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A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely
slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. With
the help of phenomenological response functions, a simple expression for the excess work is found—quantifying

the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin
1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence
of shortcuts. Finally, we propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for

specific and very short driving times.
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I. INTRODUCTION

Thermodynamics is a phenomenological theory to describe
the transformation of heat into work. However, only qua-
sistatic, i.e., infinitely slow, processes are fully describable by
means of conventional thermodynamics [1]. For all realistic,
finite-time—nonequilibrium—processes, the second law of
thermodynamics constitutes merely an inequality, expressing
that some portion of the energy or entropy is irreversibly lost
into nonequilibrium excitations. For isothermal processes, this
“loss” is quantified by the excess work (W), which is the
difference between the total nonequilibrium work (W) and the
work performed during a quasistatic—equilibrium—process
(Wys), (Wex) = (W) — (Wys). For macroscopic, open systems,
(Wys) is simply given by the free energy difference AF.
However, the identification of the equilibrium work, (W),
with the free energy difference, AF, is only true for open
systems. For isolated systems, the minimal work is not given
by the free energy difference and (W) has to be analyzed
carefully [2]. In addition, for quantum systems, the situation
is particularly involved as quantum work is not an observable
in the usual sense, as there is no Hermitian operator, whose
eigenvalues are given by the classical work values [3-7].

Nevertheless, finding “optimal” quantum processes, for
which only the minimal amount of (W) is lost into nonequi-
librium excitations, is of fundamental importance. Conse-
quently, a lot of theoretical and experimental research has been
dedicated to the design of so-called shortcuts to adiabaticity,
i.e., finite-time processes with suppressed nonequilibrium
excitations [8]. To this end, a variety of techniques has been
proposed: the use of dynamical invariants [9], the inversion
of scaling laws [10], the fast-forward technique [11,12], and
transitionless quantum driving [13—16]. All methods have in
common that practical implementations are rather involved
as the full dynamics has to be solved to determine the
shortcut. Therefore, more recent research efforts have been
focusing on identifying optimal protocols from optimal control
theory [17,18], properties of the quantum work statistics [19],
or “environment” assisted methods [20].
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The present analysis is dedicated to finding shortcuts
to adiabaticity from a phenomenological approach—Ilinear
response theory. For classical systems, it has been recently
shown that there exist finite-time processes with zero excess
work [21]. In this paradigm, (W) is fully determined by
the phenomenological response of the system to an external
perturbation [22,23]. Thus, we neither have to solve the dy-
namics [13—16] nor do we have to determine the quantum work
statistics [19] to minimize (We). In the following, we will
extend our previous findings [21,23] to the quantum domain.
To this end, we will consider a thermally isolated quantum
system under weak perturbation and derive a linear response
expression for (W). After establishing the general theory, we
will turn to analytically solvable and pedagogically elucidating
examples, namely the parametric harmonic oscillator and
the spin 1/2 in a time-dependent magnetic field. This will
allow us to study the range of validity of the linear response
approach by comparing our findings with the exact results
from the full quantum work statistics [24,25]. We will show
that the protocols with zero excess work from linear response
theory, indeed, facilitate transitionless quantum driving for
weak perturbations. Finally, we will propose a family of
degenerate protocols, which facilitates shortcuts to adiabaticity
for arbitrarily fast driving.

II. QUANTUM WORK FROM LINEAR RESPONSE
THEORY

We begin by generalizing the previous classical treatment
of the excess work (We) [21] to the quantum domain.
Imagine a quantum system with time-dependent Hamiltonian
H,, which is prepared initially in a thermal equilibrium state,
po = exp(—BHy)/Zy, where Z, is the partition function,
Zo = tr{exp (—BHp)}. Att = to + 0T, the system is decoupled
from the environment and the Hamiltonian is varied according
to some protocol A, with H; = H(X;). Such a processes is
sketched in Fig. 1.

The external control parameter A; is written as

At = ko 404 g(1), (1)

©2015 American Physical Society
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FIG. 1. (Color online) Sketch of the thermodynamic processes
under study. At ¢t = #;, the system is prepared in equilibrium with
inverse temperature § before the system is decoupled from the
environment and controlled externally from ¢ = 7, + 0" until a final
time 7.

where A, starts in an initial value X¢, A is the amplitude, and
g(t) obeys g(t) = O and g(ty) = 1. Thus, A, varies from Ag to
Af = Ao+ A

For small systems, work is a fluctuating quantity [26] and
for a specific protocol g(¢) the average work reads

(W) = / "t (0, H), @)

fo

where the angular brackets denote an average over many
realizations of the same process and the dot denotes a derivative
with respect to time.

We will now evaluate the general expression for the average
work (2) by means of linear response theory. To this end, we
expand the Hamiltonian up to linear order in the amplitude A,

H(\) = H(h) + 81 g(t) 9, H + O(5A%). 3)

By substituting Eq. (3) into Eq. (2) and identifying 9, H as the
generalized force [21,23,27,28], it can be shown [21] that the
average work (2) becomes

(W) =A(0,H),,

(61)?
— v

—(SA)zv/f dtatg/ 70ds\l—’(s)3sg(t—s), “)
to 0

where W(¢) is the relaxation function [27,28].

Until Eq. (4), the present treatment is identical to the clas-
sical case [21]. However, in the quantum case, the relaxation
function W (¢) is determined by the quantum response function
B(1), (1) = — (1), with [27,28]

1
o(t) = — tr{po [Ao, A/]}, )
ih

where A = 9, H is the generalized force. To avoid clutter in
the formulas, we introduce in Eq. (5) the notation A(t) = A,.

In complete analogy to the classical case [21], the first two
terms of Eq. (4) are independent of the specific protocol g(¢)
and we identify the quasistatic, equilibrium work as

G,
2

(Was) = 62 (0, H) py v (0). (6)
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In the remainder of this analysis, we will analyze the excess
work,

ty t—ty
(Wex) = —(M)z// dfatg/ dsW(s)o;g(t —s), (7)
T 0

for two analytically solvable examples. We will show that
whenever this thermodynamic quantity vanishes in finite time,
the quantum adiabatic invariant is conserved and therefore the
system can be driven through a shortcut to adiabaticity.

Generally, it is easy to see that if the adiabatic theorem
is fulfilled, no transitions between eigenstates occur, and
therefore the excess work (W) has to vanish. However,
the reverse is not necessarily true. Even if the excess work
vanishes, one could imagine a process during which some
transitions between eigenstates do occur, however in such
a way that their energetic contribution “cancels out.” In
the following, we will analyze this issue with the help
of two fully analytically solvable examples—the parametric
harmonic oscillator and a spin-1/2 particle in a magnetic
field. We will find that at least within the range of validity
of linear response theory, such “canceling” transitions do not
occur since for a “shortcut” not only the excess work vanishes,
but also the adiabatic invariant is (approximately) conserved.
For classical systems, a similar analysis was developed in
Ref. [21].

III. PARAMETRIC HARMONIC OSCILLATOR

We consider the time-dependent Hamiltonian

P 1 2
H(A't):?'i_z)"tx: (3
where x and p are the coordinate and momentum operators,
respectively. This system can be solved analytically [24,25]
for specific protocols A, that drive the system from an initial
to final value of A, as illustrated in Fig. 2.

To simplify notation, we further set 7o = 0 and ¢y = 7.

FIG. 2. (Color online) Parametric harmonic oscillator (8) with X
(dashed line) at time ¢ = fy and Af (solid line) at r = 7.

042148-2



SHORTCUTS TO ADIABATICITY FROM LINEAR ...

A. Linear response approach

The response function (5) is obtained by solving Heisen-
berg’s equations of motion for a fixed, initial value of A. Hence,
we obtain, after a few simple lines,

(1) = )Licoth (M) sin(2y/A0 1). 9)
0

It is interesting to note that the system’s response is oscillatory.
Consequently, we have the “relaxation” function

coth (’3 hg/%) cos(2y/aot).  (10)

h
YO v
Generally, relaxation functions describe how a system relaxes
towards an equilibrium state. However, since the present
system has only a single degree of freedom and is thermally
isolated, the “relaxation” function exhibits nondecreasing
oscillations.

For the sake of simplicity, we further assume that the
stiffness varies linearly with time,

A = Ao +6At/T, (11)
for which we obtain

woy — (B R (B sin' (VAo T)
ot = () 25 oo (572 M55

Equation (12) constitutes our first main result. In complete
analogy to the classical case [21], the excess work vanishes
for all zeros of the sine function, i.e., for all T = nm//Ao with
n being an integer. In the classical case, these “special” driving
times have been attributed to a conservation of the adiabatic
invariant during the finite-time process [21].

In the next section, we will further analyze this observation
and show that the minima of (W) (12), indeed, identify
shortcuts to adiabaticity.

. (12)

B. Exact solution

The parametric harmonic oscillator (8) has been extensively
studied, since it can be solved analytically [24,25,29,30]
for specific driving protocols and it describes quantum
thermodynamic experiments in cold ion traps [31-33]. The
time-dependent mean energy can be written as [25,34]

(H,) = @ O* coth (@) (13)

where Q* is ameasure of adiabaticity [24,25,29]. This measure
is fully determined by two special solutions, X, and Y, of the
force-free equation of motion [29],

X +xx=0. (14)
We have

1 . .

= ———— oA X2+ X))+ (A, Y24 YD), (15
0 2\/@[0(}‘1’ r) (fr T)]()
with Xo = 0, Xo = l and Yy = 1, ¥, = 0. [29]. Note that these
initial conditions for X; and Y, are chosen for the sole sake of
simplifying the mathematical treatment [29]. For the quantum
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x10'

FIG. 3. (Color online) Measure of adiabaticity Q* (17) as a
function of the switching time for the linear protocol, g(¢) = t/7, and
Ay = 2.0 (blue solid line), Ay = 1.7 (green dashed line), A, = 1.5
(yellow dot-dashed line), A, = 1.3 (orange dash-dotted line), and
Ay = 1.1 (red dotted line), and Ao = 1.0.

harmonic oscillator, the time-dependent action S = E(¢)/w(t)
is conserved if [25]

X2+ X2 1 Y24+ A Y2
= and ——2L =/x. (16)
Vg VAo Vv

Thus, it is easy to see that Q* > 1, where the equality holds
for quasistatic processes. Accordingly, the exact expression
for the excess work reads

(wexeet) — fiv )‘0; . coth (ﬁh;/%)(g* -D. (A7)

Note that Q* depends only implicitly on the protocol X,
through the solutions of Eq. (14). Therefore, it is ad hoc not
clear whether the exact excess work (17) exhibits the same
zeros as the expression from linear response theory (12) for
the linear protocol (11).

To gain insight and to build intuition, we plot the measure of
adiabaticity Q* (15) for the linear protocol in Fig. 3 for various
strengths of the perturbation 61. We observe that generally
O* — 1 exhibits oscillations, but no zeros as a function of 7.

For weak driving, however, i.e., §A/Ag < 1, where we
expect linear response theory to hold, the minima of O* — 1 get
infinitely close to zero. In Fig. 4, we compare the excess work
from linear response theory (12) with the behavior of 0* — 1
for weak driving. We observe very good agreement between
the result from linear response theory (12) and Q* — 1.

It has also been shown that for O* = 1, the quantum
adiabatic theorem is fulfilled, i.e., for such processes there are
no transitions between different energy eigenstates [29]. Thus,
we conclude that the zeros of the excess work, indeed, identify
finite driving times for which transitionless quantum driving
is facilitated—shortcuts to adiabaticity from linear response
theory.
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FIG. 4. (Color online) Excess work from linear response the-
ory (12) (blue solid line) together with Q* — 1 (black dashed
line) as a function of 7 for the linear protocol (11) and
A = 0.1. The symbol W, denotes (W.) measured in units of

(83./+/R0) (h/70) coth (Blin/R/2) /4.

C. Range of validity of linear response theory

Linear response theory can be understood as a phe-
nomenological theory of weak perturbations [27]. Thus, the
numerical and qualitative agreement between exact (17) and
approximate (12) results cannot be considered satisfactory. To
deepen the insight into the approximations, we will now derive
Eq. (12) from the exact expression (17) without having to rely
on phenomenology.

To this end, we expand the exact expression (17) in powers
of 8\ up to second order. Note that Q* depends implicitly on
the protocol A; and we write Q*(5§A). We have

sz = Seon (B2 ) i1 im0
2

N

3,.0%(0) + 20 3; 0*(0)] + 0(5A3>},
(18)

where we used Q*(0) = 1. We now have to show that there
exist approximate solutions &; and ), of the equation of
motion (14) such that Eq. (18) reduces to the linear response
expression (12) with X; and ) replacing X, and Y; in Eq. (15).

Comparing Egs. (12) and (18), we conclude that X; and )/,
have to fulfill

sin? (Ag7)

(Q*0)=0 and 3 0*0) = —5
AT

19)

Additionally, we know that X; and ); have to obey /'V,y, —
X; Y, = 1[29]. The latter condition is just an expression of the
commutation relation between position and momentum [29].
For §A = 0, the solution of Eq. (14) is given by the sine and
cosine function [29]. Hence, we make the ansatz

1
% = —=sin (Vhot) + A Fi + 0(822),

Vi = cos (vAot) + 81 G, + 0312,

(20)
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FIG. 5. (Color online) (a) Exact solution X, (solid line) and
approximate solution &; (20) for A = 0.1 (dashed line). (b) Exact
solution Y; (solid line) and approximate solution ); (20) for A = 0.1
(dashed line). Shaded area signifies a 6A environment around the
exact results.

where F; and G, are two time-dependent functions determined
by the conditions (19).
It is then a tedious but straightforward exercise to show that

2+ dalgt t —4bioT .
Fi = ———cos Aot) — —————sin Aot 21
: ot (v 2ot) Troiot in(y/At) (21)

and

12+ 4an
G = _ I sakor cos (v/ Aot)

4)»07,'
fz)uo —dcipr — 1
+ —— sin Aot). 22
oigr R (22

The three constants a, b, and ¢ are determined by the boundary
conditions Fy =a, Fo=b and Gy = —b, Gy = ¢ [35]. The
expressions of F and G are rather lengthy and can be found in
Appendix A.

The solutions (20) together with Egs. (21) and (22) are
the approximate solutions of Eq. (14), for which the exact
expression for the excess work (17) reduces to the result from
linear response theory (12). In Fig. 5, we plot the approximate
solutions (20) together with the exact solutions of (14). We
observe that X; and ), are within a §A environment around the
exact results, as one would intuitively expect by construction.

In conclusion, we have shown that results from linear
response theory can also be obtained from expanding the

042148-4
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exact solutions for weak driving. Thus, the linear response
expressions are not only qualitatively and phenomenologically
true, but also quantitatively exact.

D. Optimal protocols—shortcuts to adiabaticity

In an analogous classical treatment, it has been shown that
the linear parametrization (11) is not the only protocol with
zero excess work. Rather, there is a degenerate family of op-
timal protocols [21,36] for which nonequilibrium excitations
are suppressed. This family is given by

gt)=t/t +asin(knt/T), 23)

where k is an integer and « is any arbitrary real number.
The quantum excess work (12) merely differs in the
prefactor from the classical expression

B ( Sh )2 1 sin?(v/Ao7)
BRI Vi) 2B AoT?

which is obtained in the limit A8+/A¢ < 1. Thus, the degener-
ate class (23) constitutes a family of shortcuts to adiabaticity
for the quantum harmonic oscillator under weak driving.
Figure 6 illustrates (W) (12) together with Q* — 1 for two
members of the family (23). It has been shown [21] that the

(Wex)

) (24)

14 x10~2

0.4f

FIG. 6. (Color online) Excess work (12) (black dashed line) and
normalized adiabatic parameter Q* — 1 (red solid line) as a function
of the switching time for the optimal protocols (23) with (a) @ = 1,
k = 2and (b)x = 1,k = 4. The symbol W, denotes (W,,) measured

in units of (81/x/Ag) (fin/Ag) coth (BTin/Ao/2) /4.
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shortcut to adiabaticity is obtained for /Aot = nm, with n
integer, and

(c7/2)

Finally, it is worth emphasizing that such shortcuts to adia-
baticity can be obtained for arbitrarily short switching times
by choosing « appropriately [21].

IV. SPIN 1/2 IN A TIME-DEPENDENT MAGNETIC FIELD

Our second example is a spin 1/2 in a time-dependent
magnetic field subjected to the constraint |B(¢)| = By = const.
Its Hamiltonian reads

H(t) = —%”a “B(@), (26)

where o denotes the Pauli matrices. Due to the above-
mentioned constraint on B(¢), it is more convenient to choose
the following parametrization:

sin [(1)] cos [6(1)]

sin [@(t)]sin [0(2)] |. 27)
cos [p(1)]

B(t) = B,

Hence, the time dependence of the set of allowed processes
parameterized by the angles ¢(¢) and 6(¢) is, in analogy to
Eq. (1), expressed as

(28a)
(28b)

() = o + 8¢ g,(1),
0(t) = 6y + 86 go (1),

where the boundary conditions g, 4(0) =0 and g, ¢(7) =1
must hold.

Linear response theory provides a good description of (W)
as long as 8¢ and 86 are sufficiently small. In this regime,
one can easily show that the angle 6(¢) plays no role and the
thermodynamic work (7) depends on the nonequilibrium of
0, H only. Thus, the response function is given by Eq. (5) with
A, = 0,H(t) and it is straightforward to obtain

h hy B
P(t) = E(yBo)z tanh (ﬂ g °> sin(yBot),  (29)
from which, using again ¢(r) = — (1), we have the relaxation
function
h h
() = % tanh (ﬁ 2‘”‘)) cos (awot), (30)

where we defined wy = y By.

The time dependence of the relaxation functions (10)
and (30) has the same functional form. Therefore, the excess
work performed by an external agent while driving the spin
1/2 will behave exactly the same as in the parametric harmonic
oscillator. For instance, the protocols given by (23) also
constitute a family of optimal protocols for the present system.
Nevertheless, the values of wgt for which the excess work
vanishes are a bit different from those in Fig. 4 due to the
absence of the factor 2 in cos (wgt) of Eq. (30). The linear
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protocol generates zeros for wyt = n 2.

Quantum adiabatic invariant

Analogously to Sec. III, we will now verify that the quantum
adiabatic invariant is conserved for spin-1/2 particles driven
by Eq. (23). To this end, we analyze the time evolution of the
coefficients c(¢) and c_(¢) appearing in the expansion

o)=Y cn<r>exp[—% /0 dr’Ena/)}m;w, (31)

n=+,—

of an arbitrary state |y(¢)). We denote by E,(¢) and |n;t)
the instantaneous eigenvalues and eigenstates of (26). The
quantum adiabatic invariant is then conserved in finite time if,
after starting with ¢4 (0) = 1 and c_(0) = 0 at the beginning of
a certain protocol g, (#), we obtain ¢, () = c4(0)and c_(7) =
c—(0).

The equations of motion for cy _(f) are easily derived
following standard procedures [37-39]. For the parametriza-
tion (27) of B(t), we obtain

de, (1) Sp ¢ -
acel) 0% °° — _ 2
. y” cos(zrt exp (—iwpt) c_(t), (32a)
de_(t ) )
Cdt( ) _ ﬁ cos (%z) expGiwor) e (r),  (32b)

considering 6y = 0, go(t) = 0, and g, (t) =t/7.

Figure 7 shows the real and imaginary parts of the solutions
of (32) as functions of wyt for cos (§¢ ¢ /27) >~ 1, since we are
in the regime ¢ < 1 (see Appendix B for their analytical
form). Since the initial conditions are ¢ (0) = 1 and c_(0) =
0, we should have a finite-time conservation of the adiabatic
invariant every time we get a recurrence of this values. In
Fig. 7, we see that this holds true for wyt = n 2w, although
due to our approximations the imaginary part of c_(#) does not
vanish at these values of .

V. COMPLEX SYSTEMS

The two case studies in Secs. III and IV are analytically
solvable and pedagogically elucidating. In particular, we
obtained exact expressions for the response functions (9)
and (29). However, this is not feasible for general and more
realistic systems with more degrees of freedom. It has been
shown [22,23,27,28] that linear response theory performs well
when only phenomenological information is known about the
system of interest. In other words, even when the response
function is not exact, the predictions of linear response theory
provide good approximations. Finding shortcuts from linear
response theory and optimizing (W) circumvents the difficult
problem of having to solve for the full quantum dynamics.

It has been shown that (W) will have finite-time min-
ima, or nonmonotonic behavior as a function of 7, if the
relaxation function is sufficiently oscillatory. This can be
illustrated, for instance, using the following phenomenological
ansatz [23,28]:

W(t) = W(0) exp(—(xlt|)[cos (wt) + % sin (a)t)], 33)

PHYSICAL REVIEW E 92, 042148 (2015)
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FIG. 7. Time evolution of the real and imaginary parts of the
coefficients ¢, (¢) and c_(¢) given by Eq. (32) for the initial condition
c.(0)=1and c_(t) for cos (b t/27) >~ 1.

for the relaxation function. Plugging the expression above in
Eq. (7), we obtain the results shown in Fig. 8 for different
values of o/w. As this ratio decreases, the excess work starts to
show minima whose value approaches zero. There are several
systems for which Eq. (33) describes the relaxation dynamics
very well. Among them, we mention a system composed of

1.2

— a/w=03

1.0 == a/w=0.1

aj/w=0.01
0.8+
vt 0.6f

=
0.4+
0.2}
0.0
0 2 1 6 8 10 12

FIG. 8. (Color online) Excess work WY in units of (§¢)?W(0)/2
for the linear protocol g,(¢) = ¢/t and the relaxation function (33).
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weakly interacting magnetic moments in the regime where
Bloch equations are valid [40].

VI. CONCLUDING REMARKS

Identifying optimal quantum processes with suppressed or
even vanishing nonequilibrium excitations is an important
topic, which has recently been attracting intense research
efforts. However, all methods currently available necessitate
the solution of the full quantum dynamics. In the present
work, we have proposed a phenomenological alternative. By
generalizing our previous result for the excess work from
linear response theory to a quantum system, we have shown
that shortcuts to adiabaticity can be identified from a math-
ematically simple theory. This observation has been proven
for two paradigmatic examples of quantum thermodynamics,
namely the parametric harmonic oscillator and the spin 1/2 in
a time-dependent magnetic field.
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APPENDIX A: APPROXIMATE SOLUTION WITHIN
LINEAR RESPONSE

The full expressions for the approximate solutions X; and )V;
in Egs. (21) and (22) are given in terms of the three constants

J

iwgt

PHYSICAL REVIEW E 92, 042148 (2015)

a, b, and c. These are determined by solving the force-free
equation of motion (14) with the boundary conditions Fy = a,
Fo=band Gy = —b, Gy = ¢. We have

=1 —=227% + c08(2y/AT) — 23/A0T Sin(2y/A07)

a

8AZT ’
(AT)
—1 4 24072 + c0s(2/A0T) — 24/ 20T SIn(2/AoT)
c= ,
Skof
and
b= ;[2 + \/4 +2X072 — 4cos(2\/)Tor)
8Xo+v/AoT
+ 2\/)701 COS(Z\/)TQ‘L') + sin(Zmr)]. (A2)

APPENDIX B: DERIVATION OF TIME-DEPENDENT
COEFFICIENTS c; AND c_

According to Ref. [39], the coefficients ¢y and c_ satisfy
the differential equations for Eq. (27),

dC;t(t) = _j_(: cos (5_(pt> exp (—iwpt)c—(1), (Bla)

2T
de_(t) d¢ .
dt 4t

0s (5—(pt> exp (iwot)c4(1). (B1b)
2t

In the regime d¢ < 1, we make the approximation
cos[8¢p/2t t] >~ 1. Next, we solve exactly the equations with
the initial conditions ¢4 (0) = 1 and c_(0) = 0. After making
t = t, we obtain the following equations:

: 1
c(wot) = m ([5<P2 + 4(wot)*] cosh {Z\/—[&ﬂz + 4(6001')2]}
—2iwyTv/—[6¢? + 4(woT)?] sinh { %\/ —[8¢? + 4(woT)?] }) (B2)
iwgrS 1
c_(wor) = m sinh {Z\/—[&pz +4(wor)2]}, (B3)

where wy = y B.
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