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The computation of upper tolerance limits is investigated for the zero-inflated
lognormal distribution and the zero-inflated gamma distribution, with or with-
out covariates. The methodologies investigated consist of a fiducial approach and
bootstrap approaches, including the bias corrected and accelerated bootstrap
and a bootstrap-calibrated delta method. Based on estimated coverage probabil-
ities, it is concluded that overall, the bootstrap-calibrated delta method is to be
preferred for computing the upper tolerance limit. Two applications are also dis-
cussed; the first application is on the analysis of data on health care expenditures,
and the second application is on testing the safety of body armor.
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1 INTRODUCTION

The lognormal distribution and the gamma distribution are widely used for the modeling and analysis of positively skewed
data that are also positive. In some practical applications, the sample will include a certain proportion of zeros, in addition
to positive values arising from skewed distributions such as the lognormal and the gamma. A common scenario where
zeros are expected is in the context of workplace exposure assessment studies where the zeros correspond to nonexposed
workers, and the positive values represent exposure measurements that are typically skewed. The proportion of zeros
is an unknown parameter since the population proportion of nonexposed workers is usually unknown. A distribution
that includes zeros in addition to positive values is referred to as a zero-inflated distribution. Such a distribution is also
commonly encountered in the context of health care expenditures since a certain proportion of patients may not incur any
cost during a given period. A problem that has been rather well addressed in the literature for the zero-inflated lognormal
distribution is inference on the mean, and various solutions have been proposed and numerically compared, including
solutions based on a fiducial approach; see Hasan and Krishnamoorthy1 for further background information and for the
fiducial approach for inference on the mean and percentiles of the distribution.

This article is on the zero-inflated lognormal and gamma distributions and addresses the problem of obtaining upper
tolerance limits, that is, upper confidence limits for specific percentiles; see Krishnamoorthy and Mathew.2 Our setup
is as follows. Let Y be a nonnegative random variable corresponding to a zero-inflated population, that is, Y assumes
positive continuous values along with a positive mass at zero. If 𝜋 is the proportion of zeros in the population, then the
distribution function of Y , say G(y), is given by

G(y) =

{
𝜋 for y = 0
𝜋 + (1 − 𝜋)F(y) for y > 0,

(1)
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where F(y) is the distribution function of Y when it is positive. It is possible that the distribution function F(y), as well
as the proportion 𝜋 will depend on covariates. When the log-normal distribution of Y depends on covariates, we shall
assume the log-normal regression model, that is, the mean of ln(Y ) has a linear regression structure. When the gamma
distribution for Y depends on covariates, we model using a log-link function for the mean. That is, the logarithm of the
mean has a linear regression structure; see Lawless.3

We shall investigate the construction of upper tolerance limits in the set up (1) when the distribution function F(y)
corresponds to either the lognormal or the gamma distribution. In the absence of covariates, the tolerance limit problem
is addressed in Hasan and Krishnamoorthy1 for the zero-inflated lognormal distribution. The authors conclude that a
solution based on the fiducial approach, and an approximate solution that is also easy to compute, are both satisfactory.
Our goal is to compute upper tolerance limits when the zero-inflated distributions also depend on covariates, as men-
tioned earlier. For the zero-inflated lognormal distribution, in addition to the fiducial approach, we shall also pursue a
bias corrected and accelerated bootstrap (BCa), and also a bootstrap-calibrated delta method, and compare them based
on estimated coverage probabilities. Here the bootstrappong is done parametrically. The delta method, being based on
asymptotic normality, is not expected to maintain the coverage probability unless the sample size is large. The bootstrap
calibration is meant to provide a correction so that accurate coverage probabilities can be expected when the sample size
is not large. In the absence of covariates, the fiducial approach turned out to be quite satisfactory for the zero-inflated log-
normal distribution, agreeing with the conclusion in Hasan and Krishnamoorthy.1 In the same scenario, and also for the
set up with covariates, the fiducial approach turned out to be quite satisfactory. In addition, the bootstrap-calibrated delta
method also provided satisfactory results; however, the BCa bootstrap may fall short with respect to coverage probabilities.

For the zero-inflated gamma distribution, we explored two bootstrap approaches and the bootstrap-calibrated delta
method in order to compute an upper tolerance limit. If 𝜉p denotes the pth percentile of the zero-inflated gamma distri-
bution, so that the upper tolerance limit is an upper confidence limit for 𝜉p, we investigated the BCa bootstrap for the
distribution of 𝜉p, and for the distribution of 𝜉p∕𝜉p, where 𝜉p is the maximum likelihood estimator of 𝜉p. Bootstrapping the
latter quantity is considered in Zhang and An.4 Numerical results showed that the latter provides better coverage proba-
bilities, but the coverages can still be somewhat unsatisfactory in some cases. On the other hand, the bootstrap-calibrated
delta method continues to provide satisfactory coverages whether or not covariates are present. For the zero-inflated
gamma distribution it maybe possible to explore the fiducial approach after applying a cube-root normal approxima-
tion, as done in Krishnamoorthy and Wang5 and Krishnamoorthy et al;6 however, we have not pursued this approach
here.

After discussing the methodology and presenting the numerical results on the coverage probabilities, we have applied
the proposed methods to two examples. The first example is taken from Callahan et al7 and is on the diagnostic test charges
for a group of 40 patients. Our second example deals with the analysis of a set of body armor data where the zero-inflated
gamma distribution with covariates is appropriate. Data analysis based on the two examples has also brought out the
differences among the competing methods for computing upper tolerance limits. Overall, it appears that the fiducial
approach and the bootstrap-calibrated delta method provide satisfactory methodology for computing upper tolerance
limits for the zero-inflated distributions considered, with or without covariates.

2 UPPER TOLERANCE LIMITS FOR THE ZERO-INFLATED LOGNORMAL
DISTRIBUTION

Let Y be a random variable following the zero-inflated lognormal distribution, and suppose we have a random sample of
size n from the distribution. Among the n observations in the sample, let n0 denote the number of zero observations. If 𝜋
denotes the unknown proportion of zero observations in the population, we then have n0 ∼ Binomial(n, 𝜋). For Y > 0, Y
follows a log-normal distribution. Here we assume that 𝜋 does not depend on covariates.

2.1 Zero-inflated log-normal distribution without covariates

We note that when Y > 0, W = ln(Y ) ∼ N(𝜇, 𝜎2). Let 𝜉p denote the pth percentile of the distribution. Here it is assumed
that 𝜋 < p. Then we have 𝜉p = 𝜇 + z[(p−𝜋)∕(1−𝜋)]𝜎, where z𝛾 denotes the 100𝛾th percentile of the standard normal distribution.
We want to compute a 100(1 − 𝛼)% upper confidence limit for 𝜉p. We shall first explain the fiducial approach very briefly,
omitting the details which are available elsewhere; see, for example, Hasan and Krishnamoorthy.1
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Let Y1, Y2, … , Yn denote n independent observations from the zero-inflated lognormal distribution, and let let n0
denote the number of zero observations. Thus when Yi > 0, Wi = ln(Yi) ∼ N(𝜇, 𝜎2). Let W and S2 denote the mean and
variance among the Wis, and let w and s2 denote the corresponding observed values. Then a set of approximate fiducial
quantities for 𝜋, 𝜇, and 𝜎, say �̃�, �̃�, and �̃�, respectively, are given by

�̃� = Beta
(

n0 +
1
2
,n − n0 +

1
2

)
�̃� = w + Z1

U∕
√

n − n0 − 1
s√

n − n0

�̃�2 = (n − n0 − 1)s2

U2 , (2)

where Z1 ∼ N(0, 1) is independent of U2 ∼ 𝜒2
n−n0−1, and𝜒2

r denotes the chi-square distribution with df= r. An approximate
fiducial quantity for 𝜉p, say 𝜉p is then given by

𝜉p = �̃� + z[(p−�̃�)∕(1−�̃�)] �̃�. (3)

The 100(1 − 𝛼)th percentile of 𝜉p, computed after keeping the observed data fixed, gives the required upper tolerance
limit for the zero-inflated lognormal distribution.

We shall now discuss the implementation of a bootstrap-calibrated delta method for computing the upper tolerance
limit, that is, an upper confidence limit for 𝜉p. We note that the implementation of the delta method requires the com-
putation of the derivatives of 𝜉p = 𝜇 + z[(p−𝜋)∕(1−𝜋)]𝜎 with respect to 𝜋, 𝜇, and 𝜎. However, there is no analytic form for the
derivative with respect to 𝜋. We computed all the required derivatives numerically using the numderiv package in R (2015).
It turned out that the delta method based upper tolerance limit had coverages below the nominal level, implying that in
order to get a coverage probability close to 1 − 𝛼, the nominal level to be used has to be more than 1 − 𝛼. We estimated the
required nominal level by the bootstrap, resulting in a bootstrap-calibrated solution. The following algorithm summarizes
the steps required to obtain the bootstrap-calibrated upper tolerance limit:

Algorithm 1

1. Based on the given sample from the zero-inflated log-normal distribution, estimate the MLEs of 𝜋, 𝜇 and 𝜎, denoted
as �̂�, �̂� and �̂�, respectively. Furthermore, let 𝜉p = �̂� + z[(p−�̂�)∕(1−�̂�)] �̂� denote the MLE of 𝜉p = 𝜇 + z[(p−𝜋)∕(1−𝜋)]𝜎, and let SE(𝜉p)
denote its asymptotic standard error, computed by the delta method.

2. Generate B parametric bootstrap samples (Y∗
1j,Y∗

2j,… .,Y∗
nj), j= 1, 2,… , B, from the zero inflated log-normal distribution

with the estimated parameters �̂�, �̂�, and �̂�. Compute the MLEs of 𝜋, 𝜇, and 𝜎 from the jth bootstrap sample, and denote
them as �̂�∗

j , �̂�∗
j , and �̂�∗

j , respectively.
3. Let 𝜉∗pj denote the MLE of 𝜉p computed using the jth bootstrap sample, j = 1, 2, . . . ., B. Also let SE(𝜉∗pj) denote its

asymptotic standard error.
4. For a grid of values of 1 − 𝛼∗, and for j = 1, 2, . . . ., B, let 𝜉∗pj + z1−𝛼∗SE(𝜉∗pj) be an upper confidence limit for 𝜉p based on

a nominal confidence level of 1 − 𝛼∗.
5. For each 1 − 𝛼∗, compute the proportion of the B upper confidence limits obtained in step 4, which exceeds the MLE

𝜉p of 𝜉p.
6. Choose a value of 1 − 𝛼∗, say 1 − �̂�, so that the above proportion is equal to 1 − 𝛼.
7. Now go back to the original sample, and compute the upper confidence limit for 𝜉p based on a nominal confidence

level of 1 − �̂�; the upper confidence limit is given by 𝜉p + z1−�̂�SE(𝜉p).

In addition to the fiducial solution and the solution based on the bootstrap-calibrated delta method, we also considered
the BCa bootstrap for the interval estimation of 𝜉p. Later we shall assess the performance of the resulting upper tolerance
limits based on their estimated coverage probabilities.

2.2 Zero-inflated log-normal distribution with covariates

Next we consider the model with covariates. However, we proceed under the assumption that the probability 𝜋 for an
observation Y to be zero is free of covariates. Furthermore, in the presence of covariates, we assume that the positive
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values of Y follow a log-regression model. In other words, for Y > 0, we assume

ln(Y ) ∼ N(x′𝜷, 𝜎2), (4)

where x is a q × 1 covariate vector, and 𝜷 is an unknown parameter vector. We shall once again consider a sample of
size n that includes n0 observations equal to zero. Let xi (i = 1, 2, . . . ., n − n0) denote the values of the covariate vector
corresponding to the n − n0 non-zero values in the sample, and let X be an (n − n0) × q matrix whose ith row is x′

i . Under
the model (4) for the non-zero observations, let �̂� denote the least squares estimator of 𝜷 and S2 denote the residual mean
square, where we assume that the matrix X has rank q. Furthermore, let �̂�obs and s2 denote the observed values of �̂� and
S2, respectively. Approximate fiducial quantities for 𝜷 and 𝜎2, say �̃� and �̃�2, respectively, can be obtained similar to the
fiducial quantities given in the previous subsection. These are given by

�̃� = �̂�obs −
√

n − n0 − q s
U
(X ′X)−1∕2z and �̃�2 = (n − n0 − q)s2∕U2,

where z = 1
𝜎
(X ′X)1∕2(�̂� − 𝜷) ∼ N(0, Iq) and U2 = (n − n0 − q)S2

𝜎2 ∼ 𝜒2
n−n0−q. (5)

Suppose an upper tolerance limit is required for the zero-inflated log-regression model at a specified covariate vector
x0. The pth percentile of this distribution is given by 𝜉p = x′

0𝜷 + z[(p−𝜋)∕(1−𝜋)]𝜎. A fiducial quantity for 𝜉p is given by

𝜉p = x′
0�̃� + z[(p−�̃�)∕(1−�̃�)] �̃�, (6)

where �̃� and �̃� are given in Equation (5) and �̃� is given in Equation (2). The 100(1 − 𝛼)th percentile of 𝜉p gives the required
upper tolerance limit.

3 ZERO-INFLATED GAMMA DISTRIBUTION

We now consider the case of the zero-inflated gamma distribution, that is, the non-zero observations come from a gamma
distribution. Furthermore, when the gamma distribution depends on covariates, we assume a log-link function for the
gamma mean, that is, the natural logarithm of the mean has a linear regression structure; see Farewell and Prentice,8
Manning et al,9 and Tu.10 We note that there is no analytic expression for the percentiles of the distribution, so the com-
putations have to be carried out numerically. We have derived upper confidence limits for the pth percentile 𝜉p using the
BCa bootstrap for the distribution of 𝜉p, and also bootstrapping the distribution of 𝜉p∕𝜉p, where 𝜉p is the MLE of 𝜉p; the
latter bootstrap approach is used in Zhang and An.4

4 NUMERICAL RESULTS

In this section, we report numerical results on the estimated coverage probabilities of the upper confidence limits for 𝜉p in
order to assess the accuracy of the proposed solutions. All coverage probabilities are reported for p = 0.95, and computed
using 5000 simulated samples from the respective distributions. Furthermore, wherever bootstrapping is involved in our
simulations, we have used 300 bootstrap samples. We recall that the bootstrapping is done parametrically. Additionally,
for implementing the fiducial approach, we generated 50 000 values of the relevant fiducial quantity.

We start with the log-normal distribution. Table 1 gives the coverage probabilities under the model without covariates.
The coverage probabilities are reported for the upper confidence limits based on the BCa bootstrap applied to the MLE
𝜉p, the fiducial approach, and the bootstrap-calibrated delta method, for two choices of the lognormal parameters: 𝜇 =
2.1, 𝜎 = 1 and 𝜇 = 3.5, 𝜎 = 3.

When 𝜇 = 2.1 and 𝜎 = 1, all the three approaches appear to be satisfactory in terms of maintaining the coverage proba-
bility. However, for the parameter choice 𝜇 = 3.5, 𝜎 = 3, the performance of the BCa bootstrap approach is not satisfactory;
the coverage probabilities are somewhat less than the nominal level. In the same set-up, the bootstrap-calibrated delta
method also results in poor coverage probability when the sample size is small (n = 20); the coverage probabilities are
more satisfactory in the other cases. The fiducial approach exhibits satisfactory performance in all scenarios considered
for simulation. The satisfactory performance of the fiducial approach is already noted in Hasan and Krishnamoorthy.1
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T A B L E 1 Estimated
coverage probabilities of the
95% upper confidence limits for
the 95th percentile of the a
zero-inflated log-normal
distribution; (i) BCa bootstrap,
(ii) Fiducial approach, and (iii)
Bootstrap-calibrated delta
method

𝝁 = 2.1, 𝝈 = 1 𝝁 = 3.5, 𝝈 = 3

n 𝝅 (i) (ii) (iii) (i) (ii) (iii)

20 0.5 0.9450 0.9484 0.9474 0.8944 0.9456 0.9062

50 0.3 0.9422 0.9500 0.9448 0.9352 0.9488 0.9374

50 0.5 0.9496 0.9476 0.9452 0.9298 0.9474 0.9404

80 0.2 0.9510 0.9520 0.9474 0.9310 0.9520 0.9440

80 0.3 0.9426 0.9468 0.9444 0.9418 0.9408 0.9424

80 0.4 0.9480 0.9480 0.9456 0.9430 0.9464 0.9456

80 0.5 0.9514 0.9482 0.9470 0.9310 0.9454 0.9470

80 0.6 0.9472 0.9502 0.9472 0.9334 0.9524 0.9390

80 0.7 0.9468 0.9454 0.9504 0.9392 0.9484 0.9452

150 0.5 0.9504 0.9480 0.9468 0.9412 0.9440 0.9460

T A B L E 2 Estimated coverage
probabilities of the 95% upper
confidence limits for the 95th
percentile of a zero-inflated log-normal
regression corresponding to x = 0.25
and z = 1 in (7); (i) BCa bootstrap, (ii)
Fiducial approach, and (iii)
Bootstrap-calibrated delta method

𝝈 = 1 𝝈 = 3

n 𝝅 (i) (ii) (iii) (i) (ii) (iii)

100 0.4 0.9276 0.9336 0.9454 0.9312 0.9278 0.9406

100 0.5 0.9280 0.9296 0.9450 0.9368 0.9222 0.9394

200 0.4 0.9356 0.9408 0.9492 0.9414 0.9360 0.9438

200 0.5 0.9402 0.9340 0.9502 0.9426 0.9352 0.9504

We now consider a log-regression model for Y , given by

ln(Y ) ∼ N(2.1 + 1.4x − z, 𝜎2), (7)

where x takes the values 0, 0.25, 0.5, and 0.75 with equal frequency. Thus we consider sample sizes that are multiples of
four. Furthermore, when x = 0 or 0.5, we assume that z takes the value 0, and when x assumes the values 0.5 and 0.75, we
assume that z takes the value 1. Coverage probabilities are listed in Table 2 for the upper tolerance limits corresponding
to x = 0.25 and z = 1, and for the choices 𝜎 = 1 and 𝜎 = 3.

We note that in spite of the somewhat large sample sizes in Table 2, only the bootstrap-calibrated delta method provides
satisfactory coverages; both the BCa bootstrap and the fiducial approach seem to fall short. More extensive simulations
appear to be necessary before firm conclusions can be drawn.

Tables 3 and 4, respectively, provide estimated coverage probabilities under the gamma distribution without and with
covariates. In Table 3, the scale parameter is chosen as 1.2 and 0.1. The shape parameter was chosen as exp(−0.2) =
0.67032 and exp(0.2) = 1.491825. For the scenario with covariates considered in Table 4, we assume that the mean 𝜇 and
the probability 𝜋 both depend on covariates according to the following functions:

ln(𝜇) = 1.2 + 1.8x − z, logit(𝜋) = −1.09861 − 2.19722z, (8)

where the choices of x and z are as specified for the model (7). Furthermore, for Table 4, we have chosen the shape
parameter to be exp(0.2) = 1.491825. Three methodologies are considered in Tables 3 and 4 for computing an upper
confidence limit for 𝜉p: the BCa bootstrap, bootstrapping the distribution of 𝜉p∕𝜉p, and the bootstrap-calibrated delta
method. Here 𝜉p is once again the MLE of 𝜉p.

The results indicate that overall, the methodology based on bootstrapping 𝜉p∕𝜉p provides more accurate performance
compared to the BCa percentile bootstrap. However, the bootstrap-calibrated delta method appears to be the most accurate
methodology.
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T A B L E 3 Estimated coverage probabilities of the 95% upper confidence limits for the 95th percentile of a
zero-inflated gamma distribution; (i) BCa bootstrap, (ii) Bootstrapping 𝜉p∕𝜉p, and (iii) Bootstrap-calibrated delta
method

Shape Scale parameter = 1.2 Scale parameter = 0.1

n 𝝅 parameter (i) (ii) (iii) (i) (ii) (iii)

40 0.2 1.491825 0.9324 0.9394 0.9460 0.9214 0.9360 0.9452

40 0.3 1.491825 0.9236 0.9510 0.9464 0.9316 0.9362 0.9408

40 0.4 0.670320 0.9358 0.9302 0.9486 0.9232 0.9314 0.9448

40 0.4 1.491825 0.9206 0.9344 0.9462 0.9242 0.9298 0.9468

40 0.5 0.670320 0.9236 0.9304 0.9514 0.9222 0.9318 0.9434

40 0.5 1.491825 0.9106 0.9356 0.9478 0.9292 0.9398 0.9450

80 0.4 1.491825 0.9248 0.9400 0.9444 0.9388 0.9452 0.9472

80 0.5 1.491825 0.9316 0.9510 0.9476 0.9284 0.9430 0.9442

80 0.5 0.670320 0.9316 0.9396 0.9454 0.9400 0.9420 0.9418

80 0.6 1.491825 0.9286 0.9504 0.9458 0.9286 0.9432 0.9458

150 0.4 1.491825 0.9384 0.9410 0.9454 0.9374 0.9414 0.9424

240 0.4 1.491825 0.9410 0.9494 0.9506 0.9432 0.9376 0.9506

n z x (i) (ii) (iii)

100 1 0.25 0.9354 0.9412 0.9494

100 0 0.25 0.9310 0.9398 0.9452

200 1 0.25 0.9400 0.9474 0.9470

200 0 0.25 0.9398 0.9456 0.9486

T A B L E 4 Estimated coverage probabilities of the 95% upper
confidence limits for the 95th percentile of a zero-inflated gamma
distribution with shape parameter exp(0.2) and the covariates
specified in Equation (8); (i) BCa bootstrap, (ii) Bootstrapping 𝜉p∕𝜉p,
and (iii) Bootstrap-calibrated delta method

5 EXAMPLES

We shall present two examples where we apply our tolerance limit computation. The first example is on a health expen-
diture study reported in Callahan et al.7 The same dataset is also analyzed in Hasan and Krishnamoorthy,1 Tian,11 and
Zhou and Tu.12 A zero-inflated lognormal distribution is appropriate for these data. Our second example deals with the
analysis of a set of body armor data where the zero-inflated gamma distribution with covariates is appropriate.

For both the examples, we implemented the fiducial approach by generating 50 000 values of the fiducial quantity,
and bootstrap approaches (including the calibrated delta method) were implemented using 1000 parametric bootstrap
samples.

5.1 Health expenditure data

The data are from a study reported in Callahan et al7 and deal with diagnostic test charges for a group of 40 patients.
Among the 40 patients, 10 patients had no diagnostic tests performed at all, and incurred no costs; thus we have
zero-inflated data. The same example is also considered in Hasan and Krishnamoorthy,1 and earlier by Tian11 and Zhou
and Tu12 where a zero-inflated lognormal distribution is used to analyze the data. For this example, we have computed
an upper tolerance limit corresponding to p = 0.95 and 95% confidence level. Thus 95% or more of the patients in the
corresponding population will have their diagnostic test charges below such a tolerance limit, with 95% confidence.

Based on the data, the MLEs are �̂� = 6.8535, 𝜎2 = 1.8696, and �̂� = 0.25. The upper tolerance limits corresponding to
p = 0.95 and 95% confidence level are 15202.53 by the fiducial approach and 14217.27 by the bootstrap-calibrated delta
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T A B L E 5 Upper tolerance limits for the
body armor data set for the threat T1 when p =
0.95 and a 95% confidence level

Environmental Drop Bootstrapping Bootstrap calibrated

condition number 𝝃p∕𝝃 delta method

C1 1 14.222 14.512

C1 2 24.035 23.829

C1 3 8.475 8.543

C2 1 12.173 10.526

C2 2 20.991 21.052

C2 3 7.278 6.597

C3 1 21.674 21.656

C3 2 35.589 35.507

C3 3 12.425 12.976

method. Even though both approaches had satisfactory coverage probabilities, it turns out that the latter provides a smaller
upper tolerance limit.

5.2 A body armor example

In this example, the zero-inflated gamma distribution is applicable and covariates are present. The application deals with
the testing of body armor for stab resistance. For an overview of testing practices and background information on this
problem, we refer to the technical report by Cavallaro13 and to the documents from the National Institute of Justice,14,15

National Research Council,16,17 and the National Science Academy.18 The main purpose of the collection and analysis of
the relevant data is to assess the performance of new materials, or to evaluate the performance of an existing material
line, in order to ensure that there are no changes in the performance. The data consist of stab depths collected based on
established testing protocols. The response variable Y is a penetration depth associated with the different types of threat,
say X , when the threat penetrated the armor. If the threat did not penetrate the armor, then Y has a value of 0. The material
was tested against several different threats and environmental conditions to ensure that the armor was safe. We fit a
zero-inflated gamma regression model to analyze and compute the tolerance limits. The smaller the penetration depth is,
the safer the armor. Consequently smaller values of the upper tolerance limit are indicative of the armor being safe. Here
X represents covariates, and some details are provided later in the article. Armor testing based on upper tolerance limits
for binary response data is discussed in Zimmer et al.19 Due to the confidential nature of the application, the actual data
cannot be made available, and only brief details are given here.

To test the stab resistance, the penetration depth resulting from a simulated threat is recorded after it is dropped
onto the body armor. If the threat does not pierce the armor, then a value of zero is recorded. The data consisted of 124
data points collected based on three covariates: threat type, sample condition, and drop number. There were two types of
threats, labeled here as T1 and T2. The different threats used in this test are surrogates for an actual threat that would be
used. The samples were treated under three environmental conditions, labeled as C1, C2, and C3. Each of these conditions
are based upon governmental regulations to ensure that the armor maintains its effectiveness in all environments. Lastly
on each sample the threat was dropped three times, labeled as S1, S2, and S3; their placement was done at different
locations to ensure that the measurements are independent. These drops are also governed by regulations to ensure that
consistent testing is performed. The drop heights are regulated to ensure that the armor's stab resistance would provide
protection against the force from an actual attacker. We use a zero-inflated gamma regression model to analyze the data;
we assume that the proportion 𝜋 (for an observation to be zero) also depends on the covariates, and this is modeled using
logistic regression. If 𝜇 denotes the gamma mean, then the fitted regression models for 𝜇 and 𝜋 are given by

ln(𝜇) = 1.7808 + 0.2606T2 + 0.4941S2 − 0.5861S3 − 0.1252C2 + 0.4289C3
logit(𝜋) = −0.6233 + 1.693T2 − 3.3291S2 − 0.3326S3 + 1.448C2 − 2.318C3. (9)

The adequacy of the gamma regression model is assessed using the methodology given in Lin et al,20 and the goodness
of fit P-value from the Kolmogorov Smirnov test was 0.989 for the gamma regression. The goodness of fit was assessed
using a suitably modified version of the cumres function in the R gof package. Clearly, the model fit is excellent.
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Table 5 gives the upper tolerance limits based on bootstrapping the pivot statistic 𝜉p∕𝜉p, and based on the bootstrap
calibration of the delta method for the threat type T1, under different environmental conditions and drop numbers. Both
methods give comparable results. We also note that there are significant differences among the environmental conditions,
and also among the drop numbers. We see that the upper tolerance limit is the largest corresponding to the second drop
number, and smallest for the third drop number. Due to the confidential nature of the data, the reasons for the differences
noted cannot be explained here.

6 DISCUSSION

In this article, we have investigated various methodologies for computing upper tolerance limits for zero-inflated log-
normal and gamma distributions. The models considered include models without covariates and regression models with
covariates. For the zero-inflated lognormal distribution, the methodologies investigated consist of bootstrap approaches, a
fiducial approach, and a bootstrap-calibrated delta method. For the zero-inflated gamma distribution, the methodologies
investigated consist of bootstrap approaches and a bootstrap-calibrated delta method. The fiducial approach has found
numerous applications in the recent literature. We refer to Hannig21 for a detailed discussion of the approach. The concept
of a fiducial interval was introduced earlier in Weerahandi22 under the name generalized confidence interval. However,
for the present problems, based on estimated coverage probabilities, our recommendation is the fiducial approach and
the bootstrap-calibrated delta method; our overall recommendation is in favor of the the latter.

When performance in terms coverage probabilities is satisfactory, the upper tolerance limits can be compared based
on their expected values; it is certainly desirable to have smaller expected values. Based on the examples considered,
there is some indication that the bootstrap-calibrated delta approach may provide upper tolerance limits having a smaller
expected value, at least for the zero-inflated lognormal distribution. A detailed numerical study is necessary in order
to draw confirm conclusions. Here we have not undertaken such a numerical study. It should also be noted that the
bootstrap-calibrated delta method is applicable to other distributions, for example, a three-parameter gamma distribu-
tion. The method was indeed investigated in Zimmer et al23 for computing upper tolerance limits for a normal mixture
distribution, and the resulting solution exhibited satisfactory performance in terms of coverage probabilities.

R codes are available from the authors for computing the tolerance limits proposed in this article.
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