

APPROVAL SHEET

Title of Thesis: Neuroevolution-Based Inverse Reinforcement Learning

Name of Candidate: Karan Kumar Budhraja
MS, Spring 2016

Thesis and Abstract Approved:
Tim Oates
Professor
Department of Computer Science and
Electrical Engineering

Date Approved:

ABSTRACT

Title of Thesis: Neuroevolution-Based Inverse Reinforcement Learning

Karan Kumar Budhraja, MS, 2016

Thesis directed by: Tim Oates, Professor
Department of Computer Science and
Electrical Engineering

Motivated by such learning in nature, the problem of Learning from Demonstration is

targeted at learning to perform tasks based on observed examples. One of the approaches

to Learning from Demonstration is Inverse Reinforcement Learning, in which actions are

observed to infer rewards. This work combines a feature based state evaluation approach

to Inverse Reinforcement Learning with neuroevolution, a paradigm for modifying neu-

ral networks based on their performance on a given task. Neural networks are used to

learn from a demonstrated expert policy and are evolved to generate a policy similar to the

demonstration. The algorithm is discussed and evaluated against competitive feature-based

Inverse Reinforcement Learning approaches. At the cost of execution time, neural net-

works allow for non-linear combinations of features in state evaluations. These valuations

may correspond to state value or state reward. This results in better correspondence to ob-

served examples as opposed to using linear combinations. This work also extends existing

work on Bayesian Non-Parametric Feature construction for Inverse Reinforcement Learn-

ing by using non-linear combinations of intermediate data to improve performance. The

algorithm is observed to be specifically suitable for a linearly solvable non-deterministic

Markov Decision Processes in which multiple rewards are sparsely scattered in state space.

Performance of the algorithm is shown to be limited by parameters used, implying ad-

justable capability. A conclusive performance hierarchy between evaluated algorithms is

constructed.

Neuroevolution Based Inverse Reinforcement Learning

by

Karan Kumar Budhraja

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
MS

2016

c© Copyright Karan Kumar Budhraja 2016

This work is dedicated to science fiction, and the people determined to convert it into

reality

ii

ACKNOWLEDGMENTS

“Dr. Oates is especially interested in understanding the development of the human

brainan interest which sparked watching his three daughters grow up”.

This translated to me as a multi agent grid world problem. Dr. Oates’ interest in

the human brain is one of the prominent aspects of his research profile, and also an idea

that is motivating. It aligns with my motivation to mimic human thinking and therefore

strengthens it.

The idea behind this work is the result of over a year of changing ideas, starting from

applications of reinforcement learning. I’m thankful to Dr. Oates for helping me mould the

idea all the way through and working with me to identify an niche where this work may be

useful.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

Chapter 1 INTRODUCTION . 1

Chapter 2 RELATED WORK . 8

Chapter 3 PROBLEM DEFINITION . 12

Chapter 4 PROPOSED METHOD . 14

4.1 FIRL . 15

4.2 GPIRL . 15

4.3 BNP-FIRL . 16

4.4 Genetic Algorithms . 18

4.5 Artificial Neural Network . 18

4.6 NEAT . 21

4.7 NEAT-IRL . 21

iv

4.8 BNP-FIRL(NEAT) . 22

4.9 FIRL and GPIRL vs NEAT-IRL . 22

4.10 BNP-FIRL(mean) vs BNP-FIRL(NEAT) 24

Chapter 5 EXPERIMENTS . 25

5.1 NEAT-IRL . 27

5.2 GPIRL and BNP-FIRL(mean) vs NEAT-IRL and BNP-FIRL(NEAT) 29

Chapter 6 FUTURE WORK . 41

Appendix A SUPPLEMENTARY EVALUATIONS: NEAT-IRL, GPIRL AND

FIRL . 43

Appendix B EXTENDED EVALUATIONS (N = 16): NEAT-IRL, GPIRL

AND FIRL . 52

Appendix C SUPPLEMENTARY EVALUATIONS (N = 4): NEAT-IRL,

GPIRL AND FIRL . 56

Appendix D EXTENDED EVALUATIONS (N = 4): NEAT-IRL, GPIRL

AND FIRL . 61

REFERENCES . 63

v

LIST OF TABLES

5.1 Performance on constructed MDPs . 34

A.1 Performance on manually constructed MDPs 47

vi

LIST OF FIGURES

1.1 Reinforcement Learning . 7

1.2 Inverse Reinforcement Learning . 7

3.1 An example of MDP state features and transition model 13

4.1 Demonstration generation . 14

4.2 Policy sampling: 4 demonstrations of length 2 15

4.3 FIRL summary . 16

4.4 BNP-FIRL summary . 17

4.5 GA summary . 19

4.6 Artificial neural network . 20

4.7 NEAT-IRL summary . 22

5.1 State features (n = 2, n = 3) . 28

5.2 NEAT-IRL population size evaluation (linear MDP, d = 0.1) 29

5.3 NEAT-IRL maximum generations evaluation (standard MDP, d = 0.1) . . . 30

5.4 Number of samples evaluation (standard MDP, d = 0.7) 34

5.5 Number of samples evaluation (standard MDP, d = 1.0) 35

5.6 Number of samples evaluation (linear MDP, d = 0.7) 35

vii

5.7 Number of samples evaluation (linear MDP, d = 1.0) 36

5.8 Number of samples evaluation (linear MDP, d = 0.7, 100 executions) . . . 36

5.9 Number of samples evaluation (linear MDP, d = 0.7, 9− 16 samples) . . . 37

5.10 MDP variation for BNP-FIRL(mean) and BNP-FIRL(NEAT) 37

5.11 MDP solutions (seeds 7, 15) . 38

5.12 MDP solutions (seeds 24, 25) . 38

5.13 Example MDP solutions (1 goal, 2 goals) 39

5.14 Example MDP solutions (3 goal, 4 goals) 39

5.15 Algorithm decision tree . 40

A.1 Sample length evaluation (linear MDP, d = 1.0) 47

A.2 Number of samples evaluation (linear MDP, d = 1.0) 47

A.3 Grid size evaluation (linear MDP, d = 1.0) 48

A.4 Parameter limitations (NP = 5, NG = 5) 48

A.5 MDP variation (linear MDP, d = 1.0) . 49

A.6 MDP solutions (seeds 5, 21) . 49

A.7 MDP solutions (seeds 4, 19) . 50

A.8 Manually constructed MDPs . 50

A.9 Performance on manually constructed MDPs (linear MDP, d = 1.0) 51

viii

B.1 NEAT-IRL population size evaluation (standard MDP, d = 1.0) 53

B.2 NEAT-IRL maximum generations evaluation (linear MDP, d = 1.0) 53

B.3 Sample length evaluation (standard MDP, d = 1.0) 54

B.4 Number of samples evaluation (standard MDP, d = 1.0) 54

B.5 Grid size evaluation (standard MDP, d = 1.0) 55

B.6 NEAT-IRL parameter limitations (standard MDP, d = 1.0) 55

C.1 NEAT-IRL population size evaluation (linear MDP, d = 1.0) 57

C.2 NEAT-IRL maximum generations evaluation (linear MDP, d = 1.0) 57

C.3 Sample length evaluation (linear MDP, d = 1.0) 58

C.4 Number of samples evaluation (linear MDP, d = 1.0) 58

C.5 NEAT-IRL population size evaluation (standard MDP, d = 1.0) 59

C.6 NEAT-IRL maximum generations evaluation (standard MDP, d = 1.0) . . . 59

C.7 Sample length evaluation (standard MDP, d = 1.0) 60

C.8 Number of samples evaluation (standard MDP, d = 1.0) 60

D.1 MDP variation (standard MDP, d = 1.0) 62

D.2 Performance on manually constructed MDPs (standard MDP, d = 1.0) . . . 62

ix

Chapter 1

INTRODUCTION

The concept of Reinforcement Learning (RL) is motivated by modeling learning by

experience. The environment is segmented into states, each of which contain information

to describe the environment in that segment. Such information about a particular state

comprises a set of attributes or features which can be used to describe or compare states.

The learner, also termed as the agent, may benefit differently depending on which state it is

in. This creates a notion of rewards corresponding to each state. Reward are conventionally

enumerated proportional to the benefit received by the agent on being in a particular state.

Based on these rewards, the agent may then develop a plan of actions to take, varied by

the state that it is in. Actions may result in the agent moving to a different state, and so a

changed environment. A set of actions for each considered state is termed as a policy. For

each state, there may be a set of actions available to the agent. In case of a deterministic

policy, the agent specifies a single action per state. However, in case of a non-deterministic

or stochastic policy, the agent may specify a probability distribution over multiple actions

per state. RL then targets to find the optimal policy based on observed rewards. The

problem is modeled as a Markov Decision Process (MDP), where the outcome of an action

is partly random. Further, the action to be taken at state at a particular time is dependent

only on the state at that time. RL is summarized in Figure 1.1. After several iterations of

1

2

the algorithm, π→ π∗.

Consider a reinforcement learning problem where an infant is learning how to assem-

ble blocks into a building. Inferring from reinforcement learning, the infant would engage

in many attempts on its own and perhaps eventually learn how to assemble the blocks cor-

rectly. In an alternative situation, the infant could also be directed by an adult, where the

adult would show the infant how to assemble the blocks and the infant would gather infor-

mation by watching. At the cost of additional effort, the infant now learns to assemble the

blocks potentially faster. The latter situation described is an example of learning from an

expert, which is the application area of this work. It is also the way in which humans learn

to perform many of the tasks, thereby motivating this class of problems as human-inspired.

This work investigates a specific approach to such learning, involving the assumption that

state rewards are derivable from state features.

A formal definition of an MDP (Puterman 2014) is repeated here for reference. An

MDP is a set of states (S), actions (A) and transition probabilities (θ) between states when

an action is taken in a state. Additionally, each state-action pair corresponds to a reward

(R). A discount factor (γ) is used while aggregating rewards corresponding to a trajectory

of state-action pairs. A policy (π) describes a set of actions to be taken over the state space.

The optimal policy (π∗), then, maximizes the expected discounted sum of rewards between

two given states (start and goal). This stands for the case of an episodic task (which repet-

itively solves the same problem until a suitable solution is derived). Alternatively, in the

case of a continual task (which does not have terminal states), the optimal policy max-

imizes this sum of rewards over the lifetime of the learning agent. State value (v) is the

expected return (sum of R values) when an arbitrary π is followed, starting at that state.

The concept of an MDP is extended to define a Linear MDP (LMDP). An LMDP refers

to a linearly solvable MDP (using KL-divergence (Kullback & Leibler 1951) or maximum

entropy control) (Ziebart 2010). An LMDP is defined by state costs (q) in correspondence

3

to S as an alternative to R (Vroman 2014). Passive dynamics (p) describes transition prob-

abilities in the absence of control. Following a policy (π) as opposed to p occurs at a cost of

the KL divergence between π and p. Such a cost makes the optimization problem convex,

removing questions of local optima (Todorov 2006). Additionally, an exponential transfor-

mation of the optimal v function transforms the associated Bellaman Equation (Sutton &

Barto 1998) (MDP solution) to a linear function. An optimal v function corresponds to a v

function evaluated over π∗.

Inverse Reinforcement Learning (IRL) is motivated by learning from examples. As

opposed to RL, an agent in IRL does not observe rewards; it attempts to recover them based

on an observed policy. The reward is evaluated through observed examples. It is therefore

intuitive that IRL is a means to implement Learning from Demonstration (LfD) (Abbeel

2012; Ng, Russell, & others 2000). LfD describes a problem in which an agent learns to

perform a task by observing how it is to be done. The observations are in the form of

examples, specifically traces of state-action pairs. IRL allows an agent to understand its

environment in terms of evaluation of a state. Since state features may individually not be

sufficiently informative, it is often required to construct features as their combinations. IRL

is summarized in Figure 1.2. After several iterations of the algorithm, r→ R.

One such technique uses regression trees and quadratic programming for this purpose

and is described in (Levine, Popovic, & Koltun 2010). Regression trees are tree-like mod-

els which distribute a set of observations based on their features. Each node in the tree

corresponds to splitting the observations corresponding to that node into smaller groups

of observations. Fitting for regression is computed based on correspondence between the

demonstration and the policy generated from estimated state rewards. A leaf in the tree cor-

responds to a numerical value assigned to the group of observations associated with it. On

the other hand, quadratic programming is a mathematical formulation of an optimization

problem involving a quadratic function of variables. Optimization then involves selection

4

of a sub-tree without significant loss in regression fitness. Another such technique is based

on Gaussian Process (GP) regression (Levine, Popovic, & Koltun 2011b). This technique

fits the reward function into a GP kernel as a non-linear combination of state features. Fit-

ting the GP kernel also follows the principle of matching demonstration with the policy

generated from estimated state rewards.

Recent techniques have also incorporated a non-parametric Bayesian framework to

improve learning. This means that the number of parameters used by the models increase

based on the training data. Work in (Ramachandran & Amir 2007) describes the use of pri-

ors to create a probability distribution over a set of candidate reward functions. Composite

features in (Choi & Kim 2013a) are defined as logical conjunctions of state features. The

IRL model extends (Ramachandran & Amir 2007) by defining a prior on these composite

features. In (Michini & How 2012; Michini et al. 2015), the reward function is additionally

assumed to be generated by a composition of sub-tasks to be performed in the MDP space.

This algorithm targets detection of sub-goals but does not estimate the final policy over all

states in state space (it only targets states observed in the demonstration). This algorithm is

therefore excluded from comparison.

In an expectation-maximization based approach, the reward function is modeled as

a weighted sum of functions in (Hahn & Zoubir 2015). Parameters of the optimal pol-

icy in the model are defined as the probability distribution of actions for each state in

the state space, based on the optimal policy. The algorithm then attempts to simultane-

ously estimate the weights and parameters. The algorithm is not compared with (Levine,

Popovic, & Koltun 2011b), but the two algorithms have been individually compared with

standard Maximum Entropy IRL. Visual observation of performances of these two algo-

rithms indicates that a GP kernel based approach is competitive to, if not better than, an

expectation-maximization based approach. This algorithm is therefore also excluded from

comparison.

5

Very recently, the use of Deep Learning (Deng & Yu 2014) for IRL problems has

been explored in (Wulfmeier, Ondruska, & Posner 2015). To summarize, deep learning

involves the use of a large number of hidden layers in a neural network structure to obtain

significantly abstract concepts (about the input data) as output. The inputs to the first

layer of the deep neural network are state features. The performance of this algorithm

has been shown to surpass that of existing algorithms ((Levine, Popovic, & Koltun 2011b;

Choi & Kim 2013a)). The algorithm focuses on achieving correct expected state value,

whereas our algorithm focuses on learning the optimal policy. However, the work is not yet

officially published and is therefore unavailable for comparison. Intuitively, it is expected

that our work will perform competitively with the use of deep neural networks. The reason

for this is that the premise of both algorithms is similar: both algorithms use state features

as input to a neural network and evaluate state reward or state value as the output of the

neural network. In addition, the use of neuroevolution (evolving the structure a neural

network based on task requirements) allows for a more compact network due to dynamic

construction of the neural network.

Finally, work in (Vroman 2014) on Maximum Likelihood IRL (MLIRL) is targeted

to collectively cover three problem spaces: linear IRL, non-linear IRL and multiple in-

tentions IRL. Linearity and non-linearity is in context to the reward function modeled as

a function of state features. Multiple intentions refers to an IRL setting where an MDP

comprises of multiple reward functions. The algorithm emphasizes that other IRL methods

are not suitable for a unified approach over all the mentioned problem spaces. However,

it is mentioned that specialized IRL algorithms are more suitable if number of experts and

reward function shape (linear or non-linear) is known. Its performance against other IRL

algorithms tested is concluded as competitive. Performance of MLIRL for our problem set-

ting is therefore evaluated as at most competitive with (Levine, Popovic, & Koltun 2011b)

(evaluated in (Vroman 2014)). MLIRL is conclusively excluded from comparison for our

6

work.

As opposed to evaluation of states to rewards as in (Levine, Popovic, & Koltun 2010),

this work proposes and evaluates an evolutionary neural network based approach to LfD

based on generation of state values from state features and their combinations. Evolution

of neural networks networks for LfD is analogous to evolution of neurons and connections

in the human brain.

The use of neural networks allows for inherent advantages over regression trees (Caru-

ana & Niculescu-Mizil 2006; Bengio 2009). Unlike regression trees, neural networks are

capable of learning non-linear data boundaries. They are able to generate more abstract fea-

tures at hidden neurons. Neural networks are also less prone to overfitting than regression

trees. Finally, the fact that neural networks can approximate any function with sufficient

data (universal approximators) makes them intuitively preferable.

Further, when fitting a highly non-uniform function, neural networks are better than

kernel functions (used in GP regression) at generalizing non locally and scaling to larger

datasets. This is because kernel functions typically generalize locally.

Chapter 2 describes relevant work in the context of neuroevolution and feature based

IRL. Chapter 3 discusses IRL and a feature based approach to the problem. This is fol-

lowed by details of the proposed neuroevolution based algorithm in Chapter 4. Chapter 5

on experimental evaluation of the algorithm against FIRL is proceeded by the concluding

remarks in Chapter 6.

7

FIG. 1.1. Reinforcement Learning

FIG. 1.2. Inverse Reinforcement Learning

Chapter 2

RELATED WORK

Feature construction for IRL (FIRL) (Levine, Popovic, & Koltun 2010) uses logical

combinations of state features to generate more informative features. These features are

then mapped to a reward function as a weighted sum. This reward function is used to

generate a policy for the given state space. (Levine, Popovic, & Koltun 2010) examines the

superior performance of FIRL against IRL models of Linear Programming Apprenticeship

Learning (LPAL) (Syed, Bowling, & Schapire 2008), Maximum Margin Planning (MMP)

(Ratliff, Bagnell, & Zinkevich 2006), and Abbeel&Ng (A&N) (Abbeel & Ng 2004) and

their variants.

In (Levine, Popovic, & Koltun 2011b), FIRL is acknowledged to have limited capa-

bilites in representing a reward function which uses a non linear combination of features.

This limitation is overcome by learning a reward function using GP regression. Experi-

mental results in (Levine, Popovic, & Koltun 2011b) demonstrate superiority of Gaussian

Process IRL (GPIRL) over prior IRL methods such as those evaluated in (Levine, Popovic,

& Koltun 2010). Additionally, GPIRL is also evaluated against Maximum Entropy IRL

(MaxEntIRL) (Ziebart et al. 2008), Multiplicative Weights for Apprenticeship Learning

(MWAL) (Syed & Schapire 2007), Maximum Margin Planning Boost (MMPBoost) (Ratliff

et al. 2007) and LEArning to seaRCH (LEARCH) (Ratliff, Silver, & Bagnell 2009) and

8

9

their variants.

Bayesian Non-Parametric Feature construction for IRL (BNP-FIRL) (Choi & Kim

2013a) uses the Indian Buffet Process (IBP) (Ghahramani & Griffiths 2005) to define pri-

ors over composite state features. The IBP defines a distribution over infinitely large (in

number of columns) binary matrices. It is used to determine the number of composite

features and the composite features themselves. Features and corresponding weights are

recorded over several iterations of the algorithm. These values are then either aggregated

(as a mean-based result) or used for estimating Maximum A-Poteriori (MAP) (Choi & Kim

2011) (as a MAP-based result) to evaluate state reward values. In brief, MAP is technique

which uses empirical observations to estimate the value of an unobserved quantity. While

the two results provide competitive performance when calculating reward function, using

the mean-based result performs significantly better than the MAP-based result when focus-

ing on action-matching rather than reward-matching. For this reason, MAP-based results

are excluded from comparison. More importantly, this emphasizes the importance of how

the iteration data is finally used. A non-linear combination of this data intuitively pro-

vides better performance than a linear combination (as in the case of mean). Experimental

results in (Choi & Kim 2013a) indicate superiority of BNP-FIRL over GPIRL in a non-

deterministic (a certain percentage of actions are random) MDP, such as the one used to

evaluate our work.

On the lines of FIRL, it is proposed that a neural network provide a mapping from state

features to state value. Since a neural network can compactly contain complex combina-

tions of inputs, internal neurons may represent more informative features, as those obtained

in FIRL. In an alternative implementation extending BNP-FIRL, a neural network is used

to provide state value based on feature and weight data gathered over several iterations of

state reward estimation in the BNP-FIRL algorithm.

Since the function to be generated is unknown, so is its complexity. This implies

10

uncertainty about the optimal number of layers and nodes in each layer to be used. Nodes

in later layers of a neural network may be able to define a function for which it may take

several nodes in the earlier layers of the neural network to define. There is therefore a

trade-off between the number of hidden layers and number of nodes in each layer. Because

of this, using a fixed structure for the neural network in this scenario may be difficult and

sub-optimal. Neuroevolution solves this problem by generating the optimal neural network

using techniques such as Genetic Programming (GP) (Gruau & others 1994), Evolutionary

Programming (EP) (Angeline, Saunders, & Pollack 1994), Simulated Annealing (SA) (Yao

& Liu 1997), Genetic Algorithms (GA) (Stanley, Bryant, & Miikkulainen 2005b; Stanley

& Miikkulainen 2002), Evolution Strategies (ES) (Kassahun & Sommer 2005; Siebel &

Sommer 2007), Evolutionary Algorithms (EA) (Rempis 2012) and Memetic Algorithms

(MA) (Sher 2012).

In a direct encoding scheme such as that employed by NEAT, all neurons and connec-

tions in the neural network are explicitly specified by the genotype. In case of an indirect

encoding scheme, these values are expressed implicitly by smaller parts of the genotype

(encoding of the neural network). Indirect encoding is suitable for solving tasks which

have a high degree of regularity (such as controlling the legs of a millipede like robot).

Approximating a function is a problem that lacks regularity. A well established direct

encoding-based neuroevolution technique such as NeuroEvolution of Augmenting Topol-

gies (NEAT) (Stanley & Miikkulainen 2002; Stanley 2014), which evolves both the struc-

ture and parameters of the neural network, is therefore preferred for our work.

NEAT evolves a population of neural networks governed by GA (Koza 1992; Banzhaf

et al. 1998), and therefore a corresponding fitness function. There currently exist many

extensions of NEAT, including rtNEAT (Stanley, Bryant, & Miikkulainen 2005b) (a real-

time version of NEAT, which enforces perterbation to avoid stagnation of fitness level) and

FS-NEAT (Whiteson et al. 2005) (NEAT tailored to feature selection).

11

In (Yong et al. 2006), demonstration bias is introduced to NEAT-based agent learn-

ing. This is done by providing advice in the form of a rule-based grammar. This does

not, however, provide an embedded undertanding of preference for a state in state space.

This is further explored by mapping states to actions in (Karpov, Valsalam, & Miikkulainen

2011) where different methods of demonstration are studied in a video game environment

(Stanley, Bryant, & Miikkulainen 2005a). NEAT-based IRL is also implemented in a mul-

tiple agent setting as in (Miikkulainen et al. 2012) where groups of genomes share fitness

information.

State values are used to generate a corresponding policy. To incorporate learning by

demonstration, this policy is matched with the demonstration and the neural network is

evolved thereof. Such directed neuroevolution can be considered as an extension of (Yong

et al. 2006; Karpov, Valsalam, & Miikkulainen 2011) with better insight to evaluation of a

state. For the purpose of this document, the proposed work is referred to as NEAT-IRL.

Chapter 3

PROBLEM DEFINITION

The goal of IRL is to learn a reward function for each state in a given state space based

on parts of a given policy (demonstration). In a broader sense, the goal is to be able to

generate a policy over a state space (S), which is correlated to what has been demonstrated.

For the purpose of this work, the demonstrations received by algorithm are assumed to be

performed by an expert, meaning that they are assumed to be optimal. A demonstration

(D) consists of numerous examples, each of which is a trace of the optimal policy through

state space. These are represented in the form of state-action pairs (s, a).

One method to generate a policy is to generate state values for each state based on state

features. It is assumed that a weighted combination of state features and their combinations

can provide a quantitative evaluation of a state (with a motivation similar to FIRL). The first

problem, then, is to learn a mapping from state features to state values, which produces a

policy for which state-action pairs are consistent with the given examples.

Additionally, values of weights and features over several iterations of BNP-FIRL may

be used in different ways to derive a state reward value. The second problem, then, is

to learn a non-linear mapping from these values to state reward, which produces a policy

consistent with the given examples (as described for the first problem).

The state space domain used for this work is a grid world Markov Decision Process

12

13

FIG. 3.1. An example of MDP state features and transition model

(MDP), but the concept can be extended to other state spaces. The use of a grid world

MDP is aligned with experiments in (Levine, Popovic, & Koltun 2010; Michini & How

2012; Michini et al. 2015; Vroman 2014; Hahn & Zoubir 2015). In case of a grid world

MDP, an agent has 5 possible actions: move up, move down, move left, move right, do

nothing. In case of a deterministic MDP, the action taken is always the action selected.

However, in a non-deterministic MDP, the action taken is sometimes random, irrespective

of the action selected. Apart from such randomness, the agent may also move in a certain

direction other than that specified based on probability. An example of state features (cell

coordinates in the example) and state transition model is given in Figure 3.1. The bottom

left-most cell state is assumed to be at the origin. In the canonical example of transition

probabilities shown, the agent selects to move up. On doing so, the agent has an 80%

probability of moving up and a 10% probability each of moving in directions perpendicular

to the intended direction. Note that in this example, the agent has a 0% chance of taking an

absolutely random action at a given state.

Chapter 4

PROPOSED METHOD

As in Figure 4.1, examples are provided as traces of subsequent states in the state

spaceas per demonstration policy. Multiple traces may overlap, which means that a single

state may be covered more than once in a set of examples. If no examples overlap, the

set of states involved in the examples therefore has an upper bound of the total number of

examples multiplied by the length of each example (in states). An example from an MDP

policy perspective is given in Figure 4.2. These examples serve as demonstration (D) in

IRL (used for learning state rewards).

The following sections provide an overview of fundamental algorithms in the context

of this work and then continue to define an approach to NEAT based IRL.

FIG. 4.1. Demonstration generation

14

15

FIG. 4.2. Policy sampling: 4 demonstrations of length 2

4.1 FIRL

The methodology of FIRL is summarized in Figure 4.3. There are two steps which are

repeated in each iteration: optimization and fitting (Levine, Popovic, & Koltun 2010). In

the optimization step, a reward function R is generated that best fits the current feature set

φ, while evaluating to a policy consistent with D. This is done by minimizing the squared

error between R and R′, R′ being the linear projection of R on φ. In the fitting step, a

regression tree of R is built over S. The smallest tree which is consistent with D is used.

Leaf clusters of this tree are then used to represent new features.

4.2 GPIRL

GP based regression (Williams & Rasmussen 2006) is used for value function approx-

imation for RL in (Deisenroth, Rasmussen, & Peters 2009; Engel, Mannor, & Meir 2005;

Rasmussen, Kuss, & others 2003). GPIRL (Levine, Popovic, & Koltun 2011b) tailors this

model to learn reward structure (based on state features) as GP kernel hyper-parameters (θ).

Unlike GP regression, GPIRL does not assume that the demonstration may be sub-optimal.

16

FIG. 4.3. FIRL summary

Demonstration observations (u) and θ are calculated by maximizing their likelihood, given

the demonstration. The kernel is regularized to prevent trivial solutions in the form of sin-

gular covariance matrices. If the number of states in the demonstration is large, then only

a subset is used for GPIRL to maintain tractability. As opposed to FIRL, GPIRL generates

a policy containing a probability distribution over possible actions at a state. This can be

made deterministic by greedy action selection based on their probabilities.

4.3 BNP-FIRL

BNP-FIRL is summarized in 4.4. BNP-FIRL decomposes reward (r) as a product of

composite features (Φ) and weights (w). There are a total of K composite features and so

the size of w is K. Each column in Φ is a binary vector of size |S|, indicating presence or

absence of the feature per state. The size of Φ is therefore K × |S|. The product of w and

Φ is thus a vector of size |S|.

Ψ denotes a matrix of M atomic features (the original state features as defined by the

MDP). As for Φ, each column in Ψ contains |S| binary data items, making its sizeM×|S|.

The matrix Z indicates the atomic features that comprise each composite feature. It

17

FIG. 4.4. BNP-FIRL summary
(Choi & Kim 2013a)

is therefore M ×K in size. The matrix U (also M ×K) is a binary matrix, the Bernoulli

distribution (with p = 0.5) which causes atomic features to be negated. Negation is in

context of the use of the binary value in the formula used to generate the composite feature.

X is an M -dimensional binary vector indicating use of atomic features to form composite

features.

α is a constant parameter over which a Poisson distribution is calculated (required

by the IBP when computing the number and values of composite features). A Bernoulli

distribution (p = κ) is used to generate priors on X . Finally, κ is Beta distributed using the

closed interval defined by β.

τ is vector of N demonstrations that is assumed to be generated using the optimal

policy for the MDP. The posterior probability of τ given r and constant η is then computed.

The algorithm iteratively converges to a value of r which maximizes this probability. The

values of Φ and w computed in each iteration are stored in a vector. To compute mean-

based results, the sum of rewards per iteration is used as the final reward. The use of mean

at the final stage of the BNP-FIRL algorithm is denoted by BNP-FIRL(mean).

18

4.4 Genetic Algorithms

GA (Koza 1992; Banzhaf et al. 1998) is a biologically inspired population based

stochastic search technique. The search is directed towards optimizing a fitness function.

The input variables of this function form the search space. Each genome represents a com-

bination of input variable values. This is visualized as a point in the search space. Each

iteration (or generation) of GA primarily comprises of two operations: crossover and

mutation. Crossover refers to an operation where two existing genomes are used to

create new genomes by merging parts from the existing genomes. Mutation refers to

an operation in which parts of an existing genome are randomly modified to create new

genomes. In this manner, the pool of genomes is increased. To maintain a fixed popu-

lation, genomes are then evaluated on the fitness function and the pool is truncated to

keep the best genomes. The performance of GA is primarily governed by two parameters:

population size (NP) and maximum number of generations (NG).

GA is summarized in Figure 4.5, where each cell in a genome is a positive integer.

Each genome corresponds to an arbitrary fitness value (denoted in bold). The existing

population of genomes is brought down to the original size by selection based on these

fitness values. The next two sets of genomes represent the outcomes of crossover and

mutation.

4.5 Artificial Neural Network

An Artificial Neural Network (ANN) or a Neural Network (NN) (Haykin & Network

2004) is a function approximation model inspired by biological neural networks. The

model is composed of interconnected nodes or neurons which exchange information to

produce the desired output. As summarized in Figure 4.6, an NN is traditionally segmented

into three layers: input, output and hidden. Arrows denote the direction of information

19

FIG. 4.5. GA summary
(Tufts University 2015)

flow. The input layer corresponds to values (X) of input variables being provided to the

NN. The output layer corresponds to values (Y) of output variables being generated by the

NN. Nodes in the hidden (from the user) layer therefore contain meta-data used to generate

the final output. The NN shown in Figure 4.6 is termed as a single layer NN based on the

number of hidden layers in the NN.

A node in each layer in the NN is evaluated by combinations of information from

nodes in the previous layer. Weights (w) are used to combine information from different

nodes in the previous layer. Bias (b) is a constant valued input to a node. An NN may

therefore be parametrized based on the number of inputs and outputs, number of hidden

layers and the size of each layer. These can be derived from a specification of all the w and

b values.

In our work, we use neural networks containing a single output node.

20

FIG. 4.6. Artificial neural network
(Wikipedia 2015)

21

4.6 NEAT

NEAT evolves neural networks using GA, guided by a fitness function. Each mem-

ber of the population corresponds to a genotype or genome and a phenotype (the actual neu-

ral network). NEAT begins with relatively less complex neural networks and then increases

complexity based on fitness requirement. There are primarily two parameters which af-

fect the performance of NEAT:NP andNG, both of which are inherent to GA. They specify

the number of genomes (maintained at the end of each generation of the algorithm) and the

maximum number of generations for which the genomes are to be evolved.

4.7 NEAT-IRL

The result of NEAT-IRL is a neural network which can produce state values based on

state features.

Neural networks represented by a genome population in NEAT are considered to use

state features as input and produce state value as output. A corresponding policy is evalu-

ated for that state space. It is therefore suitable that the fitness function be the coherence

between the generated and demonstrated policies. In implementation, this is done by using

the coherence of generated action directions with the demonstration as fitness value. Thus,

an action in direction opposite to that in the example is penalized more (fitness value −1)

than one which is perpendicular to it (fitness value 0). These values are intuitive to the co-

sine of the angle between the generated and example actions. Fitness is accumulated over

all states included in the demonstration. If all of the demonstrated actions are replicated

correctly, the algorithm is terminated. This is summarized in Figure 4.7.

22

FIG. 4.7. NEAT-IRL summary

4.8 BNP-FIRL(NEAT)

The use of NEAT is similar to NEAT-IRL where the fitness value is based on matching

examples in the demonstration. However, the inputs are no longer state features.

The dimension of Φ and thus w vary across iterations, because of the continuous

variation in composite features considered. A non-linear combination of Φ or w over time

is therefore not possible. However, the size of r is constant for each iteration. The set of

values of r over iterations of the algorithm then serve as input to the neural network. The

output of the neural network is then used as the resultant state reward vector. This reward

vector is used to compute the optimal policy, which can then be used to compute fitness

values.

4.9 FIRL and GPIRL vs NEAT-IRL

FIRL, GPIRL and NEAT-IRL all consider individual states as opposed to traces of

state sequences, making them memory efficient in terms of the storage of examples. How-

ever, FIRL and GPIRL generate a function which produces state rewards, as opposed to

23

NEAT-IRL which produces state values. State rewards evaluate immediate desirability

whereas state values evaluate long term desirability of a state. An agent therefore seeks

actions which lead to states of higher value and not highest reward to maximizes long term

reward (Barto 1998). State values also observe smoother transition amongst states in close

proximity, though this is not necessary for state rewards. Further, converting a set of state

values to a policy requires a single computational step (value based greedy action selec-

tion). In case of state rewards, however, the policy is accumulated over several epochs of

computation, thereby resulting in greater time complexity. Additionally, a policy generated

using state values is more robust to noise (in context of real-world applications such as

robotics) than one generated based on state rewards. The reason is that in case of state val-

ues, policy evaluation only requires a comparison of adjacent state values. The final policy

is therefore only affected if the state values are close enough for noise to change the action

selection. In case of policy generation using state rewards, noise would be accumulated

over each epoch of computation and would therefore have a more significant effect on the

generated policy. A disadvantage of generating state values is that they transfer poorly to

other MDP with similar feature sets as opposed to state rewards (Vroman 2014). However,

our problem space does not concern transfer learning.

Additionally, FIRL involves convex optimization (minimization) and the use of re-

gression trees, whereas NEAT-IRL is built on neural networks.

(Lilley & Frean 2005) shows that GP behaviour can be replicated by a multi layer

perceptron neural network with a sufficiently (tending to infinity) large number of hidden

neurons. This stands with a requirement to use weight decay (Neal 1996; 1995). In practice,

this implies limitation of neural networks for approximation of GP behaviour instead of

exactness. Further, GP models can be optimized to fit data exactly with specific hyper-

parameter values (Rasmussen 2006). This implies a trade-off between exactness and over-

fitting data.

24

NEAT-IRL does, however, introduce two new parameters (NP and NG) to the IRL

problem, which increases degrees of freedom. The performance of a fixed set of parame-

ters will vary in different environments. Algorithm performance may therefore need to be

evaluated across these parameters for optimal value assignments.

4.10 BNP-FIRL(mean) vs BNP-FIRL(NEAT)

The set of functions defined by a linear combination of variables is a subset of a

the set of functions defined by a non-linear combination of those variables. Non-linear

combinations are therefore more powerful in expressing relationships among variables and

direct towards better function approximations at the cost of function complexity. In the

case of the mean-based result of BNP-FIRL in particular, the linear combination is simply

a sum of variables. This allows for significant scope for improvement in approximation of

the final value of state rewards.

Similar to NEAT-IRL, the use of NEAT with BNP-FIRL increases the number of algo-

rithm parameters and may require an additional level of optimization for better algorithm

performance.

Chapter 5

EXPERIMENTS

Originally conceptualized in a Python implementation based on MultiNEAT (Cher-

venski 2012), NEAT-IRL is currently implemented in MATLAB using (Mayr 2003) and

is evaluated using existing tools in the IRL toolkit containing FIRL and GPIRL (Levine,

Popovic, & Koltun 2011a). The implementation of BNP-FIRL exists in an extended ver-

sion of the toolkit (Choi & Kim 2013b). It is copied to and used with (Levine, Popovic, &

Koltun 2011a) for the experiments in this work. Inherent to the toolkit, there exist 2×(n−1)

binary state features for a grid of size n. These bit patterns contain sub patterns which are

consistent for a row or column in the grid, thereby forming a coordinate system. This is ex-

emplified in Figure 5.1. Additionally, state rewards are assigned randomly for each macro

block.

FIRL and GPIRL consistently produce better results than the other IRL algorithms

they are compared to in (Levine, Popovic, & Koltun 2010; 2011b). The case is similar with

BNP-FIRL(mean) (Choi & Kim 2013a). Additionally, GPIRL performs consistently better

than FIRL. It is therefore sufficient to evaluate GPIRL, NEAT-IRL, BNP-FIRL(mean) and

BNP-FIRL(NEAT) when examining performance improvements. NEAT-IRL is not com-

pared with the work done in (Yong et al. 2006; Karpov, Valsalam, & Miikkulainen 2011)

in sight of a dependency on rule based learning.

25

26

The algorithms are evaluated in a number of ways. NEAT-IRL is evaluated individu-

ally and also in comparison to GPIRL, BNP-FIRL(mean) and BNP-FIRL(NEAT). The IRL

toolkit (Levine, Popovic, & Koltun 2011a) defines misprediction score as the probability

that the agent will take a non-optimal action (different from what would have been in an

example) in that state space. This is measured based on matching of expert policy (used

for demonstration) and the policy generated by the IRL algorithm. These scores are eval-

uated for both linear and standard MDPs. With 4 possible actions at any state in a grid

world, default misprediction score is 0.75. Marcoblock size, b, which specifies a number

of adjacent cells in a grid to be assigned the same reward value, is set to 1 for all exper-

iments. This is done so that state features correspond to unique rewards. Average values

are computed over 25 executions. Furthermore, NEAT-IRL may end execution early when

a generated policy completely matched with demonstrated examples. This may, however,

lead to under-fitting, which is also a possible contributor to hindering the performance of

NEAT-IRL in terms of misprediction score.

Note that the default values used for NEAT in (Mayr 2003) are NP = 150 and

NG = 200. Additionally, GPIRL is evaluated in (Levine, Popovic, & Koltun 2011a) using

a default grid size (n) of 32, i.e. a 32×32 grid with 16 training samples (NS) of length (LS)

8 each. Reduced values (scaled in proportion) are used for evaluation of NEAT-IRL and

BNP-FIRL(NEAT) for computational tractability. Primary results discussed in this work

use the configuration n = 16, NS = 8 and LS = 4. Certain supplementary evaluations

use the configuration n = 4, NS = 4 and LS = 1. The number of samples in this case

is more than the scaled value (NS = 2) to avoid inference based on little data. In doing

so, the demonstrations include 25% of the total states, which is justified to experiment on

considering the proportions used in the original setting (n = 32). The primary grid allows

for standardized evaluation of the algorithms, whereas a smaller grid allows more tractable

analysis of the MDPs over which the algorithms are evaluated. GPIRL parameters are used

27

as default in (Levine, Popovic, & Koltun 2011a). Note that smaller data samples, interpola-

tion used by GPIRL exceeded the possible number of points, thereby causing mathematical

errors. This was fixed by limiting interpolation to the maximum possible, in case the num-

ber of interpolations was more than what was possible.

In the misprediction score graphs plotted, a solid line is used to denote performance

data on a standard MDP and a dotted line is used to denote performance data on a linear

MDP. Additionally, the term computational complexity is interchangeably used with com-

putational time complexity and execution time is calculated in seconds. Additionally, mis-

prediction score is observed to be lower when testing on a linear MDP than on a standard

MDP irrespective of which of these two MDP types was used for training the algorithm.

5.1 NEAT-IRL

Experimental evaluation begins with testing NEAT-IRL parameters NP and NG. This

is done to evaluate the effect of NEAT parameters on algorithm performance and complex-

ity.

Figure 5.2 shows variation of misprediction score and execution time. The value of

NP is varied from 15 to 150, while NG is arbitrarily set to 50. As expected in the use

of GA, a larger population of genomes provides better performance. Note that beyond a

threshold value, an increase in population does not contribute to significant optimization.

This is because the capacity of search that can be performed by the extra (beyond threshold)

population of genomes is limited by the size of the current state space. Noise in the graph

pertains to randomness of the involved processes. Execution time for NEAT-IRL is linear

with population size. Since the implementation of the algorithm is currently not parallel,

parallelization of executions for each member of the population can theoretically provide

constant execution time with respect to population size. This is possible because executions

28

FIG. 5.1. State features (n = 2, n = 3)

29

FIG. 5.2. NEAT-IRL population size evaluation (linear MDP, d = 0.1)

corresponding to various agents in the same generation are independent of each other.

In a similar manner, Figure 5.3 evaluates NEAT-IRL on the number of generations.

The value ofNG is varied from 2 (to allow at least one stage of gene mutation and crossover)

to 10 using NP = 150. Coherent to GA behaviour, an increase in the number of maximum

generations results in lower misprediction score. This is subject to stagnation in a manner

similar to that discussed for 5.2. NEAT-IRL execution time is linear with the maximum

number of generations as expected, since computation is constant per generation of the

algorithm.

Figure 5.2 and Figure 5.3 correspondent to linear and standard MDPs respectively.

The reason is that the results are more pronounced in either situation. The MDPs used are

completely deterministic.

5.2 GPIRL and BNP-FIRL(mean) vs NEAT-IRL and BNP-FIRL(NEAT)

GPIRL, BNP-FIRL(mean), NEAT-IRL and BNP-FIRL(NEAT) are compared across

three aspects of the MDP: the MDP type (standard or linear), the amount of determinism

in the MDP (d, where a value of 1.0 represents complete determinism) and different values

30

FIG. 5.3. NEAT-IRL maximum generations evaluation (standard MDP, d = 0.1)

of NS . This tests the ability of the algorithms to reconstruct the reward function across

different amounts of data. For each of these evaluations, NEAT parameters are arbitrarily

set as NP = 50 and NG = 50.

Dependency on NS is evaluated by varying NS from 1 to 8. To evaluate dependency

on d, performance of the algorithms in two settings (d = 0.7 as in (Choi & Kim 2013a) and

d = 1.0) are tested. Both of these settings are tested on standard and linear MDPs. These

experiments are depicted in Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7.

In context of misprediction score, the performance of algorithms using neural net-

works is more competitive with the compared algorithms in a non-deterministic setting

than in a deterministic setting. This favours use of the algorithm in a real world setting

where non-determinism exists because of various sources noise. It is also the case that

better performance of neural networks is observed for a linear MDP than for a standard

MDP. This is attributes to the neural network being able to perform better on a more easily

solvable MDP given a set of parameters. Additionally, the composite features and thus

reward function over iterations provide better performance of neural networks in BNP-

FIRL(NEAT) as compared to the use of state features in NEAT-IRL. As in (Choi & Kim

31

2013a), BNP-FIRL(mean) is observed to be consistently better than GPIRL.

Performance of NEAT-IRL (the purely NEAT based algorithm) improves at a slower

pace than the other algorithms. This is attributed to the values of NP = 50 and NG = 50

being unoptimized for the MDPs being used. It is demonstrated in section 5.1 that these

values are tunable to improve the performance of the algorithm.

Execution time is least for GPIRL in all four experimental settings. In a trade-off with

better performance, an increased execution time is observed for BNP-FIRL(mean). This

increase is more significant in the case of d = 0.7. This implies that a linear MDP is a

harder problem for BNP-FIRL(mean) to solve. The additional layer of NEAT at the final

stage of BNP-FIRL does not introduce noticeable increase in execution time. Note that this

is also because of the scale being used to include much larger values, which results in lower

resolution between the two graphs.

Execution time for NEAT-IRL remains largest across all of the experimental settings.

In the presence of less demonstration data, the algorithm may often match all examples

and discontinue evolving the network further. As the number of examples increase, fit-

ting becomes more difficult and causes an increase in the increased number of generations.

This explains the gradual increase in time complexity. Since we have a limit on the max-

imum number of generations that may be executed, the time complexity later stagnates.

BNP-FIRL internally uses a matrix multiplication based technique to solve the MDP based

on state calculated rewards. However, NEAT-IRL processes each state based on state val-

ues of neighbouring state values. It is therefore possible that the additional conditional

sequences result in significantly increased time complexity for NEAT-IRL as opposed to

BNP-FIRL(NEAT). Perhaps, then, if we use neural networks to generate state reward in-

stead of state value, we could integrate with the MDP solution method used by BNP-FIRL

and reduce time complexity. However, mapping from state features to rewards is argued

to decrease performance as compared to mapping from state features to state values (as

32

discussed in Section 4.9).

From a performance improvement perspective, Figure 5.6 examines a setting where

the use of neural networks provides competitive performance to the other algorithms in our

examination set. However, a smoother graph is required for better comparison. For this

reason, an average is considered over 100 executions. The results are shown in Figure 5.8.

The figure establishes that the performance of BNP-FIRL(NEAT) is competitive to that of

BNP-FIRL(mean), both of which are better than GPIRL and NEAT-IRL. The figure also

establishes that in this setting, the use of neural networks alone (NEAT-IRL) outperforms

GPIRL. The experiment in Figure 5.6 is also extended to observe performance in the pres-

ence of 9− 16 samples (calculated over 25 executions). This is shown in Figure 5.9. While

the trends between GPIRL, BNP-FIRL(mean) and BNP-FIRL(NEAT) continue, limitation

in performance of NEAT-IRL attributed to NEAT parameter settings is observed.

To compare BNP-FIRL(mean) and BNP-FIRL(NEAT) algorithms, the use of neu-

ral networks (BNP-FIRL(NEAT)) is tested for its better adaptability to non linear bound-

aries as compared to BNP-FIRL(mean). The algorithms are evaluated over various non-

deterministic (d = 0.7) linear MDPs (varied by random seed initialization) to observe

algorithm performance over different optimal policies for different MDPs. For represen-

tational tractability, n is limited to 4. Figure 5.10 depicts variation of misprediction score

across various grids generated using specified seed values. The results are shown in Figure

5.10.

Overall, the performance of the two algorithms is indistinguishable. However, a closer

look at specific seed values shows that BNP-FIRL(NEAT) performs noticeably better than

BNP-FIRL(mean) for seed = 7, 15, 24, 25. The policies for the MDPs for these situations

are shown in Figure 5.11 and Figure 5.12 respectively (arrows represent optimal direction

of motion, if any). States with no arrows are goal states.

From these MDPs, it is unclear on whether the number of goal states discriminates

33

performance between the two algorithms. It is then hypothesized that BNP-FIRL(NEAT)

performs better than BNP-FIRL(mean) in the presence of multiple goal states. To evaluate

this, two MDPs (n = 4) are manually constructed with goals randomly placed in the MDP.

This is done by associating an arbitrary reward value of 100 to those states. The differences

in performances of the two algorithms are also compared for significance using two tailed t-

test. The results are summarized in Table 5.1. MBNP−FIRL(mean) and MBNP−FIRL(NEAT)

represent misprediction scores corresponding to BNP-FIRL(mean) and BNP-FIRL(NEAT)

respectively. To overcome the fluctuation of numbers for averages over smaller number of

runs (such as 25), the results are averaged over 1000 runs.

In the presence of a single goal state, BNP-FIRL(mean) significantly outperforms

BNP-FIRL(NEAT). However, as the number of goals increases, BNP-FIRL(NEAT) even-

tually competes and later significantly outperforms BNP-FIRL(mean). From an MDP per-

spective, increasing the number of goals results in a more complex policy. This is because

the state reward and hence state value surface has more than one optima. This is visually

exemplified in Figure 5.13 and Figure 5.14. The hypothesis that the use of a neural network

allows to learn more complicated reward structures is therefore confirmed.

The hypothesis is then tested on an n = 16 scale (with NS = 16, LS = 4 for corre-

spondingly scaled input samples). However, experiments involving randomly placed goal

states did not reflect the expected dominance of BNP-FIRL(NEAT) over BNP-FIRL(mean).

To investigate this, MDPs on grids on an n = 4 scale were re-analysed for distribution of

states where the optimal action is to take no action. On analysis, the number of such

no − action states does not show coherence with the number of goals states. This is rea-

soned as follows. In the case of an episodic task, it would be expected that the number and

locations of goals correspond to the number and locations of no− action states. However,

the experimental setup used involves continuous tasks. In such a situation, the agent will

continue to move in the MDP space even after reaching a state which would be a goal or

34

FIG. 5.4. Number of samples evaluation (standard MDP, d = 0.7)

Number of Goal States MBNP−FIRL(mean) MBNP−FIRL(NEAT) p− value
1 0.2308 0.2545 3.8837 e-4
2 0.3292 0.3392 0.1870
3 0.4119 0.3913 0.0063
4 0.4954 0.4674 3.9776 e-5

Table 5.1. Performance on constructed MDPs

terminal state in the case of an episodic task. Based on these observations, four goals with

arbitrary reward value 100 are placed at each corner of the grid. In an average over 100

executions, BNP-FIRL(NEAT) results in a significantly (pvalue = 4.1819e06) lower mis-

prediction score (0.2672) as compared to BNP-FIRL(mean)(0.3072). The hypothesis that

the use of a neural network allows to learn more complicated reward structures is therefore

confirmed.

A conclusive performance hierarchy between these algorithms in a non-deterministic

(d = 0.7) linear MDP experimental setting is then established as BNP-FIRL(NEAT) >

BNP-FIRL(mean) > NEAT-IRL > GPIRL. Additionally, a decision tree for algorithm se-

lection for different MDP variations based on experimental results is presented in Figure

5.15. This figure is based on Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7.

35

FIG. 5.5. Number of samples evaluation (standard MDP, d = 1.0)

FIG. 5.6. Number of samples evaluation (linear MDP, d = 0.7)

36

FIG. 5.7. Number of samples evaluation (linear MDP, d = 1.0)

FIG. 5.8. Number of samples evaluation (linear MDP, d = 0.7, 100 executions)

37

FIG. 5.9. Number of samples evaluation (linear MDP, d = 0.7, 9− 16 samples)

FIG. 5.10. MDP variation for BNP-FIRL(mean) and BNP-FIRL(NEAT)

38

FIG. 5.11. MDP solutions (seeds 7, 15)

FIG. 5.12. MDP solutions (seeds 24, 25)

39

FIG. 5.13. Example MDP solutions (1 goal, 2 goals)

FIG. 5.14. Example MDP solutions (3 goal, 4 goals)

40

FIG. 5.15. Algorithm decision tree

Chapter 6

FUTURE WORK

These experiments conclude that algorithms using NEAT perform better on a non-

deterministic linear MDP than BNP-FIRL(mean) and GPIRL (as in Figure 5.8). This is

identified as useful considering that real world MDPs contain uncertainty in action caused

by various sources of noise.

Given the competitive performance of BNP-FIRL(NEAT) and BNP-FIRL(mean), hos-

pitable MDPs for BNP-FIRL(NEAT) are then evaluated and experiments highlight the pos-

sibility of MDPs with multiple goals being favourable (as in Figure 5.11 and 5.12). This

hypothesis is examined and superior performance of BNP-FIRL(NEAT) is confirmed in

cases of MDPs containing multiple goal states. BNP-FIRL(NEAT) is able to better es-

timate more complex reward structure (as in Table 5.1). A corresponding hierarchy of

evaluated algorithms is then established with BNP-FIRL(NEAT) ranked the highest.

Additionally, NEAT parameters can be tuned to improve performance and time com-

plexity for a given set of examples (as in Figure 5.2 and Figure 5.3). The current imple-

mentation of NEAT-IRL is also capable of greater time efficiency. Computations specific

to each genome in a population can be parallelized. Further, NEAT-IRL policy prediction

is currently done for all states. This can be limited to only demonstrated states, since that

is what determines fitness.

41

42

In future work, BNP-FIRL(NEAT) may be integrated to multiple agent settings and

may also be extended to incorporate a cost of sharing information (Miikkulainen et al.

2012).

Appendix A

SUPPLEMENTARY EVALUATIONS: NEAT-IRL, GPIRL

AND FIRL

The purpose of this section is to include more exhaustive performance evaluations

of NEAT-IRL, a purely neuroevolution based algorithm. The term purely is used to de-

note the lack of underlying preprocessing of feature information, as is done in the case of

BNP-FIRL(NEAT). The experiments are conducted on a completely deterministic MDP

(d = 1.0) to test learning capability without noise (random actions). As observed in other

experiments, results of NEAT based algorithms are more pronounced on a linear MDP,

which is the MDP type used for these experiments.

FIRL, GPIRL and NEAT-IRL are compared across three aspects of the demonstration

and state space: NS , LS and n. For each of these evaluations, NEAT parameters remain

arbitrarily set asNP = 50 andNG = 50. As in (Levine, Popovic, & Koltun 2011b), GPIRL

is observed to be consistently better than FIRL.

Figure A.1 evaluates FIRL, GPIRL and NEAT-IRL over LS ranging from 1 to 8.

NEAT-IRL performs competitive to FIRL and GPIRL when sample lengths are lower (par-

ticularly LS = 1). In particular, NEAT-IRL is better on a linear MDP and GPIRL is better

on a standard MDP. However, when there is more information available, FIRL and GPIRL

perform better than NEAT-IRL. This may be due to the capabilities of FIRL and GPIRL

43

44

when sufficient demonstration information is available, and limiting values of NP and NG

(as justified in Figure A.4). FIRL misprediction score when tested on a linear MDP does

not change much with example information quantity. This may be a limitation of internal

optimization methods used for FIRL. It is evident from Figure A.1 that FIRL and GPIRL

execution times are approximately independent of the length of the samples provided. The

case is similar for NEAT-IRL after a threshold, but with a greater execution time. This may

be due to potential overlap of examples, which effectively decreases demonstration space.

Dependency on NS is evaluated by varying NS from 1 to 8. The results are observed

in Figure A.2. As in Figure A.1, NEAT-IRL performs better than FIRL and GPIRL on a

linear MDP when less training samples are available. The reasoning for this performance

remains the same. Execution time patterns are similar to Figure A.2. However, in the case

of a smaller grid, the computational complexity of FIRL is briefly linear after a certain

threshold (see Appendix C). This may be attributed to growth in its internal regression

tree model dominating time complexity. It is interesting that corresponding increase in

computational complexity in this case is much lower for NEAT-IRL than FIRL or GPIRL,

which is attributed to NEAT-IRL matching all demonstrations in early generations, thereby

terminating the algorithm. Increasing time complexity is attributed to fitting more data.

Further, the algorithms are evaluated over n (ranging from 4 to 16). This also means

that the number of features increases from 6 to 30. Based on observations in Figure A.1,

LS = 1 is used to examine competitive performance of NEAT-IRL. A fraction of the

state space is used for examples as NS = df × n2e. Ceiling ensures a non empty set

of examples. Using default parameters provided in (Levine, Popovic, & Koltun 2011a),

f = (16 × 8)/(32 × 32) = 0.125. This is the value used for this evaluation. As in Figure

A.3, NEAT-IRL performs better than GPIRL and FIRL in terms of misprediction score on a

linear MDP for much of the evaluation. This does, however, incur a cost of non linear time

complexity as opposed to what appears to be constant time complexity. This is attributed

45

to the increasing complexity of the neural network as the number of inputs (features) in-

creases. The decrease in performance of NEAT-IRL for larger values of nmay be attributed

to unsuitability of the current values of NP and NG for the increasing sample space. This is

experimentally verified by an observed decrease in performance in Figure A.4 with NEAT-

IRL parameters set to be more limiting as NP = 5 and NG = 5 as opposed settings for

Figure A.3. GPIRL performs almost strictly better than FIRL and NEAT-IRL when testing

on a standard MDP. Execution times in Figure A.4 are more competitive because faster

NEAT-IRL execution due to more limiting parameters. This also reflects an observable

linearity and non linearity in time complexities for FIRL and GPIRL respectively, which is

not as evident in Figure A.3.

In a final comparison, NEAT-IRL is tested for its better adaptability to non linear

boundaries as compared to FIRL and GPIRL. For representational tractability, n is limited

to 4. Figure A.5 depicts variation of misprediction score across various grids generated

using specified seed values. The following use of a t-test refers to a two sample t-test.

The scores of both GPIRL and NEAT-IRL are significantly better than those of FIRL for

both linear and standard MDPs (t-test evaluates with p− value less than 0.001). Similarly,

scores of GPIRL are significantly better than those of NEAT-IRL for a standard MDP (t-test

evaluates with p− value less than 0.001). However, scores of NEAT-IRL are significantly

better than those of GPIRL for a linear MDP (t-test evaluates with p − value of 0.0378).

NEAT-IRL performs almost as good as GPIRL for seed = 5, 21 and significantly better

than GPIRL for seed = 4, 19. These particular seeds were not modified internally and

are therefore valid for translation to corresponding optimal MDP policies. These policies

for the MDPs for these two situations are shown in Figure A.6 and Figure A.7 respectively

(arrows represent optimal direction of motion, if any). States with no arrows are goal states.

From these MDPs, it is unclear on whether location of the goal state discriminates

performance of GPIRL and NEAT-IRL. It is then hypothesized that NEAT-IRL performs

46

better than GPIRL in the presence of multiple goal states. To evaluate this, two MDPs

(n = 4) are manually constructed with 3 (arbitrary) scattered and clustered multiple reward

structures as in Figure A.8. Blank states correspond to zero rewards and goal states have

a reward of 100 (maximum reward set for the grid world in the toolkit). Goal states are

scattered in the first MDP and clustered in the second. Performances of GPIRL and NEAT-

IRL on these MDPs across various random seeds (used internally by the algorithms) are

shown in Figure A.9. NEAT-IRL results in significantly better misprediction scores for

a linear MDP than GPIRL in case of the scattered MDP (t-test evaluates with p-value of

0.0461. However, for the clustered MDP, performance difference between GPIRL and

NEAT-IRL corresponds to p-value of 0.4623 on a t-test.

To evaluate this hypothesis further, 25 MDPs (n = 4) are generated with 2 and 3

(selected arbitrarily) goal states. GPIRL and NEAT-IRL are trained on standard and linear

MDPs and are evaluated on a linear MDP (in view of better performance of NEAT-IRL

than GPIRL for this metric). The findings are summarized in Table A.1. MGPIRL and

MNEAT−IRL refer to average misprediction scores for GPIRL and NEAT-IRL respectively.

There is not significant improvement by NEAT-IRL over GPIRL when there are 3 goals.

This is associated with there being less space in the MDP to scatter goals in proportion

to the number of goals. This is affirmed by the improved performance of NEAT-IRL over

GPIRL in case of 2 goals. NEAT-IRL is therefore established to be better suited than

GPIRL for an MDP containing multiple sparsely located goal states. Misprediction scores

when testing on a standard MDP favour GPIRL.

47

FIG. A.1. Sample length evaluation (linear MDP, d = 1.0)

FIG. A.2. Number of samples evaluation (linear MDP, d = 1.0)

Number of Goal States Training MDP MGPIRL MNEAT−IRL p− value
2 Standard 0.4620 0.3731 0.0077

Linear 0.4786 0.4027 0.0150
3 Standard 0.5055 0.5001 0.8510

Linear 0.5057 0.4801 0.4043

Table A.1. Performance on manually constructed MDPs

48

FIG. A.3. Grid size evaluation (linear MDP, d = 1.0)

FIG. A.4. Parameter limitations (NP = 5, NG = 5)

49

FIG. A.5. MDP variation (linear MDP, d = 1.0)

FIG. A.6. MDP solutions (seeds 5, 21)

50

FIG. A.7. MDP solutions (seeds 4, 19)

FIG. A.8. Manually constructed MDPs

51

FIG. A.9. Performance on manually constructed MDPs (linear MDP, d = 1.0)

Appendix B

EXTENDED EVALUATIONS (N = 16): NEAT-IRL,

GPIRL AND FIRL

In contrast to the figures included in Appendix A, the following are results obtained

when the IRL models are trained on a standard MDP. Figure B.2 is an exception to this and

generated by IRL models trained using a linear MDP. These figures serve to complement

figures in Appendix A and provide a complete experimental result over standard and linear

MDPs.

52

53

FIG. B.1. NEAT-IRL population size evaluation (standard MDP, d = 1.0)

FIG. B.2. NEAT-IRL maximum generations evaluation (linear MDP, d = 1.0)

54

FIG. B.3. Sample length evaluation (standard MDP, d = 1.0)

FIG. B.4. Number of samples evaluation (standard MDP, d = 1.0)

55

FIG. B.5. Grid size evaluation (standard MDP, d = 1.0)

FIG. B.6. NEAT-IRL parameter limitations (standard MDP, d = 1.0)

Appendix C

SUPPLEMENTARY EVALUATIONS (N = 4):

NEAT-IRL, GPIRL AND FIRL

This section contains results for experiments originally conducted for grid with n =

16, repeated on a grid with n = 4. These exclude results in Appendix D. This is done to

evaluate the performance of NEAT-IRL parameters (NP = 50,NG = 50) on a less complex

MDP. Figures C.1, C.2, C.3 and C.4 correspond to training on a linear MDP. Figures C.5,

C.6, C.7, and C.8 correspond to training on a standard MDP. Performance stagnation is

observed in Figures C.1, C.2, C.5 and C.6. This is attributed to NEAT-IRL parameters

being larger than necessary, leading to early algorithm termination.

56

57

FIG. C.1. NEAT-IRL population size evaluation (linear MDP, d = 1.0)

FIG. C.2. NEAT-IRL maximum generations evaluation (linear MDP, d = 1.0)

58

FIG. C.3. Sample length evaluation (linear MDP, d = 1.0)

FIG. C.4. Number of samples evaluation (linear MDP, d = 1.0)

59

FIG. C.5. NEAT-IRL population size evaluation (standard MDP, d = 1.0)

FIG. C.6. NEAT-IRL maximum generations evaluation (standard MDP, d = 1.0)

60

FIG. C.7. Sample length evaluation (standard MDP, d = 1.0)

FIG. C.8. Number of samples evaluation (standard MDP, d = 1.0)

Appendix D

EXTENDED EVALUATIONS (N = 4): NEAT-IRL,

GPIRL AND FIRL

This section completes Appendix C by providing results obtained on MDP analysis

experiments when the IRL models are trained on a standard MDP.

61

62

FIG. D.1. MDP variation (standard MDP, d = 1.0)

FIG. D.2. Performance on manually constructed MDPs (standard MDP, d = 1.0)

REFERENCES

[1] Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning via inverse reinforcement

learning. In Proceedings of the twenty-first international conference on Machine learn-

ing, 1. ACM.

[2] Abbeel, P. 2012. Inverse reinforcement learning. http://www.cs.berkeley.

edu/˜pabbeel/cs287-fa12/slides/inverseRL.pdf.

[3] Angeline, P. J.; Saunders, G. M.; and Pollack, J. B. 1994. An evolutionary algo-

rithm that constructs recurrent neural networks. Neural Networks, IEEE Transactions

on 5(1):54–65.

[4] Banzhaf, W.; Nordin, P.; Keller, R. E.; and Francone, F. D. 1998. Genetic program-

ming: an introduction, volume 1. Morgan Kaufmann San Francisco.

[5] Barto, A. G. 1998. Reinforcement learning: An introduction. MIT press.

[6] Bengio, Y. 2009. Learning deep architectures for ai. Foundations and trends R© in

Machine Learning 2(1):1–127.

[7] Caruana, R., and Niculescu-Mizil, A. 2006. An empirical comparison of supervised

learning algorithms. In Proceedings of the 23rd international conference on Machine

learning, 161–168. ACM.

[8] Chervenski, P. 2012. Multineat. http://multineat.com/.

[9] Choi, J., and Kim, K.-E. 2011. Map inference for bayesian inverse reinforcement

learning. In Advances in Neural Information Processing Systems, 1989–1997.

63

64

[10] Choi, J., and Kim, K.-E. 2013a. Bayesian nonparametric feature construction for

inverse reinforcement learning. In Proceedings of the Twenty-Third international joint

conference on Artificial Intelligence, 1287–1293. AAAI Press.

[11] Choi, J., and Kim, K.-E. 2013b. Irl toolkit. http://ailab.kaist.ac.kr/

codes/bayesian-nonparametric-feature-construction-for-irl.

[12] Deisenroth, M. P.; Rasmussen, C. E.; and Peters, J. 2009. Gaussian process dynamic

programming. Neurocomputing 72(7):1508–1524.

[13] Deng, L., and Yu, D. 2014. Deep learning: methods and applications. Foundations

and Trends in Signal Processing 7(3–4):197–387.

[14] Engel, Y.; Mannor, S.; and Meir, R. 2005. Reinforcement learning with gaussian

processes. In Proceedings of the 22nd international conference on Machine learning,

201–208. ACM.

[15] Ghahramani, Z., and Griffiths, T. L. 2005. Infinite latent feature models and the indian

buffet process. In Advances in neural information processing systems, 475–482.

[16] Gruau, F., et al. 1994. Neural network synthesis using cellular encoding and the

genetic algorithm.

[17] Hahn, J., and Zoubir, A. M. 2015. Inverse reinforcement learning using expectation

maximization in mixture models. In Acoustics, Speech and Signal Processing (ICASSP),

2015 IEEE International Conference on, 3721–3725. IEEE.

[18] Haykin, S., and Network, N. 2004. A comprehensive foundation. Neural Networks

2(2004).

65

[19] Karpov, I. V.; Valsalam, V. K.; and Miikkulainen, R. 2011. Human-assisted neu-

roevolution through shaping, advice and examples. In Proceedings of the 13th annual

conference on Genetic and evolutionary computation, 371–378. ACM.

[20] Kassahun, Y., and Sommer, G. 2005. Efficient reinforcement learning through evolu-

tionary acquisition of neural topologies. In ESANN, 259–266.

[21] Koza, J. R. 1992. Genetic programming: on the programming of computers by means

of natural selection, volume 1. MIT press.

[22] Kullback, S., and Leibler, R. A. 1951. On information and sufficiency. The annals of

mathematical statistics 79–86.

[23] Levine, S.; Popovic, Z.; and Koltun, V. 2010. Feature construction for inverse rein-

forcement learning. In Advances in Neural Information Processing Systems, 1342–1350.

[24] Levine, S.; Popovic, Z.; and Koltun, V. 2011a. Irl toolkit. http://graphics.

stanford.edu/projects/gpirl/irl_toolkit.zip.

[25] Levine, S.; Popovic, Z.; and Koltun, V. 2011b. Nonlinear inverse reinforcement

learning with gaussian processes. In Advances in Neural Information Processing Sys-

tems, 19–27.

[26] Lilley, M., and Frean, M. 2005. Neural networks: a replacement for gaussian

processes? In Intelligent Data Engineering and Automated Learning-IDEAL 2005.

Springer. 195–202.

[27] Mayr, C. 2003. Matlab neat. http://nn.cs.utexas.edu/?neatmatlab.

[28] Michini, B., and How, J. P. 2012. Bayesian nonparametric inverse reinforcement

learning. In Machine Learning and Knowledge Discovery in Databases. Springer. 148–

163.

66

[29] Michini, B.; Walsh, T. J.; Agha-Mohammadi, A.-A.; and How, J. P. 2015. Bayesian

nonparametric reward learning from demonstration. Robotics, IEEE Transactions on

31(2):369–386.

[30] Miikkulainen, R.; Feasley, E.; Johnson, L.; Karpov, I.; Rajagopalan, P.; Rawal, A.;

and Tansey, W. 2012. Multiagent learning through neuroevolution. In Advances in

Computational Intelligence. Springer. 24–46.

[31] Neal, R. M. 1995. Bayesian learning for neural networks. Ph.D. Dissertation, Uni-

versity of Toronto.

[32] Neal, R. M. 1996. Priors for infinite networks. In Bayesian Learning for Neural

Networks. Springer. 29–53.

[33] Ng, A. Y.; Russell, S. J.; et al. 2000. Algorithms for inverse reinforcement learning.

In Icml, 663–670.

[34] Puterman, M. L. 2014. Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons.

[35] Ramachandran, D., and Amir, E. 2007. Bayesian inverse reinforcement learning.

Urbana 51:61801.

[36] Rasmussen, C. E.; Kuss, M.; et al. 2003. Gaussian processes in reinforcement learn-

ing. In NIPS, volume 4, 1.

[37] Rasmussen, C. E. 2006. Gaussian processes for machine learning.

[38] Ratliff, N. D.; Bagnell, J. A.; and Zinkevich, M. A. 2006. Maximum margin planning.

In Proceedings of the 23rd international conference on Machine learning, 729–736.

ACM.

67

[39] Ratliff, N.; Bradley, D.; Bagnell, J. A.; and Chestnutt, J. 2007. Boosting structured

prediction for imitation learning. Robotics Institute 54.

[40] Ratliff, N. D.; Silver, D.; and Bagnell, J. A. 2009. Learning to search: Functional

gradient techniques for imitation learning. Autonomous Robots 27(1):25–53.

[41] Rempis, C. W. 2012. Evolving complex neuro-controllers with interactively con-

strained neuro-evolution.

[42] Sher, G. I. 2012. Handbook of neuroevolution through Erlang. Springer Science &

Business Media.

[43] Siebel, N. T., and Sommer, G. 2007. Evolutionary reinforcement learning of artificial

neural networks. International Journal of Hybrid Intelligent Systems 4(3):171–183.

[44] Stanley, K. O., and Miikkulainen, R. 2002. Evolving neural networks through aug-

menting topologies. Evolutionary computation 10(2):99–127.

[45] Stanley, K. O.; Bryant, B. D.; and Miikkulainen, R. 2005a. Evolving neural network

agents in the nero video game. Proceedings of the IEEE 182–189.

[46] Stanley, K. O.; Bryant, B. D.; and Miikkulainen, R. 2005b. Real-time neuroevolution

in the nero video game. Evolutionary Computation, IEEE Transactions on 9(6):653–

668.

[47] Stanley, K. 2014. The neuroevolution of augmenting topologies (neat) users page.

http://www.cs.ucf.edu/˜kstanley/neat.html.

[48] Sutton, R. S., and Barto, A. G. 1998. Reinforcement learning: An introduction,

volume 1. MIT press Cambridge.

68

[49] Syed, U., and Schapire, R. E. 2007. A game-theoretic approach to apprenticeship

learning. In Advances in neural information processing systems, 1449–1456.

[50] Syed, U.; Bowling, M.; and Schapire, R. E. 2008. Apprenticeship learning using

linear programming. In Proceedings of the 25th international conference on Machine

learning, 1032–1039. ACM.

[51] Todorov, E. 2006. Linearly-solvable markov decision problems. In Advances in

neural information processing systems, 1369–1376.

[52] Tufts University, M. M. 2015. Comp 131: Artificial intelligence. http://www.

cs.tufts.edu/comp/131.

[53] Vroman, M. C. 2014. Maximum likelihood inverse reinforcement learning. Ph.D.

Dissertation, Rutgers University-Graduate School-New Brunswick.

[54] Whiteson, S.; Stone, P.; Stanley, K. O.; Miikkulainen, R.; and Kohl, N. 2005. Auto-

matic feature selection in neuroevolution. In Proceedings of the 7th annual conference

on Genetic and evolutionary computation, 1225–1232. ACM.

[55] Wikipedia. 2015. Artificial neural network — Wikipedia, the free encyclopedia.

https://en.wikipedia.org/wiki/Artificial_neural_network.

[56] Williams, C. K., and Rasmussen, C. E. 2006. Gaussian processes for machine learn-

ing. the MIT Press 2(3):4.

[57] Wulfmeier, M.; Ondruska, P.; and Posner, I. 2015. Deep inverse reinforcement learn-

ing. arXiv preprint arXiv:1507.04888.

[58] Yao, X., and Liu, Y. 1997. A new evolutionary system for evolving artificial neural

networks. Neural Networks, IEEE Transactions on 8(3):694–713.

69

[59] Yong, C. H.; Stanley, K. O.; Miikkulainen, R.; and Karpov, I. 2006. Incorporating

advice into neuroevolution of adaptive agents. In AIIDE, 98–104.

[60] Ziebart, B. D.; Maas, A. L.; Bagnell, J. A.; and Dey, A. K. 2008. Maximum entropy

inverse reinforcement learning. In AAAI, 1433–1438.

[61] Ziebart, B. D. 2010. Modeling purposeful adaptive behavior with the principle of

maximum causal entropy.

