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Abstract

To date, the majority of studies using Magnetoencephalography (MEG) rely on
off-line analysis of the spatio-temporal properties of brain activity. Real-time
MEG feedback could potentially benefit multiple areas of basic and clinical re-
search: brain–machine interfaces, neurofeedback rehabilitation of stroke and
spinal cord injury, and new adaptive paradigm designs, among others. We have
developed a software interface to stream MEG signals in real time from the 306-
channel Elekta Neuromag R© MEG system to an external workstation. The signals
can be accessed with a minimal delay (≤ 45 ms) when data are sampled at 1000
Hz, which is sufficient for most real-time studies. We also show here that real-time
source imaging is possible by demonstrating real-time monitoring and feedback
of alpha-band power fluctuations over parieto–occipital and frontal areas. The in-
terface is made available to the academic community as an open-source resource.



1 Introduction

Off-line analysis of magnetoencephalography (MEG) data has been applied to a wide spectrum of
basic and clinical neuroscience questions (see e.g. [1, 2]). The ability to process and analyze MEG
data in real time would potentially open new opportunities for neuroscientific research and innova-
tive clinical applications. For example, adaptive paradigms (or optimal experiment designs [3, 4])
would benefit from the possibility of capturing MEG measurements in real time, e.g., to select the
most efficient stimulus type, or to determine which stimulus classes necessitate the collection of
more repetitions in order to increase classification accuracy in the context of a cognitive-state de-
coding task. Moreover, real-time neurofeedback could be used to train subjects to modulate some
specific spatial and dynamic features of their neural activity in the context of brain–machine in-
terface (BMI) applications. From a clinical standpoint, neurofeedback training may help promote
neuroplasticity to reinforce spared corticospinal pathways after stroke or spinal cord injury [5, 6].

While systems that use real-time feedback with different MEG machines have been previously de-
scribed [7, 8, 9, 10, 11], this work presents a software interface (“rtMEG”) designed to acquire
signals from an Elekta Neuromag R© device in real-time. It provides the following additional fea-
tures with respect to the software that was described previously [12]:

• This version of the software interface is more robust and is better-integrated into the stan-
dard MEG acquisition system. For example, it performs data acquisition using the set of
parameters specified through the regular acquisition software interface. Furthermore, data
are streamed with proper channel calibration and ordering. In the near future, users will
also have the option to stream the data with online signal-space projection (SSP) [13] noise
reduction being applied, while currently this transformation should be performed on the
client workstation.

• The rtMEG interface now writes data to the Fieldtrip buffer [14], instead of being inte-
grated into the BCI2000 pipeline. The Fieldtrip buffer consists of an open-source server
program that runs continuously, providing a shared memory buffer to which rtMEG writes
the data. While it was possible to stream the data out of BCI2000 in the previous imple-
mentation, that software was still required to run rtMEG. With the current implementation,
researchers have the freedom to use whatever solutions they favor by running the Field-
trip buffer implemented within rtMEG and using the code freely available online [15] to
read from the buffer. Moreover, researchers have the option to work with any of the Field-
trip tools used for off-line analysis in an on-line setting. Another advantage of using the
Fieldtrip buffer is the independence on the operating system. While the buffer has been
implemented within rtMEG, the user still has the option to run it externally under Win-
dows, MacOS, and Linux/Unix using the software provided by the Fieldtrip developers (in
contrast, BCI2000 is mostly run on Windows). Finally, the Fieldtrip buffer provides the
flexibility to interact with other commonly used software packages (BCI2000 [16], Brain-
stream [17], among others), and because the code to read from the buffer is freely available
online [15], researchers can easily integrate it to their own custom solutions.

• rtMEG can be modified and compiled using open source software.

It is important to note that although the rtMEG interface does not depend on BCI2000 anymore [12],
it is still able to interact with the latter. Indeed, BCI2000 can read from the Fieldtrip buffer either by
using the Fieldtrip buffer source module or the Remote Data Access streaming interface.

We describe the system setup and the tests that were performed to assess the delay in accessing the
data stream. We then show results regarding acquisition delays and illustrate the technique with real-
time source estimation in a neurofeedback experiment. We conclude with a discussion of several
scenarios where we foresee the rtMEG interface may prove useful.

2 Methods

The interface was developed to function in conjunction with the standard MEG acquisition, without
affecting the normal workflow. In a typical scenario (Fig. 1), a dedicated computer runs the main
acquisition software and saves the acquired data on the MEG filesystem. The rtMEG interface runs
on this acquisition workstation and operates in parallel with the standard acquisition software.



In a typical experimental setting, a separate computer controls stimulus delivery to the subject.
Stimuli may comprise multiple categories (auditory, visual, etc.). For synchronization, the stimulus
computer sends event-related trigger pulses through the parallel port to mark the onsets of stimuli in
the recorded files.

rtMEG writes data to a Fieldtrip buffer that can be either run by rtMEG itself, or hosted by any other
computer located in the same network as the acquisition computer (e.g. the stimulus computer). This
buffer can then be read using Matlab R© [18] (with Fieldtrip scripts) or another preferred solution
(see the code openly available on the Fieldtrip website [15]). Similarly, the computer reading from
the buffer can be the same as the computer hosting the buffer, or any other computer in the same
network.

Stimulus computer
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Stimulus computer

Acquisition computer

Stimulus computer
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buffer
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Figure 1: Illustration of a typical setup with rtMEG. The Acquisition computer controls the ac-
quisition, stores the data and runs the rtMEG interface. Another computer drives the experimental
paradigm by providing stimuli to the subject and sending trigger events that eventually go to the
MEG data file. The rtMEG interface writes data to the Fieldtrip buffer, which can be run by rtMEG
or by any other computer in the network. The application(s) reading from this buffer can run on the
stimulus computer or on any other computer connected in the network.

2.1 Details of implementation and distribution

In the usual setup, each Digital Signal Processor (DSP) unit manages 12 channels in the MEG ma-
chine, and packets comprising 28 samples per channel are sent by each DSP to the real-time com-
puter, which reorders and synchronizes the data and attaches metainformation, such as calibration
coefficients and sampling rate, to them. The Acquisition computer, which also runs rtMEG, receives
the data from the real-time computer. When using typical sampling rates (< 1.5 kHz), the data are
sent to the Acquisition computer in chucks of about 1 s, which corresponds to a considerable and
often unacceptable delay for any real-time application. However, rtMEG can optionally reduce the
size of the chunk, down to a lower bound of 28 samples, by re-configuring the real-time computer
and thereby substantially diminishing the average transit delay of the data.

The data received from the real-time computer are then stored in a local shared memory buffer that is
used by different Neuromag programs, such as the on-line visualization. rtMEG taps into this local
buffer, reads the data and writes them to a Fieldtrip buffer, which can then be easily read by several
different clients using an open-source format. This Fieldtrip buffer can be run by rtMEG itself in a
separate thread, or by a separate computer in the network.

rtMEG was written in C, and all network communication is done using TCP/IP. The source code
is made available to the research community under Gnu Public License (GPL) and stored in the
Fieldtrip source control repository. Documentation [19] has been written in the Fieldtrip Wiki.
Binary files for HP-UX and Linux platforms have also been provided for the users’ convenience.



2.2 Assessing delays to data access

Real-time MEG applications often rely on minimal system delays, and the rtMEG interface needs to
be carefully assessed in this respect. We measured the delay associated to complete feedback loop as
follows. We recorded 306 MEG channels and 3 stimulus channels at 1 kHz. These data were written
to a Fieldtrip buffer implemented inside rtMEG, and then read over the network by a separate Linux
computer. Data were written to and read from the buffer every 29 samples. The acquisition software
was set to generate a pulse (square wave) in one of the stimulus trigger channels every 500 ms (rise
from zero level to value ’2’, hold on for 100 ms, and then return to zero). The Linux computer ran
a simple C program that was designed to write a logical ’1’ to the parallel port every time a change
was detected on the trigger channel, and a logical ’0’ otherwise. The parallel port was mapped on
to a different stimulus trigger channel in the data. Because the MEG system acquires all signals
synchronously, this form of testing using the trigger input is indicative of the data-access delays in
the system. Delays were measured as the time difference between the occurrences of ’1’ – when the
Linux computer responded to a change in the trigger – and the ’2’ – marking the actual occurrences
of the change – in the data; see Fig. 2 A.
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Figure 2: Measuring the data-access delay in real time. A) Red pulses correspond to the signal cre-
ated by the Acquisition workstation; blue traces show the time when the computer reading from the
Fieldtrip buffer detected the pulse and sent an acknowledgement pulse back to the Acquisition com-
puter. The delay was measured by calculating the time difference between all vertical red bars and
the corresponding blue bars. B) Histogram of the observed delays during a 5-minute measurement
with buffer size 29.

2.3 Real-time feedback and MEG source imaging

The primary goal of real-time operations is to provide the subject with a measure of his/her brain
activity. To prove and evaluate this technical concept, an experiment was designed to report on vari-
ations of ongoing regional brain activity related to behavior. This objective was challenging because
it implied that both 1) data acquisition and formatting, and 2) source modeling of ongoing brain ac-
tivity, were achievable in real time. To our knowledge, this latter feature had not been demonstrated
with EEG or MEG so far. Here, we designed a simple paradigm in which the subject was alternating
20-s segments of rest with his eyes either closed or open. It is a very well-documented and robust
phenomenon that the amplitude of alpha (8–13 Hz) oscillations is stronger over the dorsal parietal
and posterior occipital brain regions with the eyes being closed vs. open.

Real-time estimation of ongoing alpha power was performed over a set of cortical regions of interest
(ROIs) that were predefined from the individual brain anatomy of one subject. The ROIs covered
the dorsal parietal and posterior occipital (PO) cortex and were delineated using BrainStorm [20]
(Fig. 4A). An additional ROI was defined over the anterior and dorso-lateral prefrontal cortex, for
comparison with the levels of alpha power changes observed in the parieto–occipital region. The
cortical surface was obtained from the T1-weighted volume MRI (1.5T SPGR sequence, voxel size:
0.9x0.9x1.5 mm; field-of-view: 240x240 mm) using BrainVISA [21]. MEG data acquisition and



analysis were performed at Froedtert & the Medical College of Wisconsin (Milwaukee, USA) using
a 306-channel Elekta Neuromag R© MEG system.

The entire recording session lasted 10 minutes and consisted of a short 10-s baseline run, followed by
3 runs of 130 seconds each. The subject’s head position was measured at the beginning of each run
by the software provided with the MEG system. The head location from the short baseline run was
used by the forward head modeling and inverse source modeling steps necessary to access cortical
source estimates from ongoing MEG data. Both steps were completed in approximately 2 minutes
using BrainStorm after the baseline run was acquired. Head modeling was performed using the
overlapping-sphere analytic approach [22]. The linear imaging kernel from BrainStorm’s weighted
and cortically constrained minimum-norm estimate (WMNE) [23] was subsequently obtained and
stored in memory. Because the WMNE is a linear, stationary source estimation approach, source
signals can be readily accessed from each real-time buffer data by simply completing the matrix
multiplication of the imaging kernel with either the sensor data time series or Fourier coefficients.
In our study, this was further reduced to the extraction of the elementary sources within the targeted
ROIs, which amounted to about 750 current dipoles.

For each 500-ms segment, the power in the alpha range across the PO ROI was computed from the
Fourier coefficients of each of the 750 elementary sources. These latter were obtained by applying
the imaging kernel to the fast-Fourier transform (FFT) coefficients of the running segment of sensor
data. The power in each ROI therefore consisted of the sum of the magnitude of the resulting Fourier
coefficients in the 8-13 Hz range across the entire set of elementary sources forming the ROI. The
cumulative time taken to perform this operation – magnitude of the product of a 750 x 306 imaging
kernel by 306 x 1,000 Fourier coefficients of MEG sensor data – was about 100 ms on a conventional
workstation running Matlab.

The overall benefits of the imaging kernel and Fourier-domain approach were that the time-
consuming steps of the forward and inverse modeling were performed off-line. The downside was
the suboptimal accuracy of these models due to cumulative head movements during the session.
These latter were evaluated from the measurements of the head positions collected at the beginning
of each of the 3 feedback runs.

State-of-the-art MEG acquisition may further consist of active denoising techniques, requiring both
on-line and off-line processing steps to be performed. In the case of the MEG installation used for
this study, the standard data acquisition pipeline consists of 1) the on-line application of signal-space
projection (SSP) to compensate for the spatial pattern of some environmental interference sources,
and 2) the off-line application of the signal-space separation (SSS) technique [24], to fully benefit
from the latest generation of single-layer magnetically shielded rooms. Fig. 3 details the approach
we used in the present study to assess the deviations of the outcome of the real-time data acquisition
and source analysis from the conventional, optimal pipeline that is only accessible off-line.

Real-time visual feedback on the level of alpha power within the target ROIs was provided to the
subject after the processing of each 500-ms data segment by the stimulus computer that was hosting
the FieldTrip buffer (see Fig. 4A). These measurements of brain activity were saved to a disk file and
converted to a visual display that was provided to the subject via a video projection system (60-Hz
refresh rate). During the segments with eyes open, the subject was instructed to try to maximize the
level of the visual gauge, which was indexed to the inverse of the power of alpha oscillation in the
targeted ROIs (Fig. 4B and C).

3 Results

The following sections describe the results obtained while measuring the data-access delays intro-
duced by the rtMEG interface to the data stream, and the results observed while providing real-time
feedback of alpha-band power modulation.

3.1 Delay measurements

The average delay to access the data was measured to be 44 ± 17 ms, and it was insensitive to the
number of channels being simultaneously transmitted over the network. No changes were noticed
after the system continuously collected data for several minutes. A histogram of the observed de-
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Figure 3: Respective workflows of real-time data collection and processing using rtMEG (top) and of
the optimal, off-line processing chain (below). For real-time data analysis, the forward head model
and inverse imaging kernel were pre-computed and applied on-line on all subsequent recordings.
This differs from the optimal off-line pipeline, where forward and inverse modeling is completed
for each individual run. In addition, noise attenuation was performed in the client workstation using
SSP on each data buffer during real-time data collection and analysis, whereas SSS was used over
the entire duration of each individual run during the off-line analysis.
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Figure 4: Real-time visual feedback on the power of alpha oscillations in brain regions of interest.
(A): The subject was provided with a visual gauge of the real-time level of alpha power within the
parieto-occipital (PO) region of interest shown in blue in (B). The radius of the light-grey disk in
(A) evolved every 500 ms and increased as alpha power decreased during the eyes-open segment of
the experimental run. The static, dark-grey disk was an incentive target for the subject. Its radius
was indexed to 2 times the average PO alpha power captured during the baseline run acquired at the
beginning of the session. Panel (C) shows the ongoing, respective levels of alpha power variation in
the two ROIs: prefontal (in green in B) and PO (in blue in B).

lays during a representative measurement is shown in Figure 2 B. The variability of the results is
attributed to the asynchrony between the change in the trigger channel and the boundaries of the
29-sample buffer. Hence, the theoretical distribution should show the mean data-access delay time
± 29 ms (1000 Hz sampling rate). However, the program that read the data from the buffer was
designed to run in an infinite loop, and whenever there was no new data in the buffer since the last
read action, it paused for a pre-determined amount of time. This sleep time is responsible for the
subtle dissimilarities between the theoretical distribution and the histogram shown in Figure 2 B.
The overall results show that the interface introduced only modest delays to the measured signal,



which are likely to be short enough for most real-time MEG applications. These delays were also
consistent over time.

The delay values reported here are slightly higher than what was reported before [12], which is jus-
tified because of the different ways in which the two implementations access the MEG data. While
the previous implementation collected the data directly from the DSPs, the current implementation
reads the data from the local buffer in the acquisition computer. Moreover, the previous implemen-
tation did not sort and calibrate the channels as is now done by the real-time computer. The current
implementation is preferred because it provides a more intuitive and robust interface to the user
without repeating processing steps that are already reliably implemented in the real-time computer
while still keeping the data-access delay at an acceptable level.

It is important to reiterate that this experiment measured the delay to access the data; more complex
real-time processing will likely increase the overall system delay.

3.2 Real-time source imaging

Both the on-line and off-line source analyses revealed modulations of oscillatory alpha power within
the PO region (Fig. 5). These measures were standardized (Z-score) with respect to a baseline data
segment of reference obtained in the first 20 seconds of each feedback run (subject resting with eyes
open, fixating a crosshair on the screen). As shown in Fig. 5, excursions under the baseline alpha
levels were stronger during the segments with eyes-open and feedback, indicating an encouraging
trend that feedback indeed drove the subject towards lower alpha levels than during baseline.
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Figure 5: Comparison of off-line (in blue) vs. on-line (in red) estimates of alpha power modulations
over the PO ROI. The traces of the time-resolved power estimates are plotted over time and were
standardized over a 20-s baseline period immediately preceding the data shown here, during which
the subject had his eyes open. The beginnings of periods with eyes open are marked by crosses (x)
at the time of the associated eye blink. The transitions from open to closed eyes are marked with
circles (o) at the time the subject was given an auditory stimulus. In this particular run (130 s), the
root-mean-square (RMS) difference between the two time series reached 24.5%.

Comparison of the off-line and on-line estimates of alpha-power modulations in the PO regions
qualitatively demonstrated that the data were not altered or significantly delayed by the transfer
from the acquisition to the analysis workstation, and/or by the optimal denoising techniques applied
and more accurate head/source models (Fig. 5). The discrepancies observed – reaching up to 24.5%
RMS error as in Fig. 5 – showed strong dependence on the fluctuations in the subject’s head position
over time, reaching a maximum of 12.5 mm (see Fig. 6).
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Figure 6: RMS differences in the alpha-power estimates resulting from changes in the head position
across three different sessions, each session consisting of multiple runs of 130-s duration each.
The differences in head position are with respect to the one captured during an initial baseline run
acquired at the beginning of the first session. The on-line calculations of alpha power modulations
using the reference head position were compared to those obtained off-line but with optimal noise
attenuation and forward head and inverse source modeling. Colors represent different sessions, and
each marker represents a run within a session.

4 Conclusions

The analysis of MEG signals in real time opens up new possibilities for the study of brain function.
Potential applications include:

• Basic research: Real-time visualization of MEG data in source space (on the brain surface)
for quality assurance and rapid interpretation of the measurement; Dynamic and adaptive
paradigms where subject’s brain state could be a condition to stimulus delivery.

• Brain–machine interfaces: Our previous off-line MEG studies have shown that we can de-
code intended movement direction from MEG signals and accurately localize cortical areas
representing such information for real-time BMI operation [25]. With the real-time capabil-
ity, it will be beneficial to use MEG as a pre-surgical tool to localize the optimal placement
site for an ECoG grid for obtaining real-time BMI control. Furthermore, researchers may
test various neural processing, decoding, and user training paradigms “on the fly” within a
single MEG session.

• Clinical: Real-time neurofeedback training can be used to promote neuroplasticity [5, 6].
Through the operation of a rtMEG-BMI system, users can learn to voluntarily modulate or
change their brain activity [7, 8], inducing neuroplasticity for recovery of motor function
or to improve control of neuroprosthetic devices.

This article described a software solution that enables easy real-time access to the MEG signals from
any computer connected to the local network. We demonstrated that the delay to access the data by
this software was minimal, and that the access mechanism easily lends itself to real-time source
modeling.
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