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Abstract

Learning to solve long horizon temporally extended tasks
with reinforcement learning has been a challenge for several
years now. We believe that it is important to leverage both the
hierarchical structure of complex tasks and to use expert su-
pervision whenever possible to solve such tasks. This work
introduces an interpretable hierarchical agent framework by
combining planning and semantic goal directed reinforce-
ment learning. We assume access to certain spatial and hap-
tic predicates and construct a simple and powerful semantic
goal space. These semantic goal representations are more in-
terpretable, making expert supervision and intervention eas-
ier. They also eliminate the need to write complex, dense re-
ward functions thereby reducing human engineering effort.
We evaluate our framework on a robotic block manipulation
task and show that it performs better than other methods, in-
cluding both sparse and dense reward functions. We also sug-
gest some next steps and discuss how this framework makes
interaction and collaboration with humans easier.

Introduction

Deep reinforcement learning has been successful in many
tasks, including robotic control, games, energy manage-
ment, etc. (Mnih et al 2013}, [Schulman et al|2017; Warnell
let al|2018). However, it has many challenges, such as ex-
ploration under sparse rewards, generalization, safety, etc.
This makes it difficult to learn good policies in a sample ef-
ficient way. Popular ways to tackle these problems include
using expert feedback (Christiano et al.[2017; [Warnell et al.|
2018}, [Prakash et al|[2020) and leveraging the hierarchical
structure of complex tasks. There is a long list of prior work
which learns hierarchical policies to break down tasks into
smaller sub-tasks (Sutton, Precup, and Singh|1999; |Fruit and
Lazaric [Bacon, Harb, and Precup|2017; [Prakash et al.
2021). Some of them discover options or sub-tasks in an un-
supervised way. On the other hand, using some form of su-
pervision, either by providing details about the sub-tasks,
intermediate rewards or high-level guidance is a recent ap-

proach (Prakash et al|[2021) (Jiang et al]|2019) (Le et al]
2018)

This paper presents a framework for solving long-horizon
temporally extended tasks with a hierarchical agent frame-
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Task: Bring all blocks close to each other

1. Pick up green block
3. Pick up red block

2. Move green block close to blue block
4. Move red block close to blue block

Figure 1: Hierarchical agent: The figure shows a scenario
where all the 3 blocks are placed far away from each other.
The task is to bring all the blocks close to each other. This
can be broken down into four subtasks as shown in the bot-
tom. After the low-level policy of the agent executes all four
subtasks, we get the desired final configuration where all
three block are close to each other.

work using semantic goal representations. The agent has two
levels of control and the ability to easily incorporate expert
supervision and intervention. The high-level policy is a sym-
bolic planner (Alkhazraji et al.[2020) which outputs a plan in
terms of sub-goals or macro-actions given an initial state and
final goal state. The low-level policy is a goal-conditioned
multi-task policy which is able to achieve sub-goals where
these goals are specified using a semantic goal representa-
tion. The semantic goal representation is constructed using
several predicate functions which define the behavior space
of the agent. This representation has many benefits because
it is much simpler than traditional state-based goal spaces as
shown in (Akakzia et al[2020). It is also more interpretable
and easier for an expert to intervene and provide high-level
feedback. For instance, given a high level goal, the planner
finds a plan which can be observed by the human expert. It
is easy to make small changes to the plan by adding sub-
goals and changing the sequence if necessary. This frame-
work also enables possibilities for collaboration. Due to the
interpretability and ease of modifying the high-level plan,
sub-tasks can be divided among agents and humans. This is
not possible in other hierarchical agent frameworks where




the high-level planner is also a black-box.

We evaluate the framework using a robotic block ma-
nipulation environment. Our experiments show that this ap-
proach is able to solve different tasks by combining grasp-
ing, pushing and stacking blocks. Our contributions can be
summarised as follows:

* A hierarchical agent framework where the high-level pol-
icy is a symbolic planner and the low-level policy is
learned using semantic goal representations.

 Evaluation on complex long horizon robotic block ma-
nipulation tasks to show feasibility and sample efficiency

* A discussion showing the benefits of this framework in
terms of interpretability and ability to interact and col-
laborate with humans.

Methods

In this section, we present a framework for solving long
horizon temporally extended tasks. We first describe the
problem statement with the environment used in our ex-
periments. Then we describe the semantic goal represen-
tation and low-level policy training. Finally, we show how
the high-level policy is obtained using the STRIPS planner
(Fikes and Nilsson||1971} |Alkhazraji et al.[|2020) to tie ev-
erything together and solve long horizon tasks.

Problem statement

We aim to learn robotic control tasks in the Fetch Manipula-
tion environment built on top of Mujoco (Todorov, Erez, and
Tassa||2012) which consists of a robotic arm with a gripper
and square blocks. The observation space consists of the arm
state including positions and velocities, the gripper state, and
the Cartesian positions of the blocks. The robot can pick up,
push and move the blocks. We built several tasks in this do-
main. We have the ability to initialize the scene with dif-
ferent configurations, like the block positions and robot arm
and gripper positions.

Semantic goal representations

We represent goals using a list of semantic predicates which
are determined based on domain knowledge. In our case we
consider three spatial predicates - close, above, in-bin and
one haptic predicate - holding. As demonstrated by (Akakzia
et al.|[2020), these predicates define a much simpler behav-
ior space instead of the traditional more complicated state
space. This makes it easier to represent goals and also de-
fine a curriculum as we will discuss in the next section. And
more importantly, this representation eliminates the need to
write reward functions for every desired behavior.

All these predicates are binary functions applied to
pairs of objects. The close predicate is order-invariant.
close(o1,02) denotes whether objects (in our case blocks)
01 and o5 are close to each other or not. The above predicate
is applied to all permutations of objects. above (o1, 02) is use
to denote if 0y is above o0,. The in-bin predicate is used to
denote whether the block is inside the bin. Finally, holding
is used to denote if the robot arm is holding an object using
holding(o). With these predicates we can form a semantic
representation of the state by simply concatenating all the
predicate outputs as shown in Fig 3]
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Figure 2: The low-level policy receives semantic goals and
is trained to execute primitive actions in the environment to
achieve the goal. The set of sub-goals is curated by a hu-
man and can also involve a curriculum. To perform high-
level tasks during execution, a human can specify a goal
and the high-level planner outputs a plan, a sequence a sub-
goals. A human can observe this plan and intervene/modify
if required. The low-level policy achieves these sub-goals
sequentially to perform the task.

Training the low-level policy

The low-level policy is trained to perform several individ-
ual sub-tasks, which can eventually by used to solve longer
high-level tasks. We use Hindsight experience replay (HER)
(Andrychowicz et al.||2017) along with Soft-Actor critic
(SAC) (Haarnoja et al.|[2018)) to train the goal conditioned
policy. Goals are sampled from a set of configurations based
on the environment where an expert can be used to option-
ally create a curriculum. The semantic goal representation
makes is easier to do both of these things. The agent ex-
plores the environment to collect experience and updates its
policy using SAC. As stated earlier, there is no need to write
reward functions for each desired behavior. A reward can
be generated by checking whether the current semantic con-
figuration matches the goal configuration. The sub-goals for
the two environments we use are listed in Table [Tl
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Figure 3: Semantic Predicates: This figure shows how the se-
mantic goal representations are created using the predicates.
We consider three predicates holding, close, above as shown.
All three predicates are used in the 2 blocks environment. In
the 3 blocks environment, we only use the holding and close
predicates to simplify the problem. In the desk cleanup en-
vironment, we use the holding and in-bin predicates. The
above figure shows examples of a few configurations.

High-level planner

We use a STRIPS planner (Fikes and Nilsson| 1971} |Alk-
hazraji et al. |2020) as a high-level policy which provides
sub-goals to solve the task. The STRIPS planner uses
an encoding called Planning Domain Definition Language
(PDDL) (Aeronautiques et al.||1998)) to represent the plan-
ing task. This planner can be defined using a 5 tuple (O, P,
Si, Sg¢, A). Here O represents the objects of interest, P is the
predicates, .S; and S, represent the initial and goal states re-
spectively, and A represents the action space, in this case the
high level macro-actions.

The planner accepts an initial state, S;, and goal state,
S, represented using objects and predicates. It then uses a
search algorithm like BFS, A* etc. to find a plan to reach .S,
using actions A. The plan which is in PDDL is then trans-
lated to semantic goals which the low-level policy under-
stands by Plan2Goals module, a function which converts
the PPDL output to predicates and semantic goals. We ex-
ecute the low-level policy for a fixed number of steps N,
before switching the control back to the high-level sketch
and execute the next sub-policy.

2 Blocks 3 Blocks Desk Cleanup
Pick X Pick X Pick X
Put X near Y Put X near Y Put X on Table

Put X away from Y Put X away fromY Put X in Bin
Put X on top of Y

Table 1: Low-level policy is trained on the above set of se-
mantic goals. The semantic goal representation is built us-
ing the predicates as described in the previous section. For 2
blocks version, X/Y can be block of color [red, green]. For
the 3 blocks version it can be of color [red, green, blue]

Experiments
Environment setup and tasks

We design two versions of the Fetch manipulation environ-
ment with 2 and 3 blocks.

2 blocks environment Here we have the robotic arm as
mentioned earlier and two blocks: red and green. We con-
sider all three predicates for this version, close, above and
holding. We design 3 high-level tasks in this environment
(1) Move blocks close: Here the task is initialized with the 2
blocks far away from each other. The goal is to bring them
close to each other. (2) Move blocks apart: Here the task
is initialized with blocks close to each other. The goal is to
move them apart. (3) Swap blocks: Here the task is initial-
ized with blocks on top of each other in random order. The
goal is to swap the order.

3 blocks environment Here we have the robotic arm and
3 blocks: red and green and blue. For this version, we only
consider 2 predicates, close and holding. We design 2 high-
level tasks in this environment (1) Move blocks close: Here
the task is initialized with all the 3 blocks far away from each
other. The goal is to bring them close to each other. (2) Move
block apart: Here the task is initialized with blocks close to
each other. The goal is to move them apart.

Desk cleanup environment Here we have a robotic arm
and several blocks on the desk. The desk also a bin and the
blocks are places randomly on the desk. The task is to clean
up the desk and place all the blocks inside the bin. We use 2
predicates here, holding and in-bin. We have 3 versions with
2, 3 and 4 blocks.

Baselines

1. Flat semantic: Here the agent has a single level policy but
the goals are still represented using the semantic goal rep-
resentations. There is no need to write reward functions for
this version. 2. Flat Continuous: Here the goals are repre-
sented using the actual block positions of the desired config-
uration. The dense reward function is based on the distance
between current and desired block locations and hence it is
a dense reward function.

Results

We calculate task completion % for all the tasks using the
fully trained agent. We train each agent for 2M steps and
roll out 50 episodes using the trained policy. The values are
an average of runs from three different seeds.
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Figure 4: This figure shows all the tasks we used in our experiments. The top row shows examples of random initial states and
bottom row shows the goal states. MC-2: Move 2 blocks closer, MA-2: Move 2 blocks away, Swap-2: Swap 2 stacked blocks,
MC-3: Move 3 blocks closer, MA-3: Move 3 blocks away, DC-2 to DC-4: Desk clean up with 2, 3 and 4 blocks

Tasks
Method MC-2 MA-2 Swap-2 MC-3 MA-3 DC-2 DC-3 DCH4
Flat Semantic 10% 80% 0% 5% 10% 30% 0% 0%
Flat Continuous 5% 10% 0% 0% 0% 0% 0% 0%

Hierarchical Semantic (Ours) 95% 100% 92% 95% 96% 94% 91% 90%

Table 2: Task completion % This table shows the task completion % for our experiments. The tasks names are explained
in Figure 4. As seen, our method consistently outperforms all the other baselines. Our method is the only one which can
consistently solve all the three tasks. We train each agent for 2M steps and roll out 50 episodes using the trained policy. The

values are an average of runs from three different seeds.

TablelZl show the results for the 2 blocks, the 3 blocks and
the desk cleanup environment. All the models are trained for
2M steps. As shown in the table, our method is able to solve
all the eight high-level tasks. All the other baselines struggle
to solve tasks. This is consistent across all the tasks. In the
move blocks apart task represented as MA-2, shown in table
the flat semantic is able to learn the task but we noticed
that it learns an aggressive policy where it knocks one of the
blocks away from the table which not a desirable behavior.
Whereas our model gently picks a block and moves is away
from the other block.

To summarize, all the other baselines with and without
dense reward signals fail to learn a good policy. We also
performed experiments where we let the policy run for SM
steps and the baselines were unable to solve the task. This
shows that using semantic predicates in the low-level policy
and symbolic planner as the high-level policy truly helps to
solve complex long-horizon tasks.

Discussion and Conclusion

In this paper we show that combining a symbolic planner
and a low-level goal conditioned reinforcement learning pol-
icy is indeed a promising approach to build hierarchical
agents. As the high-level planner and low-level policy com-
municate using semantic predicates, the framework is very
interpretable. This also makes it easier for a human to inter-
vene at the high-level to provided appropriate sub-goals in
case the plan needs to be modified. If the environment allows
multiple actors, this framework can also enable collabora-
tion by dividing sub-tasks among them. For instance, con-
sider the desk cleanup task with 4 blocks scattered around

the table. The planner outputs a plan with 8 sub-tasks to
clean the desk. It is easy to detect independent sub-tasks -
pickup red block and place in bin, pickup green block and
place in bin etc. Such sequences can be assigned to a hu-
man or a second agent and the planner can re-plan which is
inexpensive and fast.

There are several directions in which this framework can
be extended. Currently, the human has to communicate the
goals using the predicates which is already much easier than
using raw states. But this could be improved by building a
language interface which can translate natural language sen-
tences to semantic goals and PDDL for the planner. With
the current state space, we assumed access to predicate func-
tions. But with more complex observation like images, one
can learn these predicate functions using a small amount of
labelled data. To further demonstrate the capabilities of the
framework we plan to perform experiments on more com-
plex environments, real robots and qualitative analysis using
human subjects. This work is a step towards simple and in-
terpretable hierarchical agents and we hope to build upon it.
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