Kaggle data. These corpora have class

imbalance issues, and so provide a direct test case to show the benefit of our new
2While SMOTE was originally defined for binary classification problems, we have extended

both to the multi-class case in such a way that they are equivalent to the original algorithms when
run on binary class problems.
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SHWeL algorithm’s ability to tackle class imbalance.

Dataset LZJD 1NN-SHWeL LR-SHWeL

Kaggle Raw 97.6 (1.5) 97.6 (1.38) 96.7 (2.07)
Kaggle ASM 97.1 (6.1) 97.3 (1.93) 96.9 (2.08)
Drebin APK 80.8 (2.6) 83.6 (1.94) 78.4 (2.26)
Drebin TAR 81.0 (6.5) 87.9 (1.84) 89.1 (2.29)

Table 6.1: Balanced accuracy results from 10-fold cross validation (standard deviation in
parentheses) on malware family problems, when trained on the unbalanced
training data. Best results shown in bold, ties broken by selecting model with
lowest variance.

We begin by looking at the performance of LZJD, kNN-SHWeL, and LR-

SHWeL on the naturally unbalanced Kaggle and Drebin datasets. The Kaggle

dataset has a mean ratio between minority and majority class ratio of 9.5:1, and a

maximum ratio of 59:1. The Drebin dataset has a mean ratio between minority and

majority class ratio of 9:1, and a maximum ratio of 18.6:1. The results can be seen

in Table 6.1, where 1NN-SHWeL uniformly outperforms LZJD on every dataset.

On both Kaggle datasets LJZD and SHWeL have similar performance, with SHWeL

being superior and having reduced variance in results. We see a bigger performance

difference to 1NN-SHWeL’s advantage on both Drebin datasets. On the APK ver-

sion 1NN-SHWeL improves performance by 2.8 percentage points, and by 6.9 whole

points on the TAR version.

While LR-SHWeL does not uniformly improve upon LZJD, we will see this

is because of the negative impact of class imbalance in the training data. We re-

evaluate 1NN and LR using our Over-sampling scheme OSL in Table 6.2, where

we compare against LR-SHWeL run with SMOTE and B-SMOTE. In this case we

see that LR-OSL dominates all results for handling class imbalance, and improves
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Dataset SMOTE B-SMOTE 1-NN-OSL LR-OSL

Kaggle Bytes 97.3 (1.85) 97.3 (1.81) 97.8 (1.34) 97.9 (1.86)

Kaggle ASM 96.9 (2.09) 96.9 (2.11) 97.3 (1.93) 97.8 (1.91)

Drebin APK 79.1 (2.02) 78.9 (1.66) 83.6 (2.05) 84.0 (1.75)

Drebin TAR 90.0 (2.21) 89.7 (1.92) 88.4 (1.61) 93.5 (1.64)

Table 6.2: Balanced accuracy results from 10-fold cross validation (standard deviation in
parentheses) on malware family problems, when trained on balanced data. Best
results shown in bold.

upon all methods tested in Table 6.1. In all cases OSL has little impact (but still

positive) upon the performance of 1NN-SHWeL, which is a reasonable expectation.

While SMOTE and B-SMOTE both manage to slightly improve upon the perfor-

mance of LR-SHWeL, they do not provide the same dramatic improvements that

OSL is capable of. We see LR-OSL improve the accuracy of LR-SHWeL by 0.9-1.2

percentage points for the Kaggle datasets, and 4.4-5.6 points on the Drebin dataset.

6.4.2 Malware Detection

For malware detection, we continue to use the Industry dataset and testing

set. In this chapter we introduce an updated version of the Industry corpus, which

contains 2 million binaries: split evenly between benign and malicious. This will be

the Industry 2 million corpus, and the version used in prior chapters will be denoted

as Industry 400k. We first use the 400k version of the corpus to compare with our

prior results, and show improved scaling using the new 2 million binaries corpus.

The results of running our new methods on this malware detection dataset

are presented in Table 6.3. On the Industry and Public test sets, we can see that

SHWeL vectors outperformed LZJD both when using nearest neighbors, and when
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LZJD 9NN-SHWeL LR-SHWeL

Test Set Acc AUC Acc AUC Acc AUC

Industry 85.9 91.1 87.5 96.2 87.2 94.5
Public 77.4 86.7 78.3 88.6 83.2 96.9

Open Malware 67.8 — 61.0 — 64.2 —

Table 6.3: Balanced accuracy and AUC for original LZJD (using 9-NN), and new SHWeL
vectors with both 9-NN and Logistic Regression algorithms as the classifiers.
Training on the Industry 400k training set, best result is shown in bold for each
row, second best shown in italics.

using logistic regression, with the two approaches each performing best on one test

set. While accuracy has improved from 1.6 to 5.8 points, depending on dataset, the

AUC has had the most substantial improvement: By 5.1 points on the Industry test

set, and 10.2 whole points on the Public dataset. This is of particular relevance

for the triage application scenario, where we will be inspecting most files anyway,

but having a high AUC allows us to effectively prioritize the work queue of an

analyst. While LZJD did have the best performance on the Open Malware test set,

this result is biased due to the fact that it contains only malware — and is thus

measuring recall rate. In both cases above, models trained off SHWeL vectors had

a preference toward labeling files as benign. Because the Open Malware corpus has

only malicious files, the true-positives that would have been obtained by marking

more benign files as benign are not reflected in the score.

A benefit of the SHWeL vector approach in particular is that it allows us

to scale to even larger datasets, especially when using Logistic Regression as our

classifier. We demonstrate this using the Industry 2 Million corpus. Specifically, it

contains 2,011,786 binaries, with 1,000,020 benign and 1,011,766 malicious. We will
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refer to this larger corpus as Industry 2M. Training LR-SHWeL on this corpus of 1.8

TB of compressed binaries took under 15 hours, including the feature extraction and

decompression of the original files,3 using a server with 16 CPU cores. In contrast,

the byte n-gram approach on the smaller original 400k training set took multiple

days using a server with 64 CPU cores [41], [43]. Training several times faster

while simultaneously using a dataset five times larger demonstrates the increased

scalability of our approach. Extrapolating from running LZJD on the 400k dataset,

just classifying the test data using this newer and larger corpus would have taken

over 23 days on the same 64-core server.

Byte 6-gram LR-SHWeL

Test Set Acc AUC Acc AUC

Industry 91.6 97.0 91.3 97.3

Public 82.6 93.4 89.0 98.2

Open Malware 79.3 — 81.9 —

Table 6.4: Balanced Accuracy and AUC on the three malware detection test sets using a
new training corpus of 2 million binaries. Best results shown in bold.

The final test set accuracies for LR-SHWeL using this new dataset is given in

Table 6.4. Because the byte n-gram approach is the only other domain-knowledge

free method that obtains fast inference time, we have replicated the work of Raff,

Zak, Cox, et al. [41] on this larger corpus. Doing so required a cluster of 12 machines

(each with 8 CPU cores) and two weeks of time to compute the 6-grams. This

makes the n-gram approach over 22 times slower to build than our new LR-SHWeL

approach, even when given 6 times the compute resources.

We can see that using more data has dramatically improved the performance
3Each file was gzipped independently given the size of the corpus.
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of LR-SHWeL on every test set, sometimes by significant margins. The smallest

improvement in accuracy was the industry test set improved by 4.1 whole points,

and the largest on Open Malware by 17.7. In contrast, our byte 6-grams had a

reduction in accuracy on the Public test corpus, going from 87.3 (reported in [41])

down to 82.6. This result is consistent with the hypotheses proposed in Raff, Zak,

Cox, et al. [41], which posited that the byte n-gram approach encouraged overfitting

and would have diminishing returns with additional data. This shows that our new

SHWeL vectors provide better results, while also being able to scale to larger corpora.

6.4.2.1 Evaluating a Spectrum of Class Imbalance

For the malware detection problem, our training sets have been equally bal-

anced between benign and malicious samples on a large corpus. This has allowed

us to show SHWeL’s effectiveness, but does not exercise our ability to handle class

imbalance via over-sampling SHWeL vectors. Because it is most difficult to obtain

benign training data, we will under-sample the benign files from the whole training

set. Synthetically restricting ourselves to a fraction of the training goodware, and

over-sample the benign files to mimics a scenario where we are without such a large

corpus of goodware data. This allows us to look at the performance in an unbal-

anced scenario, and the performance using the whole training set gives us a realistic

target score.

The Industry test accuracy when trained with imbalanced data on the Indus-

try 400k training set can be seen in Figure 6.1. The dashed black line shows the
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Figure 6.1: Balanced accuracy on the Industry test set. The x-axis indicates the fraction of
benign data used from the training set during training. The left-most portion
of the graph shows the results when training under extreme class imbalance,
which is progressively lessened as you move to the right of the graph.

performance of Logistic Regression when trained on the whole dataset, with no sub-

sampling. We evaluate over a range of 10:1 in favor of malware, down to 1000:1.

As is expected, the test performance decreases as the ratio becomes further unbal-

anced (toward the left of the figure) for all methods. However, our new SHWeL

Over-Sampling (OSL) strategy dominates SMOTE and an unbalanced Logistic Re-

gression at all ratios. On average OSL has an additional 4.4 whole percentage points

of accuracy, with a minimum of 1.7 and a maximum of 8.0. This is on top of the

more minor gains SMOTE has over a naive application of Logistic Regression to an

unbalanced training set.
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6.4.3 Quantification of Efficiency

At this point we have shown that our SHWeL vectors provide better accuracy

than LZJD, and even the byte 6-gram model previously used. We now discuss in

more detail the training and inference runtime of our new approach, showing that

it meets the goal set out in this work: to have efficient inference time that is not

dependent on training set size (when used with Logistic Regression), and better

scalability when addressing class imbalance. Because the time needed to featurize a

specimen is a important part of this process, we include this cost when discussing

runtime results.

6.4.3.1 Training Efficiency Under Class Imbalance

As mentioned in section 6.2, SMOTE and B-SMOTE have complexities of

O(N�
2) and O(N ·N�) respectively, where our new OSL approach has complexity

of O(N). So long as N� >
p
N , which is reasonable, our new approach has su-

perior asymptotic complexity. However, the overhead of creating SHWeL vectors

is not trivial, so the benefit is not fully realized on smaller datasets. This can be

seen in Table 6.5, where the total training time in seconds is presented for each

of the malware family datasets. For each of these problems, N�  4034, so the

quadratic complexity of SMOTE is not as noticeable, and furthermore, the vector-

ization overhead of SHWeL dominates the runtime, accounting for � 85% of the

training time.

The algorithmic benefit of our approach becomes more obvious when we look
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Training Set LR-SHWeL LR-OSL SMOTE B-SMOTE

Kaggle Raw 6810.4 9136.7 7091.6 8478.9
Kaggle ASM 32087.4 41712.8 32077.3 33740.6
Drebin APK 2590.7 7218.1 2820.4 3067.1
Drebin TAR 2988.4 8471.8 3189.3 3448.6

Table 6.5: Training time of base Logistic Regression and different over-sampling strategies
on malware family problems. Time measured in seconds.

at a larger dataset, like the Industry 400k data. We plot the training time taken as a

function of the amount of benign data used in Figure 6.2. Here the positive impact

of O(N) complexity is obvious, and we see an almost constant training time for LR-

OSL as the amount of benign data (the minority class) increases. The slight increase

in training time comes from the Logistic Regression solver taking slightly more time

to converge as the training distribution’s diversity increases from having more real

samples to learn from, as opposed to the over-sampled vectors used to balance the

dataset. As the fraction of benign files becomes closer to using all 200,000 training

points, both LR and LR-OSL will approach the same training time of just using

Logistic Regression on the full dataset (dashed black line).

We can also see that while both SMOTE and B-SMOTE are faster when there

is very little benign data, their quadratic complexities quickly begin to explode the

training time. Even at a ratio of just 10:1, the SMOTE algorithms are taking as

long or longer to train than Logistic Regression on the whole corpus. If we had

only 100,000 benign training samples compared to the 200,000 malware samples, we

would be unable to use either SMOTE algorithm, despite having a minor imbalance

ratio of 2:1 to correct for. This shows how our approach will scale better to large

datasets. Indeed, we could not afford to produce the same learning curves with
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Figure 6.2: Training time on the Industry 400k training set. The x-axis indicates the
fraction of benign data used from the training set during training. The left-
most portion of the graph shows the results when training under extreme class
imbalance, which is progressively lessened as you move to the right of the
graph.

SMOTE on the larger Industry 2M corpus.

6.4.3.2 Inference Efficiency

Inference time is a simpler problem to look at, as SMOTE, B-SMOTE, LR-

OSL, and LR-SHWeL will all have the same inference time since they all use the

SHWeL vectors with Logistic Regression. For this reason we summarize all of them

using LR-SHWeL. It is easy to predict that they will have the best runtime perfor-

mance, as the alternative k-NN classification time grows linearly with the training set

size. While we still see that the feature-vectorization process dominates for smaller

datasets (which in our case, have larger average file size, increasing SHWeL’s vector-

ization time), our new LR-SHWeL approach continues to have its best performance
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on the largest corpora. The average time to classify a datum can be found in Ta-

ble 6.6 for every dataset. We see that the savings of using LR-SHWeL are muted for

the malware family problems, as predicted, because they have fewer training points

and larger file size.

Training Set LZJD 9NN-SHWeL LR-SHWeL Avg. Size

Kaggle Raw 1580.81 189.01 170.40 4.67
Kaggle ASM 4439.53 822.72 804.65 13.5
Drebin APK 1507.19 155.79 148.00 1.27
Drebin TAR 1607.69 179.14 171.38 1.73
Industry 400k 25113.00 13677.11 44.85 0.38
Industry 2M 125563.33 68385.57 44.90 0.38

Table 6.6: Average time in milliseconds to classify a datum at test time, organized by the
training set used. Underlined values indicate estimated run-times. Fifth column
indicates average file size, in megabytes, of the test sets.

When training on the Industry 400k dataset, and evaluating on the associ-

ated test sets, 99.95% of time spent was on creating the feature vectors (with an

average file size of around 0.38 MB). In this case the LR-SHWeL classifier presents

a respectable and fast 45 ms inference time, making it easily deployable for most

binaries. We note that while fast, the SHWeL vectorization is a bottleneck that is

easy to parallelize. No communication is ever needed for creating the vectors at any

stage of the process, allowing us to work around this issue in practice. We do note

that this does still present a potential future research goal, as reducing the time

for vectorization may allow deployment in scenarios with more stringent runtime

requirements (such as mobile devices).

Our SHWeL approach is clearly the most scalable solution compared to existing

tools for training and testing, as it handles the Industry 2M training set with ease
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while still having fast execution time. Nearest Neighbor classification with LZJD

had to be estimated due to performance constraints, as we do not have the compute

resources to run the task within a reasonable time-frame. We note again that byte

6-grams built on the Industry 2M dataset took over 20 times longer, despite using

six times as much compute power.

6.5 Discussion

Now that we have shown that SHWeL’s improved classification accuracy and

inference time allows us to tackle the class imbalance problem, we discus two details

of our new approach. In particular, we analyze why over-sampling with SHWeL

provides superior improvement over existing SMOTE based approaches to class

imbalance. These insights are applicable in comparing our OSL to any oversampling

approach similar to SMOTE. We also note that there exists an interpretation of

SHWeL and LZJD that connects them back to the n-gram based approach, which

we find informative to potential research directions.

6.5.1 How Swell SHWeL Smites SMOTE

We take a moment to discuss why Oversampling SHWeL (OSL) vectors pro-

vides better performance than the seminal SMOTE algorithm in our use case. One

may suppose that SMOTE should perform better, as it interpolates the space be-

tween points in the minority class. In contrast, the OSL strategy does not interpolate

between points, but instead produces alternate realizations of the same subset of
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points.

The critical component of SHWeL’s success is that the alternate realizations

are equally valid points, as mentioned in subsection 6.3.3 and can produce greater

diversity in features. Consider that SMOTE works by first finding the z nearest

neighbors of a point, and randomly selecting one of those nearest neighbors with

which to perform a linear interpolation. If these two points are a and b, then it

must be the case that a and b currently share a considerable overlap in their non-

zero values, otherwise they would never have become nearest neighbors. Thus for

points that are shared between both a and b, the interpolated point c = �a+(1��)b

will have the same features but with slightly altered weights only if a feature collision

has occurred. It is likely, because a and b are nearest neighbors, that it was the exact

same sub-sequences that were selected as the k items in the digest, and thus have

the exact same length, and thus the features for each feature i, it is probable that

ci = ai = bi. Thus the interpolated features have provided no additional diversity.

SMOTE also has a poor interpretation in the case of features that occur in only

a or b. Recall each point will have exactly k non zero values, but the interpolated

point c can have [k, 2k] non-zero values. For each feature i in a but not in b,

that feature will occur in the interpolated point c with a discount of c = �ai (or

c = (1��)bi if the feature occurred in only b). This interpretation becomes confusing,

as the weights are derived from the length of the sub-sequence. The interpolated

feature then produces an occurrence of the same feature, that surprisingly has a

weight smaller than what its length would determine. Further, since the weight is

based on the log-length, we can see that the interpretation yields exp(log(|↵i|)�) =
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|↵i|�, meaning we are dramatically “changing” the length of the sub-sequence that

provided the feature value. This is an impossibility in the actual feature construction

process, making the interpolated points less meaningful and less likely to match a

new point.

We now compare this behavior to OSL. Let us denote a as the original data

point, and ã as an OSL oversampling produced from the same underlying byte

sequence. It is likely (to a degree depending on the value of p) that a and ã will

share a number of non-zero values. In this case, the behavior is similar to the value of

c produced by SMOTE, as intrinsically ai = ãi. The more important case is that we

will have new non-zero values in ã that do not occur in a. These new values will have

reasonable lengths, and are intrinsically increasing the diversity of features used as

they account for features not previously seen, where c is bound to the features that

occurred in either a or b. This property helps to improve generalization, and will have

the correct weight in the feature vector based on log(|↵i|), rather than the discounted

weighted |↵i|�. Further, as we are forced to oversample points many times, the

interpolated points c will be constrained to a set of at most zk possible non-zero

values (k features for each of the z neighbors). If we have to oversample points

hundreds of times, this will quickly exhaust what little diversity can be extrapolated

from the SMOTE vectors. Because SHWeL is sampling k sub-sequences from a

total of m possible sub-sequences, a value which is often in the millions, there is

significantly greater potential diversity to be extracted — thus extending SHWeL’s

utility as the ratio between majority and minority class increases. This hypothesis is

supported by Figure 6.1, where we can see OSL’s advantage over SMOTE increase
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as the amount of benign data decreases, thus increasing the number of times each

point must be over-sampled.

6.5.2 A Connection Between SHWeL and N-Grams

While the origins of our new SHWeL vectorization approach come from com-

pression, we note that there is an interpretation relating them back to the n-gram

approach. Because each feature in a SHWeL vector corresponds to a byte sub-

sequence ↵, SHWeL can be thought of as a type of n-gramming for multiple values

of n, for which we do not need to perform any expensive feature selection.

In SHWeL, the values of n are determined dynamically from each individual

datum. Because of the LZ process, we can expect many smaller values of n to

occur when processing files of high entropy, as this corresponds to the worse-case

compression scenario and thus builds a dictionary of the shortest sub-sequences.

When presented with a file of no entropy (i.e., the same byte repeated over and

over), SHWeL will obtain progressively larger n-grams until reaching the end of the

file. These two extremes map to our a priori belief of what the correct behavior

should be. When given high entropy inputs, it will be more difficult to find matches

to longer n-grams, and so we should avoid producing them. Similarly, when a file

is of low entropy, the ability to match long sub-sequences becomes more likely, and

SHWeL will adapt to produce such sequences.

The feature selection for SHWeL, which is the min-hashing selection as if we

were to perform Jaccard similarity computations, allows us to circumvent the need
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to process a much larger set of features that could be produced from any given input.

While its form gives us the ability to confidently get the same features selected for

multiple files without any coordination, it also leaves open the possibility of increased

performance if we were to select the features more intelligently. One question would

be if the treatment of the ↵i selected by SHWeL/LZJD as classical features, as if we

had obtained them from n-gramming, could significantly improve the performance

of our approach. This would be in place of performing feature selection by selecting

the k features with minimum hash values, and so would also necessitate increased

training time and coordination. This presents a possible spectrum between the

scalability of SHWeL (which we were able to run in under a day on 2 million binaries),

and the computational burden the n-gram approach presents (which took weeks with

a cluster of computers). Determining this, and any potential balances between the

approaches or alternatives, is a question for future work.

6.6 Conclusions

In this chapter we have proposed the new SHWeL algorithm for vectorizing

arbitrary byte sequences, and shown its applicability to malware classification and

superiority to LZJD. By exploiting the sensitivity of LZJD to byte perturbations,

we are able to over-sample raw binaries to produce multiple realistic feature vectors

for a single byte sequence. This allows us to tackle the class imbalance problem

directly, providing better accuracy and scalability compared to the seminal SMOTE

algorithm. Our new approach also improves upon the accuracy of the byte n-gram
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model for malware detection by allowing it to easily scale to larger corpora, and

avoid over-fitting to the training distribution.
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Chapter 7: Lempel-Ziv Jaccard Distance, an Effective Alternative to

Ssdeep and Sdhash

We have now built a classification system out of LZJD for Windows and

Android malware. While this does exercise one of the primary purposes of be-

ing domain-knowledge free, being usable on multiple file types, it is important to

show such ability in a broad spectrum. To emphasize LZJD’s flexibility, we apply it

to many new file types simultaneously in a new problem domain of digital forensics.

7.1 Introduction

In forensic investigations of IT environments, there has been a long recognized

and ever increasing need to find similar files for a number of scenarios, including

file clustering, detecting blacklisted material, and finding embedded objects [145].

Initial triage and screening of data can easily enter terabytes of data, collected from

email archives, hard drives, USB peripherals, and network traffic[146]. Such needs

occur in many other areas as well, such as firmware analysis [147] and malware

triage[148], [149].

Finding similar files is often a daunting task, since manual inspection can take

hours per file, if possible at all. The need to automate this task has led to the
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development of many similarity digests or “hashes” [30], [32], [150]–[152]. Similar to

hash functions like MD5 or SHA1, these digests convert an arbitrary string of bytes

into a shorter identifying byte string. However, whereas a hash function like MD5 is

designed to produce dramatically different output for even a one byte change in the

input, these similarity digests are designed to produce little if any change in output

given a small change in input. By making the similarity hash insensitive to changes

in the input, we can compare the hashes themselves as a method of comparing the

similarity of two files.

The two most popular and well known similarity hashes [145] are ssdeep [30]

and sdhash [31], which have become the standard benchmarks in the field. While

ssdeep is often ineffective for many data types, it is readily available and one of

the fastest hashing methods in use. In particular, ssdeep is sensitive to byte order-

ing, which is a weakness for formats that support arbitrary re-ordering of contents

(such as binary executable files). While sdhash is slower than ssdeep, it makes up

for runtime performance loss with significantly improved matching and detection

ability and is considered state-of-the-art in this regard[145]. The sdhash program’s

improved matching and detection is the result of resolving the byte reordering weak-

ness of ssdeep.

While ssdeep and sdhash are popular fuzzy hashing techniques, they have

made a number of design or implementation choices that may not be suitable for

all the files types we may consider now or in the future. The ssdeep algorithm

uses a context triggered approach, and the context itself is dependent both on file

length and a minimum block-size bmin, and a signature length S. Both of these
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are set to constants without explanation on the determination of these constants, or

exploration of their impact. Ssdeep also uses a weighted edit-distance to determine

final match scores, without explaining the determination or intuition for the values of

the weights[30]. The sdhash algorithm similarly has a number of parameters which

must be set, and states they are determined empirically from some set of data[31].

However, this data may not accurately reflect the content of interest for practitioners

at large, yet the same parameters are now used — and no tool is provided to re-

calibrate such parameters to a desired data type of interest. The scoring method

used by sdhash also results in the undesirable property that sim(A,B) 6= sim(B,A)

[34]. It can also be difficult to interpret the exact score returned by these methods.

For example, Roussev and Quates [146] recommends treating any score in the range

of [21, 100] as “Strong” in terms of correlation. This covers 77% of all possible

values returned by sdhash. This may be in part because the digests have been

designed to detect near-identicalness, rather than measuring a continuous degree of

similarity[153].

In this chapter, we propose our Lempel-Ziv Jaccard Distance (LZJD) [43] as

an alternative similarity digest. The lack of domain knowledge present in LZJD

should allow it to work for a wider class of potential file types compare to previ-

ous approaches like sdhash. To make LZJD practical for this setting, we will also

introduce a new and faster approximation of LZJD that continues to maintain all

metric and kernel properties, but can be another order of magnitude faster than its

original form.

We will show four primary benefits of using LZJD as a similarity digest. First,
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the time it takes to compare two hashes is orders of magnitude faster with LZJD

compared to sdhash, which is critical when dealing with large signature indexes.

Second, the LZJD score can in practice be interpreted as a lower bound on how

similar the binary contents of two files are. This interoperability is not present in

current digest methods. Third, LZJD is better at matching a file fragment with its

source file (i.e., the source file receives the highest matching score compared to all

other files) compared to both ssdeep and sdhash. We suspect that LZJD sets a new

state-of-the-art in this regard. Fourth, the digest size of LZJD is fixed, making the

determination of index size trivial.

The rest of this chapter is organized as follows. We briefly cover our motivation

for investigating LZJD as a similarity digest in subsection 7.1.1. In doing so we will

give our interpretation of the LZJD approach that leads us to believe it will make an

effective similarity digest. Since efficient execution time is critical to tool adoption

and use, we detail how we develop a faster version of LZJD in section 7.2, and

compare results to the original LZJD work to confirm that our approach has no

loss in accuracy while obtaining higher throughput. These tests will also include

ssdeep and sdhash to show LZJD’s superiority in a related domain, and a significant

failure case for sdhash. Given our new efficient LZJD, we evaluate its abilities as a

similarity digest in section 7.3 using the FRASH framework[33]. We will discuss the

meaning and importance of our results in section 7.4, followed by our conclusion in

section 7.5.
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7.1.1 Motivating LZJD as a Similarity Digest

As introduced in chapter 5, LZJD is a distance metric between arbitrary byte

sequences. To be an effective similarity digest, we need two things: compact digests

of arbitrary files, and accurate matching in multiple scenarios. It is the min-hashing

that accelerates LZJD that inspires us to investigate its potential as a similarity

digest. The application of min-hashing gives us a theoretical bound on the error

when computing similarity between files [126], [127]. Given this, it is reasonable to

assume we can store a compact digest/hash of the file (the min-hash set). LZJD’s

accuracy in malware classification gives us confidence that the approach will also

perform well in the matching part of the task. These two assumptions form the

inspiration for this chapter.

While the LZJD digest will be of a number of elements k, the size of the digest

on disk may be variable since each item in the LZSet may be a variable number of

bytes in length. One might desire a constant digest storage size to make storage

planning simpler, and it can also aid in efficient implementations by reducing degrees

of freedom (which will allow for more performance optimization). We achieve this in

this work with our design of a faster implementation of LZJD, which we will detail

in section 7.2, and show that we are able to obtain a digest with fixed storage size

and considerable performance improvements without compromising on the accuracy

of LZJD.

We also argue that LZJD will provide a potential novel benefit for the forensic

investigator. Specifically, that the grounding in Jaccard similarity approximations is
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means LZJD’s score will be more interpretable than the scores produced by ssdeep

and sdhash. For a direct interpretation of the math behind the LZJD score, consider

two inputs A and B. A score of 0.75 means that, for all sub-strings shared between

the LZSet(A) and LZSet(B), 75% of them could be found in both files. This can

be loosely interpreted as saying that A and B share 75% of their byte strings. This

is not an exact measure of byte content similarity, and will be impacted by two

primary factors. First, that the hashing of sub-strings does not attempt to maintain

information about string length. We expect this to be approximate to the average

string length over many hashes, but this will introduce variability in the scores.

Second, that the LZ set creation can be impacted by the contents of the binary, so

it is possible to produce different sets for similar inputs. We will see that this issue

does impact the score returned, but does not seem to reduce the matching ability

of LZJD. We also note that sdhash has a similar issue where inputs can be modified

by an adversary to reduce the matching score[154], but has found widespread use

regardless. So we do not believe this potential shortcoming would be a hindrance in

practice.

To ground this “loose interpretation” in a more concrete measure, we note

a unique property of the tests in the FRASH framework [33]. For each test, we

can analytically determine what the Levenshtein distance [155], or edit-distance,

between files would have been in each test. The edit-distance being the minimum

number of operations needed to transform one string into another, where an edit

can either replace, remove, or add a byte to the string. The edit distance between

two binary files would not normally be computationally feasible, as it is an O(n2)

148



cost to determine this value for two strings of length n.

With this insight, we find that LZJD tends to act as a lower bound of (7.1)

J(LZSet(A),LZSet(B)) . edit-distance(A,B)

max (|A|, |B|) (7.1)

We use the approximately less-than symbol . because this is not a proven

bound, and does not hold for every experiment. For the majority of tests in the

FRASH framework, this bound does hold. The results of individual tests behaving

in this way, and the one exception, will be discussed throughout the paper as we

review the FRASH test results.

Ultimately, the LZJDh similarity/distance performed orders of magnitude faster

than NCD, with equal or better accuracy, on several malware datasets for both mal-

ware detection (correctly labeling a binary as benign or malicious) and malware

family detection (finding the correct malware family for a known malicious binary).

This success, combined with its use of a fixed-length digest for faster distance com-

putations, inspires our hypothesis that it could be successfully used for the same

kind of digital forensic scenarios as ssdeep and sdhash. We evaluate this feasibility

in section 7.3. But first, we must further improve the runtime efficiency of LZJD to

make it practical for this application.

7.2 A Faster LZJD Implementation

We now review the high level details of the original LZJD implementation,

and discuss our modifications that result in a faster variant appropriate, which we
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denote as LZJDf , for the forensic use case. This implementation is in Java, and

we note that both ssdeep and sdhash are written in C/C++. This may mean that

there is still room for improved performance of our new LZJD implementation. We

have made a Java implementation 1 of this faster LZJD available to the public.

The program has the same command line arguments as sdhash in order to facilitate

integration with existing work flows. We are also working on a C++ version 2 ,

though performance optimization is not yet complete

The original version of LZJD was a rather naive Java implementation. The

set s in Algorithm 1 was a simple HashSet of ByteBuffers. A ByteBuffer object rep-

resents a byte string. This choice meant that equality comparisons had to compare

each byte in each buffer, which would take time linear with respect to the current

sub-string under consideration. Furthermore, and to the detriment of performance,

these comparisons force the hash of the string to be re-computed at every step,

resulting in redundant work.

Once the set of ByteBuffers was obtained, the MD5 hash of each member in

the set was computed and the lower 32 bits used for the min-hashing. This set of

integers was then sorted, and the minimum k integers created the final set used for

this faster variant of LZJD, which we will denote as LZJDh. The MD5 function was

chosen to ensure even distribution of hash values, which are the result of its original

design as a cryptographic hash function.

We will present tests in subsection 7.2.1 that show these modifications do not
1
https://github.com/EdwardRaff/jLZJD

2
https://github.com/EdwardRaff/LZJD
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degrade the accuracy of LZJD but do significantly reduce the runtime cost. We do

this by performing hashing continuously as data is read in, and representing every

sub-string by the hashed integer counterpart. By using a hash that we update with

one byte at a time, we no longer need to read the entire file into memory for LZJDf

to work. This may result in collisions during the LZ set construction as two hashes

may collide to the same integer, but we believe the cost of such collisions to be

minimal. The LZ algorithm will simply continue processing the next byte, which

is now a new sub-string that is one byte longer. It is necessary that this new sub-

string does not currently exist in the set, because the previous set did not contain the

true prerequisite sub-string either. For the new sub-string to also have a collision

becomes astronomically unlikely, assuming the hashes are uniformly distributed.

Even if several collisions occurred, the impact on the output similarity should be

minimal, as the sub-strings of each sub-string are also in the sets and included in

the comparison. That is to say, if the sub-string “abcdefg” is not included in the set

due to a hash collision, the contributions of “abcdef”, “abcde”, etc., are still present.

To make sure these hash values are of a high quality, but avoiding the unneces-

sary quality of a hash function like MD5, we use the MurmurHash33 function. This

hash function is designed to have an even distribution of hashes and require minimal

CPU time for computation. While not originally designed for it, we re-implement

this algorithm so that the hash can be updated one byte at a time. This requires

keeping a four-byte memory that is updated and used to compute the running hash

output, in addition to the internal state of the MurmurHash3 algorithm.
3
https://github.com/aappleby/smhasher

151

https://github.com/aappleby/smhasher


We also optimize the integer set object to take advantage of the two unique

artifacts of the situation. First, it only needs to support the insertion of integers,

so no removals are needed. Second, since the integer values are hashes, there is no

need to apply any kind of hash function to them, as they will already be evenly

distributed (i.e., our hash set can use the identity function as its “hash” function).

We thus adapt an open addressing scheme with double hashing [156, p. 528–529]

that is normally used for a hash table. We can reduce memory use by ignoring the

“value” part, and using a boolean array to indicate if an entry is free or filled, and

remove logic normally needed to handle the removal of entries. The “key” alone will

then act as the set entry, with an implicit null “value”. This reduces memory use

and execution time.

Once the entire file is processed, we will have a set of integers, which we will

then convert to a list of integers. Rather than naively sorting the list, which is

O(n log n), we instead apply one of many algorithms that returns us the k smallest

items in O(n) time [157]. Beyond optimizing how the set of k values is obtained, we

can further improve how they are stored and compared.

The original LZJD would store the set of k integers in a set object, and to

compute the size of the intersection of two sets, would iterate over one set and

query for its entries in the other. This results in O
⇤(k) time complexity, but is both

memory inefficient and results in random memory access that negatively impact

cache and pre-fetching performance. Instead we store the k items in a sorted array,

which is O(k log k), but k << n, so this sort is of minor impact. The benefit is

that we can compute the intersection by doing a merge-sort like comparison of the
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values in each array, incrementally stepping forward in one list when its value is

less than another. This well-known approach is given in Algorithm 3, and results

in a non-amortized O(k) runtime for digest comparisons. Further, the dense arrays

are more memory efficient, and the incremental walk through the sorted arrays will

work with the hardware pre-fetching for improved performance.

Algorithm 3 Set Intersection Size via Sorted Lists
1: procedure Intersection(Integer arrays a and b)
2: posa  0, posb  0
3: size 0
4: while posa < |a| and posb < |b| do
5: if a[posa] < b[posb] then
6: posa  posa + 1
7: else if a[posa] > b[posb] then
8: posb  posb + 1
9: else .Equal values, means item was in both

10: posb  posb + 1
11: posa  posa + 1
12: size size+ 1
13: end if
14: end while
15: return size
16: end procedure

7.2.1 LZJD Speedup Results

Having specified the modifications that produce the faster LZJDf , it is impor-

tant to validate that the hashing approach does not meaningfully degrade accuracy

compared to the original LZJDh. To do so, we will repeat the malware family clas-

sification experiments used in [43]. The malware classification problem has been

previously identified as an area where similarity digests could be useful[145], mak-

ing this test of particular relevance in this context of similarity digest comparisons.

For this reason we will also include ssdeep and sdhash in this comparison, and see
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that LZJDf outperforms them both.

Malware family classification can be seen as a close corollary to the digital

forensics problem of finding a related file. For each malware sample, we wish to

identify the family it belongs to by comparing the sample to a database of known

malware. Each specimen in the same malware family is intrinsically similar, and

can be seen as one unit of “sameness” for which the inter-family similarity should

be higher than the similarity to any other arbitrary sample. This task is strongly

correlated with matching a modified file to its original file, but can be seen as a

more challenging scenario. This is because malware is often written by an active

adversary which attempts to avoid detection. Metamorphic malware, which changes

itself upon propagation, makes this a common and difficult scenario [117], [158].

The two malware datasets used each have two variants of the experiment. The

Microsoft malware comes from a 2015 Kaggle competition, and the data is provided

and labeled by Microsoft [64]. There are 9 malware families in 10,868 files. The

first variant of this dataset uses only the raw bytes of the original files, with the PE-

header removed4. The raw binaries take 50.8 GB of storage space, and we will refer

to this dataset as “Kaggle Bytes”. The second variant is the disassembly produced

by IDA-Pro, which is a more human-readable version of the files. This variant takes

up 147GB of space, and we will refer to this dataset as “Kaggle ASM”.

The second dataset is Android malware from the Drebin corpus [65]. Follow-

ing [43], we remove any malware family that had less than 40 samples. This results
4The PE header info was removed by Microsoft to avoid accidental infection, and cannot be

reversed.
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in a dataset with 20 malware families and 4664 samples. Android applications are

normally distirbuted as APKs, which are simply zip-files. Because the compres-

sion applied by zipping the contents can impact the effectiveness of our hashes, we

evaluate the dataset in two ways. One using the raw APKs (“Drebin APK”), and

the other using an uncompressed tar of the APK contents (“Drebin TAR”). These

variants take 6.4GB and 8.6GB respectively. Differences in performance between

these two datasets can be wholly attributed to the impact of compression5, since it

is the only source of variation between the two sets.

We also note the importance of these tests in regards to the performance of

LZJD and other tools in high-entropy situations. LZJD was analytically predicted

to experience sub-optimal behavior when encountering high entropy data, yet em-

pirically performed well when given such data [43]. The impact of high entropy is

discussed further in the FRASH tests in subsubsection 7.3.2.1, which use random

bytes as part of the test to increase the matching challenge. The Kaggle and Drebin

datasets help to validate that LZJD works even when high entropy is present, with

the Android APK corpus having a median byte entropy of 7.96. Thus the perfor-

mance of LZJD, ssdeep, and sdhash in this task can be seen as a test of all three

approaches when dealing with higher entropy content.

To evaluate all of our hashing options on this dataset, we will use 10-fold cross

validation. We will use the 1-nearest neighbor algorithm to classify each sample

against the other folds. If the matching algorithm returns the highest similarity score
5We note that the amount of compression applied to the APKs is generally light, as a trade-off is

being made between storage size and power consumption, both limited resources on mobile phones
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for a member of the same malware family, then the algorithm correctly classified that

point. For each fold we will measure the balanced accuracy [103]. The balanced

accuracy gives equal total weight to each class. This is useful since the malware

families are not evenly distributed, and results would be skewed upward by the

most populous families. The accuracy for each method on each dataset is presented

in Table 7.1.

Dataset ssdeep (%) sdhash (%) LZJDf (%) LZJDh (%)

Kaggle Bytes 38.4 (1.4) 60.2 (2.3) 98.0 (1.2) 97.6 (1.5)
Kaggle ASM 26.6 (2.2) 28.8 (1.3) 96.7 (1.9) 97.1 (2.0)
Drebin APK 13.6 (1.6) 5.8 (0.5) 81.3 (4.6) 80.8 (2.6)
Drebin TAR 24.2 (2.9) 8.3 (1.2) 87.5 (2.0) 87.2 (2.8)

Table 7.1: Balanced accuracy results on each data and feature set. Evaluated with 10-fold
CV, standard deviation in parenthesis.

Here it is easy to see that our new LZJDf does not meaningfully change the

performance on these datasets compared to the original LZJDh. The largest change

is an increase in standard deviation on the most difficult dataset (Drebin APK).

However LZJDf has slightly higher mean accuracy and lower standard deviation on

most of the datasets. This closeness in results indicates the high fidelity of our new

approach, and that the simplifications in LZSet implementation do not meaningfully

impact the quality of results. This gives us confidence that our changes to LZJDf

will generally perform well.

Comparing both LZJD implementations to ssdeep and sdhash, we can see

far superior classification accuracy. The closest either ssdeep or sdhash come to

matching LZJD’s performance is on the Kaggle Bytes dataset, where sdhash still

trails by over 37 whole percentage points. We will see this trend of LZJD having
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superior matching ability repeated in section 7.3.

While sdhash performs better than ssdeep on the Kaggle datasets, we also see

sdhash produce degraded results on the Drebin datasets. Its scores of 5.8% and

8.3% accuracy are barely better than the 5% threshold for random guessing. When

inspecting these results manually, we discovered that the root cause is related to the

nature of sdhash’s scoring algorithm. Sdhash ends up keying off features generally

common to all of the Android samples in our corpus, producing average nearest

neighbor scores of 99.7 and 99.9 for Drebin APK and Drebin TAR respectively.

This use case provides credence to the desire for a more principled and interpretable

score function.

Difference Absolute Difference Relative Difference

Dataset Avg. Stnd. Dev. Avg. Stnd. Dev. Avg. (%) Stnd. Dev. (%)

Kaggle Bytes 0.231 0.871 0.647 0.627 0.755 0.864
Kaggle ASM 0.010 0.793 0.531 0.588 0.601 0.783
Drebin APK 0.010 0.691 0.489 0.489 0.539 0.660
Drebin TAR -0.056 0.623 0.450 0.434 0.491 0.624
t5 0.112 0.505 0.332 0.397 0.351 0.445

Table 7.2: Statistics on the direct, absolute, and relative differences between LZJDh and
LZJDf similarities for all pairwise distances. Scores for the first four columns
are out of a maximum score of 100 for the difference. The last two columns are
shown in percentage points.

To further confirm the high fidelity of LZJDf ’s approximation of LZJDh, we

also look at the statistics of all pair-wise distance computations in each dataset, and

include the t5 corpus that will be further discussed and used in the next section

of this work. We will look at three sets of statistics, where dh = LZJDh(A,B)

and df = LZJDf (A,B): first, the average difference, dh � df , which we want to

see centered around zero (indicating the approximation is unbiased in practice).
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Second, the average absolute difference, |dh � df |, which we wish to see being as

small as possible (indicating the approximation is accurate). Last, we will consider

the relative difference, |dh � df |/max (dh, df , 0.01), which helps us further consider

changes based on their relative magnitudes. We add the 0.01 term to the relative

difference computation to avoid division by zero, which occurred when there was no

error in the approximation of files with no similarity.

The average and standard deviations for these three statistics are presented in

Table 7.2, where the maximum possible difference would be 100. We can see that

the average relative difference is less than a percentage point. Going out by three

standard deviations from the mean is still less than a 4% error. Similarly the worst

average absolute difference indicates that the majority of scores will differ by no more

than 4 points out of 100. We also see that the average total difference is centered

around zero. These results give us clear validation that our LZJDf approximation is

not only faithful to the true nearest-neighbor ordering provided by LZJDh, but also

accurately reproduces the same score values. That is to say, we have empirically

observed that |df � dh| < ✏.

Dataset ssdeep sdhash LZJDf LZJDh

Kaggle Bytes 3.02⇥ 103 8.64⇥ 105 3.17⇥ 103 1.73⇥ 104

Kaggle ASM 3.25⇥ 103 4.74⇥ 106 1.44⇥ 104 4.85⇥ 104

Drebin APK 2.21⇥ 102 1.30⇥ 104 5.56⇥ 102 7.17⇥ 103

Drebin TAR 2.76⇥ 102 2.04⇥ 104 6.46⇥ 102 7.65⇥ 103

Table 7.3: Total evaluation time for each method in performing 10-fold CV. Time presented
in seconds.

To evaluate the runtime of our new LZJDf , we can see the total time taken

for both hashing the files and performing the nearest neighbor searches in Table 7.3.
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Dataset ssdeep sdhash LZJDf LZJDh

Kaggle Bytes 5.42⇥ 102 1.72⇥ 103 1.92⇥ 103 1.22⇥ 104

Kaggle ASM 2.26⇥ 103 5.34⇥ 103 7.44⇥ 103 4.11⇥ 104

Drebin APK 1.85⇥ 101 2.35⇥ 102 3.74⇥ 102 4.99⇥ 103

Drebin TAR 2.51⇥ 101 3.52⇥ 102 4.36⇥ 102 5.47⇥ 103

Table 7.4: Time spent hashing for each method in performing 10-fold CV. Time presented
in seconds.

As desired, we can see that LZJDf is consistently faster than LZJDh, by a factor

of 3.4 to 12.9. We can further see that this total evaluation time is comparable

to ssdeep, and generally two orders of magnitude faster than sdhash. These large

speed advantages generally come from LZJDf being faster to compare. These results

support our claim that our new LZJDf is fast enough to be a practical alternative

to both ssdeep and sdhash.

In Table 7.4, we show the time spent creating the digests for this same task.

This allows us to see that for ssdeep, sdhash, and LZJDf , creating the digest itself

is usually small relatively to the amount of time spent. When running theses tests

the data was read from hard disk, and we see that LZJDf takes 12% to 60% more

time to create the digest compared to sdhash. Given that the total time for LZJDf

is orders of magnitude faster than sdhash, this allows us to confirm that the fast

comparison time is the source of this dramatic speed advantage. We will explore

the performance differences further in subsection 7.3.1.

Looking at the hash time also demonstrates the critical importance of our

optimization toward practical use. For LZJDh, the hashing time is one to two

orders of magnitude greater than our improved LZJDf . LZJDh is the only metric

which spends the majority of time in producing the digests itself for every dataset.
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These optimizations were thus necessary to make the tool usable for practitioners,

with digest time comparable to sdhash while providing faster digest comparison. For

the remainder of this chapter, we will simply refer to LZJDf as LZJD for brevity.

7.3 Similarity Hash Comparisons using FRASH

The evaluation of similarity digests is not a trivial matter. It requires a diver-

sity of file types (that should reflect real world content) and some level of ground-

truth about which files are similar to others. Roussev [152] introduced the t5 corpus

for such evaluations6, and a manual evaluation of sdhash was performed. The t5

corpus contains a number of different file types, summarized in Table 7.5. Roussev

also proposed a number of challenges for which one would want to use a similarity

hash, which Breitinger, Stivaktakis, and Baier drew from to create the automated

FRASH test suite [33]. The FRASH tests combined evaluate four desirable qualities:

html text pdf doc ppt xls jpg gif

Number of Files 1093 711 1073 533 368 250 362 67
Avg. File Size (KB) 66 345 590 433 1003 1164 156 218

Table 7.5: Contents of the t5 corpus. There are 4475 files in total, totaling 1.9 GB in size.

1. Document similarity detection: where we wish to determine which documents

are intrinsically related, such as multiple revisions of the same word document.

2. Embedded object detection: where the goal is to detect that one object type

(such as an image) has been placed inside of another (such as a email docu-

ment).
6available at http://roussev.net/t5/t5.html
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3. Fragment detection: where we are given a sub-string of some larger file, and

we wish to identify the source of this sub-string.

4. Clustering files : where we wish to group similar files together.

The FRASH suite is written in Ruby7, and allows for easy integration of new

similarity hashing schemes. The tests are divided into two higher level sections.

The first section is Efficiency, which measures only runtime properties of the hash

digest. This includes the digest time, comparison time, and hash size relative to

the input. Our improvements to the LZJD algorithm tackle only these quantities,

which are critical when up to terabytes of data may need triaging[146], [159].

The second, and more expansive, are the Sensitivity & Robustness tests. These

evaluate the ability of the hash function to perform matching under various circum-

stances, and the quality of the match score returned in each scenario. These tests

will show that LZJD possesses a superior ability to correctly match a fragment

to the correct source file, even when presented with significant byte alterations or

comparatively small fragment sizes.

Below we will present and discuss the results from each of the tests in the

FRASH suite. For each result we will only present a portion of the output for

brevity and readability, with the algorithm getting the most successful matches

shown in bold for each test. More complete results can be found in A.1. All tests

were run on a computer running OSX version 10.10.5. With a 2.66 GHz Intel Core

i5 CPU and 16 GB of RAM. In initial testing, the FRASH code was highly sensitive
7FRASH is available at http://www.fbreitinger.de/wp-content/uploads/2017/04/FRASH_

1.01.zip
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to random read/write time. Initial runs on a standard HDD resulted in runtime

that would take days for as few as 20 files. For this reason, all code and data used

were stored in a RAM Disk. This is a method by which a virtual disk is created on

the system that acts likes any other file system, but all stored files are kept only in

RAM. This avoided all issues with the random access impact on test runtime.

7.3.1 Efficiency

In this section we are concerned with the computational and storage efficiency

of each hashing method. This is measured by computing the hash digest for every

file in the t5 corpus, and creating a digest file containing every hash. Once complete,

all n2
/2 pairwise distance computations are done. This allows us to measure the

runtime efficiency of the hashing process as well as the comparison of hashes, and

the storage efficiency of the hash size itself. For only the efficiency tests, the SHA1

hash function is included by the FRASH suite as a benchmark for both time and

space. The intuition for comparing with the SHA1 hash is that it serves as a useful

barometer for grounding the compute efficiency of storage cost of these digests for

those less familiar with them.

Average Total All-pairs SHA1�1

sha1sum 0.01519 67.7 — 1.00
ssdeep 0.01223 54.5 32.1 0.81
sdhash 0.04241 189.0 496.5 2.79
LZJD 0.03159 140.8 8.2 2.08

Table 7.6: Runtime efficiency results. Time taken to compute all hashes for each method,
and the time needed to perform all-pairs distance computations. All times
measured in seconds using only one CPU core. Best results shown in bold, and
second best in italics (ignoring SHA baseline).
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The runtime results can be found in Table 7.6, where we see the average and

total time taken to hash the files of the t5 corpus. The total hashing time (second

column) is measured using the Unix time command when giving the t5 corpus as

the only input for each hashing implementation . The rightmost column shows how

many times longer each method took to compute all hashes compared to the SHA1

hash. Here we can see that sdhash is the slowest hash function by a factor of 2.8,

and that our Java LZJD implementation is 34% faster than sdhash. Ssdeep is the

fastest at 23% faster than the SHA1 algorithm, but lacks in its ability to perform

accurate matching once the hashes are produced.

We note that while the FRASH test showed LZJD was faster in hashing time

compared to sdhash, our tests in section subsection 7.2.1 showed it to be slower.

The difference between these tests is the use of the RAM disk for FRASH. These

results combined would indicate that sdhash and LZJD are roughly comparable in

hashing time, and we may expect to see variation in which one is faster based on

unique hardware combinations and situations.

LZJD’s runtime performance is better still when we look at the time needed

for comparing the hash outputs, and is over 60 times faster than sdhash in this

respect, and still 3.9 times faster than ssdeep. This would indicate that LZJD

would be preferable in a situation where we have many known objects of interest

in a database, and need to process the contents of a new device against the known

database. One might argue that having a faster digest comparison is more important

than a faster digest calculation. Indeed, others have worked on building special

indexes specifically to accelerate the bottleneck of comparing many digests[151].
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The time needed to hash n files is naturally an O(n) task, but comparing

the n derived hashes to an existing database of m hashes is O(nm) in complexity.

The latter will clearly become the dominant cost as the number of objects under

consideration increases, and so we would want to minimize its base time requirements

as much as possible. An example of this can be found in [147], where sdhash and

ssdeep were used on 1.2 million files extracted from firmware images. Due to the

computational burden at comparison time, these hashes couldn’t be applied to the

entire corpus. Our results in subsection 7.2.1 corroborate this high comparison time

cost, where we see LZJD compare favorably to both ssdeep and sdhash. LZJD’s

efficient digest comparison pushes back this limitation.

We observe that this issue of runtime efficiency has been noted before, and

others have attempted to build more efficient indices for specific use cases. Winter,

Schneider, and Yannikos [160] built an indexing scheme for the ssdeep algorithm, but

ssdeep’s low precision and recall limit the utility of such a tool. Breitinger, Baier,

and White [161] build a more general purpose index that is compatible with sdhash,

but cannot return or filter based on similarity scores or indicate which specific file as

a match. This work was later extended to resolve these issues, allowing it to return

exact file matches [162], [163]. While able to obtain speedups of up to a factor of

2.6, it does not guarantee all matches will be found.

LZJD provides a sound method of circumventing these issues that may be

explored in future work. Since LZJD is a valid distance metric, it avails itself

to more principled and existing indexing strategies that are designed for metric

spaces. These indices support O(log n) query time[164]–[167] and guarantee that all
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neighbors will be found.

7.3.1.1 Compression

The efficiency test in FRASH also produces a set of compression results. These

results are concerned with the size of the hash digest with respect to the original

file sizes. All things being equal, it is preferable to have a digest that is smaller

rather than larger. A smaller digest size allows for the storage and transport of

larger databases, and gives some indication about the information efficiency of the

digest itself.

Avg. Length Avg. Ratio (%) Max Length (ratio) Digest Size

sha1sum 20 B 0.0047 — 420 KB
ssdeep 57 B 0.0133 78 B (0.01%) 592 KB
sdhash 10.6 KB 2.5203 409 KB (2.93%) 61.3 MB
LZJD 4.01 KB 0.9566 4.01 KB (10.1%) 23.5 MB

Table 7.7: Compression test results. First column shows the average length of the digest,
followed by the average ratio between digest length and original file length. The
last two columns show the maximum ratio encountered and the size of the entire
digest for all files.

The compression results are shown in Table 7.7, where the first two columns

present the average length of the digest, and the average percentage of the digest size

with respect to the original file. Here we can see that SHA1 and ssdeep both produce

very small digests. Sdhash produces the largest digests, with an average of 10.6 KB

that is usually 2.5% of the original file size. LZJD falls in a middle ground, with an

average digest of 4 KB, 2.65 times smaller than sdhash. By the nature of our LZJD

hash, the digest size will never be more than 4 KB8 for k = 1000. Smaller digests
8With minor overhead for the header matching sdhash’s output style.
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may occur for small files which can be represented with less than 1000 dictionary

entries for the Lempel-Ziv process. This makes LZJD especially effective for large

files, with theoretical support for its method of production. However, LZJD’s fixed

size can also result in an overly large digest for small files, as can be seen by the

maximum digest-size to original-size ratio of 10%.

7.3.2 Sensitivity & Robustness

We will now review the Sensitivity & Robustness tests that are a part of the

FRASH framework. Tests subsubsection 7.3.2.1 and subsubsection 7.3.2.2 will run

a digest comparison on only two files at a time, namely a source file and a target

file. The source file will be an unaltered file from the t5 corpus. The target file will

be a modified version of the source file. These tests will be measuring behavior of

the scoring methods used and how they change with changes to a single file. The

implicit assumption of the FRASH framework is that a higher score between two

matching files is always better, all other things being equal. As we discussed in

subsection 7.1.1, the LZJD score will be based on the amount of byte similarity –

and will not attempt to reflect “match or no match” as ssdeep and sdhash do. This

makes comparing the results in these tests more challenging, and we will discuss the

issue of score function behavior further in section 7.4.

Tests subsubsection 7.3.2.3 and subsubsection 7.3.2.4 will generate a digest

database from the whole t5 corpus, and then see if a target file (still a modified

version of one of the t5 source files) can be correctly matched to its source. In these
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tests the goal is for us to correctly match a file to its source, and can be viewed as

equivalent to the nearest neighbor problem we visited in section 7.2. These tests

can be thought of as a harder variant of the task from a machine learning sense, as

there is only one correct neighbor for each test point (which would be the source

point), where any file from the same class would be considered correct for the tests

done in section 7.2. We will see that LZJD far exceeds both ssdeep and sdhash in

its matching ability.

7.3.2.1 Single Common Block correlation

The Single Common Block (SCB) test is designed to determine how small a

“common block” of identical content can be before a digest algorithm produces a

score of zero (i.e., no commonality). This test compares only two files at a time,

where each file has random byte contents. A portion of each file will be set to the

same common content, and this common block will be iteratively decreased in size.

This test was run 50 times with common blocks extracted from 50 different source

files. In the original FRASH testing, it was found that sdhash was able to produce

matches for smaller common blocks then ssdeep, but ssdeep was able to produce

higher matching scores.

For the tables in this section, the Average Block size (KB) indicates how small

the common object’s size was to reach a score greater than or equal to a minimum

score threshold. Similarly, Average Block size (%) is how small this single common

object was as a percentage of the block size. The Matches line in each table is the
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number of files (out of the 50 selected) that were able to be matched and achieve a

score at or above the given score. The two aforementioned averages are with respect

to the files matched at that level.

This particular test puts LZJD at a disadvantage, because its score does not

have the same meaning as sdhash and ssdeep, and because the files are produced

with completely random byte sequences. Random bytes are a weakness of LZJD

in the case of matching similarity, because the LZ algorithm will begin collecting

all smallest sub-strings, which will cause a non-zero match to occur. This makes it

impossible to reach the original termination case of FRASH, and we we terminate

LZJD in this test after a SCB size of 16KB. Thus, when interpreting Table 7.8 and

Table 7.9, the score that has an average block size of 16 KB should be treated as

the same as the zero score for sdhash and ssdeep.

Score �25 �15 �10 �5 0

ss
de

ep

Avg. block size (KB) 386 — — — 393
Avg. block size (%) 18.9 — — — 19.2
Matches 23 — — — 50

sd
ha

sh Avg. block size (KB) 730 501 383 188 17.9
Avg. block size (%) 35.7 24.5 18.7 9.17 0.88
Matches 34 44 50 50 50

LZ
JD

Avg. block size (KB) — 868 376 16 —
Avg. block size (%) — 42.4 18.4 0.78 —
Matches — 46 50 50 —

Table 7.8: Single Common Block results for a 2MB file. Columns show the scores achieved,
and rows the size of the common block of content, and the number of successful
matches (max of 50).

Inspecting the results for a 2MB total block size in Table 7.8, LZJD does

not do well in this particular test. LZJD is unable to produce scores in the same
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large ranges as sdhash and ssdeep, but LZJD is also not designed to produce such

scores. The use of completely random byte strings as the filler content of the SCB

test also deflates the score LZJD gives, due to the increased number of sub-strings

the Lempel-Ziv algorithm will find within these high entropy regions. This is a

worst-case scenario for LZJD, as was theoretically analyzed in [43].

Score �25 �20 �15 �10 0

ss
de

ep

Avg. block size (KB) 94.3 106 — — 393
Avg. block size (%) 18.4 20.6 — — 19.2
Matches 28 5 — — 50

sd
ha

sh Avg. block size (KB) 185 160 140 107 16
Avg. block size (%) 36.1 31.3 27.3 20.9 3.12
Matches 32 37 44 50 50

LZ
JD

Avg. block size (KB) 226 80.6 16.6 — —
Avg. block size (%) 44.2 15.8 3.25 — —
Matches 39 50 50 — —

Table 7.9: Single Common Block results for a 512 KB file. Columns show the scores
achieved, and rows the size of the common block of content, and the number of
successful matches (max of 50).

The particular performance of LZJD at the lowest end of the score range is

comparable to or better than sdhash, depending on which results are inspected.

This can be better seen for a 512KB total block size, as shown in Table 7.9. Here

we can see for a score of �20, sdhash requires a common block that is 31% of the

total block size, where LZJD requires a common block size of only 16%. The results

for the 8 MB total block size follow this pattern, and can be found in A.1.

We again note that this test is comparing the score of only two files at a

time, and is not as relevant for LZJD since it does not try to produce the same

types of score values as sdhash and ssdeep. LZJD’s score is best interpreted as an

169



approximate measure of the byte similarity of two files, and in practice, we will see

that it is best viewed as an approximate lower bound on the percentage of similar

bytes.

Despite the SCB tests being a weak area for LZJD, the use of random bytes

in the test construction also make this a worst-case scenario for LZJD. In practice,

few files will make use of purely random byte sequences (which would have a byte

entropy near 8). One of the only scenarios where we would expect the find such high-

entropy sub-strings in a file is when dealing with malware and packed or compressed

binaries, which corresponds to the scenario where LZJD was originally demonstrated

to perform well [43], where it was tested with Windows malware and Android APKs

(which are compressed zip files). Still, removing the impact of completely random

sub-strings on LZJD is an area for future research and improvement.

7.3.2.2 Random-noise-resistance

The random noise test attempts to produce false negatives by randomly al-

tering the file one byte at a time. After modification, the test records how many

matches are achieved at each score and how many edits where required to reduce

the score to that level. Bytes are altered via random insertions, deletions, and

substitutions, and location is selected randomly.

As noted in the original FRASH paper [33], the random noise resistance test is

computationally demanding, and so we use only a random sample of 100 files from

the t5 corpus. Our results find that LZJD is significantly more resistant to such
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alterations than either ssdeep or sdhash, which further increases the time it takes

the tests to run. To reduce test runtime, after 200 edits, we begin altering the files

by 10 bytes at a time. Once we reach 2000 edits, we increase to 100 edits at a time,

and so on. We also add an early termination after 80% of the file is altered, due to

the extreme ranges that LZJD achieves in matching.

The results of running the random noise test are shown in Table 7.10, where

Matches indicates how many files achieved a given match score, and Avg. changes

is the average amount of bytes that needed to be altered for this score to appear, as

a percentage of that file’s size. For example, ssdeep was able to get a score equal to

or higher than 70 for only 88 of the 100 files tested. It only took changing 0.005%

of the byte contents of a file to lower the score of ssdeep to this level. The better

an algorithm’s resistance to noise, the more we should be able to alter a file and

still obtain a relatively high score. Because ssdeep and sdhash desire to produce a

maximal score for any match, we would want to see a maximally high matching score

for any percentage of edits. Under the LZJD interpretation of content similarity, we

want the matching score to be similar to the percent of byte alterations performed.

That is to say, if 25% of the bytes were altered in the target file, we want to see

LZJD return a score of 75 (i.e., 100-25% = 75).

In examining the full results (see A.1), it is clear that sdhash performs best

when we consider only the higher scores (� 55). It routinely obtains the lowest

percentage of average changes, followed by LZJD, and then ssdeep. While ssdeep is

the only method to obtain the most high scores (� 80), this is of little utility due

to the small number of changes needed to reduce such scores.
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Score �70 �50 �40 �25 �10

ss
de

ep Avg. changes (%) 0.0052 0.0206 0.0615 — —
Matches 88 18 7 — —

sd
ha

sh Avg. changes (%) 0.1068 0.2775 0.3940 0.5492 0.9739
Matches 96 99 100 100 99

LZ
JD Avg. changes (%) 0.0238 0.6061 1.967 10.99 48.63

Matches 75 96 99 100 77

Table 7.10: Random Noise tests. Best average number of changes needed to reduce the
matching score to a specific level is shown in bold.

The robustness of LZJD becomes more apparent when we consider a score of

� 50, at which point LZJD requires twice as many byte edits to produce such a score

compared to sdhash. Reducing LZJD to a score of � 40 required altering 1.97% of

the file, where sdhash produces a score of zero (no match) after an average of only

1.56% of the file is edited. The rate at which LZJD’s score is lowered decreases with

each byte edit, and so its performance advantage improves dramatically relative to

sdhash and ssdeep as we move down in matching score. Reducing LZJD to a score

of 25 required 11.0% of the bytes to be altered, which is 20 times greater than for

sdhash. At the extreme end, reducing LZJD to a score of � 10 requires editing

almost half the file. The 77 matches at this level is lower than 100 because the

random noise test couldn’t get LZJD to produce a score that low for many files, and

the FRASH test framework didn’t anticipate a scenario where a score of 0 could not

be obtained. This indicates a strong matching ability beyond the expectations of

the FRASH designers. The FRASH code failed to count the files which obtained a

score in the (25, 10) range, and could not be reduced to the [10, 0) before the test

was forced to finish running by our modifications.
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7.3.2.3 Fragment Test

In the fragment tests of FRASH, a portion of the each file is removed, and

then the remaining fragment is searched for against the database of all complete file

hashes. The size of the fragment starts at 95%, nearly the whole file, and decreases

down to only a 1% portion of the original file. The motivation of these tests are to

determine how small a fragment can be while still being matched with the source

file. This scenario may occur with any storage or transport format where a file may

be broken up into chunks, such as the fragment storage in a file system or individual

packets in network traffic.

FRASH runs these fragmentation tests in two modes, one where the file has

data removed from the end only (end cut), and one where a random portion of

the file is removed from both the beginning and end of the file (random cut). In

the former case, the fragment always starts as the same string of bytes but ends

prematurely. In the latter case, the fragment is essentially a random portion of the

file (and most likely from near the middle of the original file). The results of the

fragment tests are presented in the next two tables. In each table, the File Size (%)

is the size of the file fragment as a percentage of the original file it came from.

The ssdeep algorithm is particularly vulnerable to this approach, and is signif-

icantly degraded in its ability to correctly match files by a fragment being just 50%

of the original file size. Sdhash is more robust, and is not meaningfully impacted

in matching ability until fragments are 5% of the original file size or less, where it

starts to quickly degrade in accuracy. We also notice a confusing behavior in the

173



File Size (%) 95 50 10 5 3 1

ss
de

ep Matches (%) 99.9 91.3 0.65 <0.01 0 0
Avg. Score 96.7 65.9 46.2 61.0 — —

sd
ha

sh Matches (%) 100 100 98.1 90.6 81.1 57.9
Avg. Score 83.4 68.5 75.7 73.4 76.7 81.0

LZ
JD Matches (%) 100 100 >99.9 99.9 99.4 98.5

Avg. Score 72.4 24.9 6.43 3.88 2.73 1.31

Table 7.11: Fragment detection test result, random cut. Column indicates size of the frag-
ment with respect to the source file. Rows show percent of correctly matched
files and average score for correctly matched files.

File Size (%) 95 50 10 5 3 1

ss
de

ep Matches (%) 100 93.1 1.73 0.49 0.20 0
Avg. Score 97.7 71.7 56.9 55.7 47.9 —

sd
ha

sh Matches (%) 100 100 98.3 91.1 82.5 58.7
Avg. Score 97.3 99.5 97.9 96.9 95.04 90.5

LZ
JD Matches (%) 100 100 100 100 100 99.7

Avg. Score 92.8 40.1 8.33 4.63 3.09 1.36

Table 7.12: Fragment detection test result, end cut. Column indicates size of the fragment
with respect to the source file. Rows show percent of correctly matched files
and average score for correctly matched files.

average matched score produced by sdhash. In Table 7.12, the sdhash score slowly

decreases from high 90s to low 90s, which is a reasonable behavior to expect as the

fragment size decreases. However, in Table 7.11, the sdhash score first decreases

from the low 80s to the low 70s, and then begins increasing back into the low 80s.

Compared to sdhash, LZJD obtains lower average matching scores. In Ta-

ble 7.12, these scores are nearly perfectly aligned with the interpretation of a sim-

ilarity of X% indicating that the X% of the contents are the same. The scores

returned for LZJD are a bit below this expectation in Table 7.11, but still match

the general trend. This can be explained by the LZSet construction process being
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sensitive to changes in the byte string, causing changes in the set. In the case of

Table 7.12, corresponding to the end cut version of the fragment test, the start of

the byte string will remain unchanged. This means the LZ set generated will also

be generated in the same order, and will simply stop early once the fragment comes

to a premature end. This results in a high quality match of LZ set contents when

computing the Jaccard similarity. In the random cut case of Table 7.11, the begin-

ning of the file has been removed. This changes the set of sub-strings computed by

the LZ approach, resulting in a lowered match. However the match is still robust,

as evident by the high number of matches LZJD obtained.

This robustness in matching ability is emphasized in Figure 7.1, where we

plot the number of correct matches in the random-cut test against the size of the

fragment as a percentage of the original file. We can clearly see ssdeep requires

fragments to be 60% of the original file or larger to get reliable matches. Sdhash

holds for a larger range, but begins dropping once the fragments are 10% of the

original file or less. LZJD performs well across all sizes, still obtaining the majority

of matches even at 1% size. The end-cut version of the fragmentation tests are

similar, and can be reviewed in the Appendix.

We claim that this robustness is the more important property. The fragment

results support the conclusion that LZJD is more robust in its ability to match small

fragments to their source files compared to ssdeep and sdhash. In all cases, LZJD

is either tied with or better than sdhash at this task. Even down to 1% fragment

sizes, LZJD is able to match 99% of fragments to their source file. In comparison,

sdhash is only able to match just under 60% of fragments.

175



0 10 20 30 40 50 60 70 80 90 100

0

1,000

2,000

3,000

4,000

Fragment Size Percentage

N
um

be
r

Fi
le

s
M

at
ch

ed

ssdeep
sdhash
LZJD

Figure 7.1: Fragment detection random-cut results, x-axis shows the fragment size as a
precentage of the original file, and y-axis shows the number of files correctly
matched.

7.3.2.4 Alignment Test

One area of weakness for many similarity hash functions is padding inserted

at the beginning of a file. Ssdeep in particular is weak in this scenario [168]. The

alignment test in FRASH is designed for this scenario, and inserts random bytes

into the beginning of a file, and then attempts to match it back against the full

database. An analysis of the LZSet algorithm used by LZJD may also lead one to

assume that LZJD is susceptible to this same problem. Because the LZSet is built

incrementally, strings seen earlier can impact the LZSet, changing what is captured

in the later sections of the byte string. The results of this section will show that

while this could be a problem for LZJD in the limit, the performance on the FRASH

tests indicate that its matching ability is not hampered by this scenario.

The FRASH tests for matching in-spite of excess padding is run in two modes:
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one where a fixed number of bytes are added to the file, and the other where a fixed

percentage of the original file size is added to the front. The results for the latter

scenario are presented in Table 7.13. We present only the percentage results as they

are the most aggressive and challenging version of the test.

Added (%) 10 50 100 300 500
ss

de
ep Matches (%) 99.6 92.8 72.4 3.03 0

Avg. Score 91.1 71.7 60.1 35.3 —

sd
ha

sh Matches (%) 100 100 100 100 100

Avg. Score 67.6 69.2 68.6 68.8 68.2

LZ
JD Matches (%) 100 100 100 100 100

Avg. Score 40.9 22.1 14.8 6.79 4.53

Table 7.13: Alignment test result. Column shows the size of the added bytes, as a per-
centage of original file size. Rows show percent of correctly matched files and
average score for correctly matched files.

As expected, we can see that ssdeep is significantly impacted by the front-

padding of the binary, and can only match 3% of files when 300% of the file size is

padded to the front. Both sdhash and LZJD are able to match 100% of files in the

tested range. We also see that the scores for both are negatively impacted by the

addition of the bytes to the front of the file. For sdhash, the scores are in the high

60s instead of the normal 80s-90s that it is able to achieve in the other benchmarks.

Because there is no particular interpretation that applies to the sdhash score, we

cannot offer any analysis as to cause or reason.

For LZJD, we would expect a score in the range of 1/(1 + x/100), where x

is the percent of the file size added as padding. In each case, the LZJD score is

one third to one half of this expected value. This can be explained by the Lempel-

Ziv encoding scheme, which creates a maximal number of entries in the set when
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presented with high entropy (i.e., random looking) data. Because the x% of bytes

added by FRASH are random, this will create disproportionately more entries in the

LZ set, and thus become a larger portion of the hash digest. The effect is that there

will be considerably more than x% new hashes added to the set, with the amount

more being dependent upon the normal entropy of the file under consideration.

Because these entries in the hash are from random sub-strings, they are unlikely to

appear in another file, and so they are not matched and the score is reduced.

7.4 Discussion

At this point we have performed extensive testing of LZJD compared to ssdeep

and sdhash. It is faster to hash, faster at hash comparisons, produces more compact

hashes, and provides higher matching accuracy for smaller files, compared to these

previous tools. Only ssdeep is faster at hashing and has smaller digests, but its

matching ability is not sufficient for the multitude of file types in the t5 corpus. This

coalesces to a strong argument for the use of LZJD as an alternative to ssdeep and

sdhash for digital forensic applications. The faster comparison time and accuracy

combined will allow LZJD to be used in real deployments with databases larger than

what either ssdeep or sdhash can handle, while stemming a natural increase in false

positives due to the use of larger datasets. This runtime advantage is critical for

tool adoption, as practitioners would be unlikely to make use of a tool that did not

produce timely results.
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7.4.1 LZJD use Compared to Ssdeep and Sdhash

The most significant difference between LZJD and prior similarity digests is

the nature of the score value produced. LZJD, like ssdeep and sdhash, will need a

“significance” threshold to be determined which may change for different file types

and scenarios. The difference comes in the nature of the score’s value itself. For

ssdeep and sdhash, the exact score x has no particular meaning, and instead a

single meaning is often prescribed to only a few ranges of values. For example, the

[21�100], [11�20], and [1�10] recommended for sdhash divide up the entire positive

range of values into classifications of “Strong”, “Marginal”, and “Weak” correlation

[146]. This can be uninformative when multiple files produce high scores — an issue

that occurred in our malware experiments in subsection 7.2.1.

For LZJD, we can interpret the score as a rough measure of byte similarity,

or more precisely, as an approximate lower bound on a normalized edit-distance

between the files. Not only does this give us an interpretation of the score returned

by LZJD, but we can use it to infer what a reasonable threshold might be for many

file types and scenarios. This may require more thought on the practitioner’s part,

that is to make an estimate of what the expected overlap between files might be,

or what the maximum score one might expect. Though this requires more mental

effort, it is not a requirement — and users could choose to empirically determine

their desired scores just as they have done with ssdeep and sdhash. We believe that

this interpretation though will ultimately aid its use not just by giving it meaning,

but avoiding failure-cases that can occur without such a background (as exemplified
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by sdhash’s failure in subsection 7.2.1).

To give concrete examples of what we mean, consider that file types such as

PDFs and EXEs have some amount of boiler-plate mandated by the file format’s

specification, or may simply be common to most files of that type. In this scenario,

one would expect LZJD to produce a minimal score dependent on how much of the

boilerplate or common content is shared across files. If the practitioner knows what

this level of boilerplate is, they can use that as a minimum-threshold for potential

matches.

As another example, consider the results of the fragment tests in subsubsec-

tion 7.3.2.3. If an analyst were to use LZJD in this fragment scenario, where it is

known that we have a ↵ byte long file fragment that we want to compare against a

known (larger) file of length �, it may then be reasonable to use an adjusted scoring

of sim(↵, �)·�/↵ to adjust for the fact that our expected similarity should not gener-

ally exceed the ratio of the differences in file length (i.e., ↵/�). This requires thought

on the analyst’s part to realize that smaller scores should be expected, but accurate

matching is still possible — and thus might want to alter their interpretation of the

score’s significance.

7.4.2 LZJD Score Interpretation

As we have discussed throughout this work, LZJD’s score is more interpretable

than the ones returned by ssdeep and sdhash. We noted in subsection 7.1.1 that

LZJD’s score can be loosely interpreted as the percentage of shared byte contents
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between files, and empirically tends to act as a lower bound on a normalized edit

distance (as specified in equation (7.1)). The extensive experiments provided by

FRASH in section 7.3 support this conclusion. To condense these results, we plot in

Figure 7.2 the relationship between LZJD’s score and actual percentage of shared

bytes. This percentage can be determined for all of the FRASH tests, though would

not be known a priori in practice. These results show LZJD almost uniformly under-

estimating the percentage of bytes altered. The only exception being the five points

from the Single Common Block tests, three of which are from the most-extreme

terminating state. This overall result leads us to recommend treating LZJD’s score

as a lower bound on the percentage of bytes altered. That is to say, if LZJD returns

a score of 23, then it is relatively safe to assume that the two files share at least

23% of their byte contents with each other. While this is not a guarantee, it is

empirically supported by a considerable majority of test cases (84 out of 89 data

points) and we believe will be useful to the practitioner.

The immediate question would be why does LZJD tend to produce a lower

bound estimate? The LZSet method that produces the initial set of sub-strings is

sensitive to single byte alterations. Because the set is constructed in a sequential

manner, once one byte is altered, it has the potential to propagate forward and

alter the rest of the set. This byte sensitivity is what causes LZJD to act as a

lower bound, and is the reason why it is often difficult for LZJD to obtain match

scores above 50%. Despite this weakness LZJD operates effectively, and the few

cases where LZJD over-estimated the percentage of bytes changed are cases where

LZJD successfully matched 100% of the altered files to their original sources.
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Figure 7.2: Comparing the LZJD similarity score (x-axis) with the actual percentage of
altered or added bytes (y-axis) for all tests run by the FRASH suite. The ideal
1-to-1 correspondence (7.1) is shown as a dashed line. Values above this line
indicate LZJD under-estimating the change in bytes.

This is also connected with the effect of random byte sequences on LZJD’s

similarity score, as random bytes will cause the same impact on the LZSet. The

impact of random bytes is tested by the SCB, Alignment, and Random Noise tests

in FRASH. All three of theses tests make use of random bytes to create the test

case files. These tests show that LZJD can perform well even if random bytes are

present, but does tend to impact the similarity score LZJD returns. The Malware

tests in subsection 7.2.1 also test a higher average entropy file than the t5 corpus,

which has become the standard benchmark corpus for similarity digests. The exact

entropy statistics are shown in Table 7.14. The performance of LZJD in accurately

matching nearest neighbors when the average and median file entropy is as high as

7.96 shows that this weakness does not nullify LZJD’s matching ability.
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Kaggle Android

Entropy Bytes ASM APK TAR t5

Average 6.73 4.48 7.96 6.68 5.88
Median 6.83 4.51 7.96 6.77 5.32
Min 1.64 3.83 4.10 2.61 0.21
Max 7.85 5.35 8.00 8.00 8.00

Table 7.14: Statistics on file entropy broken down by each corpus used in this work.

Since current methods used for digest similarity do not return interpretable

similarity scores, there are no current use-cases to compare LZJD against. As ana-

lysts begin to use LZJD, we believe the interpretability will become useful to prac-

titioners. Investigating the reality of these hypotheses is beyond the scope of this

work. In particular, this new ability may have an impact on:

1. New user training. Being able to explain the results that a method produces

is a natural way to help new users learn and understand their tools, and the

LZJD algorithm itself can be specified with only a few lines of code. This may

aid in helping in enabling tool adoption to a wider breadth of professionals

and skill sets.

2. Evidence and testimony. In legal proceedings there is often a need to present

evidence to support a case, either in court or in the pursuit of an arrest warrant,

for example. That LZJD can be described in a less technical manner as a

“conservative estimate of shared content” between two files could be useful

in this regard, and is empirically supported. The exact interpretation as the

intersection of compression dictionaries is available as well for more technical

needs.
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3. Machine Learning applications. While ssdeep and sdhash have been used

with other machine learning methods before, they both lack the nice metric

space and kernel properties of the Jaccard distance that LZJD inherits. We

suspect LZJD will thus find wider use with machine learning methods, and its

interpretable descriptions will aid in being able to explain and interpret larger

models built using LZJD as a component.

To our knowledge, there has yet to be any discussion on what the ideal scoring

approach would be for a similarity digest. Our results open an opportunity to

discuss such potential design choices. In particular, should scores indicate a level

of similarity (resemblance), or a level of commonality (containment)? By this we

mean, should scores be interpretable as a measure of how much content of two files

are shared in aggregate (as LZJD currently does)? Or should scores reflect that two

byte strings share some commonality, such as being from the same file, or how much

one file could be subsumed by another (as sdhash does)? For LZJD, we have already

given one instance in which its design could be modified to reflect a preference for

commonality when searching for the source of a file fragment (see the discussion near

the end of subsection 7.4.1). There may also be other goals toward which one could

design a similarity digest, but leave further discussion of this question for future

work.
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7.4.2.1 On Resemblance and Containment

We take a moment to further discuss the resemblance vs containment question

with respect to the results we saw with LZJD. As mentioned in subsection 7.1.1,

LZJD measures the resemblance between LZ sets A and B. That we use the Jaccard

similarity, for the purpose of computing resemblance, is what allows us to develop

a digest of fixed size. Another potential measure of interest is containment, which

can be expressed as (7.2).

c(A,B) =
|A \ B|
|A| (7.2)

Containment asks how much of set A is contained within set B. Sdhash’s

variable length digest sizes allow it to answer queries regarding either containment

or resemblance fashion [146]. Answering containment queries in an unbiased manner

requires such variable-length digests [126].

The FRASH Fragmentation, Alignment, and Single Common Block (SCB)

tests (subsubsection 7.3.2.3, subsubsection 7.3.2.4 and subsubsection 7.3.2.1 respec-

tively) are tests of containment. LZJD out-performs both ssdeep and sdhash in

the fragmentation tests, especially for extreme cases. LZJD ties with sdhash in ob-

taining all matches for Alignment, and LZJD has only comparable performance to

sdhash in the SCB tests. One may then wonder, if LZJD is answering resemblance,

how is it able to do well at these containment tasks, and even outperform approaches

that should have an advantage?
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We believe the insight into understanding this approach is to recognize that

c(A,B) � J(A,B) � 0. That is to say, the resemblance query is necessarily a lower

bound on containment. If the correct containment score is zero, the resemblance

score must necessarily also be zero. Thus LZJD will never over-estimate the contain-

ment case. Obtaining the same matching scores then relies on obtaining the same

rank ordering between resemblance and containment. Our results with the FRASH

tests would indicate that LZJD does well in this regard, as it achieves matching

performance comparable to or better than sdhash in all tests.

7.4.3 Future Work

Another advantage of the LZJD approach, which we have not tested in this

work, is further scaling abilities of the digest hash. Because the LZJD hash produces

a valid distance metric, it is possible to use metric indexes to prune distance compu-

tations from a search[164], [166]. Further speedups can be obtained by performing

partial digest comparisons. Because the LZJD hash is obtained by selecting the k

smallest hash values, every LZJD digest of length k contains the k
0 digest 8k0

< k.

This gives a natural way to balance between speed and accuracy. We leave exploring

these options to future work.

File size is also an important consideration in digest construction and appli-

cation. This has been tested to some degree by the FRASH suite and our Malware

classification tests. The fragment tests in section subsubsection 7.3.2.3 are explicitly

testing matching performance when file sizes differ by up to two orders of magni-
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tude (the original file compared to a 1% fragment). The Kaggle ASM corpus has an

average file size of 13.5 MB, compared to only 425 KB for the t5 corpus normally

used. In both of these cases, LZJD outperforms ssdeep and sdhash by wide mar-

gins. Further exploring the impact of large file size comparisons (GB vs GB) and

disparate size comparisons (GB vs KB) is an important topic. In particular, what

files should be used, and what are the real-life scenarios that should be simulated?

7.5 Conclusions

The Lempel-Ziv Jaccard Distance was introduced to address problems in mal-

ware classification, but we have shown that it has significant utility as a similarity

digest for digital forensic applications. Compared to existing tools, such as sdhash,

LZJD offers a non-heuristic score that can be interpreted by the user as the amount

of byte similarity between two files. Beyond this property, LZJD is more robust

in its ability to match file fragments to their source, even when forced to match a

fragment on the order of 1% of the original file’s size. We have also shown that

LZJD can be made practical from a speed perspective, with digest comparison over

60 times faster than sdhash’s, and hashing time 34% faster. This will allow the use

of larger search databases than is possible with other tools, while also being more

accurate. In the interest of tool adoption, we have released an open-source imple-

mentation that mimics sdhash’s command line options. This should allow LZJD to

be easily integrated with existing work-flows for fast adoption by practitioners.
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Chapter 8: Metric Indexes for Incremental Insertion and Querying

As LZJD was used in chapter 7, the importance of performing fast nearest-

neighbor queries is tantamount for the similarity digest scenario and can’t be cir-

cumvented in the same way we did for malware classification. Since LZJD is a valid

distance metric, we can avail ourselves to many of the existing metric index struc-

tures that accelerate nearest-neighbor queries. Unfortunately, they do not perfectly

match some of the use cases in which we would like to use LZJD, namely, the in-

cremental insertion and querying of an index. We develop the first such methods in

this chapter that would be usable with LZJD.

8.1 Introduction

Many applications are built on top of distance metrics and nearest neighbor

queries, and have achieved better performance through the use of metric indexes.

A metric index is a data structure used to answer neighbor queries that accelerates

these queries by avoiding unnecessary distance computations. The indexes we will

look at in this work require the use of a valid distance metric (i.e., obeys triangle

inequality, symmetry, and indiscernibility) and returns exact results. Since LZJD

is a valid distance metric that obeys these properties, it is a candidate for such
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acceleration.

Such indexes can be used to accelerate basic classification and similarity search,

as well as many popular clustering algorithms like k-Means [169], [170], density

based clustering algorithms like DBSCAN [171], [172], and visualization algorithms

like t-SNE [173]–[176]. However, most works assume that the data to be indexed is

static, and that there will be no need to update the index over time. Even when

algorithms are developed with incremental updates, the evaluation of such methods

is not done in such a context. In this chapter we seek to evaluate metric indexes

for the case of incremental insertion and querying. Because these methods are not

readily available, we modify three existing indexes to support incremental insertion

and querying.

Our interest in this area is particularly motivated by an application in mal-

ware analysis, where we maintain a database of known malware of interest. Malware

may be inserted into the database with information about malware type, method

of execution, suspected origin, or suspected author. When an analyst is given new

malware to dissect, the process can be made more efficient if a similar malware

sample has already been processed, and so we want to efficiently query the database

to retrieve potentially related binaries. This triaging task is a common problem in

malware analysis, often related to malware family detection [92], [148], [177], [178].

Once done, the analyst may decide the binary should be added to the database. In

this situation our index would be built once, and have insertions into the database

regularly intermixed with queries. This read/write ratio may depend on workload,

but is unfortunately not supported by current index structures that support arbi-
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trary distance metrics. This scenario inspires our work to build and develop such

indexes, which we test on a wider array of problems than just malware. We do this

in part because the feature representations that are informative for malware analysis

may change, along with the distance metrics used, and so a system that works with

a wide variety of distance measures is appropriate. Our results are also relevant

to the work in chapter 7, where we used LZJD for digital forensic purposes. Prior

methods did not maintain the distance metric properties, can so can’t be accelerated

using the methods we discuss in this chapter.

To emphasize the importance of such malware triage, we note it is critical from

a time saving perspective. Such analysis requires extensive expertise, and it may

take an expert analyst upward of 10 hours to dissect a single binary [55]. Being able

to identify a related binary that has been previously analyzed may yield significant

time savings. The scale of this problem is also significant. A recent study of 100

million computers found that 94% of files were unique [179], meaning exact hashing

approaches such as MD5 sums will not help, and similarity measures between files

are necessary. In terms of incremental addition of files, in 2014 most anti-virus

vendors were adding 2 to 3 million new binaries each month[180].

Given our motivation, we will review the related metric index work in sec-

tion 8.2. We will review and modify three algorithms for incremental insertion and

querying in section 8.3, followed by the evaluation details, datasets and distance met-

rics in section 8.4. Evaluations of our modifications and their impact will be done

in section 8.5, followed by an evaluation of the incremental insertion and querying

scenario in section 8.6. Finally, we will present our conclusions in section 8.7.
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8.2 Related Work

There has been considerable work in general for retrieval methods based on

k nearest neighbor queries, and many of the earlier works in this area did support

incremental insertion and querying, but did not support arbitrary distance met-

rics. One of the earliest methods was the Quad-Tree[181], which was limited to

two-dimensional data. This was quickly extended with the kd-tree, which also sup-

ported insertions, but additionally supported arbitrary dimensions and deletions as

well[182]. However, the kd-tree did not support arbitrary metrics, and was limited

to the euclidean and similar distances. Similar work was done for the creation of

R-trees, which supported the insertion and querying of shapes, and updating the

index should an entry’s shape change[183]. However improving the query perfor-

mance of R-trees involved inserting points in a specific order, which requires having

the whole dataset available from the onset[184], and still did not support arbitrary

metrics.

The popular ball-tree algorithm was one of the first efforts to devise and eval-

uate multiple construction schemes, some which required all the data to be available

at the onset, while others which could be done incrementally as data became avail-

able [185]. This is similar to our work in that we devise new incremental insertion

strategies for two algorithms, though Omohundro [185] do not evaluate incremental

insertions and querying. This ball-tree approach was limited to the euclidean dis-

tance primarily from the use of a mean data-point computed at every node. Other

early work that used the triangle inequality to avoid distance computations had this
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same limitation [186].

While almost all of these early works in metric indexes supported incremental

insertion, none contain evaluation of the indexes under the assumption of interleaved

insertions and queries. These works also do not support arbitrary distance metrics.

The first algorithm for arbitrary metrics was the metric-tree structure [165],

[187], which used the distance to a randomly selected point to create a binary

tree. This was independently developed, slightly extended, and more throughly

evaluated to become the Vantage-Point tree we explore in this work[164]. However,

these methods did not support incremental insertion. We will modify and further

improve the Vantage-Point tree in section 8.3.

Toward the creation of provable bounds for arbitrary distance metrics, the

concept of the expansion constant c was introduced by Karger and Ruhl [188]. The

expansion constant is a property of the current dataset under a given metric, and

describes a linear relationship between the radius around a point, and the number of

points contained within that radius. That is to say, if the radius from any arbitrary

point doubles, the number of points contained within that radius should increase

by at most a constant factor. Two of the algorithms we look at in this work, as

discussed in section 8.3, make use of this property.

The first practical algorithm to make use of the expansion constant was the

Cover-tree [166], which showed practical speed-ups across multiple datasets and val-

ues of k 2 [1, 10]. Their results were generally shown under Lp norm distances, but

also included an experiment using the string edit distance. Later work then simpli-

fied the Cover-tree algorithm and improved performance, demonstrating its benefit
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on a wider variety of dataset and distance metrics [167]. Of the algorithms for

metric indexes, the Cover-tree is the only one we are aware of with an incremental

construction approach, and so we consider it one of our metrics of interest in sec-

tion 8.3. While the Cover-tree construction algorithm is described as an incremental

insertion process, the more efficient variant proposed by Izbicki and Shelton [167]

includes a bound which requires the whole dataset in advance to calculate bounds,

preventing the efficient interleaving of insertions and queries1.

Another algorithm we consider is the Random Ball Cover (RBC), which was

designed for making effective use of GPUs with the euclidean distance [189]. Despite

testing on only the euclidean distance, the algorithm and proof does not rely on this

assumption – and will work with any arbitrary distance metric. We consider the

RBC in this work due to its random construction, which allows us to devise an

incremental construction procedure that closely matches the original design and

maintains the same performance characteristics. While the Random Ball Cover has

inspired a number of GPU based follow ups [190]–[192], we do not assume that a

GPU will be used in our work.

Li and Malik [193] develop an indexing scheme that supports incremental

updates, but only works for the euclidean distance. They also do not evaluate the

performance as insertions and queries are interleaved.
1The original Cover-tree did not have this issue, and so would meet our requirements for incre-

mental insertion. We consider the newer variant since it is the most efficient.
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8.3 Metric Indexes Used

Given the existing literature on metric indexes there appear to be no readily

available methods that suit our needs. For this reason we take three algorithms and

modify them for incremental index construction and querying. In particular, we

adapt the Random Ball Cover, Vantage Point tree, and Cover-tree algorithms for

incremental insertion. As classically presented, the first two methods methods are

not designed for this use case. While the original cover tree algorithm did support

incremental insertions, its improved variants do not. More importantly, as we will

show in section 8.5, the Cover-tree has worse than brute-force performance with one

of our distance metrics. With our modifications we satisfy three goals that have not

yet been achieved in a single data structure:

1. New datapoints can be added to the index at any point

2. We can efficiently query the index after every insertion

3. The index can be efficiently used with any distance metric

While the latter point would seem satisfied by the original Cover-tree algo-

rithm, our results indicate a degenerate case where the Cover-tree performs signif-

icantly worse than a brute force search. For this reason we consider it to have not

satisfied our goals.

We also contribute improvements to both the Random Ball Cover and Van-

tage Point Tree structures that further reduce the number of distance computations

needed by improving the rate at which points are pruned out. These improvements
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(a) Cover-trees produce a hier-
archy of circles, but each node
may have a variable number of
children. Each node has a ra-
dius that upper bounds the dis-
tance to all of its children, and
nodes may partially overlap.

(b) Vantage-Point trees divide
the space using a hierarchy of
circles. The in/outside of each
space acts as a hard boundary
when subdividing.

(c) RBC selects a subset of rep-
resentatives, and each point is
assigned to its nearest repre-
sentative (relationships marked
with dashed blue line).

Figure 8.1: Example partitionings for all three algorithms. Red circles indicate the radius
from which one node covers out in the space.

can dramatically increase their effective pruning rate, which leads us to alter our

conclusions about which method should be used in the general case.

In the below descriptions, we will use S to refer to the set of points currently

in the index, and n = |S| as the number of such points. A full review of all details

related to the three methods is beyond this scope of this work, but we will provide

the details necessary to understand what our contributions are to each approach.

8.3.1 Cover Tree

The Cover-tree [166] is a popular method for accelerating nearest neighbor

queries, and one of the first practical metric indexes to have a provable bound using

the expansion constant c [188]. The Cover-tree can be constructed in O(c6n log n)

time, and answer queries in O(c12 log n) time. Izbicki and Shelton [167] developed

the Simplified Cover Tree, which reduces the practical implementation details and
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increases efficiency in both runtime and avoiding distance computations.2 To re-

produce the Simplified Cover Tree algorithm without any nearest-neighbor errors,

we had to make two slight modifications to the algorithm as originally presented.

These adjustments are detailed in Appendix section B.1.

The Cover-tree algorithm, as its name suggests, stores the data as a tree

structure where each node represents only one data point and may have any number

of children nodes3. The tree is constructed via incremental insertions, which means

we require no modifications to the construction algorithm to support our use case.

However, at query time it is necessary for each node p in the tree to compute a

maxdist, which is the maximum distance from the point represented by node p to

any of its descendant nodes. This maxdist value is used at every level of the tree

to prune children nodes from the search path. Insertions can cause re-organizations

of the tree, resulting in the need to re-compute maxdist bounds. For this reason

the Simplified Cover-tree cannot be used to efficiently query the index between

consecutive insertions.

Because of the re-balancing and re-organization that occurs during tree con-

struction, it is not trivial to selectively update the maxdist value based on the

changes that have occurred. Instead we will use an upper bound on the value of

maxdist. Each node in the tree maintains a maximum child radius of the form 2l,

where l is an integer. This also upper bounds the maxdist value of any node by 2l+1

[167]. This will allow us to answer queries without having to update maxdist, but
2Izbicki and Shelton also introduced a Nearest Ancestor Cover Tree, but we were unable to

replicate these results. The reported performance difference between these two variants was not
generally large, and so we use only the simplified variant.

3The maximum number of children is actually bounded by the expansion constant c.
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results in a loosening of the bound. The performance of this upper bounded version

of the Cover-tree we will refer to as CoverB, and is more naturally suited to the use

case of interleaved insertions and queries.

We note as well that this relaxation on the maxdist based bound represents a

compromise between the simplified approach proposed by Izbicki and Shelton and

the original formulation by Beygelzimer, Kakade, and Langford. In the later case,

the 2l+1 bound is used to prune branches, but all branches are traversed simultane-

ously. In the former, the maxdist bound is used to descend the tree one branch at a

time, and the nearest neighbor found so far is used to prune out new branches. By

replacing maxdist with 2l+1, we fall somewhere in-between the approaches. Using a

looser bound to prune, but still avoiding traversing all branches. In our extensive

tests of these algorithms, we discovered two issues with the original specification of

the simplified Cover-tree. These are detailed in Appendix section B.1, along with

our modifications that restore the Cover-tree’s intended behavior.

8.3.2 Vantage Point Tree

The Vantage Point tree [164], [165] (VP-tree) is one of the first data structures

proposed for accelerating neighbor searches using an arbitrary distance metric. The

construction of the VP-tree results in a binary tree, where each node p represents one

point from the dataset, the “vantage point”. The vantage point splits its descendant

into a low and high range based on their distance from the aforementioned vantage

point, with half of the child vectors in each range. For each range, we also have
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a nearest and farthest value, and an example of how these are used is given in

Figure 8.2.

Figure 8.2: Example of a node in a vp-tree, with the vantage point in the center. The
low-near bound is in red, the distance to the point closest to the center. The
low-far (blue) and high-near (green) braket the boundry of the median. No
points can fall between these bounds. The farthest away point provides the
high-far bound in orange.

This tree structure is built top-down, and iteratively splits the remaining points

into two groups at each node in the tree. Rather than continue splitting until each

node has no children, there is instead a minimum split size b. This is because there

are likely too few points for which we can obtain good low/high bounds. Instead,

once the number of datapoints is  b, we create a “bucket” leaf node that stores

the points together and uses the distance from each point to its parent node to do

additional pruning.

At construction time, since each split is done by breaking the tree in half,

the maximum depth of the tree is O(log n) and construction takes O(n log n) time.

Assuming the bounds are successful in pruning most branches, the VP-tree then

answers queries in O(log n) time.

The bucketing behavior can provide practical runtime performance improve-
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ments as well. Some of this comes from better caching behavior, as bucket values

will be accessed in a sequential pattern, and avoids search branches that can be

more difficult to accurately predict for hardware with speculative execution. This

can be done for the VP-tree because its structure is static as it is created, where

the Cover-tree cannot create bucket nodes due to the re-balancing done during con-

struction.

8.3.2.1 Incremental Construction

While the Cover-tree required minimal changes since its construction is already

incremental, we must define a new method to support such a style for the VP-tree.

To support incremental insertions into a VP-tree, we must first find a location with

which to store the new datapoint x. This can be done quite easily by descending

the tree via the low/high bounds stored for each point, and updating the bounds

as we make the traversal. One we reach a leaf node, x is simply inserted into the

bucket list. However, we do not expand the leaf node when its sizes exceeds b.

Ideally, these bounds will be changed infrequently as we insert new points.

Getting a better estimate of the initial bound values should minimize this occurrence.

For this reason we expand a bucket b once it reaches a size of b2. This gives us a

larger sample size with which to estimate the four bound values. We use the value

b
2 as a simple heuristic that follows our intuition that a larger sample is needed

for better estimates, allows us to maintain the fast construction time of the VP

algorithm, and results in an easy to implement and replicate procedure.
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Algorithm 4 Insert into VP-tree
Require: vp-tree root node p, and new datapoint x to insert into tree.
1: while p is not a leaf node do
2: dist d(x, p.vp)
3: if dist < (p.lowfar + p.highnear)/2 then
4: p.lowfar  max (dist, p.lowfar)
5: p.lownear  min (dist, p.lownear)
6: p p.lowChild
7: else
8: p.highfar  max (dist, p.highfar)
9: p.highnear  min (dist, p.highnear)

10: p p.highChild
11: end if
12: end while
13: Add x to bucket leaf node p
14: if |p.bucket| > b2 then
15: Select vantage point from p.bucket and create a new split, adding two children

nodes to p.
16: end if
17: return

Thus our insertion procedure is given in Algorithm 4, and is relatively simple.

Assuming the tree remains relatively balanced, we will have an insertion time of

O(log n). This will also maintain the query time of O(log n).

8.3.2.2 Faster Search

We also introduce a new modification to the VP-tree construction procedure

that reduces search time by enhancing the ability of the standard VP-tree search

procedure to prune out branches of the tree. This is done by using an extension of

the insight from subsubsection 8.3.2.1, that we want to make our splits only when

we have enough information to do so. That is, once we have enough data to make a

split, choosing the median distance from the vantage point may not be the smartest

split.
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Original split

Better split
vp

Figure 8.3: Example on how the split can be improved, with vantage point in black and
other points sorted by distance to it. Colors correspond to Figure 8.2.

Instead, we can use the distribution of points from the vantage point to choose

a split that better bifurcates the data based on the distribution. An example of this

is given in Figure 8.3, where the data may naturally form a binary split. This

increases the gap between the lowfar and high
near

bounds, which then allows the

search procedure to more easily prune one of the branches.

To do this quickly, so to minimize any increase in construction time, we borrow

from the CART algorithm used to construct a regression tree[194]. Given a set of

n distances to the vantage-point, we find the split that minimizes the weighted

variance of each split

argmin
s

s · �2
1:s + (n� s) · �2

s:n (8.1)

Where �2
s:n indicates the variance of the points in the range of [s, n) when

sorted by distance to the vantage point. Because (8.1) can be solved with just

two passes over the n points [195], [196], we can solve this quickly with only an

incremental increase in runtime.
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8.3.3 Random Ball Cover

The Random Ball Cover [189] (RBC) algorithm was originally proposed as

an accelerating index that would make efficient use of many-core systems, such as

GPUs. This was motivated by the euclidean distance metric, which can be computed

with high efficiency when computing multiple distances simultaneously. This can be

done by exploiting a decomposition of the euclidean distance into matrix operations,

for which optimized BLAS routines are readily available. To exploit batch processing

while also pruning distances, the RBC approach organizes data into large groups

and uses the triangle inequality sparingly to prune out whole groups at a time.

Compared to the VP and Cover Tree, the RBC algorithm is unique in that it aims

to answer queries in O(
p
n) time and perform construction in O(n

p
n) time.

The training procedure of the RBC algorithm is to randomly select O(
p
n)

centers from the dataset, and denote that set of points as R. These are the R

random balls of the algorithm. Each representative ri 2 R will own, or cover, all the

datapoints for which it is the nearest neighbor, argmin
x
d(x, ri)8x 2 S \ R, which

is denoted as Lri . It is expected that each ri will then own O(
p
n) datapoints.

Querying is done first against the subset of points R, from which many of the

representatives are pruned. Then a second query is done against the points owned

by the non-pruned representatives. To do this pruning, we need the representatives

to be sorted by their distance to the query point q. We will denote this as r
(q)
i

,

which would be the i’th nearest representative to q. Pruning for k nearest neighbor
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queries is then done using two bounds,

d(q, ri) < d(q, r(q)
k
) +  ri (8.2)

d(q, ri) < 3 · d(q, r(q)
k
) (8.3)

Where  ri = maxx2Lri
d(ri, x) is the radius of each representative, such that

all datapoints fall within that radius. Each bound must be true for any ri to have

the k’th nearest neighbor to query q, and the overall procedure is given in Algo-

rithm 5. Theoretically the RBC bounds are interesting in that they provide a small

dependency on the expansion constant c of the data, where queries can be answered

in O(c3/2
p
n) time. This is considerably smaller than the c

12 term in cover trees,

but has the larger
p
n dependence on n instead of logarithmic. However, the RBC

proof depends on setting the number of representatives |R| = O(c3/2
p
n) as well,

which we would not know in advance in practice. Instead we will use |R| =
p
n in

all experiments.

Algorithm 5 Original RBC Search Procedure
Require: Query q, desired number of neighbors k

1: Compute sorted order r(q)
i
8r 2 R by d(r, q)

2: FinalList  ;
3: for all ri 2 R do
4: if Bounds (8.2) and (8.3) are True then
5: FinalList  FinalList [ Lri

6: end if
7: end for
8: k-NN  BruteForceSearch(q, R [ FinalList) .distances for R do not need to be

re-computed

9: return k-NN
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8.3.3.1 Incremental Construction

If our goal was to build a static index, the random selection of R may lead to

a sub-optimal selection. It is possible that different representatives will have widely

varying numbers of members. For our goal of incrementally adding to an index, this

stochastic construction becomes a benefit. Because the representatives are selected

randomly without replacement, it is possible to incrementally add to the RBC index

while maintaining the same quality of results.

Algorithm 6 Insert into RBC Index
Require: RBC representatives R, associated lists Lr, 8r 2 R, and new datapoint x to

add to RBC.
1: Compute sorted order r(x)

i
8r 2 R by d(r, x)

2: L
r
(x)
1
 L

r
(x)
1
[ x

3:  
r
(x)
1
 max

⇣
d(r(x)1 , x), 

r
(x)
1

⌘
.keep radius information correct

4: if ceil (
p
n)2 6= n then

5: return .else, expand R set

6: end if
7: select randomly a datapoint lnew from

S
8r2R Lr

8: let rold be the representative that owns lnew, i.e., lnew 2 Lrold

9: Lrold  Lrold \ lnew

10: rnew  lnew

11: potentialChildren  RadiusSearchRBC(rnew, argmaxr,8r2R  r)
12: Lrnew  ;
13: R R [ rnew

14:  rnew  0
15: for all y 2 potentialChildren do
16: Let ry be the representative that owns y
17: if d(y, ry) > d(y, rnew) then .change ownership

18: Lry  Lry \ y
19: Lrnew  Lrnew [ y
20:  ry  argmax8z2Lry

d(ry, z) .update radius info

21:  rnew  max ( rnew , d(y, rnew))
22: end if
23: end for

The details of our approach are given in Algorithm 6. Whenever we add a
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new datapoint to the index, we find its representative and add it to the appropriate

list L. This can be done in O(
p
n) time, consistent with the query time of RBC.

Once the closest representative is found, the radius to the farthest point may need

to be updated, which is trivial. For the majority (n �
p
n) of insertions, this is all

the work that needs to be done.

For the remaining
p
n insertions, the total number of datapoints will reach a

size such that we should have a new representative. The new representative will be

selected randomly from all the points in S \R. We can find all the datapoints that

may belong to this new representative using a “range” or “radius” search. A radius

search is given a query and radius, and returns all datapoints within the specified

radius of the query. In this case we give the new representative as the query and

specify the range as the maximum  r in the RBC so far. This is by definition

the maximum distance of any point to its representative, so any point that will be

owned by the new representative must have a smaller distance. In the worst case

scenario, we cannot prune any points using a radius search. This means at most n

other points must be considered. But since this scenario can only occur
p
n times,

we maintain the same construction time complexity of O(n
p
n) in all cases. We can

also state that this approach yields an amortized O
⇤(
p
n) insertion time.

8.3.3.2 Faster Search

While the original RBC search is fast and efficient on GPUs and similar many-

core machines, it is not as efficient for our use case. Our scenario of interleaved
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insertions and queries means we will be querying over only a few datapoints at a

time. This means we will not obtain a large enough group of queries points to obtain

the batch and SIMD efficiencies that were the original goal of Cayton [189]. Further,

when we consider arbitrary distance metrics, we can not expect the same efficient

method of grouping calculations as can be done with the euclidean distance. Thus

we have developed an improved querying method for the RBC search to make it more

efficient in our incremental insertion and querying scenario. Our improvements to

the RBC search procedure can be broken down into three steps.

First, we modify the search to create the k-NN list incrementally as we visit

each representative r 2 R. In particular we can improve the application of bound

(8.2) by doing this. First, we note that in (8.2), the d(q, r(q)
k
) term serves as an

upper bound on the distance to the k’th nearest neighbor. By building the k-NN

list incrementally, we can instead use the current best candidate for k’th nearest

neighbor as a bound on the distance to the k’th nearest neighbor. This works

intuitively, as the true k’th neighbor, if not yet found, must by definition have a

smaller distance than our current candidate.

Second, when visiting the points owned by each representative, l 2 Lr, we can

apply this bound again and tighten the bound further. This is done by replacing

the  ri term of (8.2) by the distance of l to its representative r. Since this distance

d(l, r) had to be computed when building the RBC in the first place, these distances

can simply be cached at construction — avoiding any additional overhead.

Third, to increase the likelihood of finding the k’th neighbor earlier in the

process, we visit the representatives in sorted order by their distance to the query.
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Because our first modification tightens the bound as we find better k’th candidates,

this will accelerate the rate at which we tighten the bound.

The complete updated procedure is given in Algorithm 7. A similar treatment

can improve the RBC search procedure for range queries. We note that on lines 2

through 4, we add all the children points of the closest representative L
r
(q)
1

uncon-

ditionally. This satisfies requirements of the RBC search algorithm’s correctness in

the k nearest neighbor case, rather than just one nearest neighbor. We refer the

reader to Cayton [189] for details. This step’s purpose is to pre-populate the k-NN

list with values for the bounds checks done in lines 8 and 10.

Algorithm 7 New RBC Search Procedure
Require: Query q, desired number of neighbors k

1: Compute sorted order r(q)
i
8r 2 R by d(r, q)

2: k-NN  {r(q)1 } .sorted list implicitly maintains max size of k
3: for all l 2 L

r
(q)
1

do .Add the children of the nearest representative

4: k-NN  k-NN [ l
5: end for
6: for i 2 2 . . . |R| do .visit representatives in sorted order

7: qr  d(q, r(q)
i

)

8: Add tuple r(q)
i

, d(r(q)
i

, q) to k-NN
9: if qr < k-NN[k].dist +  ri and (8.3) are True then

10: for all l 2 L
r
(q)
i

do

11: if qr < k-NN[k].dist + d(l, r(q)
i

) then .d(l, r(q)
i

) is pre-computed

12: Add tuple l, d(l, q) to k-NN
13: end if
14: end for
15: end if
16: end for
17: return k-NN

The first step of our new algorithm must still compute the distances for each

ri, and |R| =
p
n. In addition, we add all the children of the closest represent r

(q)
1 ,

which is expected to own O(
p
n) points. Thus this modified RBC search is still an
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O(
p
n) search algorithm. Our work does not improve the algorithmic complexity

but does improve its effectiveness at pruning.

8.4 Datasets and Methodology

We use a number of datasets and distance metrics to evaluate our changes

and the efficiency of our incremental addition strategies. For all methods we have

confirmed that the correct nearest neighbors are returned compared to a naive brute-

force search. Our evaluation will cover multiple aspects of performance, such as

construction time, query time, and the impact of incremental insertions of index

efficiency. We will use multiple values of k in the nearest neighbor search so that

our results are relevant to multiple use-cases. Toward this end we will also use

multiple datasets and distance metrics to further validate our findings.

8.4.1 Evaluation Procedure

The approach used in most prior works to evaluate metric indexes is to create

the index from all of the data, and then query each datapoint in the index search for

the single nearest neighbor [167]. For consistency we replicate this experiment style,

but do not use every datapoint as a query point. This results in worst case O(n2)

runtime for some of our tests, preventing us from comparing on our larger datasets.

Since our interest is in whether the index allows for faster queries, we can instead

determine the average pruning efficiency with extreme accuracy by using only a small

sample of query points. In tests using a sample of 1000 points for testing, versus
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using all data points, we found no difference in conclusions or results4. Thus we

will use 1000 test points in all experiments. This will allow us to run any individual

test in under a week, and evaluate the insertion-query performance in a more timely

manner.

When using various datasets, if the dataset has a standard validation set, it

will not be used. Instead points from the training set will be used for querying. This

is done for consistency since not every dataset has a standard validation or testing

set. Our experiments will be performed searching for the k nearest neighbors with

k 2 {1, 5, 25, 100}. Evaluating for multiple values of k is often ignored in most works,

which focus on the k = 1 case in their experiments [e.g. 164], [167], [189], or will test

on only a few small value of k  10 [166]. This is despite many applications, such

as embeddings for visualization [173]–[175], [197], using values of k as large as 100.

By testing a range of values for k we can determine if one algorithm is uniformly

better for all values of k, or if different algorithms have an advantage in one regime

over the others.

To evaluate the impact of incremental index construction on the quality of

the final index, each index will be constructed in three different ways. Differences

in performance between these three versions of the index will indicate the relative

impact that incremental insertions have.

1. Using the whole dataset and performing the classic batch construction method,

by which we mean the original index construction process for each algorithm

(referred to as batch construction)
4The largest observed discrepancy was of 0.3 percentage points
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2. Using half the dataset to construct an initial index using the classic batch

method, and incrementally inserting the second half of the data (referred to

as half-batch)

3. Constructing the entire dataset incrementally (referred to as incremental).

For these experiments, the Cover-tree is excluded — as its original batch construc-

tion is already incremental (though does not support efficient queries between inser-

tions). In our results we will expect the RBC algorithm to have minimal change in

performance, due to the stochastic nature of representative selection. The expected

performance impact of the VP-tree was unknown, though we would expect the tree

to perform best in batch construction, second best when using half-batch construc-

tion, and worst when fully incremental. Results will consider both the number of

distance computations when including and excluding distanced performed during

index construction. We note that runtime of all methods and tests correlates di-

rectly with number of distance computations done for our code. Comparing distance

computations is preferred so that we observe the true impact of pruning, rather than

efficiency of micro optimizations, and is thus comparable to implementations written

in other languages.

We will also test the effectiveness of each method when interleaving queries and

insertions. This will be evaluated in a manner analogous to common data structures,

where we have different number of possible read (query) and write (insert) ratios.
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8.4.2 Data and Distances Used

Now that we have reviewed how we will evaluate our methods, we will list

the datasets and distance metrics used in such evaluations, a summary of which is

presented in Table 8.1. Datasets and distance metrics were selected to cover a wide

range of data and metric types, include common baselines, and so that experiments

would finish within a one-week execution window.

Dataset Samples Distance Metric

MNIST 60,000 Euclidean
MNIST8m 8,000,000 Euclidean
Covtype 581,012 Euclidean
VxHeaven 271,095 LZJD
VirusShare5m 5,000,000 LZJD
ILSVRC 2012 Validation 50,000 EMD
IMDB Movie Titles 143,337 Levenshtein

Table 8.1: Datasets used in experiments, including the number of points in each dataset
and the distance metric used.

Our first three datasets will all use the familiar euclidean distance (d(x, y) =

kx � yk). The first of which is the well known MNIST dataset [198], which is a

commonly used benchmark for machine learning in general. Due to its small size

we also include a larger version of the dataset, MNIST8m, which contains 8 million

points produced by random transformations to the original dataset [199]. We also

evaluate the Forest Cover Type (Covtype) datasets [200], which has historically been

used for metric indexes.

Finding nearest neighbors and similar examples is important for malware anal-

ysis [148], [201]. The VxHeaven corpus has been widely used for research in malware
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analysis [202], and so we use it in our work for measuring the similarity of binaries.

VxHeaven contains 271k binaries, but malware datasets are routinely reaching the

hundreds of millions to billions of samples. For this reason we also select a random

5 million element set from the VirusShare corpus [49], which shares real malware

with interested researchers. As the distance metric for these datasets, we will use

the Lempel-Ziv Jaccard Distance (LZJD) [43].

One of the metrics measured in the original Cover-tree paper was the a string

edit distance [166]. They compared to the dataset and methods used in Clarkson

[203], however the available data contains only 200 test strings. Instead we use the

Levenshtein edit distance on IMDB movie titles [204], which contains both longer

strings and is three orders of magnitude larger.

The simplified Cover-tree paper evaluated a larger range of distance metrics

[167], including the Earth Mover’s Distance (EMD) [205]. The EMD provides a

distance measure between histograms, and was originally proposed for measuring

the similarity of images. We follow the same procedure as Izbicki and Shelton [167]

for using the “thresholded” EMD [206], except we use the RGB color space5. We

use the 2012 validation set of the ImageNet challenge [207] for this distance metric,

as it is the most computationally demanding metric of the ones we evaluate in this

work.
5Our software did not support the LabCIE color space previously used, and we did not notice

any significant difference in results for other color spaces.
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8.5 Evaluation of Construction Time and Pruning Improvements

We first evaluate the impact of our changes to each of the three algorithms.

For RBC and VP-trees, we have made alterations that aim to improve the ability of

these algorithms to avoid unnecessary distance computations at query time. For the

Cover-tree, we have made a modification that will negatively impact its ability to

perform pruning, but will make it viable for interleaved insertions and queries. We

will evaluate the impact of our changes on construction time, query efficiency under

normal construction, and the impact incremental construction has on the efficiency

of the complete index.

8.5.1 Impact on Construction Time

To determine the impact of the incremental construction and our modifica-

tions, we will compare each algorithm in terms of the number of distance com-

putations needed to construct the index. We will do this for all three construction

options, batch, half-batch, and incremental, as discussed in section 8.4. The time for

only constructing the indices in these three ways are shown in Figure 8.4. We note

that there is no distinction between the Cover and CoverB construction times, and

that the cover-tree is always incremental in construction. For this reason we only

show one bar to represent Cover and CoverB across all three construction scenarios

to avoid graph clutter.

Here we see the two performance characteristics observed. On datasets like

MNIST, where we use the euclidean distance, RBC is the slowest to construct.
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Figure 8.4: Construction performance for each algorithm on each dataset. The y-axis rep-
resents the number of distance computations performed to build each index.
Each algorithm is plotted three times, once using classic batch construction,
half-batch, and incremental. The Cover-tree’s construction algorithm is equiv-
alent in all scenarios, so only one bar is shown.

This is expected, as it also has the highest complexity at O(n
p
n) time. We also

note that the RBC radius search is not as efficient at pruning, and fails to do so

on most datasets. Only on datasets that are most accelerated, such as the Cov-

type dataset, does the RBC incremental construction avoid distance computations

during construction. This empirically supports the theoretical justification that we

maintain the same construction time for the RBC algorithm, as discussed in sub-

subsection 8.3.3.1.

The second slowest to construct is the Cover-tree, followed by the VP-trees

which is fastest. On the VxHeaven dataset, with the LZJD metric, the construc-
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tion time performance of the Cover-tree degrades dramatically, using two orders of

magnitude more distance computations than the RBC. We believe this performance

degradation is an artifact of the expansion constant c that occurs when using the

LZJD metric. The VP tree has no construction time impact with c, and the RBC

algorithm has a small O(c3/2) dependency compared to the Cover-tree’s O(c6) depen-

dence. On the VirusShare5m dataset, the Cover-tree couldn’t be constructed given

over a month of compute time. We also note that the Cover-tree had degraded con-

struction performance on the IMDB Movies dataset using the Levenshtein distance.

These results present a potential weakness in the Cover-tree algorithm.

Barring the performance behavior of the Cover-tree, both the RBC and VP-

tree have more consistent performance on various datasets. We note of particular

interest that the incremental construction procedure for the RBC results in almost

no change in the number of distance computations needed to build the index6. The

radius search is rarely able to do any pruning for the RBC algorithm, and so the

brute force degrades to the same number of distance computations as the batch

insertion. The Covtype dataset is the one for which each algorithm was able to do

the most pruning, and thus has the most pronounced effect of this.

The VPMV variant of the VP-tree also matches the construction profile of the

standard VP-tree on each dataset, with slightly increased or decreased computations

depending on the dataset. This is to be expected, as the standard VP-tree always

produces balanced splits during batch construction. The incremental construction

can also cause lopsided splits for both the VP and VPMV-tree, which results in a
6The same cannot be said for wall clock time, which is expected.
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longer recurrence during construction, and thus increased construction time and

distances. The VPMV-tree may also encourage such lopsided splits, increasing the

occurrence of this behavior. Simultaneously, the incremental construction requires

fewer distance computations to determine early splits, and so can result in fewer

overall computations if the splits happen to come out near balanced. The data and

metric dependent properties will determine which impact is stronger for a given

case. The impact of incremental construction on the VP-trees is also variable,

and can increase or decrease construction time. In either direction, the change in

VP construction time is minor relative to the costs for Cover-trees and the RBC

algorithm.

Overall we can draw the following conclusions about construction time effi-

ciency. 1) that the VP-trees are fastest in all cases, and the proposed VPMV variant

has no detrimental impact. 2) the RBC algorithms are the most consistent, but

often slowest, and that the RBCImp has no detrimental impact. 3) the Cover-tree is

not consistent in its performance relative to the other two algorithms, but when it

works well, is in the middle of the road.

8.5.2 Impact on Batch Query Efficiency

We now look at the impact of our changes to the three search procedures

on querying the index, when the index is built in the standard batch manner. This

isolates the change in performance to only our modifications of the three algorithms.

Our goal here is to show that RBCImp and VPMV are improvements over the standard
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RBC and VP-tree methods. We also want to quantify the negative impact of using

the looser bounds in CoverB that will allow for incremental insertion and querying,

which is not easy with the standard simplified Cover-tree due to its use of the maxdist

bound and potential restructuring on insertions [167].
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Figure 8.5: Number of distance computations needed as a function of the desired number
of neighbors k. The y-axis is the ratio of distance computations compared to
a brute-force search (shown at 1.0 as a dotted black line).

Considering only batch construction, we can see the query efficiency of these

methods in Figure 8.5, where we look at the fraction of distance computations needed

compared to a brute-force search. This figure factors in the distance computations

needed during construction time, so the query efficiency is with respect to the whole

process7.
7The batch construction is scaled to have the same impact as if we used every dataset instead of

a random sample. In extended testing, just 100 samples reliably estimated the percentage. Using
1000 samples gives even higher confidence and makes large tests tractable.
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We can see that for the RBC and VP-tree algorithms, our enhancements to the

search procedure are effective. For the RBC algorithm in particular, more distance

computations were done than the brute force search in most cases, but RBCImp

dramatically improves the competitiveness of the approach. This comes at a loss

of compute efficiency when using the euclidean metric, which is where the RBC

obtains its original speed improvements. But our work is looking at the general

efficiencies of the RBC for arbitrary distance metrics, which may not have the same

efficiency advantages when answering queries in batches. In this respect the pruning

improvements of RBCImp are dramatic and important if the RBC algorithm is to be

used.

The VPMV reduces the number of computations needed compared to the stan-

dard VP-tree in all cases. The amount of improvement varies by dataset, ranging

from almost no improvement, to nearly an order of magnitude less distance computa-

tions for the Covtype dataset. Given these results our choice to produce unbalanced

splits during construction is empirically validated.

As expected, the CoverB variant of the simplified Cover-tree had a detrimental

impact on efficiency, as it is relaxing the bound to the same one used in the original

Cover-tree work[166]. Among all tests, the CoverB-tree required 1.6 to 6.7 times

as many distance computations as the standard Cover-tree, with the exact values

given in Table 8.2 for all tested values of k. The few distance computations avoided

for determining the tighter bound clearly make up for a considerable portion of the

simplified Cover-tree’s improved performance.

While the Cover-tree was the most efficient at avoiding distance computations
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Table 8.2: For each dataset, the this table shows the multipler on the number of distance
computations CoverB had to perform compared to a normal Cover-tree.

Dataset

k MNIST MNIST8m ILSVRC Covtype IMDB VxHeaven

1 1.57 6.73 2.07 2.27 1.70 0.97
5 1.38 5.71 1.96 2.16 1.44 0.98

25 1.25 2.75 1.81 1.97 1.29 0.98
100 1.16 2.44 1.67 1.73 1.20 0.98

on the MNIST dataset, the Cover-tree is the worst performer by far on the VxHeaven

dataset. The increased construction time results in the Cover-tree performing 20%

more distance computations than would be necessary with the brute force approach.

We also see an interesting artifact that more distance computations were done on

VxHeaven when using the tighter maxdist bound than the looser CoverB approach.

This comes from the extra computations needed to obtain the maxdist bound in

the first place, and indicates that more distances computations are being done to

obtain that bound then are saved in more efficient pruning.

100 101 102
0.4

0.6

0.8

1

k

Figure 8.6: Query performance on the VirusShare5m dataset.

We also note that the VxHeaven dataset, using the LZJD distance, had the
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worst query performance amongst all datasets, with LZJD barely managing to avoid

5% of the distance computations compared to a brute-force search. By testing this on

the larger VirusShare5m dataset, as seen in Figure 8.6, we can see that increasing the

corpus size does lead to pruning efficiencies. While the Cover-tree couldn’t be built

on this corpus, both the RBC and VP algorithms are able to perform reasonably well.

The VPMV did best, avoiding between 57% and 40% of the distance computations

a brute-force search would require.

Viewing these results as a whole, we would have to recommend the VPMV

algorithm as the best choice in terms of query efficiency. In all cases it either prunes

the most distances for all values of k, or is a close second to the Cover-tree (which

has an extreme failure case with LZJD).

8.5.3 Impact of Incremental Construction on Query Efficiency

For the last part of this section, we examine the impact on query pruning

based on how the index was constructed. That is to say, does half-batch or incre-

mental construction of the index negatively impact the ability to prune distance

computations, and if so, by how much? Such evaluation will be shown for only

the more efficient RBCImp and VPMV algorithms that we will further evaluate in

section 8.6. We do not consider the Cover-tree variants in this portion. As noted in

subsection 8.3.1, the Cover-tree’s construction is already incremental. Thus these in-

dexes will be equivalent when given the same insertion ordering. The only change in

Cover-tree efficiency would be from random variance caused by changes in insertion
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order.
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Figure 8.7: Difference in the number of distance computations needed as a function of the
desired number of neighbors k. The y-axis is the difference in the ratio of
distance computations compared to a brute-force search. We note that the
scale on the y-axis is different for various figures, and the small scale indicates
that incremental construction has little impact on query efficiency.

The difference between the ratio of distance computations done for Half-Batch

(H) and Incremental (I) index construction is shown in Figure 8.7. That is to say,

if rH = Distance Computations with Half-Batch

Distance Computations Brute Force
, and rB has the same definition but for the

Batch construction, then the y-axis of the figure shows rB � rH . When this value is

near zero, it means that both the Batch and Half-Batch or Incremental construction

approaches have avoided a similar number of distance computations.

We remind the reader that Half-Batch is where the dataset is constructed

using the standard batch construction approach for the first n/2 data-points, and
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the remaining n/2 are inserted incrementally. Incremental construction builds the

index from empty to full using only the incremental insertions.

Positive values indicate an increase in the number of distance queries needed.

Negative values indicate a reduction in the number of distance queries needed, and

are generally an indication of problem variance. That is to say, when the difference

in ratios can go negative, it’s because the natural variance (caused by insertion

order randomness) is greater than the impact of the incremental construction. Such

scenarios would generally be considered favorable, as it would indicate that our

modifications have no particular positive or negative impact.

We first note a general pattern in that the difference in query efficiency can

go up or down with changes in the desired number of neighbors k. This will be an

artifact of both the dataset and distance metric used, and highlights the importance

of testing metric structures over a large range of k. Testing over a wide range of k

has not been historically done in previous works, usually performing only the 1�nn

search.

In our results we can see that the RBC algorithm performs best in these

tests. The RBCImp approach’s pruning ability is minimally impacted by changes in

construction for all datasets and values of k. The largest increase is on MNIST for

k = 1, where the Half-Batch insertion scenario increases from 59.4% to 60.6%, an

increase of only 1.2 percentage points. It makes sense that the RBCImp approach

would have a consistent minimal degradation in query efficiency, as the structure

of the RBC is coarse, and our incremental insertion strategy closely matches the

behavior of the batch creation strategy.
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The VPMV-tree does not perform as well as the RBCImp, and we can see that

incremental construction always has a more larger, but still small, impact on its

performance for all datasets. The only case where this exceeds a two percentage

point difference is on the MNIST8m dataset, where a ⇡ 7.6% point gap occurs

for incremental and half-batch construction. The larger impact on the VPMV’s

performance is understandable given that our insertion procedure does not have the

same information available for choosing splits, which may cause sub-optimal choices.

Our expectation would be that the VPMV’s performance would degrade more

when using incremental (I) insertion rather than half-batch (H), as the half-batch

insertion will get to use more datapoints to estimate the split point for nodes higher

up in the tree. Our results generally support this hypothesis, with VPMV (I) causing

more distance queries to be performance than the (H) case. However, for MNIST8m,

VxHeaven, and ILSVRC, the performance gap is not that large across the tested

values of k. This suggests that the loosened bounds during insertion may also be an

issue impacting the efficiency after insertions. One possible way to reduce this im-

pact would be to add multiple vantage points dynamically during insertion, to avoid

impacting the existing low/high bounds of the VP-tree. Such Multi-Vantage-Point

(MVP) trees have been explored previously[208] in a batch construction context.

We leave research in exploiting such extensions to to future work.

Regarding the impact on query efficiency given incremental insertions, we can

confidently state that the RBC approach is well poised to this part of the problem,

with almost no negative impact to efficiency. The VP-tree does not fare quite as

well, but is still more efficient than the RBCImp algorithm in all of these cases after
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construction from only incremental insertions.

8.6 Evaluation of Incremental Insertion-Query Efficiency

At this point we have shown that RBCImp and VPMV are improvements over

the original RBC and VP-tree algorithms in terms of query efficiency, with no sig-

nificant impact on the construction time. We have also shown that the indexes

constructed by them are still effective are pruning distance computations, which

encourages their use. We can now evaluate their overall effectiveness when we in-

terleave insertions and queries in a single system.

In this section we now consider the case of evaluating each index from the con-

text of incremental insertion and querying. Contrasting with the standard scenario,

where we build an index and immediately query it (usually for k-nearest neighbor

classification, or some similar purpose), we will be building an index and evaluating

the number of distance computations performed after construction. This scenario

corresponds to many realistic use cases, where a large training set is deployed for

use, and new data added to the index over time.

Given a dataset with n items in it, our evaluation procedure will consider r

queries (or “reads”) and w insertions (or “writes”) to the index. The naive case,

where we perform brute force search, there is no cost to writing to the index, only

when we perform a query. This brute force approach also represents our baseline

for the maximum number of distance computations needed to answer the queries.

Similar to data structures for storing and accessing data and concurrency
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tools, we may also explore differing ratios of reads to writes. In our experiments

we evaluated insert/query ratios from 100:1 to 1:100. In all cases, we found that

the most challenging scenario was when we had 100 insertions for each query. This

is not surprising, as all of our data structures have a non-zero cost for insertions,

and in the case of RBC and Cover-trees, can be quite significant. Thus, below we

will only present results for the case where we have 100 insertions for each query,

and our tests will be limited to 1000 insertions due to runtime constraints8. We

construct each initial index on half of the data points, using the batch construction

method.
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Figure 8.8: Fraction of distance computations needed (relative to naive approach) in incre-
mental scenario, with 100 insertions for every query. Does not include initial

construction costs, only subsequent insertion costs.

For the Cover-tree, only CoverB produces reasonable insertion/query perfor-
8We allowed a maximum of one week runtime for tests to complete in this scenario.
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mance, as the maxdist bound can’t be maintained when re-balancing occurs. Using

the original loose bound causes a considerable reducing in efficiency at query time.

By recording the multiplicative difference between the tighter bound Cover-tree and

the original looser bound in CoverB in Table 8.2, we can plot the performance of

the ideal Cover-tree as a function of CoverB. This gives us a measure of what the

best possible performance of the Cover-tree would be in this scenario, as it ignores

all overheads in any potential scheme for selectively updating the Cover-tree bound

as items are inserted that would cause re-balancing. We will indicate this ideal

Cover-tree as CoverI.

The results of our methods are presented in Figure 8.8. Amongst the RBCImp,

VPMV, and CoverB algorithms, the VPMV dominates all other approaches. It suc-

cessfully avoids the most total distance computations to answer nearest neighbor

queries for all values of k on all datasets. This is not surprising given the cumu-

lative results of section 8.5, which found the VPMV to require the fewest distance

computations during construction time and was always either the most efficient at

avoiding distance computations, or nearly behind the Cover-tree approach.

If we had an ability to obtain the maxdist bound for free, we can also see that

the CoverI approach is still not very competitive with the VPMV-tree. While CoverI

does have better performance than VPMV on some datasets, it often trails behind

on the Covtype by nearly an order of magnitude. Especially when we consider the

failure of the Cover-trees to perform with the LZJD distance on VxHeaven and

VirusShare5m. This variability in performance makes the Cover-tree less desirable

to use for arbitrary distance metrics.
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While the VPMV appear to be the best overall fit to our task, we note that our

RBCImp also makes a strong showing despite the O(
p
n) complexity target instead of

O(log(n)). RBCImp consistently performs better than random guessing, which can’t

be said for the Cover-tree. On the more difficult datasets, it is often not far behind

the VPMV-tree in performance, though it is an order of magnitude less efficient on

the Covtype and ILSVRC datasets. The biggest weakness of the RBC approach is

that the incremental insertions will have an amortized cost, with the insertion time

increasing dramatically every
p
n insertions to expand the representative set. If the

number of insertions is known to be bounded, this may be an avoidable cost – thus

increasing the RBC’s practicality. We note as well that in the case of datasets stored

in a distributed index across multiple server’s, the RBC’s coarse structure may allow

for more efficient parallelization. This may be an important factor in future work

when we consider datasets larger than what can be stored on a single machine.

8.6.1 Discussion

While we have modified three algorithms for our scenario of incremental query-

ing and insertion, we note that there is a further unexplored area for improvement

in the “Read write” ratio. In our case it was most challenging for all algorithms to

handle more “Writes” per “read”, as each insertion required multiple distance com-

putations and the insertions did not dramatically change the performance at query

time. This is in part because we have modified existing algorithms to support this

scenario, and so the performance interleaving insertions and queries closely follows
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the performance when we evaluate query by including the construction cost, as we

did in section 8.5.

Of the algorithms we have tested the VPMV performs best with the lowest

construction time, and is almost always the fastest at query time. This is also in

the context of evaluation in a single-threaded scenario. When we consider a multi-

threaded scenario, the VPMV can utilize multiple threads for index construction

using the batch-construction approach. However, insertion of a single data-point

cannot easily be parallelized. The Cover-tree also has this challenge.

Our RBCImp approach presents a potential advantage over both of these algo-

rithms when we consider the multi-thread or distributed scenario. As a consequence

of how the RBC algorithm achieves its O(
p
n) insertion and query time, we can

readily parallelize line 1 of Algorithm 6 on up to pp processors, requiring only a

reduce operation to determine which processor had the closest representative. It

may then be more practical than the VPMV approach for extremely large indexes

if sufficient compute resources are available. The downside to the RBC algorithm

comes when the representative set must be increased, requiring more work and pre-

senting a insertion cost that will periodically spike. This could be remedied by

amortizing the cost of increasing the representative set across the preceding inser-

tions, but we leave this to future work as we must consider the real-world efficiency

of an implementation to determine how practical a solution it would be.

In future work we hope to develop new algorithms that are specifically designed

for incremental insertion and querying. We note two potential high level strategies

in which one may develop methods that perform better for read and write heavy
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use-cases. We consider these beyond the scope of our current work, which looks

at modifying existing algorithms, but may be fruitful inspiration for specialized

methods.

8.6.1.1 Write and Insert Heavy

When we have multiple datapoints inserted before each query, it may become

possible to use the index itself to accelerate the insertion process. Say that there will

be a set of Z points inserted into the index at a time. We can cluster the members

of Z by their density/closeness, and insert each cluster together as a group. One

option may be to find the medoid of the group and its radius, which can then be

used as a proxy point that represents the group as a whole. One could then insert

the sub-groups into the index with a reduced number of distance computations if the

triangle inequality can be used to determine that all members of the group belong

in the same region of the index. The group may then be dissolved as such macro

level pruning becomes impossible, or reduced into smaller sub-groups to continue

the process. The dual-tree query approach [209], at a high level, presents a similar

strategy for efficiently answering multiple queries at a time.

8.6.1.2 Read and Query Heavy

Another scenario is that insertions into the index will be relatively rare, com-

pared to the amount of nearest neighbor queries given to the index. In this case it

may be desired to have the query process itself build and restructure the tree. This
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notion is in a similar spirit to splay trees and the union-find algorithm [210]–[212].

Insertions to the dataset would be placed in a convenient location, and their first

distances computed when a new query is given. Say that xi was a previously inserted

point. Once we have a new query xq, the distance to the query is obtained for xi

and for xq’s nearest neighbors. If d(xi, xq) ⇡ c · d(xq, x
(k)), where x

(k) is xq’s k’th

nearest neighbor and c is some constant, we can then infer that xi should be placed

in a similar location in the index. As multiple insertions are performed, we can use

these distances with respect to the query to determine which points are related and

should be kept close in the index.

8.7 Conclusions

We have now evaluated and improved three different algorithms, Cover Trees,

Vantage-Point Trees, Random Ball Covers, for the use case of incremental insertions

and querying. We have significantly improved the query efficiency of the later two

with our new RBCImp and VPMV variants, and introduced schemes to incrementally

add to these collections. Evaluation of all these methods was done with a number

of datasets with varying sizes using four different distance metrics. In doing so, we

can conclude that the VPMV tree provides the best overall performance for our task.

It requires the fewest distance computations during construction, is consistently one

of the fastest at query time, and this balance produces the best overall results when

interleaving insertions and queries.

While already successful, the VPMV tree still has room for improvement. It
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has the highest degradation to performance from insertions, which could perhaps

be remedied by a smarter update algorithm or the use of multiple vantage points.

While the CoverB algorithm could be improved by obtaining a better alternative

bound than maxdist, it appears obtaining a computational cheaper version maxdist

bound itself is not sufficient to remedy the performance gap when using the LZJD

distance.

231



Chapter 9: Conclusions and Future Work

Through this thesis we have now developed the Lempel-Ziv Jaccard Distance.

We’ve used it to develop a fast and efficient malware classifier that outperforms

byte n-grams, and can directly tackle the class imbalance problem. We’ve used it

on Windows and Android malware, as well as a variety of common file types. In

doing so LZJD has also outperformed pre-existing tools for similarity search used in

digital forensic investigations. To further support LZJD’s use in such scenarios, we

have developed enhancements to the Vantage-Point tree enabling incremental index

construction and querying.

While we have developed a tool that is orders of magnitude faster than what

was previously available, we must emphasize a critical communal item of future work:

improved sharing. Datasets in the malware space are valuable and often highly

guarded due to the collection and labeling costs associated with them. Advanced

domain knowledge tools for feature extraction or processing of executables often

involve years of development, making it impractical for independent groups to re-

implement, yet are also kept from the public. Combined, these make it nearly

impossible for researchers to effectively compare with prior works, and will prevent

consensuses from forming on many issues. Solving these problems, even in part, will
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likely take the action of larger corporations that own the kind of data researchers

like ourselves must ask for access to.

Until such issues are solved, we note some general items of future work, beyond

the chapter-specific future works that have been discussed periodically.

New Compression Method Specific Algorithms

The NCD measure can be thought of as a compression-method agnostic way

of measuring file similarity. LZJD in turn is compression method specific, in that is

based specifically upon the Lempel-Ziv scheme. This opens up a natural question:

what other specific compression methods can have new distance measured devel-

oped from them, and what advantages might they have? Given the long history of

compression based research, this may be an especially fertile research area in the

future.

New Domain-Knowledge Free Methods

Currently, the primary methods that can be used today with copora like our

Industry 2 Million set are byte n-grams and LZJD. The n-gram approach will likely

need modification to scale to even larger corpora, as it is already pushing the compu-

tational limits of our resources. Developing new orthogonal approaches is important,

whether that be increasing the effectiveness of entropy based methods or other ap-

proaches. One approach that has made progress in recent years is the use of neural

networks trained on raw bytes [213], [214]. This too has its own complications and
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limitations, but may prove valuable in the long term.
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Appendix A: Effective Alternative to Ssdeep and Sdhash Appendix

A.1 Full FRASH Results

Here in the appendix we provide more complete results from the FRASH tests

for those who are interested. In these full tables, Score is the average score for each

match, and Matches or Match it the absolute number of matches at that size.

A.1.1 Single Common Block Tables

In these tables, we show the average block size percentage as the Size column.

The associated average block size can be computed from these tables by multiplying

the total block size of the table, with the percentage given in each column. The SCB

tests were run for 50 trials each. This covers the results in Table A.1, Table A.2,

and Table A.3.
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ssdeep sdhash LZJD

Score Size (%) Matches Size (%) Matches Size (%) Matches

�65 48.44 2 — — — —
�60 47.54 14 — — — —
�55 43.59 20 — — — —
�50 42.63 39 — — — —
�45 38.78 44 48.96 6 — —
�40 32.42 48 46.61 12 — —
�35 26.45 43 42.38 16 — —
�30 22.94 41 40.85 28 — —
�25 18.42 28 36.13 32 44.15 39
�20 20.62 5 31.33 37 15.75 50
�15 — — 27.27 44 3.25 50
�10 — — 20.88 50 — —
�5 — — 10.88 50 — —
0 15.5 50 3.12 50 — —

Table A.1: Complete Single Common Block results for a total block size of 512 KB.

ssdeep sdhash LZJD

Score Size (%) Matches Size (%) Matches Size (%) Matches

�70 44.92 2 — — — —
�65 44.82 8 — — — —
�60 43.36 12 — — — —
�55 42.86 28 — — — —
�50 40.28 41 — — — —
�45 37.27 48 47.27 4 — —
�40 30.05 49 46.03 12 — —
�35 25.98 48 42.68 19 — —
�30 21.54 46 39.84 27 — —
�25 18.85 23 35.66 34 — —
�20 19.98 7 31.38 42 — —
�15 — — 24.47 44 42.39 46
�10 — — 18.72 50 18.38 50
�5 — — 9.17 50 0.78 50
0 19.17 50 0.88 50 — —

Table A.2: Complete Single Common Block results for a total block size of 2 MB.
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ssdeep sdhash LZJD

Score Size (%) Matches Size (%) Matches Size (%) Matches

�70 44.92 1 — — — —
�65 46.7 8 — — — —
�60 45.81 20 — — — —
�55 42.55 31 — — — —
�50 39.05 40 49.9 2 — —
�45 35.83 48 47.01 7 — —
�40 28.52 50 43.86 13 — —
�35 23.74 49 41.94 22 — —
�30 20.07 50 37.3 25 — —
�25 18.46 36 33.41 31 — —
�20 16.41 9 28.36 35 49.02 1
�15 12.89 1 26.47 44 36.56 50
�10 — — 19.75 50 6.8 50
�5 — — 9.51 50 0.2 50
0 17.61 50 0.99 50 — —

Table A.3: Complete Single Common Block results for a total block size of 8 MB.

A.1.2 Random Noise Table

The full results from the random noise test are given in Table A.4. The Change

column is the average percent of bytes in the filed that needed to be edited for a

score of that value to be obtained, and Match is the number of files that FRASH

was able to successfully reduce to the given score range. The most robust method

for each score is shown in bold. The default spacing used in FRASH is 10, but we

reduced the spacing to 5 to take advantage of LZJD’s performance of LZJD. The

high resitance of LZJD meant that a zero value was never produced, which did not

interact well with FRASH’s execution. The second to last row shows that for 7 of

the 100 files, a match score in the range of [1, 5) was produced by modifying an

average of 32% of the file. This value is artificially low, as almost all tests were
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stopped prematurely before LZJD even reached a score of 15.

ssdeep sdhash LZJD

Score Change (%) Match Change (%) Match Change (%) Match

�95 0.00058 100 0.01293 84 0.00151 60
�90 0.00136 99 0.02655 90 0.00317 46
�85 0.00211 99 0.04710 91 0.00490 55
�80 0.00291 99 0.06560 93 0.00777 59
�75 0.00398 93 0.09060 95 0.01243 65
�70 0.00524 88 0.10677 96 0.02378 75
�65 0.00814 73 0.13483 97 0.07260 86
�60 0.01214 51 0.17455 97 0.16215 95
�55 0.01676 30 0.22571 96 0.36321 95
�50 0.02057 18 0.27750 99 0.60610 96
�45 0.04409 10 0.32868 100 1.14643 99
�40 0.06148 7 0.39398 100 1.96722 99
�35 0.04466 3 0.45643 100 3.44188 100
�30 0.05740 2 0.54923 100 6.22476 100
�25 — — 0.62586 99 10.99275 100
�20 — — 0.69417 99 18.03654 100
�15 — — 0.84723 98 30.56353 90
�10 — — 0.97390 99 48.63043 77
�5 — — 1.14414 100 63.80973 57
[1, 5) — — — — 32.03773 7

0 0.01283 100 1.55763 100 — —

Table A.4: Random Noise Test.

The change and match values in this table are also shown in Figure A.1, which

plots the number of files matched against the the percentage of the file changed. Note

that the x-axis is on a log-scale. This score can go up and down because it is based on

the number of files matched receiving a minimum score (i.e., a score � 90). Because

of this interpretation of the figure must be done carefully, and emphasize that this

figure is to demonstrate the range of byte alterations each method can withstand.

In this light is becomes clear that ssdeep is only able to produce matches when very

little of the file has been altered, less than 0.1%. Sdhash is able to perform matches
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Figure A.1: Random Noise results, plotted for each method showing how much of the file
can be changed while still obtaining a correct match.

in a range up to 1.1% of the file being randomly altered, but fails to produce any

matches past this point. LZJD in contrast is able to suffer from as much as 63% of

the file being randomly altered, and still over half the files. It is the only method

to cover this large of a range in the amount of bytes that can be altered. Again, we

note that the lower number of matches obtained by LZJD and sdhash in the left-

most portion of the plot are because the associated minimum score is not factored

in. For example, the 60 matches of LZJD at 0.002% is not indicating that only 60

of the files could be matched after that percentage of files changed. It’s value is 60

because only 60 files could be matched and obtain a similarity score � 95.

A.1.3 Fragment Test Tables

Tables Table A.5 and Table A.6 are the complete version of Table 7.11 and

Table 7.12 respectively. The Size column is the percent file size. We can see that
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when LZJD and Sdhash don’t get every match, LZJD always has more matches.

It is also more clear that Sdhash’s performance degrades at around 5% and drops

quickly, where LZJD is more robust in being able to still hit matches.

ssdeep sdhash LZJD

Size Score Matches Score Matches Score Matches

95 96.7 4454 83.4 4457 72.4 4457

90 92.3 4452 70.1 4457 49.2 4457

85 89.5 4442 69.9 4457 45.5 4457

80 86.5 4433 69.1 4457 41.9 4457

75 83.5 4417 68.3 4457 38.8 4457

70 80.1 4403 68.0 4457 35.7 4457

65 76.7 4367 68.4 4457 32.9 4457

60 73.2 4321 68.4 4457 30.1 4457

55 69.7 4205 68.0 4457 27.5 4457

50 65.9 4071 68.5 4457 24.9 4457

45 62.4 3699 69.2 4457 22.4 4457

40 58.6 3140 69.8 4457 20.1 4457

35 54.7 2477 71.0 4457 17.8 4457

30 51.2 1704 71.4 4457 15.5 4457

25 47.9 928 72.2 4456 13.2 4456

20 45.7 411 73.1 4453 11.0 4456

15 43.7 132 73.9 4450 8.8 4456

10 46.2 29 75.7 4371 6.4 4456

5 61.0 2 77.4 4036 3.9 4454

4 — — 78.4 3838 3.3 4444

3 — — 78.7 3616 2.7 4432

2 — — 79.1 3257 2.0 4419

1 — — 81.0 2581 1.3 4390

Table A.5: Fragment detection test result (cut side: random start, then alternating).
Matches gives the
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ssdeep sdhash LZJD

Size Score Matches Score Matches Score Matches

95 97.70 4457 97.28 4457 92.80 4457

90 95.90 4456 98.17 4457 85.96 4457

85 93.81 4453 98.86 4457 79.33 4457

80 91.42 4444 99.32 4457 72.99 4457

75 88.85 4440 99.37 4457 66.87 4457

70 85.92 4429 99.44 4457 61.01 4457

65 82.79 4414 99.49 4457 55.39 4457

60 79.36 4378 99.46 4457 50.08 4457

55 75.68 4307 99.49 4457 44.98 4457

50 71.73 4148 99.51 4457 40.06 4457

45 68.01 3815 99.41 4457 35.46 4457

40 64.39 3326 99.37 4457 31.11 4457

35 61.15 2697 99.28 4457 26.97 4457

30 58.26 1968 99.20 4457 23.00 4457

25 56.76 1191 99.07 4457 19.21 4457

20 55.35 632 98.83 4457 15.54 4457

15 53.21 289 98.46 4457 11.94 4457

10 56.90 77 97.88 4380 8.33 4457

5 55.68 22 96.93 4061 4.63 4457

4 59.00 12 96.40 3896 3.88 4457

3 47.89 9 95.04 3678 3.09 4457

2 66.00 2 93.09 3304 2.23 4456

1 — — 90.50 2617 1.36 4442

Table A.6: Fragment detection test result Fragment detection test result (cut side: right
(end only), 5 %). Matches gives the
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A.1.4 Alignment Table Results

In Table A.7 we provide the alignment results for adding 64 KB to the query

file. This is the easier range of the test, and we can see that both sdhash and LZJD

successfully match all files regardless of added bytes.

ssdeep sdhash LZJD

Added (KB) Score Matches Score Matches Score Matches

4 91.31 4439 51.30 4457 42.38 4457

8 87.07 4279 78.51 4457 36.28 4457

12 84.39 4120 65.57 4457 32.60 4457

16 82.76 3901 64.22 4457 30.01 4457

20 82.19 3690 80.50 4457 28.04 4457

24 81.21 3580 51.58 4457 26.50 4457

28 79.98 3465 90.36 4457 25.20 4457

32 79.41 3314 52.38 4457 24.13 4457

36 79.49 3154 78.37 4457 23.21 4457

40 79.15 3059 65.83 4457 22.39 4457

44 79.34 2949 64.25 4457 21.65 4457

48 78.67 2895 80.62 4457 21.02 4457

52 78.03 2839 52.48 4457 20.40 4457

56 77.41 2775 88.19 4457 19.88 4457

60 76.65 2721 53.60 4457 19.39 4457

64 76.27 2645 78.05 4457 18.95 4457

Table A.7: Alignment test result (fixed size, step size = 4 KB, max size = 64 KB)
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Appendix B: Metric Index Appendix

B.1 Corrections to Simplified Cover Tree

We encountered two difficulties in replicating the simplified cover tree results

of Izbicki and Shelton [167]. We detail these two issues and their remediations in this

section for completeness and reproducibility. In the below algorithm descriptions

we will use the same terminology and description as the algorithm’s original paper,

but note our changes in green.

We now review some of the properties needed to understand our corrections.

The simplistic such property is that each node p in the Cover tree has an associated

level l, which we can obtain as l = level(p). Each child cp of p must also satisfy the

property that level(p) = level(cp) + 1.

Using a node’s level, we can define its coverdist as coverdist(p) = 2level(p). Each

child cp of p will satisfy the covering invariant property, d(cp, p)  coverdist(p), 8cp 2

children(p).

We also must make use of the maxdist bound discussed in subsection 8.3.1,

which we make more explicit as: maxdist(p) = argmax
dp2descendants(p) d(dp, p). This

is the maximum distance from one node p to any descendant note of p. If p is a leaf

node, meaning it has no children, then maxdist(p) = 0.
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B.1.1 Nearest Neighbor Correction

We present the revised nearest neighbor search procedure for the simplified

Cover-tree in Algorithm 8. The green d(x, p) term was originally presented to be

d(y, q). We show that this is not correct using a simple counter example using scalar

node values and the euclidean distance.

Algorithm 8 Cover Tree Find Nearest Neighbor
Require: cover tree p, query point x, nearest neighbor so far y
1: if d(p, x) < d(y, x) then
2: y  p
3: end if
4: for each child q of p sorted by distance to x do
5: if d(y, x) > d(x, q) �maxdist(q) then .Original paper used d(y, q)
6: y  findNearestNeighbor(q, x, y)
7: end if
8: end for
9: return y

Consider the Cover-tree with root ↵, that stores value 5. ↵ has one child, �,

which has the value �2. This is the whole tree.

We would begin on line one of the algorithm, with p ↵ and we will use our

query point x to have a value of 0. d(p, x) is 5, and we have no nearest neighbor so

far, so y  p (which is ↵) becomes the nearest neighbor so far.

We will obtain q  � as it is the only child of ↵, which leads us to evaluate

the original expression

d(y, x)| {z }
=5�0=5

> d(y, q)| {z }
=5�(�2)=7

�maxdist(q)| {z }
=0

Because 5 > 7 is false, the if statement fails, and we then break from the loop,
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returning y as the nearest neighbor to x with a distance of 5. But x’s value is 0,

and �’s is �2, which is a distance of only two away.

B.1.2 Insertion Correction

We also provide a correction to the insertion procedure of the simplified Cover-

tree. Our fixed version is presented in Algorithm 9, with the green text indicating

only added statements to the algorithm.

The issue with the original procedure occurs when an outlier x is inserted

into the index, the distance from which to any point in the dataset is larger than

the largest pairwise distance of any two points in the existing Cover-tree. This

is because the 2coverdist(p) � maxdist(p) in all cases. If x is farther than the

maximum pairwise distance, then the simple bound on line four may be true for a

all points in a valid cover tree. This means the loop will never exit, and will simply

continue re-structuring the tree in search of a non-existing node that can satisfy the

loop condition.

We fix this by keeping track of the points visited in the tree, and only loop

while there is a potential candidate remaining. If no such candidate occurs because

we have visited all possible leaf nodes, the loop must exit so that the outlier may

be inserted as the new root of the tree.

From a practical implementation perspective, we note two additional choices.

First, rather than attempt to remove leaf nodes in the specified form above, it is

easier to define a specific leaf removal order and leaf insertion order. For example,
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Algorithm 9 Simplified Cover Tree Insertion
Require: Query q, desired number of neighbors k
1: procedure insert(cover tree p, data point x)
2: if d(p, x) > covdist(p) then
3: z  ;
4: while d(p, x) > 2covdist(p) and |descendants(p)| > |z| do
5: Remove any leaf q from p\z
6: p0  tree with root q and p as only child
7: p p0

8: end while
9: return tree with x as root and p as only child

10: end if
11: return INSERT_(p, x)
12: end procedure
13: procedure insert_(cover tree p, data point x)
14: for all q 2 children(p) do
15: if d(q, x)  covdist(q) then
16: q0  INSERT_(q, x)
17: p0  p with child q replaced with q0

18: return p0

19: end if
20: end for
21: return p with x added as a child
22: end procedure

if one always removes the least recently added leaf node, we will obtain a consistent

ordering of the leaf nodes as we iterate line four of the algorithm. This makes it

easy to use simple cycle detection to determine that the all possible children have

been visited, and then escape the loop when this occurs.

To speed up insertion of outlier points, we also note that the covering invariant

can be used to catch extreme outliers. If d(p, x) > 4covdist(p), then we can skip

the loop entirely and proceed directly to line eight of the algorithm. This bound is

easy to see, as 2covdist(p) � maxdist(p). Assuming that there exists a descendant

point � that is maximally far from p. Let ⇣ be the point maximally far from �, and

let d(�, ⇣) be the maximal pairwise distance for all points in the Cover-tree. Direct
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application of the triangle inequality gives us

d(�, ⇣)  d(�, p) + d(p, ⇣)

This bounds the distance between these points by their distance to the root.

The covering invariant tells us that 2coverdist(p) � maxdist(p). Therefore it must

be the case that

d(�, ⇣)  2coverdist(p) + 2coverdist(p)

Which reduces to the bound d(�, ⇣)  4coverdist(p). Thus if a new query

violates this bound, we know that no point in the whole tree can satisfy the loop on

line 4.

B.2 Query Efficiency Plots

Below we provide the plots of query efficiency as a function of k for half-batch

and incremental construction. These plots are the counterparts to Figure 8.5, and

are visually very similar. The visual similarity is because of the minimal impact

incremental construction has on our algorithms, as discussed in subsection 8.5.3.

We hope these tables provide a more intuitive visual proof for those who prefer

looking at the results rather than a plot of the difference in ratio.
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Figure B.1: Number of distance computations needed as a function of the desired number
of neighbors k, each index is constructed in the half-batch manner. The y-axis
is the ratio of distance computations compared to a brute-force search (shown
at 1.0 as a dotted black line).
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Figure B.2: Number of distance computations needed as a function of the desired number
of neighbors k, each index is constructed completely incrementally. The y-axis
is the ratio of distance computations compared to a brute-force search (shown
at 1.0 as a dotted black line).
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