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Abstract—Data from computer log files record traces of
events involving user activity, applications, system software
and network traffic. Logs are usually intended for diagnostic
and debugging purposes, but their data can be extremely
useful in system audits and forensic investigations. Logs created
by intrusion detection systems, web servers, anti-virus and
anti-malware systems, firewalls and network devices have
information that can reconstruct the activities of malware
or a malicious agent, help plan for remediation and prevent
attacks by revealing probes or intrusions before damage has
been done. While existing tools like Splunk can help analyze
logs with known schemas, understanding log whose format is
unfamiliar or associated with new device or custom application
can be challenging. We describe a framework for analyzing
logs and automatically generating a semantic description of
their schema and content in RDF. The framework begins
by normalizing the log into columns and rows using regular
expression-based and dictionary-based classifiers. Leveraging
our existing work on inferring the semantics of tables, we
associate semantic types with columns and, when possible, map
them to concepts in general knowledge-bases (e.g. DBpedia) and
domain specific ones (e.g., Unified Cybersecurity Ontology). We
link cell values to known type instances (e.g., an IP address)
and suggest relationships between columns. Converting large
and verbose log files into such semantic representations reveals
their meaning and supports search, integration and reasoning
over the data.
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I. INTRODUCTION

Log files are composed of entries recording events as-
sociated with operating systems, applications running on
devices, and events associated with networks to which
devices are connected. All software and hardware devices
running on systems generate large volume of log data.
Nearly every event on a system triggers an entry of some
data into a log file. While they were originally used to
record information for debugging and diagnostic purposes,
log files have evolved into recording events and information
which is useful for audit trials and forensics in the event
of malicious activities or system attacks. Recognizing the
importance of logs, the National Institute of Standards and
Technology, USA issued best practices and recommenda-
tions for computer security log management [1]. Similarly,
enterprises have started devoting significant resources to

build tools to manage and analyze large volumes of log
data [2]. Current generation log file analyzers work well
with logs from known devices. They are able to parse and
interpret log files which have known formats and come from
known sources, but fail to do so if the log file is of an
unknown format/unknown source. It is often crucial to parse
and interpret log files with unknown formats in the context of
securing systems. In this paper, we present a framework that
can infer the schema of log files from unknown sources and
formats and generate a machine interpretable representation
of log file data. This machine interpretable log file data can
be integrated with other sources to reason over and detect
and prevent cyber attacks.

Log files provide vital information about systems and the
activities occurring on them. For instance, database logs can
help trace how data was added and modified, while web
server logs reveal patterns of how resources are accessed
from the Web. On one hand, operating system logs help us
figure out what is happening at the system level, while on
the other hand, firewall logs help record malicious activities
at the network level. Analyzing log files can thus provide
valuable insights into system (mis)configuration as well as
potential vulnerabilities. It is possible to use this information
pro-actively to secure a system against potential malicious
activities.

Large organization networks typically include a variety
of computer security software and hardware devices spread
over a number of hosts on the network each potentially
generating multiple log files. Not only are a large number
of log files generated, but the amount of data generated in
each log is also massive. Traditional log file analyzers rely
on knowing the format of the file ahead of time. Existing
tools either focus on a specific type of log file (e.g. web
server logs1) or several but a fixed set of log types2. Log
files typically lack a common format with each log encoding
data in its unique and often proprietary style. It is even more
difficult to keep track of different log file formats in large
heterogeneous networks in which software and devices are
dynamic in nature; often new software and hardware are

1http://www.weblogexpert.com/
2http://www.splunk.com/



added to the network, each generating a log file with a
unique schema. Existing approaches designed to deal with a
fixed number of log files thus fail to scale in such scenarios.

Recent cyberattacks have been fairly sophisticated affect-
ing different parts and applications as well as several systems
simultaneously and are carried out over a period of several
days. Detecting and preventing such low and slow vector
attacks would require to generate a holistic view rather
than analyzing each log individually. I One can obtain such
holistic view by integrating information extracted from logs
with information about security vulnerabilities from non tra-
ditional sources such as security blogs and bulletins. Threat
prevention and detection in dynamically adapting scenarios
thus requires integrating data from multiple traditional and
non–traditional sources. Existing analyzers fail to generate
data in a form that is suitable for integration and reasoning
with other data sources.

Figure 1. Sample apache access log file with selected columns

We present an approach that infers the structure and the
schema of the log file and uses the schema to generate a
semantic representation of the log file content. Consider the
example web server log in Figure 1. Each line in the log
file records the same type information for a fixed set of
fields. In our example, each line is recording IP address
of the requesting host, user id of the requestor, time of
request, requested resource etc. Our framework exploits this
inherent structure in a log file to split it into distinct columns,
with each column consisting of similar type of values. For
example, the web server log can be split into columns such
as Requesting IP Address, Requested Resource and so on.
Based on the values in each column, our framework further
infers and maps every column to a semantic class and every
pair of columns to a semantic relation from a given ontology.
Our framework further uses this mapping to generate a set of
RDF triples from the log file content. These RDF triples can
be integrated with other data sources to reason and detect
potential security vulnerabilities [3].

The rest of the paper is divided as follows: we discuss
related work in section II, go into the details of our approach
in section III and present our evaluation in section IV.

II. BACKGROUND AND RELATED WORK

We first provide background related to the Semantic Web
technologies our work relies on and then discuss previous
work related to our research.

We use Semantic Web standards such as RDF, OWL
and Linked Data for capturing and representing knowledge

in a machine interpretable format. Resource Description
Framework (RDF) [4] is W3C “model for data interchange
on the Web”3. RDF uses URIs to represent real world objects
and properties or links to represent relationships between
these objects. This representation is often called as a triple
and consists of a subject, predicate (i.e. property representing
the relationship) and an object. The triple representation
of the statement “Barack Obama is the president of USA”
would be <BarackObama> <isPresident> <USA>. The
Web Ontology Language (OWL) [5] provides a vocabulary
for defining real world concepts and relationships between
them in the form of an ontology. The concepts in an
OWL ontology are referred to as classes and relationships
as properties. For example, concepts such as President
and properties such as isPresident would be defined in an
ontology. Linked Data [6] describes the best practices for
publishing structured semantic data using URIs and RDF on
the web to allow better interlinking, reasoning and querying
of data. As of 2014, the Linked Data cloud comprises of 570
different knowledge bases belonging to a variety of domains
such as Life Sciences, Social Networking, Government and
User generated content.

Our work is related to two different threads of research –
the first focuses on the use of text analytics to extract infor-
mation related to cyber threats from unstructured texts and
the second on automatically analyzing log files to detect and
prevent cyberattacks. Joshi et al. [7] describe an automatic
framework that generates and publishes a RDF linked data
representation of cybersecurity concepts and vulnerability
descriptions extracted from several structured vulnerability
databases and unstructured text. This cybersecurity linked
data collection was intended for vulnerability identification
and to support mitigation efforts. The prime idea was to
leverage the Linked Data representation of vulnerability
databases to detect and prevent potential zero day attacks.
Mulwad et al. [8] describe a framework to detect and
extract information about attacks and vulnerabilities from
Web text. They used Wikitology, a knowledge base derived
from Wikipedia, to extract concepts related to vulnerabilities.
Largely, work in this area has focused on generating seman-
tic representations from structured databases or unstructured
text from general sources such as blogs and security bul-
letins.

In the area of “log analysis”, Nascimento et al. [9] use
ontologies to analyze security logs. They create an ontology
model from the ModSecurity logs and demonstrated that it
was easier to find co-relations of events in log files when
they were modelled using their ontology. Splunk [10] is
a enterprise log analysis and management tool developed
to analyze a large corpus of logs providing features such
as searching, management, storage and visualization. It
analyzes structured and unstructured log files and identifies

3https://www.w3.org/RDF/



fields in a given log file. It works well with log files whose
structure it already knows. It is able to split a log file
into fields, but fails to generate headers for log files from
unknown sources.

III. APPROACH

Our approach builds on the concepts introduced in the
TABEL framework [11], [12], [13] for inferring the seman-
tics of information encoded in tables and representing it as
RDF Linked Data. Figure 2 presents an overview of our
system architecture. The Tabulate module parses and detects
the structure of the log file. This module generates a table
like structure by splitting the log into columns and rows. The
Decode module identifies the type of values in each column
and generates a ranked list of possible semantic classes
from a given ontology. The Relationship Generator module
uses this ranked list of classes, along with the ontology to
additionally identify set of relations between the columns
in the log file. Finally, the Generate RDF module finally
generates a RDF Linked Data representation of the log file
content using the inferred schema (classes and relations). We
describe the four major modules in the rest of the section.

Figure 2. System Architecture

A. Tabulate

The Tabulate module parses and generate a table like
structure for every log file by splitting it into columns and
rows using set of regular expression patterns. The splitting
algorithm’s approach can be summarized into three steps:

• Split the log file into columns based on set of delimiters

• Detect consistent number of columns throughout the
log file

• Detect and separate sub–columns within a column

In the first step, the algorithm splits every line in the log
files using generic delimiters such as space, square braces,
round braces, single and double quotes. Braces and quotes
are used to split only when they appear in pairs. Every line
(or row) in the file is thus separated into an inconsistent and
varied number of columns.

In the second step, the algorithm normalizes the table
structure by detecting consistent number of columns in the
file. Although most of the lines in a log file have fixed
number of columns, it is not necessary that delimiters will
split the file into a table with same number of columns.
Some log entries can be outliers due to the inconsistency in
the way the logs are generated. In most of cases, there is a
textual description column at the end of the log entry which
does not have a fixed number of words. If the description is
not enclosed in a brace or quote, it gets divided into several
different columns. Taking these cases into consideration, we
dynamically decide the number of columns that are to be
extracted. The number of columns retained is equal to the
maximum number of columns for at least 70% of the rows.

In the third step, the algorithm loops through the columns
that are already separated in the previous steps and checks
for sub–columns using the same set of delimiters. A column
is split into multiple sub–columns only if all elements in
the column are separable and if the Decode module fails to
identify the type of values in that column.

B. Decode

The Detecting Commonly encoded Data Elements (De-
code) module identifies the type of values in every column in
the file and maps it to a semantic class from the Unified Cy-
bersecurity Ontology (UCO) [14], [15]. The Decode module
is based on Puranik’s [16] “specialist” approach framework
for identifying type of values in a given column. The original
framework defines a specialist as “an entity that has expertise
in the domain for which it is a specialist” and included
three different types – regular expression based, dictionary
based and machine learning classifier based specialists for
identifying values appearing in general web tables such as
Social Security Numbers (SSN), telephone numbers, airport
codes, addresses and so on. Each specialist in this framework
independently assesses a column and assigns a score of the
likelihood that the column belongs to it’s domain. For ex-
ample, the SSN specialist assigns the likelihood that a given
column consists of SSNs whereas the telephone specialist
assigns the likelihood of the same values being telephone
numbers. The framework then integrates all the specialist
scores to generate a rank listed of possible value types. We
extend the original framework to classify specific fields that
are usually found in log files viz., timestamps, IP addresses,



URLs, etc. We add the following regular expression based
and dictionary based specialists to the framework:

1) Timestamp Specialist
The Timestamp specialist is a regular expression based
specialist, which handles time stamps of different
formats used in various systems for logging.

2) IP Address Specialist
The IP Address specialist is a regular expression based
specialist that checks for valid IP address formats and
also makes sure that they are in a valid range.

3) Port Number Specialist
The Port number specialist is a regular expression
based specialist that checks for valid port numbers i.e.
ones in the range of 0 to 65535.

4) URL Specialist
The URL specialist is a regular expression based
specialist, which looks for various URL formats viz.,
HTTP, HTTPS, FTP, FTPS. It also detects URL hav-
ing basic authentication.

5) Filepath Specialist
The Filepath specialist is also a regular expression
based specialist. It looks for filepaths irrespective of
the underlying system.

6) Email Specialist
The Email specialist is a regular expression based
specialist, that looks for valid email formats in the
given column. It used the standard internet format to
detect a valid email.

7) HTTP Status Code Specialist
The HTTP Status Code specialist is dictionary based
specialist. It looks for the HTTP status code values
provided by the W3C standards. These HTTP status
codes are integer values.

8) HTTP Method Specialist
The HTTP Method specialist is a dictionary based spe-
cialist. It looks for the known HTTP verbs / methods
like GET, PUT, POST, DELETE, etc.

9) HTTP Protocol Version Specialist
The HTTP Protocol Version specialist is a dictionary
based specialist, which looks for the known HTTP
protocol versions. The HTTP protocol versions are in
a string format.

10) Log Level Specialist
The Log level specialist is a dictionary based special-
ist, which looks for the generally recommended log
levels keywords. The log levels are in string format
and contains log levels like Info, Debug, Error, Warn,
etc.

As in the original specialist framework, every column in
the log file is processed by each of the above specialists.
Each specialist assigns a score to every column based on the
number of values matching the class/type of the specialist.
We normalize this score between 0 and 1 and generate a

ranked list of classes for each column. Every specialist type
is manually mapped to one class from the UCO ontology.
The ranked list of classes also include a special ‘NA’ (No
Annotation) class for columns which do not match any of
the specialist types. The score for the NA class is computed
using the idea proposed in the original framework [16]. The
likelihood that column should be mapped to NA is simply
the product of the negative probabilities for the column to
belong to each class. The Decode module can easily be
extended by including additional specialists. For instance,
if a system administrator decides to have a specialist for
server names, a dictionary based specialist can easily added
without affecting the rest of the module.

C. Relationship Generator

The Relationship Generator module uses the top ranked
class for each column from the previous module to identify
and map every pair of column in the log file to a relationship
from the extended UCO ontology. The columns mapped to
NA are not considered in this module. We use RDFLib4, a
python library to parse and query the ontology. For every
pair of column, the module uses the top ranked classes and
queries the UCO ontology to identify properties/relations for
which the classes either act as the domain of the property or
range of the property. For instance, we query and identify
all properties where Class C1 for column 1 is the domain
and Class C2 for column 2 is the range and vice–versa to
ensure an exhaustive search of the ontology. We generate a
set of multiple relation for cases where more than one match
is found.

D. Generate RDF

Figure 3. Partial RDF representation of the data from Figure 1

The Generate RDF module generates a RDF Linked Data
representation of the log file content using the inferred
semantic classes and relations from the UCO ontology.
Figure 3 shows a partial visual representation of the RDF
Linked Data for the log file from Figure 1 Every row of
a log file is represented as an instance of the LogEntry
class. The relations between the log file columns are used
to represent the relation between the data elements in a
log entry. For example, consider the last row from the
sample log file in Figure 1. The row is represented by the
instance logEntry12478 which is of type LogEntry. The log

4https://github.com/RDFLib/rdflib



entry has data elements which are values of the properties
hasHTTPRequestMethod and requestedResource. The log
entry has a associated timestamp which is captured by the
hasTimestamp property. This RDF representation can be
stored in a knowledge base for further integration with data
from other sources such as Intrusion Detection Systems and
reasoning to detect and prevent attacks.

IV. EVALUATION

A. Data Setup

We evaluate our framework using two different datasets
of log files viz., original log files and synthetically gen-
erated log files. The original dataset contains actual log
files obtained from various tools and services running at
the operating system level such as syslog, kern, auth, etc.
We also obtain log files from commonly used services like
apache2, mongodb, sendmail and printer logs.

The synthetic dataset includes artificially generated log
files using known columns from the original log files. The
synthetic log files were generated to test the framework
against log files with unknown source and format. We gener-
ate each synthetic file by randomly choosing column headers
(types) from the original set. The numbers of columns to
be included in each was also chosen randomly. The values
added in each column were generated at random too to
ensure variation in length and other characteristics of the
column. To simulate the unpredictable nature of the log files,
limited amount of noise was also introduced in the values
in each column.

Table 4 gives a general overview about the log files in
each dataset.

Dataset Tables # of Cols.
Avg. Cols./

Table
Avg. Rels/

Table
Original 11 78 7 3
Synthetic 20 150 8 5

Figure 4. Number of log files, total columns present, average columns
and relations per table in each dataset

B. Tabulation

We first evaluate both the precision and recall of the split-
ting algorithm in the Tabulate module. We manually annotate
each log file in both the datasets with the expected number
of columns and exact column boundaries i.e separation of
text between each column. An additional pre-processing step
was performed on the dataset by eliminating the long trailing
text often found at the end of each log entry. In practice, we
can find several tools which can help clean log files and strip
unwanted text.

The log files in the both the datasets were processed by the
Tabulate module; we counted the number columns produced
in each file and also compared the column boundaries with

those in the annotated log files. A column was considered to
be correctly identified only if the boundaries matched. Figure
5 presents precision and recall for the splitting algorithm in
the Tabulate module on both the original and the synthetic
datasets and also it’s comparison with the Splunk.

Figure 5. Precision and recall for column separation

Tabulate’s precision and recall over both the datasets is
very good. In comparison, Splunk obtains a precision of
0.8 and a recall of 0.46 over the original dataset. Splunk
is able to give good performance over the orignal dataset
as it contains log files with known format and from known
sources. However, when it comes to log files from unknown
sources or unknown formats which is the nature of log files
in the synthetic dataset, Splunk’s performance is poor with
a precision and recall of 0.5 and 0.13 respectively.

We also evaluated our Tabulate module without elimi-
nating the trailing text at the end. Tabulate is able to get
a precision of 0.45 and a recall of 0.89 over the original
dataset, whereas a precision of 0.55 and 0.87 over the
synthetic dataset. The low precision for both the datasets
can be attributed to columns with values spanning multiple
words without any surrounding characters (such as quotes).
The Tabulate module split the descriptive column with
large text, often found as the trailing entry for each line,
into several individual columns which lead to extraneous
columns and thus a lower precision.

The primary goal of the Tabulate module though is to
identify all the necessary columns, even if it does so at the
expense of generating few incorrect ones. The high recall for
both the datasets shows that Tabulate is successfully able to
identify all the expected and relevant columns. The Decode
module can act a filter for the extraneous columns with junk
values as they would get annotated as NA.

C. Identifying Column Types

The split log files from both the datasets are annotated
using the Decode module which generated a ranked list of
classes for each column. We presented this ranked list for



Figure 6. Percentage of vital and okay classes at rank 1

every column along with the log file to a set of human
annotators. Each annotator marked every class as either vital,
okay or incorrect. For instance, an annotator could mark,
the URL class as vital, FilePath as okay and HTTPMethod
as incorrect, for the column URL. Each column may have
multiple vital, okay or incorrect labels. Figure 6 presents
the number of vital and okay classes at rank 1 for both the
datasets. 97.43% of the classes at rank 1 were found to be
relevant (i.e. vital or okay) for the original dataset, whereas
only 91.08% of the classes at rank 1 were considered
relevant in the synthetic dataset.

Figure 7. Percentage of relevant classes at ranks 1 to 4

Figure 7 shows the distribution of relevant classes at
different ranks. Most relevant classes are found at rank
1; very few relevant classes are found at ranks 2 and
3. None of the lower ranks from 4 include any relevant
classes. The distribution of relevant classes for both the
datasets are comparable. It can be seen that the percentage
of relevant classes at rank 1 are lower for Synthetic dataset
because of instances such as misclassification of URL as
FilePath. Our synthetically generated dataset consisted of
more misclassification instances thus leading to slightly
lower relevant classes at the top rank.

D. Identifying Column Relations
The Relationship Generator module generated a list of

possible relations for each column pair using the UCO
ontology. A manually selected set of 5 relevant relations
was presented to human evaluators who again marked each
relations as either vital, okay or incorrect. The top relation
from each set was used to compute precision and recall. The
top relation was considered a correct prediction if it was
either vital or okay. Figure 8 shows the precision and recall
calculated for the Relationship Generator module. The lower
precision and recall in the synthetic dataset can be attributed
to several false positive predictions.

Figure 8. Precision and recall for relation annotations

Figure 9 shows the distribution between vital and okay
labels for the top relation in the set. All the top relations
in the original dataset were considered vital by our human
annotators, whereas 93.33% were considered vital in the
synthetic dataset. In comparison, tools such as Splunk do
not have advanced capabilities such as identifying semantic
relations between columns in a log file or generating a
machine understandable representation of log file data.

Figure 9. Percentage of vital and okay relation labels



V. CONCLUSION AND FUTURE WORK

In this paper we described a framework that can pro-
cess any log file with unknown source and format, and
automatically generate a semantic interpretation of both its
scema and contents in the form of RDF linked data triples.
We develop a splitting algorithm which can successfully
generate a table like structure for log files. We also extend
existing techniques to successfully annotate every column
in a log file with a semantic class and map selected pairs
of column to relation from the given ontology. Preliminary
evaluations show promising results. In future work we plan
to extend the UCO ontology to incorporate additional classes
and relations to better suit this domain. We would also like
to process the verbose textual description which form the
trailing entry of logs and extract concepts related to security
vulnerabilities and threats.
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