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Ephemeral Stream Network Extraction from Lidar-Derived Elevation and Topographic

Attributes in Urban and Forested Landscapes

Marina J. Metes , Daniel K. Jones , Matthew E. Baker , Andrew J. Miller , Dianna M. Hogan ,

J.V. Loperfido, and Kristina G. Hopkins

Research Impact Statement: We describe a new approach using lidar-derived elevation data to remotely map
headwater streams in forested and urban landscapes, and address ongoing challenges with mapping small
streams.

ABSTRACT: Under-representations of headwater channels in digital stream networks can result in uncertainty
in the magnitude of headwater habitat loss, stream burial, and watershed function. Increased availability of
high-resolution (<2 m) elevation data makes the delineation of headwater channels more attainable. In this
study, elevation data derived from light detection and ranging was used to predict ephemeral stream networks
across a forested and urban watershed in the Maryland Piedmont USA. A method was developed using topo-
graphic openness (TO) and wetness index to remotely predict the extent of stream networks. Predicted networks
were compared against a comprehensive field survey of the ephemeral network in each watershed to evaluate
performance. Comparisons were also made to the U.S. Geological Survey National Hydrography Dataset (NHD)
and a flow accumulation approach where a single drainage area threshold defined channel initiation. Although
the NHD and flow accumulation methods resulted in low commission errors, omission errors were highest in
these networks. The TO-based networks detected a larger number of ephemeral channels, but with higher com-
mission error. Small ephemeral channels with less defined banks or originating at groundwater seeps were diffi-
cult to detect in all methods. Comparisons between forested and urban watersheds also highlight the difficulty
of identifying headwater channels using topographic attributes in human-modified landscapes.

(KEYWORDS: headwater streams; channel heads; geomorphology; stream mapping; ephemeral; perennial; lidar;
drainage network; topography.)

INTRODUCTION

Remotely mapping the existence of intermittent
and ephemeral (non-perennial) streams is an ongoing
challenge despite improvements in the resolution and
spatial–temporal coverage of remote sensing data
(Shanafield et al. 2021). The point of channel

initiation often represents a transition from disper-
sion dominated hillslope flow to convergent channel
flow paths (Montgomery and Dietrich 1988; Mont-
gomery and Foufoula-Georgiou 1993; Istanbulluoglu
et al. 2002), but can also be controlled by a wide vari-
ety of physical forms depending on topographic set-
ting, underlying geology, climate, and land use
(Band 1993). During wet periods, the point of channel
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initiation can extend upslope along convergent con-
tours, highlighting the variable extent of drainage
networks in response to climate (Blyth and
Rodda 1973). This variability in channel initiation
further complicates our ability to remotely detect
small streams with dynamic flow regimes (Shanafield
et al. 2021).

An accurate representation of channel head locations
is fundamental for linking hillslope and channel pro-
cesses, ultimately controlling overall watershed dissec-
tion and network structure (Tribe 1990; Montgomery
and Dietrich 1992; Walker and Willgoose 1999; Heine
et al. 2004; Baker et al. 2007). Headwaters often repre-
sent more than 75% of total watershed channel length
and are closely linked to nutrient dynamics, macroin-
vertebrate habitat, and groundwater-surface water
exchanges (Gomi et al. 2002; Lindsay 2006; James
et al. 2007; Elmore and Kaushal 2008; Downing
et al. 2012; Messager et al. 2021). Many studies have
shown the functional importance of small, non-
perennial headwater streams (Meyer and Wal-
lace 2001; Meyer et al. 2007; Roy et al. 2009), so an
accurate accounting of their presence on the landscape
is key for effective management. Similarly, streamflow
permanence is used to classify streams that are feder-
ally regulated under the Clean Water Act (The Naviga-
bleWaters Protection Rule 2020).

Watershed managers have historically used drai-
nage networks comprised primarily of perennial
streams when designing watershed management
plans, such as the ‘blue lines’ from United States Geo-
logical Survey (USGS) topographic maps (Han-
sen 2001; Colson et al. 2008; Vance-Borland
et al. 2009; Brooks and Colburn 2011; Elmore
et al. 2013). The USGS National Hydrography Dataset
(NHD), the digital equivalent of ‘blue lines’, is a nation-
ally available dataset at the 1:100,000 scale that is
widely used for watershed management and modeling
applications (Hill et al. 2016; Thornbrugh et al. 2018;
Wieczorek et al. 2018; Stewart et al. 2019). The NHD
plus high resolution (NHDPlus HR; USGS 2018) at the
scale of 1:24,000 or better is now being incorporated
into national scale models with the increasing avail-
ability of data (Viger et al. 2016).

Field-based observations are commonly considered
the most accurate means to identify channels but are
seldom performed due to extensive time and labor
requirements (McNamara et al. 2006). Therefore,
efforts to remotely identify channels and extract drai-
nage networks were initially developed from coarse
(10 m or coarser resolution) digital topographic data-
sets (O’Callaghan and Mark 1984; Jenson and Dom-
ingue 1988; Tarboton et al. 1991; Band 1993; Heine
et al. 2004). Many of these established methods for
channel head and network extraction use topographic
characteristics of upslope contributing drainage areas

to identify channel initiation points. Montgomery and
Dietrich (1988) first suggested that a threshold
between local topographic slope and contributing
drainage area governs channel head locations. But,
finer than 30-m resolution topographic data are nec-
essary to identify channel heads on moderately steep
and vegetated landscapes (Zhang and Mont-
gomery 1994; Colson et al. 2006). A more common
network delineation approach based on a single con-
tributing drainage area threshold is frequently used
despite documented inaccuracies (Heine et al. 2004;
Lindsay 2006; James and Hunt 2010). These
approaches fall under a category of techniques that
attempt to emulate physical channel initiation pro-
cesses from aggregate contributing drainage area
variables and are thus referred to as channel initia-
tion techniques (Lindsay 2006).

Other studies have explored topographic curvature
and other morphologic indicators of valley shapes for
network extraction (Tribe 1990, 1992; Tarboton and
Ames 2001; Lindsay 2006; Sofia et al. 2011), here-
after referred to as valley recognition techniques.
Channel initiation techniques are more widely used
than valley recognition techniques due in part to a
lack of topographic resolutions capable of represent-
ing fine-scale valley forms (Lindsay 2006). However,
elevation data derived from light detection and rang-
ing (lidar) and other high-resolution (<10 m) topo-
graphic datasets can resolve fine-scale topographic
features essential for valley recognition techniques,
and there have been considerable advances in
extracting drainage networks from high-resolution
topography. These techniques generally follow the
same procedure of filtering a digital elevation model
(DEM) to reduce noise, calculating and thresholding
topographic attributes to extract a skeleton of discon-
nected channel pixels, and connecting them to define
the continuous channel network (Passalacqua
et al. 2010; Sangireddy et al. 2016). Many of these
techniques use static thresholds that are applied to
topographic attributes. Clubb et al. (2014) developed
a hybrid approach that uses a threshold tangential
curvature to distinguish hillslopes from valleys, but
then employs chi-plots to automate the delineation of
channels from the thresholded terrain. Hooshyar
et al. (2016) also used curvature (profile and contour)
to define valleys and ridges, but then used unsuper-
vised k-means clustering to distinguish the bound-
aries between channelized and unchannelized
sections of the valley zones. A variable flow accumu-
lation approach developed by Heine et al. (2004) uses
logistic regression models to predict channel loca-
tions.

To evaluate the performance of various high-
resolution channel extraction techniques, several
studies have used field-surveys of channel heads with
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definable banks and sorted bed loads that are typi-
cally only found within the perennial and well-
defined intermittent portion of the network (Mont-
gomery and Dietrich 1989; Passalacqua et al. 2010;
Orlandini et al. 2011; Julian et al. 2012; Elmore
et al. 2013; Clubb et al. 2014; Hooshyar et al. 2016),
but few have included the poorly defined ephemeral
portion of the network (Hastings and Kampf 2014;
Jensen et al. 2017). Recently, a growing number of
studies have attempted to model streamflow perma-
nence to better understand the extent and duration
of wetted channel expansion and contraction and the
connectivity between perennially and intermittently
flowing streams (Jensen et al. 2018; Ward et al. 2018;
Jaeger et al. 2019; Prancevic and Kirchner 2019).

This study explores topographically derived drai-
nage network delineation techniques relative to a
comprehensive field survey of ephemeral and peren-
nial channels in two watersheds in Clarksburg,
Maryland (Figure 1). An approach to extract the wet-
weather (i.e. ephemeral) network from high-

resolution (1.8 m) lidar-derived DEMs was developed
using varying levels of topographic openness (TO;
Yokoyama et al. 2002) to identify depressions in the
landscape and topographic wetness to filter pixels
with a greater likelihood of being within the stream
network. TO is an angular measure of the degree of
dominance or enclosure of a topographic feature rela-
tive to its surroundings (Yokoyama et al. 2002).
Using a line of sight approach constrained by neigh-
boring elevations within a specified radial search dis-
tance, mean angles are measured relative to the
zenith (phi, positive TO) and nadir (psi, negative TO)
in eight azimuth directions from a central pixel of
interest (Figure 2a). Negative TO has been used suc-
cessfully to extract surface drainage networks in
alpine (Sofia et al. 2011) and Martian (Molloy and
Stepinski 2007) landscapes, and was used as the pri-
mary topographic attribute to identify channel pixels
in this study. Topographic wetness index (TWI) was
developed within the runoff model TOPMODEL
(Beven and Kirkby 1979) and is used to assess the
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FIGURE 1. Study watersheds in the Maryland Piedmont region. Soper Branch (FOR) is predominantly forested and Tributary 104 (URB) is
predominantly urban. Watershed boundaries were delineated from the lidar-derived digital elevation models used in this study (see DEM

Processing section). USGS, United States Geological Survey
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extent of soil saturation and runoff generation poten-
tial (Ågren et al. 2014).

Omission, commission, and distances between
surveyed and predicted channel heads were exam-
ined to assess the ability to accurately represent
channel initiation points and overall network struc-
ture. This work highlights challenges of mapping
ephemeral channel features with high-resolution
elevation data, especially in human-modified ter-
rain, and raises important considerations for
channel definitions relative to functional and man-
agement contexts.

METHODS

Study Sites

For this study, two watersheds in Montgomery
County, Maryland, within the Piedmont Physio-
graphic Province were examined (Figure 1). These
watersheds have undergone extensive study to evalu-
ate the impacts of development and the effectiveness
of stormwater best management practices at the
watershed scale (Hogan et al. 2014; Jones et al. 2014;
Loperfido et al. 2014; Bhaskar et al. 2016; Hopkins
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FIGURE 2. (a) Topographic openness calculation for a pixel within a representative transect, and influence of inflection points in the
topography based on selected length of search radius, and (b) extent of positive and negative openness thresholds with the locations of field-

surveyed channel heads and the representative transect in panel a.
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et al. 2017; Sparkman et al. 2017; Hopkins
et al. 2020; Hopkins et al. 2022). Both watersheds are
within the Mt. Airy Uplands District, characterized
by siltstones and quartzite underlain by crystalline
bedrock consisting of phyllite/slate, with average
annual precipitation of 106 cm (Reger and
Cleaves 2008). The forested watershed, Soper Branch
(hereafter referred to as FOR), drains an area of
3.3 km2 (see DEM Processing section) at USGS
streamgage 01643395, and the land cover is predomi-
nantly classified as deciduous forest (82%) with 4%
impervious surface cover (Williams et al. 2018). The
urban watershed, Tributary 104 (hereafter referred
to as URB), drains an area of 1.1 km2 (see DEM Pro-
cessing section) at USGS streamgage 01644371 and
is a historically agricultural watershed that under-
went extensive urban development from 2003 to
2010, with an associated decline in vegetated cover
from 97% to 67% and an increase to 31% impervious
surface cover (Williams et al. 2018). Although
stormwater infrastructure in URB likely plays a key
role in dictating watershed hydrology, the purpose of
this study was to investigate drainage network struc-
ture based on topography alone.

Field Survey of Channel Heads

Channel heads were surveyed in the field between
February and April 2013 using a Trimble GeoEx-
plorerXH 6000 handheld unit, providing decimeter
positional accuracy after base station correction
(Trimble Navigation Limited 2012; Metes
et al. 2021). For each watershed, surveys began by
walking the mainstem channel upstream from the
USGS streamgage (Figure 1), following all major
and minor tributaries encountered to all visible
points of channel initiation. Initiation points were
defined as the most upslope location with evidence
of flow-oriented debris and/or vegetation and
exposed soil. This definition allowed for the capture
of ephemeral channel heads that typically only flow
during storm events. All surveys were conducted
within two days of the last rainfall to assure ephem-
eral flow paths were evident. The channel head loca-
tions were captured at each channel initiation point
along with a brief description of the channel head
form (e.g. incised, groundwater seep, knickpoint,
and no clear head), presence of flowing water, and a
note about the length of the downstream channel.
For channels in the urban watershed that termi-
nated at engineered features (e.g. pipe outfalls and
detention basins), the surveyed location was taken
at the intersection of the channel and engineered
feature.

DEM Processing

Airborne lidar was collected on December 28,
2013 (Montgomery County, MD Department of
Parks and Planning 2013), and the processed bare
earth point cloud covering the study area was
acquired from the State of Maryland GIS Data Por-
tal (imap.maryland.gov). A high-resolution DEM
(~0.9 m) was interpolated from bare earth lidar
points in LAS file format with the commonly used
natural neighbor interpolation algorithm (Sib-
son 1981) in ArcGIS 10.3 (Esri 2011). The DEM was
then aggregated to 1.8 m to reduce small-scale sur-
face roughness in the topography. Due to the small
watershed size and importance of accuracy, the
DEM was manually hydrologically corrected to
breach detention basins, culverts, and other barriers
to surface flow (Metes et al. 2021). Paths were
carved from low points within pits to the next down-
slope pixel of equal or lesser elevation outside of the
pit following detention basin outlets identified from
aerial and ground surveys. No attempt was made to
account for flow paths within drainage basins or
subsurface drainage infrastructure. Straight-line
pathways were enforced for all unknown detention
basin outlets. The hydrologically corrected DEMs
were then filled to resolve any remaining pits and
used to generate D8 flow direction and flow accumu-
lation grids (O’Callaghan and Mark 1984; Jenson
and Domingue 1988; Esri 2011; Jones et al. 2014).
Watershed boundaries for FOR and URB were delin-
eated upstream from each USGS streamgage using
the D8 flow direction grid. Both original and hydro-
logically corrected DEMs were used for stream net-
work delineation.

Delineation of the Field-Surveyed Network

To compare metrics across the entire stream net-
work in FOR and URB watersheds, a field-surveyed
drainage network was created from the surveyed
channel heads (hereafter referred to as the ‘field net-
work’). The surveyed heads in FOR and URB were
converted from a point file into a binary raster
(1 = head, null = non-head) and used as an accumu-
lation weight along with the D8 flow direction grid
to generate a flow accumulation grid where values
greater than 0 began at each surveyed channel head.
Pixels with a flow accumulation value greater than 0
represented the linear field network. The field net-
work was then post-processed to exclude small off-
shoot channels that were zero or one pixel long (0–
1.8 m) in length, which was equal to or less than the
horizontal resolution of the lidar-derived DEM.
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Some surveyed channel heads were described in the
field notes as ‘questionable’ or ‘potential channels’
and were excluded from analysis (see Metes
et al. 2021).

Upslope contributing drainage area was calculated
for each post-processed surveyed channel head to
compare the range of drainage area necessary for
channel initiation in the forested and urban water-
sheds. To ensure that all upslope drainage area was
captured, channel heads in the field network were
shifted to the nearest high flow accumulation pixel to
account for small offsets in horizontal position
between the surveyed and DEM-predicted flow paths
arising from DEM and GPS-unit error (see Metes
et al. 2021). Heads were initially shifted in ArcGIS
10.3 using Snap Pour Point (ESRI 2011) with a 1.8 m
(one pixel) search distance, followed by a manual
inspection to adjust heads if they did not snap to the
correct high flow accumulation pixel. The shifted
channel heads were used as the pour point, along
with the D8 flow direction grid, to generate a water-
shed and calculate drainage area upstream from each
surveyed channel head. Contributing drainage areas
to each field measured channel head were compared
across watersheds using the two-sided Wilcoxon
signed-rank tests, implemented in R (Zar 2010; R
Core Team 2016). The shifted surveyed channel
heads were only used to calculate upstream con-
tributing drainage area. The original surveyed loca-
tions of the channel heads were used to calculate
distances between surveyed and predicted heads, and
to generate the field-surveyed network.

Delineation of the Predicted Networks Derived from
Topographic Attributes

A combination of topographic metrics derived
from the lidar-derived DEM were used to filter pix-
els into either channel or non-channel binary grids
based on thresholds. A series of topographic
thresholds for classifying pixels into the binary
grids were evaluated and compared to the field
survey. The channel network delineation tech-
niques in this study were calibrated to FOR, which
served as the training dataset, and applied to URB
as the test dataset to investigate how the altered
topography, heterogeneous overland flow paths,
and potentially disrupted slope-area processes
relating to channel initiation may impact delin-
eation performance (Hastings and Kampf 2014;
Jones et al. 2014).

Topographic Wetness Index. TWI was calcu-
lated in the raster calculator of ArcMap version 10.3
using the following equation:

TWI ¼ ln a=tanβ
� �

, (1)

where TWI was calculated as the ratio of the natural
log of specific catchment area (a) to the tangent of
slope (β). Higher TWI values tend to represent areas
that are more saturated; however, specific TWI val-
ues change depending on DEM resolution as slope
and upslope contributing drainage area will vary
with DEM resolution (Wolock and McCabe 2000). A
single threshold was applied to filter out lower TWI
values that are less likely to include channels. To
objectively identify a TWI threshold, a quantile-
quantile (Q-Q) plot approach was used to identify the
point at which the distribution deviated from normal-
ity. This approach has been used with topographic
attributes where the deviation from normality is
interpreted as the hillslope-valley transition (Lasher-
mes et al. 2007; Passalacqua et al. 2010; Sofia
et al. 2011; Clubb et al. 2017). The Q-Q plot of TWI
values for FOR was generated and the value at which
the upper tail of the distribution deviated from a
straight line was selected as the threshold (Fig-
ure S1). This same threshold identified in FOR (TWI
threshold = 9.6) was also used as the threshold in
URB since the modified landscape in the urban
watershed may disrupt the distribution of TWI val-
ues. TWI was used as an initial filter to constrain the
additional topographic attributes used to identify
channels.

Topographic Openness. Positive and negative
TO were calculated in Python 2.7 (Peters 2015) on the
original DEM. The scale of topographic variation
detected by TO is dependent on the length of the
radial distance parameter (Doneus 2013) (Figure 2a).
A longer search radius may reduce the number of
smaller depressions that could be considered noise at
the expense of missing small poorly defined channel
heads that may only show up in a shorter search
radius. A search radius of 36 m reduced instances on
both ends of the spectrum and was guided by the aver-
age valley widths of tributaries in the FOR watershed.

Phi values less than 90 and psi values greater
than 90 represent depressions, while values equal to
90 in both measures represent flat areas (Figure 2a).
Both components of TO were applied because phi and
psi are constrained by different topographic inflection
points and tend to highlight different depression-like
features (i.e. channel vs. valley bottom) (Figure 2b).
Less enclosed or defined features are represented by
values close to 90 in both negative and positive TO,
and these values are considered “less restrictive”
thresholds. As psi values increase in negative TO and
phi values decrease in positive TO, only more
enclosed or defined depressions are represented, and
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these values are considered “more restrictive” thresh-
olds. A range of thresholds that detect both flatter
and deeper landscape depressions (psi values >90 for
negative and phi values <90 for positive TO) were
initially explored to generate a series of stream net-
works in the FOR watershed, ranging from less to
more restrictive. Q-Q plots were also explored for
negative and positive TO thresholds in FOR (Fig-
ure S2). Only the positive and negative TO pixels
overlapping with each other and the previously
defined TWI filter were used to define the extent of
the predicted stream networks. These final pixels
identified as channels were applied as a weight to a
D8 flow accumulation to create a contiguous stream
network (Figure 3).

The end nodes of each predicted network were
used to compare predicted heads with field-surveyed
heads. Each predicted head was checked for a corre-
sponding surveyed head to assess the performance of
each openness network. An unweighted flow accumu-
lation raster was used to ensure predicted and sur-
veyed heads were only matched if they were on the
same flow path. The number of head matches (true
positives, TP) and errors of omission (false negative,
FN) and commission (false positive, FP) were counted
for each predicted network. The omission and com-
mission errors were used to calculate reliability and

sensitivity indices for each network (Orlandini
et al. 2011; Clubb et al. 2014). The reliability index
(r) is a ratio of TP to the sum of TP and FP (Equa-
tion 2) and is a measure of the ability to not produce
commission errors:

r ¼ ∑TP= ∑TPþ∑FPð Þ: (2)

The sensitivity index (s) is a ratio of TP to the sum of
TP and FN (Equation 3) and is a measure of the abil-
ity to not produce omission errors. A value of 1 is the
optimal result for both indices:

s ¼ ∑TP= ∑TPþ∑FNð Þ: (3)

To further refine appropriate TO thresholds, a rank
test was conducted to identify the threshold combina-
tions best representative of the field-surveyed net-
work. Sensitivity and reliability were ranked from 1
to 0. The ratio of the predicted network to field net-
work length was subtracted from 1 and the absolute
value was ranked from 0 to 1. The ranks of all three
were averaged for a final ranking weighting each
metric equally (Table S1). The top three TO threshold
combinations resulting from the weighted rank analy-
sis, the least and most restrictive TO threshold com-
binations, and the TO thresholds resulting from the
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Flow Accumulation
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Identify overlapping pixels

Predicted Network

(a)

Topographic
Wetness 

Index
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FIGURE 3. Depiction of how topographic filters are combined to arrive at the final drainage network prediction in FOR. Topographic filters
(a–c) were combined (d, e) and then an accumulation function was used to connect locations where all three filters overlap. The final

predicted network (f) is a representation of where all three filters combined predict a channel.
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Q-Q plot analysis were then applied to the URB
watershed to generate stream networks.

Delineation of the Accumulation Net-
work. The stream networks created from combina-
tions of TWI and TO were compared to a
conventional stream delineation approach using an
upslope contributing drainage area threshold applied
to the flow accumulation grid to define channel initia-
tion locations (O’Callaghan and Mark 1984), here-
after referred to as the accumulation network. The
threshold for each watershed was chosen using the
constant drop law, which states that the mean eleva-
tion drop across channels within a given Strahler
order should not be significantly different from the
mean drop in the next higher order (Broscoe 1959;
Tarboton et al. 1991; Tarboton and Ames 2001). The
TauDEM toolbox (Tarboton 2009) was used to auto-
matically apply the constant drop law in 100-pixel
(324 m2) increments to select the minimum contribut-
ing drainage area to satisfy the constant drop law.
The contributing drainage area thresholds selected
for FOR and URB were 9,072 and 12,312 m2, respec-
tively.

National Hydrography Dataset. The NHDPlus
HR (USGS 2018) was also compared to field-surveyed
networks and each predicted network within FOR
and URB.

Comparing Predicted and Field-Surveyed Ephemeral
Networks

A suite of drainage network metrics was calculated
for the field and predicted networks, including
Shreve (1966) magnitude, Strahler (1957) stream
order, and drainage density. The metrics previously
generated for the weighted ranking analysis (ratio of
predicted stream length to field network stream
length, omission/sensitivity, and commission/reliabil-
ity) were also calculated for the NHDPlus HR and
accumulation networks and included in the stream
network comparisons.

Euclidean distances between the predicted and
field-surveyed channel heads were calculated and
assigned either a positive value if the predicted head
was upslope of the surveyed head (over-predicted) or
a negative value if the predicted head was downslope
of the surveyed head (under-predicted). From the
number of upslope (over-predicted) and downslope
(under-predicted) heads, Wilcoxon signed-rank tests
were used to determine if each network significantly
under- or over-predicted the location of heads. Abso-
lute distances between surveyed and predicted heads

were evaluated using the root mean square error
(RMSE) (the following equation):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

Euclidean distanceð Þ2
N

s
: (4)

RESULTS

Field-Surveyed Channel Heads and Network

A total of 245 channel heads were surveyed in
FOR, and 81 were surveyed in URB. In post-
processing, 77 channel heads were removed because
they were small offshoot channels that were zero or
one pixel in length, and 7 were removed for being
questionable or potential channels (Metes
et al. 2021). There were 185 channel heads deemed
appropriate for analysis in FOR and 57 channel
heads deemed appropriate in URB. The order, length,
and drainage densities of the field-surveyed FOR and
URB networks are shown in Table 1.

Contributing drainage areas for each surveyed
channel head were highly variable in both water-
sheds. Wilcoxon signed-rank test results revealed a
significant difference in contributing drainage areas
between the two watersheds (p < 0.001), with FOR
and URB having median channel head contributing
areas of 804 and 217 m2, respectively. The distribu-
tion varied between the two watersheds with an
interquartile range of 2,424 m2 in FOR compared to
488 m2 in URB (Figure S3).

TO Thresholds Selected for Predicted Stream
Networks

A series of negative and positive TO thresholds
were explored, ranging from less restrictive values
detecting slight depressions in the landscape to more
restrictive values identifying more defined depres-
sions (Figure 4; see also Figure 2b). The least restric-
tive negative TO value (psi >90.5) captured most
pixels containing a surveyed channel head in FOR
while also including many non-channel pixels. The
least restrictive positive TO value (phi <88) captured
all valleys containing a surveyed channel head in
FOR. The most restrictive negative TO threshold (psi
>92) and the most restrictive positive TO threshold
(phi <82) included the majority of pixels falling
within known stream channels leading to a surveyed
channel head in FOR (Figure 2b).
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The two highest ranked networks most closely
resembling the field-surveyed network (based on
length and omission/commission error) in FOR had
middle levels of restrictiveness for both negative and
positive TO (Figure 4). The third ranked network
contained a combination of the least restrictive nega-
tive TO and the most restrictive positive TO thresh-
olds. Conversely, the fourth ranked network
contained the most restrictive negative TO and least
restrictive positive TO thresholds. The most restric-
tive combination of both TO thresholds ranked 12 out
of 16 and the least restrictive combination of both TO
thresholds ranked last. The Q-Q plot method for
selecting TO thresholds resulted in a negative TO
value of 91.4 (Figure S2a) and positive TO value of
88 (Figure S2b).

Predicted Stream Network Results

Predicted networks (openness and accumulation)
were compared against the field-surveyed network
and the NHDPlus HR. The same method to rank the
initial phi/psi combinations (Figure 4) was applied to
the final openness networks, along with the inclusion
of the accumulation network and the NHDPlus HR

for both URB and FOR (Table 1). The rankings of
each network were not consistent between FOR and
URB. While psi 91.5/phi 84 ranked first in FOR, the
same method ranked fifth in URB. The second rank-
ing method in FOR (psi 91/phi 84) ranked eighth out
of nine in URB and the eighth ranking method in
FOR (psi 92/phi 82) ranked third in URB (tied for
third with the psi 92/phi 88 and accumulation net-
works). The network that ranked similarly in both
FOR and URB was psi 90.5/phi 88, performing poorly
in both watersheds. The TO threshold combination
selected based on Q-Q plots (psi 91.4/phi 88) ranked
sixth in both FOR and URB.

The number of TP predicted channels increased as
restrictiveness in both TO filters decreased, with the
tradeoff of increasing commission errors. The number
of TPs was lowest in the accumulation network and
NHDPlus HR in URB. In FOR, the NHDPlus HR,
accumulation, and most restrictive TO networks had
the lowest number of TPs. The omission error was
high in all methods, and the networks with the low-
est omission errors also had the highest commission
errors. Although the NHDPlus HR had no commis-
sion error in both watersheds, high omission errors
and low length to true length ratios illustrate the
large extent to which the NHDPlus HR underrepre-
sents headwater stream networks (Table 1).

Some metrics showed similarities between the
FOR and URB networks while other metrics diverged
(Table 1). Sensitivity, a measure of omission error,
was similar in both watersheds. Reliability, a mea-
sure of commission error, was consistently smaller in
all the URB networks, indicating a larger fraction of
the total predicted heads were commission errors.
The length of channels that were commission errors
also differed between watersheds. URB consistently
exhibited higher length to field length ratios than
FOR, reflecting channel extensions along urban con-
duits in URB (e.g. roads, swales; Figure 5). Elevated
drainage densities in URB for both accumulation and
openness networks also highlight this result
(Table 1). In FOR, many of the FP predicted channels
were small first order channels and had little influ-
ence on the overall network length, as reflected by
length to field length ratios close to one for all open-
ness networks aside from the most restrictive
(Table 1).

Distances between Surveyed and Predicted Channel
Heads

Euclidean distances were measured between field-
surveyed channel heads and corresponding TPs for
each predicted network. TPs were classified as an
over-prediction if the predicted head was upslope of

90.5
Less 
Restrictive

evitcirtse
R

ero
M

More Restrictive

ihP

Psi

88
86

82
84

3
Phi < 82

Psi > 90.5

8
Phi < 82
Psi > 91

11
Phi < 82

Psi > 91.5

12
Phi < 82
Psi > 92

9
Phi < 84

Psi > 90.5

2
Phi < 84
Psi > 91

1
Phi < 84

Psi > 91.5

11
Phi < 84
Psi > 92

15
Phi < 86

Psi > 90.5

13
Phi < 86
Psi > 91

8
Phi < 86

Psi > 91.5

8
Phi < 86
Psi > 92

16
Phi < 88

Psi > 90.5

14
Phi < 88
Psi > 91

8
Phi < 88

Psi > 91.5

4
Phi < 88
Psi > 92

91 91.5 92

= phi/psi combination selected for analysis

FIGURE 4. Psi/phi threshold combination selected for analysis
along with the rank results for FOR (underlined values). The high-
lighted (yellow) boxes represent the psi/phi threshold combinations
used to compare predicted networks against the field-surveyed net-
work. The numbers at the top of each box represent the relative
rank, excluding the Q-Q threshold network, of the weighted rank
analysis.
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the corresponding surveyed head or an under-
prediction if it was downslope from the surveyed
head. Boxplots summarizing the signed distances (up-
slope or downslope) between predicted heads and
matched survey heads are displayed in Figure 6. Wil-
coxon signed-rank tests indicated the majority of TO
networks in FOR significantly under-predicted the
head location (p < 0.001) with the exception of the
least restrictive TO network, which significantly
over-predicted the head locations (p < 0.001)
(Table 1). The only network to neither under- nor
over-predict the location of channel heads was the Q-
Q technique (psi 91.4/phi 88), with an interquartile
range of signed distances near zero (Figure 6). In
URB, the only method with a significant result was
an over-prediction by the accumulation network
(p < 0.001, Table 1), with all other methods exhibit-
ing insignificant over-prediction tendencies (Fig-
ure 6).

The RMSE of absolute distances between surveyed
channel heads and TPs ranged from 63–104 m in
FOR and 81–176 m in URB (Table 1). Distances were
consistently higher in URB, but only differed by up
to 20 m between URB and FOR for each TO network.
The two TO networks with the most restrictive phi
value (92) accounted for the lowest RMSE and the
two TO networks with the least restrictive phi value
(90.5) accounted for the largest RMSE among the TO
networks in both watersheds. The accumulation net-
work accounted for the largest overall RMSE in both
watersheds (Table 1).

DISCUSSION

TO Threshold Variation

Varying the phi and psi thresholds while the TWI
threshold remained constant demonstrated how each
TO filter contributed to the overall channel network
structure. In FOR, the TO threshold combinations
that most closely resembled the field network fell in
the mid-range for both psi and phi values (Figure 4,
rank 1 and 2). The TO combinations with the most
and least restrictive threshold combinations (psi 90.5/
phi 82 and psi 92/phi 88) also ranked higher than
other combinations. This indicates that the TO filter
is dominating the resulting network and both nega-
tive and positive TO combinations are important con-
tributors to this stream delineation technique.
However, in URB, the negative TO threshold exhib-
ited stronger control on the overall network. The two
networks containing the most restrictive negative TO
threshold (psi >92) most closely resembled the field-
surveyed network, despite one network containing
the most restrictive positive TO threshold (phi <82)
and the other network containing the least restrictive
positive TO threshold (phi <88) (Table 1). These two
networks both had the lowest Shreve magnitude and
network length, but still over-predicted the field-
surveyed network, highlighting the difficulty in dis-
tinguishing swales and road networks from natural
channels using topographic indices (Figure 5).

EXPLANATION

USGS
Streamgage

psi 92/phi 82

psi 92/phi 88

psi 91.5/phi 84

Field Network

Accumulation

Watershed
Boundary

FOR URB

FIGURE 5. Results of the field network (light blue), the accumulation network (green), and top ranked topographic openness network(s)
(solid dark blue, orange, or dashed dark blue) in each watershed. In FOR, psi 91.5/phi 84 ranked first (solid dark blue) and in URB psi 92/

phi 82 (dashed dark blue) and psi 92/phi 88 (orange) tied with the accumulation network as the highest ranked.
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To test the utility of including TWI, TO networks
were also generated without the TWI filter. In the
top ranked network in FOR (psi 91.5/phi 84), omis-
sion error dropped slightly from 113 to 105, but com-
mission error increased significantly from 181 to 498.
In the least restrictive network in URB (psi 92/phi
82), omission error dropped from 45 to 42 while com-
mission increased from 48 to 163. Although networks
generated without TWI have slight improvements in
matched heads, the inclusion of this filter greatly
improves overall commission errors. Inclusion of addi-
tional topographic metrics may also lead to further
improvements in the accuracy of predicted networks,
but this was outside the scope of this study, which
primarily aimed to assess the degree to which TO
could be used to detect ephemeral channels.

A balance of commission and omission errors may
not always be desirable depending on the intended
use of the predicted network (e.g. identifying conver-
gent topography vs. potential habitat), but awareness
of the interplay between TO filters and its implica-
tions provide a toolset capable of generating varied
representations of the drainage structure of a water-
shed. Exploring multiple levels of threshold restric-
tiveness and thus generating drainage networks with
varying degrees of drainage density also relate to sea-
sonal fluctuations in the wetted extent of the drai-
nage network, which can have useful implications for
modeling material flows and runoff upslope from
established channels through the watershed. For
instance, Blyth and Rodda (1973) monitored the

wetted channel length within a watershed in a humid
climate with seasonal variation for one year and
found that the length of first order channels varied
the most, followed by second and third order chan-
nels. Little change in wetted length occurred in
fourth order channels. The most restrictive method
(psi 92/phi 82) in this study generated third and
fourth order channels in FOR and URB with no com-
mission errors while the number of predicted first
order channels increased with decreasing restrictive-
ness (Table 1). The stability observed in higher orders
across predicted networks and the substantial varia-
tion exhibited by lower orders is consistent with
observed patterns of seasonal variation (Blyth and
Rodda 1973; Stanley et al. 1997).

Further, intermittent and ephemeral channels com-
prise the majority of first order channels in humid
regions and play an important role in nutrient and sed-
iment transport, biodiversity, land-water interactions,
and ecosystem services (Larned et al. 2010; Nikolaidis
et al. 2013; Acuña et al. 2014; Hill et al. 2014;
USEPA 2015; González-Ferreras and Barquı́n 2017).
Modeling variable drainage network densities more
accurately reflects ecological conditions and the effects
of climatic variation and change (Stanley et al. 1997),
and may highlight hydrologically sensitive portions of
the watershed with a more variable source area of run-
off generation (Hewlett and Hibbert 1967). This
dynamic nature of channels is missing from many
topographically based delineation techniques (Prance-
vic and Kirchner 2019) and widely used network

Technique  predicted channel heads
upslope of surveyed head

Technique predicted channel heads
downslope of surveyed head

FIGURE 6. Boxplots showing the distances between surveyed channel heads and TPs for each predicted network. Results are only shown for
predicted channel heads that had a corresponding matching surveyed channel head (i.e. FPs are excluded). The sample size in each method
can be found under TP in Table 1. Boxplot box bounds the 25% and 75% quantiles, solid line shows the median, and points indicate outliers.
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datasets (NHDPlus HR), thereby misrepresenting the
true extent of drainage networks. A large range of con-
tributing drainage areas measured upstream from the
field-surveyed networks in both this study and that of
Sofia et al. (2011) illustrate why alternative topo-
graphically based approaches to simply using drainage
area-based thresholds are necessary to capture these
processes more accurately in a variety of landscape set-
tings.

Challenges of Detecting Ephemeral Channel Heads

Across predicted networks, 31% of surveyed heads
in FOR (57/185) and 28% of surveyed heads in URB
(16/57) were never captured (yellow circles, Figure 7).
In both URB and FOR, all the heads captured with
the accumulation network were also captured with at
least one of the TO networks. The average length of
missed channels was 20 m in FOR and 11 m in URB.
Although shorter and less defined surveyed channels
were pruned, some remaining channels may still be
below the detection limit of a 1.8-m DEM. Only 5 of
the 57 missed channels in FOR and 4 of the 16
missed channels in URB were initially excluded from
the TWI filter, so the remaining missed channels
were not topographically distinct enough to be identi-
fied with TO. Eight of the missed channel heads in
FOR and seven in URB were described in the field as
marshy or groundwater seepage heads (Metes
et al. 2021). Most were captured with TWI alone but
also lacked the topographic definition required for
capture by TO (Figures 7b and 7d).

The challenge of representing subsurface processes
of channel formation with topographic data alone is
consistent with Hastings and Kampf (2014) and
Orlandini et al. (2011) and further illustrates the lim-
itations of the types of channels that can be mapped
with airborne lidar-derived DEMs. However, there
are improvements over the more conventional method
of using a fixed flow accumulation for identifying the
more established channels. Although the most restric-
tive TO network (psi 92/phi 82) had the highest omis-
sion error, it also had the lowest RMSE distance
between surveyed and predicted heads (Table 1). The
channels that were matched with this method were
primarily described in the field as defined channels
having clear or incised heads (Metes et al. 2021). The
omission error was also comparable to the accumula-
tion network, but the accumulation network also had
the largest RMSE distance. While the number of
omitted channels were similar, the difference in
RMSE between the accumulation and most restrictive
TO network illustrates the improved precision of
locating more defined channel heads by topographic
detection.

Previous studies have primarily conducted channel
head surveys in forested or less modified watersheds
(Orlandini et al. 2011; Julian et al. 2012; Clubb
et al. 2014; Hastings and Kampf 2014). In this study,
comprehensive surveys were conducted in both
forested and urban watersheds to capture the diver-
sity of channel head forms present. The field survey
in this study was expanded from the classic channel
head definition of concentrated flow within steepened
banks to include all ephemeral channels, and

(a)

(b)

(c)

(d)

A

B

C
D

FOR URB

EXPLANATION
Matched
Surveyed
Heads
Missed
Surveyed
Heads
USGS
Streamgage
Field
Network
Watershed
Boundary

FIGURE 7. Surveyed channel heads matched in at least one of the predicted networks (dark blue) and surveyed heads missed in all
networks (yellow). Field-derived networks are shown in light blue. Most channel heads missed by all methods were small offshoots or poorly
defined channels (b, d) rather than major tributaries. Head a shows a poorly defined channel that was matched in at least one method and

head c shows a matched head in the urban network originating just upstream of a culvert. Photographs by Daniel Jones, USGS.
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discrepancies between the openness networks
described here and others in the literature could be
due to differences in channel head definitions. For
example, Orlandini et al. (2011) and Clubb
et al. (2014) documented high sensitivity values when
comparing their delineation methods against tradi-
tional channel head survey data, suggesting more
false positives than false negatives. While a direct
performance comparison for capturing traditional
channel heads was out of the scope of this study, the
extension into the ephemeral portion of the network
resulted in omission error increases and a low sensi-
tivity. Ephemeral channels are not fixed features,
and this study demonstrates the challenges with
identifying the location of these features using fixed
topographic thresholds.

Management Implications

Identifying potential areas of runoff generation,
such as the swales, roads, and extension of channels
upslope from stormwater ponds in URB (Figure 5)
may provide a topographically based proxy for the
increased hydrologic efficiency commonly attributed to
impervious surfaces in urban systems (Corbett
et al. 1997; Jankowfsky et al. 2013; Jones et al. 2014;
Prancevic and Kirchner 2019). This information can be
applied to help managers identify locations where sedi-
ment, nutrients, and other contaminants may concen-
trate and enter streams during precipitation events
(Gellis et al. 2020). Including human constructed fea-
tures in the predicted networks would potentially pro-
vide a more efficient and highly dissected network
than more commonly used network representations
(e.g. NHDPlus HR). Similarly, the variable network
extents offered by the TO methods may provide a rep-
resentation of seasonal variations in network extents
for unmodified catchments. Therefore, accurate repre-
sentations of the more dynamic ephemeral portions of
a watershed are important for designing effective man-
agement and conservation plans (González-Ferreras
and Barquı́n 2017; Skoulikidis et al. 2017).

Considerations for Future Method Applications

Underlying limitations with topographic data, such
as DEM quality, vertical and horizontal accuracy,
and horizontal resolution, are important considera-
tions for applications in other watersheds. Topo-
graphic indices are sensitive to DEM processing and
DEM horizontal resolution due to controls exerted by
small-scale topography rather than hillslope position
in higher-resolution DEMs (e.g. less than 5 m resolu-
tion). For example, Walker et al. (2021) found various

flow direction algorithms and hydrologic correction
methods had an influence on estimating drainage
area upstream from gullies. Thomas et al. (2017)
found 0.25-m horizontal resolution DEMs tended to
over-predict runoff risk, and a horizontal resolution
of 1–2 m is more optimal for modeling hydrologically
sensitive areas in agricultural watersheds. The 1.8-m
DEMs used in the study presented here were on the
coarser side of this 1–2 m range, and they were
derived from quality level (QL) three lidar according
to the USGS 3D Elevation Program guidelines (Hei-
demann 2018). Most newly acquired lidar is QL two
or better (Heidemann 2018), so it may be worthwhile
to investigate how the techniques explored herein
behave with DEMs of differing horizontal resolution
and quality. DEMs finer than 1.8 m horizontal reso-
lution may capture the small, less defined channels
that were largely underrepresented across TO net-
works, but may cause higher commission errors
(Orlandini et al. 2011). Since the methods introduced
here use TWI, which is derived from a D8 flow direc-
tion grid, other flow direction algorithms may influ-
ence the resulting TWI filter.

Land use could also be considered when selecting
an optimal channel delineation method (Passalacqua
et al. 2012). The best TO thresholds in FOR were not
the same as URB, and even the most restrictive TO
thresholds resulted in an over-prediction of the
stream network in URB. The geomorphic characteris-
tics of false channels in URB networks are difficult to
distinguish from natural stream channels, so reliance
on direct feature detection-based methods will cap-
ture them as well (Sangireddy et al. 2016). The same
criteria for identifying channel heads in FOR were
applied to URB. For channels that terminated at
engineered features (e.g. pipe outfalls, detention
basins), heads were surveyed at the intersection of
the channel and engineered feature. Many of the
commission errors in URB were along swales and
roads that behave like ephemeral channels; therefore,
it would be valuable to consider a survey that
includes stormwater infrastructure to assess commis-
sion errors more accurately. If excluding urban
infrastructure from the drainage network is a desired
outcome, additional filters may need to be introduced,
such as buffering areas within a certain proximity to
impervious surfaces. However, additional runoff and
channel initiation factors such as climate, geology,
soil properties, land use, and both natural and
human-modified variations in topography may exhibit
varying controls across different settings (Mont-
gomery 1999; Julian et al. 2012; Bezerra et al. 2020),
so additional landscape metrics or filters introduced
to the methodology may not have universal applica-
tion. Testing this variability across multiple regions
was outside the scope of this study. The parameters
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used to delineate the highest ranked networks in
URB and FOR may be applicable to other headwater
watersheds in the Maryland Piedmont with similar
land use, but further analysis is required to assess
how each predicted network delineated from these
TO thresholds would perform in other regions.

Various TO thresholds were explored, and the per-
formance differed between watersheds. In the future,
it may be desirable to automate the selection of phi
and psi to produce the optimal network structure.
However, optimal structure may vary with intended
use (e.g. climate projections, management scenarios,
habitat selection) and could be the subject of inten-
sive study in and of itself. Furthermore, methods
tested in forested or relatively undisturbed water-
sheds are often assumed to be applicable to urban
watersheds. As illustrated in this study, the same
methods generate different results between urban
and forested watersheds, highlighting the need for
better methods to delineate urban drainage networks.

CONCLUSIONS

The purpose of this study was to explore the utility
of two topographic attributes, TWI and TO, to extract
the wet-weather portion of channel networks in both
a forested and urban environment. Extracted net-
works were compared against comprehensive field
surveys of ephemeral and perennial channel heads in
each watershed, and against two commonly used
drainage network representations (the NHDPlus HR
and a flow accumulation threshold) to evaluate per-
formance. Many ephemeral channels lacked strong
topographic signatures and were thus missed in all
the delineation methods evaluated, highlighting chal-
lenges of remotely mapping the ephemeral portion of
a stream network with high-resolution lidar-derived
DEMs. The topographic attributes used to map the
channel network did not detect small ephemeral
channels without the inclusion of false channels. But
the location of these ‘false’ channels can be informa-
tive to watershed managers to highlight likely runoff
patterns. There were clear improvements in predicted
stream networks delineated using the TO method
introduced in this study compared with more simplis-
tic NHDPlus HR or flow accumulation methods, espe-
cially for delineating drainage networks that better
represent true drainage density and ephemeral chan-
nel locations. The method introduced here highlights
the utility of TO for detecting stream channels.

Results also highlight the challenges of applying
methods developed in less modified landscapes to
urban systems with altered surface hydrology.

Differences between the urban and forested water-
shed highlight the importance of considering the
function of stormwater features, their connection to
the wet-weather portion of a stream network, and
how various definitions and delineation techniques of
the network change the appearance of hydrologic con-
nectivity within an urban watershed.
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