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A central goal of thermodynamics is to identify optimal processes during which the least amount of
energy is dissipated into the environment. Generally, even for simple systems, such as the paramet-
ric harmonic oscillator, optimal control strategies are mathematically involved, and contain peculiar and
counter-intuitive features. We show that optimal driving protocols determined by means of linear response
theory exhibit the same step and δ-peak like structures that were previously found from solving the full
optimal control problem. However, our method is significantly less involved, since only a minimum of a
quadratic form has to be determined. In addition, our findings suggest that optimal protocols from linear
response theory are applicable far outside their actual range of validity.

For infinitely slow processes the maximally usable work
is given by the change of availability or exergy [1, 2]. All
real processes operate in finite-time, and thus they are ac-
companied by dissipation into the envrionment. For in-
stance, for isothermal processes the amount of energy that
is irretrievably lost is quantified by the irreversible work,
Wirr = W −∆F [3]. One of the central goals of modern
thermodynamics is to develop methods to minimize Wirr,
i.e., to identify optimal processes during which the least
amount of energy is wasted.

One of the first approaches was developed in finite-time
thermodynamics [4–6]. Here, the irreversible entropy pro-
duction is calculated from a heuristic expansion of the ther-
modynamic entropy around its value in equilibrium. The
leading order of the expansion can then be used as the def-
inition of the thermodynamic length [5]. This length mea-
sures how far from equilibrium a system operates [7–9] and
it allows, e.g., to measure the arrow of time [10]. It also
has been shown that the thermodynamic length induces a
Riemannian geometry. Therefore optimal processes can be
found as geodesics on the thermodynamic manifold [11–
18], and the irreversible entropy production can be written
as a quadratic form of the susceptibility matrix [12, 19, 20].

The downside of this approach is its limited range of va-
lidity since it is inherently a linear response theory [21–24].
More detailed insight and general results can be obtained
by means of stochastic thermodynamics [25–27]. In partic-
ular, the theorems of Jarzynski [28] and Crooks [29] mo-
tivated to analyze stochastic properties of thermodynamic
work, rather than to focus on its average value. In stochas-
tic thermodynamics a system is described microscopically,
e.g. by a Langevin equation. Thermodynamic quantities
like work, heat, or entropy are then associated with sin-
gle realizations, or single trajectories of the process under
study. From this approach optimal driving protocols can
then be studied explicitely, which showed some rather un-
expected features, such as jump and delta-peak-like proto-
cols [30–34]. These “ragged” driving protocols appear to
be in stark contrast to the very smooth functions commonly
used in free energy estimation [35].

A disadvantage of the microscopic approach is that only
relatively few problems can be solved analytically. Thus,
for general situations advanced and computationally ex-
pensive tools from Optimal Control Theory need to be em-
ployed [36]. The natural question arises, whether and how
well results from a phenomenological approach based on
linear response theory carry over to systems that are driven
far from thermal equilibrium.

The purpose of the present analysis is twofold: In a
previous work [22] we found that for slowly driven pro-
cesses the resulting irreversible work for optimal protocols
from exact microscopic dynamics and linear response be-
come identical. In the following, we will demonstrate con-
vergence of the driving protocols by numerically solving
the optimal control problem. However, we will also find
that the jump and delta-peak-like features [30–32] are not
present in the regime of slow driving. Therefore, we devel-
oped a novel approach to find optimal driving protocols of
the linear-response quadratic form in the regime of weak
but fast driving. As a main result we will show the appear-
ance of jumps and delta-peak-like features. Our findings
suggest that optimal protocols from linear response the-
ory might perform remarkably well far outside their actual
range of validity.

Preliminaries. We consider a system with Hamiltonian
H(λ) weakly coupled to a heat bath. Initially, system and
heat bath are in thermal equilibrium for a fixed value λ =
λ0. An external observer then varies λ in finite time τ using
a certain protocol g(t) such that λ(t) = λ0 +δλ g(t), with
g(0) = 0 and g(τ) = 1. This allows us to characterize
the processes under consideration by their strength δλ/λ0

and their speed τR/τ , where τR is a typical relaxation time.
The corresponding “phase” diagram is depicted in Fig. 1.

As a 0th class we categorize processes that are induced
by weak, δλ/λ0 � 1, and slow, τR/τ � 1, perturbation;
class 1 refers to weak, but not necessarily slow driving,
whereas class 2 consists of slowly varying processes [22].
Finally, a 3rd class refers to any other driving, which is
neither slow nor weak.
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FIG. 1. (color online) Illustration of the four classes of pro-
cesses: class 0, slow and weak perturbation; class 1, conventional
linear response theory; class 2, slowly varying processes; class 3,
arbitrary driving far from thermal equilibrium.

Class 3: A case for optimal control theory. Since our
main interest is to asses how well optimal protocols from
approximate theories perform far from thermal equilib-
rium, we begin the analysis with class 3. For such driving,
optimal protocols can be determined by means of Optimal
Control Theory [36, 37].

Consider a physical system whose state is fully described
by a vector xt. The components of xt could be the real,
physical microstate, a point in phase space, the state of a
qubit [38], or a collection of macroscopic variables as, for
instance, voltage, current, volume, pressure, etc. The evo-
lution of xt for times 0 ≤ t ≤ τ is described by a first
order differential equation, the so-called state equation,

ẋt = f (xt,λt) and xt=0 = x0 , (1)

where the vector λt is a collection of external control pa-
rameters, or simply the control.

The task is, then, to find the particular λ∗t such that a
performance measure, or cost functional is minimized. In
other words, to find the optimal controlλ∗t we have to mini-
mize the cost functionalJ [xt,λt] under the condition that
xt evolves under the state equation (1). In the present con-
text, J [xt,λt] can be naturally identified with the irre-
versible work Wirr.

Note that generally not all controls λt are physically al-
lowed or admissible. In particular, we will see in the fol-
lowing example that, if we restrict ourselves to continuous
protocols with fixed initial and finals values, no jump or
delta peculiarities are found.

To illustrate the application of optimal control theory
and as a fully solvable case study we consider the time-
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FIG. 2. (color online) Optimal driving in class 3: Optimal driv-
ing protocols for the time dependent harmonic oscillator (2) with
λ0 = 1 and δλ = 3. Blue lines correspond to overdamped dy-
namics (5) with τ = 1 (blue, lower solid line) and τ = 10 (blue,
dashed line), and red lines are found for underdamped dynamics
(6) with γ = 1, τ = 1 (red, upper solid line) and τ = 10 (red,
dashed line). The analytical protocol (7) for slowly varying pro-
cesses (black, dotted line) coincides to very good approximation
with slow (τ = 10) processes for any damping.

dependent harmonic oscillator with Hamiltonian

H(t) =
p2

2
+ λt

q2

2
(2)

where we set the mass m = 1. For this system exact
optimal driving protocols have been derived analytically
for overdamped dynamics [30], numerically in the under-
damped regime [31], and analytically for slowly varying
processes by means of linear response theory [22]. In ei-
ther case the irreversible work can be written as

Wirr =
1

2

∫ τ

0

dt λ̇t q2 +
1

2
ln

(
λ0

λ0 + δλ

)
, (3)

where we set β = 1. Thus, we choose as a performance
measure

J [q, λt] =

∫ τ

0

dt λ̇t q2 . (4)

In the case of overdamped dynamics the state equation
reads [30]

∂t q2 = −2λt q2 + 2 , (5)

whereas we have in the underdamped regime [31]

∂t q2 = 2 qp

∂t p2 = −2λt qp− 2γ p2 + 2γ

∂t qp = p2 − λt q2 − γ qp .
(6)

The latter performance measure (4) together with the state
equation, Eq. (5) or Eq. (6) respectively, allow us to formu-
lated Pontryagin’s extremum principle [36]. Optimal pro-
tocols are then numerically found by a modified algorithm
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of steepest decent [38], where we restrict ourselves to con-
tinuous protocols with g(0) = 0 and g(τ) = 1.

In Fig. 2 we plot the results from optimal control theory
together with the analytically obtained optimal protocol for
slowly varying processes [22],

g∗(t) = −λ0

δλ
+

1

A((t/τ) +B)4
(7)

where A and B are free constants to be determined by the
boundary conditions g∗(0) = 0 and g∗(τ) = 1. We ob-
serve that for slow processes, i.e., long switching times τ
the protocols obtained from the full dynamics are in very
good agreement with the result from linear response the-
ory (7). For faster driving, i.e., short switching times τ , the
optimal protocols significantly differ [39].

As a first main result, we find that numerically exact so-
lutions from optimal control theory converge to the opti-
mal protocols from linear response theory by taking the
appropriate limits. Note, however, that a judicious choice
of boundary conditions, g∗(0) = 0 and g∗(τ) = 1, and re-
stricting the admissible protocols to continuous functions
suppressed jump and delta-peak features. The remainder
of this analysis is dedicated to finding exactly these fea-
tures from linear response theory, which illustrates that
phenomenological tools can be powerful also far outside
their range of validity.

Optimal driving from class 1. To describe the work
performed along processes lying in class 1 (see Fig. 1), we
demand that |δλ g(t)/λ0| � 1 for 0 ≤ t ≤ τ . This allows
for a linear response treatment of the average work Wirr

whose expression reads [23]

Wirr ≡W −∆F

=
(δλ)2

2

∫ 1

0

ds

∫ 1

0

ds′Ψ0[τ(s− s′)] ġ(s) ġ(s′) ,

(8)

where ġ(s) and ġ(s′) denote the derivatives with re-
spect to s ≡ t/τ and s′ ≡ t′/τ , and Ψ0(t) =
β (〈∂λH(0)∂λH(t)〉 − 〈∂λH(0)〉2) is the relaxation
function [22, 40] with β = (kBT )−1 and 〈·〉 denoting an
average with the canonical distribution.

As explained in Ref. [22], the relaxation function is the
phenomenological input of the Hamiltonian-based linear
response theory since its fully microscopic derivation re-
quires the solution of classical or quantum equations of
motion of the system plus heat bath. Hence it is at the
same time the weak and strong point of our linear response
approach since, on the one hand, it excludes the possibility
of an exact treatment of a specific system and, on the other
hand, it allows for system-independent conclusions from
the qualitative behavior of Ψ0(t).

The phenomenological modeling of the relaxation func-
tion provides the possibility of finding optimal protocols of
(8) not only for one or two examples but for classes of sys-
tems. At the same time, we still want to keep track of the
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FIG. 3. (color online) Optimal protocol for overdamped
dynamics: Optimal protocol (red solid line) that minimizes
Eq. (8) using a truncated expansion of g(s) with 35 modes and
the relaxation function Ψ0(0) e−α|t|. The switching time was
chosen to be five times bigger than the relaxation time τR =∫∞
0
dtΨ0(t)/Ψ0(0). Blue dotted line corresponds to the linear

protocols g(s) = s. Inset: short time behavior of the optimal
protocol showing a smooth version of a “step”.

influence of a specific system in our results. As shown in
Ref. [22], this can be done through a self-consistent mod-
eling that matches a given ansatz of Ψ0(t) with its Hamil-
tonian requirements.

Figures 3 and 4 show optimal protocols ob-
tained from Eq. (8) using two models for the
relaxation function, namely, the overdamped
Ψ0(t) = Ψ0(0) e−α |t|, and the underdamped
Ψ0(t) = Ψ0(0) e−α |t| [cos (ωt+ (α/ω) sin (ω|t|)].
The nomenclature we use clearly refers to the corre-
sponding regimes of Brownian motion under an external
harmonic potential. Nevertheless, they are very good
models for several different relaxation phenomena such as
dieletric polarization.

To obtain the optimal protocols we note that Eq. (8)
is a quadratic form in the ġ(s). Therefore, we expand
the functions g(s) in a series of Chebyshev polynomials
in the interval [0, 1] (for more details see Suppl. Mater.
[41]). The series is then truncated and therefore regu-
larized (to deal with the common problems of finite or-
der expansions) using well-known methods [42]. Inserting
the finite order expansions in Eq. (8), the double integrals
can be solved analytically and the parity of the Chebyshev
polynomials and of Ψ0(t) (the relaxation function satisfies
Ψ0(−t) = Ψ0(t); see Refs. [22, 23]) help to verify that
many of them are zero. Consequently, expression (8) be-
comes a finite quadratic form whose extremum is obtained
from the numerical solution of a linear system of equations.
The unknown variables of this system are the coefficients
of the finite order expansion of the g(s) subjected to the
boundary conditions g(0) = 0 and g(1) = 1. The results
clearly show smooth versions of the same features (steps
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FIG. 4. (color online) Optimal protocol for underdamped dy-
namics: Optimal protocol (red solid line) that minimizes Eq. (8)
using a truncated expansion of g(s) with 35 modes and the re-
laxation function Ψ0(0) e−α|t| [cos (ωt+ (α/ω) sin (ω|t|)]. The
switching time was chosen to be five times bigger than the re-
laxation time τR =

∫∞
0
dtΨ0(t)/Ψ0(0). Blue dotted line corre-

sponds to the linear protocol g(s) = s. Inset: short time behav-
ior showing that after the peak, the optimal protocol also presents
a smooth step since it oscillates around a linear protocol (green
dashed line) whose inclination is lower than one.

and peaks) obtained in Refs. [30, 31] for a driven Brown-
ian particle trapped in a harmonic potential in overdamped
and underdamped regimes. As mentioned above, exact op-
timal protocols are determined by solving Eqs. (5) and (6),
respectively.

It is remarkable that our linear response optimization
leads to the same counterintuitive features which were orig-
inally attributed to far from equilibrium driving. As the
process gets faster (i.e., τ approaches τR), such features be-
come even sharper (see Fig. S1 in Suppl. Mater. [41]). In
addition, for a fixed switching time τ , the steps and peaks
also get sharper as we increase the number of polynomials
in the finite order expansion of g(t) (see Fig. S2 in Suppl.
Mater. [41]). This suggests that the optimal linear response
process can get arbitrarily close to the singular features of
the exact result of Ref. [31].

A natural question to ask then is how well do the lin-
ear response optimal paths perform in the nonequilibrium
region. To test this, we have solved numerically Eqs. (6)
since we need q2(t) to obtain Wirr (see Eq. (3)). We were
not able to go beyond an expansion of g(s) with 17 modes
due to a numerical instability caused by high-frequency
oscillations. Hence our preliminary results about perfor-
mance show that, for fixed τ = 5τR and for δλ/λ0 rang-
ing from 1 to 2.7, the linear response optimal paths are
roughly 1% to 5% better than a linear protocol (although
it sometimes performs worse since Wirr seems to have a
non-monotonic dependence with δλ/λ0 for the linear pro-
tocol). However, our optimal protocols are always 6% to
14% better than the C2(t) protocol proposed by Watanabe

and Reinhardt (see Eq. (5) in Ref. [35]).
Concluding remarks. In the present analysis we found

that although a lot of work has been done to find opti-
mal linear response processes in class 2, namely, slowly-
varying optimal processes, those lying in class 1 are much
closer to what happens in the fully nonequilibrium regime.
Hence they should be a better choice as seeds of optimal
control procedures far from equilibrium. Our results also
show that, despite of sharing the same underlying theory,
the linear response approaches for the irreversible work in
classes 1 and 2 are qualitatively different and only match
when δλ/λ0 and τR/τ are both much smaller than 1.

The relaxation functions we have analyzed here can de-
scribe the relaxation of several physical phenomena. Thus,
our results also state that the peculiar features found in
Refs. [30, 31] are indeed very general and are not restricted
just to driven Brownian motion. Our approach also allows
the analysis of optimal protocols for different kinds of re-
laxation dynamics (see Fig. S3 in Suppl. Mater. for results
considering a relaxation function decaying algebraically).
A preliminary analysis in this direction suggests that what
happens at the boundaries of the optimal protocols de-
pends strongly on the short time behavior of the relaxation
function (which is linear for overdamped dynamics and
quadratic for the underdamped one). It is possible to show
that the sum rules of linear response theory [43] (which
can be used to turn the phenomenological relaxation func-
tions compatible with the underlying Hamitonian dynamics
[22]) demand a quadratic behavior for short times.
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FIG. 1. (Color Online) Optimal protocols that minimize Eq. (1) using a truncated expansion of g(s) with 17 modes (blue solid line)
and 35 modes (red dashed line) and the relaxation function Ψ(0) e−α|t| [cos (ωt) + (α/ω) sin (ω|t|)]. The switching time was chosen
to be five times bigger than the relaxation time τR =

∫∞
0
dtΨ0(t)/Ψ0(0). The green dotted line corresponds to the linear protocol

g(s) = s.

In the regime of weak but fast driving, the linear response expression for the irreversible work is given by the following
functional [1]

Wirr ≡W −∆F =
(δλ)2

2

∫ 1

0

ds

∫ 1

0

ds′Ψ0(τ(s− s′))ġ(s)ġ(s′) , (1)

where Ψ0(t) = β (〈∂λH(0)∂λH(t)〉 − 〈∂λH(0)〉2) is the relaxation function [2, 3], 〈·〉 denotes an equilibrium average
taken with a canonical distribution parametrized with β = (kBT )−1, T being the temperature of the heat bath, and H is
the Hamiltonian of the system. The functions ġ(s) and ġ(s′) denote the derivatives of the protocol g(s) with respect to
s ≡ t/τ and s′ ≡ t′/τ .

In order to find the optimal protocols that minimize Eq. (1) for a τ , we expand ġ(s) in terms of Chebyshev polynomials
in the interval [0, 1] following Ref. [4]

ġ(s) =
N∑

n=1

an g(N,n)Tn(2s− 1) , (2)

where

g(x, y) =
1

x+ 1

[
(x− y + 1) cos

(
πy

x+ 1

)
+ sin

(
πy

x+ 1

)
cot

(
π

x+ 1

)]
(3)

is a factor that regularizes the truncated series with finite N terms (see Sec.II.C of Ref. [4]). The Chebyshev polynomials
have the nice property of being odd or even with respect to the transformation s→ 1− s. Inserting expansion (2) into (1),
we obtain a multidimensional finite quadratic form in terms of the coefficients an

Wirr

(
(δλ)2Ψ0(0)/2

)−1
=
∑

n,l

Anl anal , (4)

whose minimum we would like to find for the following boundary conditions g(0) = 0 and g(1) = 1. The matrix
elements Anl are given by

Anl =

∫ 1

0

ds

∫ 1

0

ds′Ψ̃(τ(s− s′)) g(N,n)g(N, l)Tn(2s− 1)Tl(2s
′ − 1) , (5)

where we have defined Ψ̃(t) = Ψ0(t)/Ψ0(0). It can be easily shown that the parity of the Tn combined with Ψ̃(−t) =

Ψ̃(t) leads to Anl = 0 every time n is even and l is odd. Besides, Anl = Aln and hence many of the Anl are zero.
Depending on the function Ψ̃(t), the integrals above can be performed analytically. Once the Anl are known, the

minimization problem comes down to solving a linear system of equations coming from the extremum condition (first
derivative of (4) equals to zero) plus the two additional constraints g(0) = 0 and g(1) = 1. For all the examples we
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FIG. 2. (Color Online) Optimal protocols that minimize Eq. (1) using a truncated expansion of g(s) with 35 modes and the relaxation
function Ψ0(0) e−α|t| [cos (ωt) + (α/ω) sin (ω|t|)]. The ratio (τR/τ)−1 was chosen to be 2.5 (blue solid line), 5 (red dotted line) and
10 (green dashed line).
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FIG. 3. (Color Online) Optimal protocol (red solid line) that minimizes Eq. (1) for the relaxation function Ψ0(0)e−α|t|(1 + α|t|/2)2

using a truncated expansion of g(s) with 35 modes and (τR/τ)−1 = 5. The blue dotted line corresponds to g(s) = s. Inset: the optimal
protocol oscillates around a linear function f(s) = a s+ b with a < 1.

present here, this linear systems was solved numerically. Figure 1 shows an example of how the optimal protocol we
have obtained depends on the number of modes N for a given value of τ and considering underdamped dynamics. As we
increase the number of polynomials in our expansion (2), the especial features at the boundaries of the protocol become
sharper. Additionally, for a fixed N , Fig. 2 shows that these features also become sharper and sharper as the ratio τR/τ
increases, i.e., as the protocol gets faster.

Our approach provides means of testing different kinds of relaxation behavior and therefore investigate whether the
unexpected features we observe in the optimal protocols are universal. Figure 3 shows that even the monotonic exponential
decay given by e−α|t|(1 + α|t|/2)2 leads to very pronounced peaks and “steps” since, apart from the boundaries, the
protocol oscillates around a linear function f(s) = a s + b with a < 1. Figure 4 shows an example of optimal protocol
for a non-exponential decay of the relaxation function. Very pronounced peaks are also present in this case and persist for
much slower processes.
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