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ABSTRACT

We have developed a Vector Radiative Transfer (VRT) code for coupled atmosphere and ocean systems based
on the successive order of scattering (SOS) method. In order to achieve efficiency and maintain accuracy, the
scattering matrix is expanded in terms of the Wigner d functions and the delta fit or delta-M technique is used
to truncate the commonly-present large forward scattering peak. To further improve the accuracy of the SOS
code, we have implemented the analytical first order scattering treatment using the exact scattering matrix of
the medium in the SOS code. The expansion and truncation techniques are kept for higher order scattering. The
exact first order scattering correction was originally published by Nakajima and Takana.1 A new contribution of
this work is to account for the exact secondary light scattering caused by the light reflected by and transmitted
through the rough air-sea interface.

Keywords: Atmospheric and ocean optics, Propagation, Radiative transfer, Scattering, Polarization

1. INTRODUCTION

Radiative transfer theory (RTT) has vast applications in astronomy, remote sensing, global climate modeling,
and many other scientific disciplines.2–4 The solution of radiative transfer equation (RTE) in a coupled atmo-
sphere and ocean system (CAOS) is particularly important for ocean color remote sensing and interpretation of
oceanographic field measurements. There are a number of radiative transfer solvers for a CAOS, for instance,
using the methods of discrete ordinate,5,6 matrix operator,7–9 invariant embedding,10 finite element,11 and suc-
cessive order of scattering (SOS),12–15 iterative,16 and Monte Carlo (MC).17–20 The MC method is a special type
in terms of its way of simulating photons propagating in turbid media stochastically. Many photon packages are
initialized and launched in turbid media. The photons experience absorption and scattering events randomly.
Detector responses are recorded either using estimation techniques or collecting photons which hits the detectors.
Inherently, there is no space or angular discretization in the MC method. On the other hand, nearly all other
methods in solving the RTE involve discretization of translational and/or angular spaces.

The radiance field in a turbid media is a function of viewing zenith and azimuth angles, space coordinates,
and the inherent optical properties of scattering medium, and source conditions (external source like solar light
or internal source like thermal emission). Discretization is a necessary way of representing the angular and
space functional dependence in the deterministic solvers like the discrete ordinate methods. The azimuth angle
dependence can be replaced by a Fourier number by expanding the radiance field into Fourier series. This will
result in smaller memory requirements and shorter CPU time for most cases. The zenith angle is normally
discretized by using Gaussian quadrature schemes. Accordingly, the scattering matrices of the turbid media are
expanded in terms of the (associated) Legendre polynomials or equivalent expansion bases, with the number of
expansion Ns bounded by the Gaussian quadrature numbers NG to ensure numerical stability and accuracy.21,22

In many cases, Ns is in the order of hundreds or even thousands mainly due to the large forward scattering peak
in the scattering function. This in turn leads NG to be unrealistically high because both the memory and CPU
time depend on NG nonlinearly.

To route the problem, the delta-M, δ-fit and other techniques are developed to truncate the forward peak of
scattering function.23,24 The basic idea is to approximate the narrow forward peak by Dirac delta function and
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rescale the optical depth and single scattering albedo to compensate the energy loss due to this approximation.
The goal of these truncation techniques is to simulate the radiance field accurately by using moderate value of
NG at all viewing angles except the forward scattering lobe (for instance, solar aureole). Nakajima and Tanaka
published a paper (hereafter refer to as NT88) showed that the simulation accuracy can be further improved
by subtracting the single/double scattering contribution calculated with the truncated scattering function and
adding back the corresponding single/double solution with the original exact scattering function.1 NT88 tech-
nique successfully reduce the radiance relative error in every scattering region including the forward scattering
lobe, which has been recognized as one of the 50 year milestone papers by Journal Of Quantitative Spectroscopy
& Radiative Transfer (JQSRT).25

Besides the scattering function forward peak restoration, there are other cases that NT88 technique makes
great sense. For instance, the scattering function of water clouds exhibits supernumerary bows for the scattering
angle range of 140 to 170 degrees and catastrophic changes around the backscattering direction, if the effective
variance of cloud particle size distribution is small (around 0.02). Brute force expansion of these scattering
functions into Legendre polynomials takes hundreds/thousands of terms even after the truncation of the forward
peak. NT88 technique can improve the radiance simulation in this case greatly as well. Nevertheless, NT88 still
has some limitations as summarized by Ref. 22. One is that it neglects the surface reflection. In this paper, we
extend the technique to include the case in which the specular surface reflection and transmission of the solar
light source are treated as the primary light sources. Also polarization is treated exactly. In the next section, we
will outline the theoretical formulas, which has been used to implement a computer code in the VRT code for
the CAOS we developed based on the SOS method. Simulation examples and discussion will be Section 3 and
summary will be given in Sec. 4.

2. THEORY

2.1 Radiative Transfer Equation

An integral form of the vector radiative transfer equation for a plane parallel medium without linear dichroism
can be written as:14

L(τ, µ < 0, φ) =L(τl, µ, φ) exp

(
−τl − τ

µ

)
−
∫ τ

τl

exp

(
−τ
′ − τ
µ

)
S(τ ′, µ, φ)

dτ ′

µ
, (1a)

L(τ, µ > 0, φ) =L(τu, µ, φ) exp

(
−τu − τ

µ

)
+

∫ τu

τ

exp

(
−τ
′ − τ
µ

)
S(τ ′, µ, φ)

dτ ′

µ
, (1b)

where L = [I,Q, U, V ] and I,Q, U, V are the Stokes parameters; τ is the optical depth along the vertical
dimension; µ = cos(θ); θ and φ are the viewing zenith and azimuth angles, respectively; µ > 0 denotes the
upwelling direction and vice versa. τl and τu are the lower and upper optical depth limit of the scattering
medium in consideration, respectively; S is the source function which accounts for the physical process of multiple
scattering. In a macroscopically isotropic and mirror symmetric scattering medium and ignoring any internal
source (thermal emission or fluorescence), the following expression is appropriate for the source function:

S(τ, µ, φ) =
ω(τ)

4π

∫ 2π

0

∫ 1

−1
P(τ, µ, φ, µ′, φ′) · L(τ, µ′, φ′)dµ′dφ′ + S1(τ, µ, φ) (2)

where ω is the single scattering albedo, P = R(π − χ2) · F(τ,Θ) ·R(−χ1) is the phase matrix;2 F is the single
scattering matrix of the medium and Θ is the scattering angle; R is the rotation matrix and χ1 and χ2 are the
rotation angles, respectively; S1 is the source function due to the single scattering contribution. At the right hand
side of Eq.(2), the first term represents the multiple scattering contribution of the source function. By separating
the source function S into multiple and single scattering terms, the radiance vector L is now interpreted as the
diffuse light which does not include the direct solar source beam.

The main purpose of this paper is to extend the NT88 technique to the CAOS. It is assumed that the
atmosphere and ocean medium are separated by a flat ocean surface, as it is not possible to obtain a concise and
simple analytical solution for secondary scattering light caused by the sun glint reflected from a wavy (rough)
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ocean surface. In this flat ocean case, the single scattering source function in the atmosphere includes two terms:

Sa1(τ, µ, φ) =S′1(τ, µ, φ) + S′′1(τ, µ, φ), (3a)

S′1(τ, µ, φ) =
ω(τ)

4π
exp

(
τ

µ0

)
P(τ, µ, φ, µ0, φ0) ·E0, (3b)

S′′1(τ, µ, φ) =
ω(τ)

4π
exp

(
2τ∗a − τ
µ0

)
P(τ, µ, φ,−µ0, φ0) · r(π − θ0) ·E0, (3c)

where µ0 = cos(θ0); θ0 and φ0 are the solar zenith and azimuth angles, respectively; τ∗a is the optical depth
just above the ocean surface; r is the Fresnel reflection matrix for the ocean surface; E0 = [E0, 0, 0, 0] and
E0 is the solar irradiance at the Top Of the Atmosphere (TOA). The first term S′1(τ, µ, φ) is the direct solar
beam attenuated by the atmosphere while S′′1(τ, µ, φ) is the Fresnel reflection of the solar light. It should be
emphasized that Eqs. (3) only applies for τ < τ∗a . Rigorously, S′′1(τ, µ, φ) should be viewed as part of the second
order scattering term, as the reflection itself is one order of interaction. We hypothetically treat it as part of the
single scattering contribution because the Fresnel reflection is both physically and mathematically simple. The
total radiance, in the end, is nevertheless correct regardless how we name an intermediate term. With the same
logic we can write the single scattering source function in the ocean is caused by directly refracted solar light
through the flat surface:14

So1(τ, µ, φ) =
ω(τ)

4π

∣∣∣∣µ0

µ′0

∣∣∣∣ exp

(
τ − τo
µ′0

)
P(τ, µ, φ, µ′0, φ0) · t(π − θ0) ·E0 exp

(
τ∗a
µ0

)
, (4)

where µ′0 = cos θ′0, θ′0 is the angle of refraction for solar incident light determined by Snell’s law: sin θ0 = nwθ
′
0,

and nw is the index of refraction for ocean water; τo is the optical depth just below the ocean surface and
τo = τ∗a + ξ where ξ is an infinitesimal; and t is the Fresnel transmission matrix. Equation (4) is valid for τ > τo.

2.2 Analytical Single Scattering Solution

The single scattering solution to the VRTE can be obtained if the multiple scattering term in Eq. (2) is ignored.
In other words, we can substitute Eqs.(3) and (4) into Eqs. (1) to find the single scattering solution for the
atmosphere and ocean, respectively. In the atmosphere, we can write the single scattering solution La1 as:

La1 =L′1 + L′′1 , (5a)

L′1(τ, µ < 0, φ) =−
∫ τ

0

exp

(
−τ
′ − τ
µ

)
S′1(τ ′, µ, φ)

dτ ′

µ
, (5b)

L′1(τ, µ > 0, φ) =

∫ τ∗
a

τ

exp

(
−τ
′ − τ
µ

)
S′1(τ ′, µ, φ)

dτ ′

µ
, (5c)

L′′1(τ, µ < 0, φ) =−
∫ τ

0

exp

(
−τ
′ − τ
µ

)
S′′1(τ ′, µ, φ)

dτ ′

µ
, (5d)

L′′1(τ, µ > 0, φ) =

∫ τ∗
a

τ

exp

(
−τ
′ − τ
µ

)
S′′1(τ ′, µ, φ)

dτ ′

µ
, (5e)

where τl = 0 and τu = τ∗a are used for the atmosphere; and the boundary conditions L(τ = 0, µ, φ) and
L(τ = τ∗a , µ, φ) are set to zeros as these are appropriate for the single scattering solution.

The radiance vector L′1 and L′′1 can be explicitly evaluated using Eqs.(3) and (4). Generally, a vertically
inhomogeneous atmosphere can be divided into a number of, say, Na

L homogenous layers. The optical depth for
the atmospheric layers can be denoted as τi, i = 0, 1, 2, ..., p, ..., Na

L, with τ0 = 0, τp = τ , τi < τi+1, and τNa
L

= τ∗a .
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L′1 can be written as:

L′1(τp, µ < 0, φ) =−
p−1∑
i=0

∫ τi+1

τi

exp

(
−τ
′ − τp
µ

)
S′1(τ ′, µ, φ)

dτ ′

µ
, (6a)

=L′1(τp−1, µ < 0, φ) exp

(
−τp−1 − τp

µ

)
−
∫ τp

τp−1

exp

(
−τ
′ − τp
µ

)
S′1(τ ′, µ, φ)

dτ ′

µ
, (6b)

=L′1(τp−1, µ < 0, φ) exp

(
−τp−1 − τp

µ

)
+

ω(τp)

4π

−µ0

µ− µ0

[
exp

(
τp
µ0

)
− exp

(
τp−1
µ0
− τp−1 − τp

µ

)]
P(τp, µ, φ, µ0, φ0) ·E0, (6c)

where P(τ, µ, φ, µ0, φ0) has been assumed to be invariant for τp−1 < τp. Note that in the above equation the
τ dependence of L′1 has been replaced by τp to obtain a recursive relation given by Eq.(6b) for inhomogeneous
atmosphere layers. Eqs. (6) is equivalent to Eq. (65d) in Ref.22, except that we have replaced their summation
over layers with a recursive relation for L′1, which is more convenient for numerical implementation. It should
be understood that L′1(τ = 0, µ < 0, φ) = 0 in using the recursive relation for L′1. Equation (6c) is singular for
µ = µ0. In this special case the solution reduces to:

L′1(τp, µ0, φ) = L′1(τp−1, µ0, φ) exp

(
−τp−1 − τp

µ0

)
+
ω(τp)

4π
exp

(
τp
µ0

)
τp − τp−1
−µ0

P(τp, µ0, φ, µ0, φ0) ·E0. (7)

It should be emphasized again that µ0 < 0 is assumed in this paper since µ0 = cos θ0 and θ0 > π/2. For µ > 0,
L′1(τp, µ > 0, φ) is:

L′1(τp, µ > 0, φ) =

Na
L−1∑
i=p

∫ τi+1

τi

exp

(
−τ
′ − τp
µ

)
S′1(τ ′, µ, φ)

dτ ′

µ
, (8a)

=L′1(τp+1, µ > 0, φ) exp

(
−τp+1 − τp

µ

)
+

∫ τp+1

τp

exp

(
−τ
′ − τp
µ

)
S′1(τ ′, µ, φ)

dτ ′

µ
, (8b)

=L′1(τp+1, µ > 0, φ) exp

(
−τp+1 − τp

µ

)
+

ω(τp)

4π

−µ0

µ− µ0

[
exp

(
τp
µ0

)
− exp

(
−τp+1 − τp

µ
+
τp+1

µ0

)]
P(τp, µ, φ, µ0, φ0) ·E0, (8c)

The radiance contribution L′′1 can be evaluated in a way similar to L′1:

L′′1(τp, µ < 0, φ) =−
p−1∑
i=0

∫ τi+1

τi

exp

(
−τ
′ − τp
µ

)
S′′1(τ ′, µ, φ)

dτ ′

µ
, (9a)

=L′′1(τp−1, µ < 0, φ) exp

(
−τp−1 − τp

µ

)
−
∫ τp

τp−1

exp

(
−τ
′ − τp
µ

)
S′′1(τ ′, µ, φ)

dτ ′

µ
, (9b)

=L′′1(τp−1, µ < 0, φ) exp

(
−τp−1 − τp

µ

)
+
ω(τp)

4π

µ0

µ+ µ0
exp

(
2τ∗a − τp
µ0

)
·{

1− exp

[
−(τp−1 − τp)

(
1

µ0
+

1

µ

)]}
P(τp, µ, φ,−µ0, φ0) · r(π − θ0) ·E0, (9c)
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L′′1(τp, µ > 0, φ) =

Na
L−1∑
i=p

∫ τi+1

τi

exp

(
−τ
′ − τp
µ

)
S′′1(τ ′, µ, φ)

dτ ′

µ
, (10a)

=L′′1(τp+1, µ > 0, φ) exp

(
−τp+1 − τp

µ

)
+

∫ τp+1

τp

exp

(
−τ
′ − τp
µ

)
S′′1(τ ′, µ, φ)

dτ ′

µ
, (10b)

=L′′1(τp+1, µ > 0, φ) exp

(
−τp+1 − τp

µ

)
+
ω(τp)

4π

−µ0

µ+ µ0
exp

(
2τ∗a − τp
µ0

)
·{

exp

[
−(τp+1 − τp)

(
1

µ
+

1

µ0

)]
− 1

}
P(τp, µ, φ,−µ0, φ0) · r(π − θ0) ·E0. (10c)

In case of µ+ µ0 = 0, L′′1(τp, µ > 0, φ) reduces to the form of:

L′′1(τp,−µ0, φ) =L′′1(τp+1,−µ0, φ) exp

(
τp+1 − τp

µ0

)
+

ω(τp)

4π

τp+1 − τp
−µ0

exp

(
2τ∗a − τp
µ0

)
P(τp, µ, φ,−µ0, φ0) · r(π − θ0) ·E0. (11)

The single scattering solution in the ocean Lo1 is:

Lo1(τ, µ < 0, φ) =−
∫ τ

τo

exp

(
−τ
′ − τ
µ

)
So1(τ ′, µ, φ)

dτ ′

µ
, (12a)

Lo1(τ, µ > 0, φ) =

∫ τ∗
o

τ

exp

(
−τ
′ − τ
µ

)
So1(τ ′, µ, φ)

dτ ′

µ
, (12b)

(12c)

where τl = τo and τu = τ∗o have been applied as τ∗o is the optical depth at the ocean bottom; and the boundary
conditions are set to zeros. Equations (12) can be evaluated analytically for a vertically inhomogeneous ocean
body. The inhomogeneous ocean may be divided into No

L layers, and the inherent optical properties within each
layer is homogenous. The optical depth in the ocean is denoted as τi, i = Na

L + 1, Na
L + 2, ..., p, ..., Na

L +No
L + 1,

with τNa
L+1 = τo, τp = τ , τNa

L+No
L+1 = τ∗o , and τi < τi+1 assumed. Therefore, Equations (12) can be further

developed into the following form:

Lo1(τp, µ < 0, φ) =−
p−1∑

i=Na
L+1

∫ τi+1

τi

exp

(
−τ
′ − τp
µ

)
So1(τ ′, µ, φ)

dτ ′

µ
, (13a)

=Lo1(τp−1, µ < 0, φ) exp

(
−τp−1 − τp

µ

)
−
∫ τp

τp−1

exp

(
−τ
′ − τp
µ

)
So1(τ ′, µ, φ)

dτ ′

µ
, (13b)

=Lo1(τp−1, µ < 0, φ) exp

(
−τp−1 − τp

µ

)
+
ω(τp)

4π

−µ0

µ− µ′0
exp

(
τ∗a
µ0

)
·[

exp

(
τp − τo
µ′0

)
− exp

(
τp−1 − τo

µ′0
− τp−1 − τp

µ

)]
P(τ, µ, φ, µ′0, φ0) · t(π − θ0) ·E0, (13c)

Lo1(τp, µ
′
0, φ) =Lo1(τp−1, µ

′
0, φ) exp

(
−τp−1 − τp

µ′0

)
+

ω(τp)

4π

∣∣∣∣µ0

µ′0

∣∣∣∣ exp

(
τ∗a
µ0

)
τp−1 − τp
|µ′0|

P(τ, µ, φ, µ′0, φ0) · t(π − θ0) ·E0, (14)
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Lo1(τp, µ > 0, φ) =

Na
L+No

L∑
i=p

∫ τi+1

τi

exp

(
−τ
′ − τp
µ

)
So1(τ ′, µ, φ)

dτ ′

µ
, (15a)

=Lo1(τp+1, µ > 0, φ) exp

(
−τp+1 − τp

µ

)
+

∫ τp+1

τp

exp

(
−τ
′ − τp
µ

)
So1(τ ′, µ, φ)

dτ ′

µ
, (15b)

=Lo1(τp+1, µ > 0, φ) exp

(
−τp+1 − τp

µ

)
+
ω(τp)

4π

−µ0

µ− µ′0
exp

(
τ∗a
µ0

)
·[

exp

(
τp − τo
µ′0

)
− exp

(
τp+1 − τo

µ′0
− τp+1 − τp

µ

)]
P(τ, µ, φ, µ′0, φ0) · t(π − θ0) ·E0, (15c)

where Eq.(14) is a special case of Eq.(13) for µ = µ′0.

2.3 Single Scattering Radiance Correction for CAOS

Equations (5a), (6c), (7), (8c),(9c),(10c), (11),(13c), (14), and (15c) forms a complete set of analytical single
scattering solutions for VRTE in CAOS. In this section, we use these exact analytical solutions to correct the
radiance field calculated by the SOS code following the procedure described in Ref.22. The scheme we adopt is
the so-called TMS in NT88.1 It is necessary to recall that the δ-M or delta-fit methods approximate the forward
peak of the exact phase function F11(τ,Θ) as a δ function:

F11(τ,Θ) ≈ 2fδ(1− cos Θ) + (1− f)F′11(τ,Θ), (16)

where f is the fractional scattering energy within the truncated forward peak; and F′11 is the approximated
phase function. To use F′11 to represent F11 in the RTE system, the optical thickness dτ and single scattering
albedo ω have to be scaled:

dτ ′ = (1− ωf)dτ, (17a)

ω′ =
1− f

1− ωf
ω. (17b)

If we use L′ to denote the vector radiance field obtained by Eqs. (16) and (17), the NT88 TMS scheme is:

Lcorrected =L′ + ∆LTMS , (18a)

∆LTMS =L
[
ωF11

1− ωf
, τ ′
]
− L [ω′F′11, τ

′] , (18b)

where L[phase function, optical depth] is a schematic notation for the single scattering solution for CAOS out-
lined in the previous section. We refer the readers to Ref.1 and 22 for the justification of this NT88 TMS
scheme.

3. RESULTS AND DISCUSSION

The single scattering correction scheme for the CAOS outlined in Sec.2 is implemented in the vector radiative
transfer solver based on the SOS method.14,15 The validation of the model is done against another independent
radiative transfer model based on the MC method.20 A test case is designed to verify the implementation. The
scenario includes both an atmosphere and ocean with equal optical depth of 0.5. The single scattering albedo
for both the atmosphere and ocean is 0.99. The scattering matrix for both the atmosphere and ocean is the
well known L=60 model introduced in Refs. 26,27, which corresponds to the spherical particles of a gamma size
distribution (see Eq. 5.245 in Ref. 28) with the effective radius of 1.05 µm and the effective variance of 0.07
and is for the wavelength of 0.782 µm and the refractive index of 1.43. The ocean surface is flat with refractive
index of 1.338. The reflection of the ocean bottom is lambertian with a reflection albedo of 0.1. The solar source
zenith angle is 78.4630◦ with Stokes parameters of (π, 0, 0, 0). The motivation of this unrealistically simplified
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case is to emphasize the interactive boundary condition of the atmosphere and ocean interface so that small
errors due to any part of the code will be noticeable. The full Stokes parameters at four locations are calculated
with both the SOS and MC methods: Top Of the Atmosphere (TOA), Bottom Of the Atmosphere (BOA), Top
Of the Ocean (TOO), and Bottom Of the Ocean (BOO). In the MC method, a photon history of 5× 106 is used
to ensure statistical convergence. The SOS method used high Gaussian quadrature numbers of NG = 100 (100
streams) and 200 in the atmosphere and ocean, respectively.

Figures 1, 2, 3, and 4 show the Stokes parameters as a function of viewing zenith angles at the four locations
calculated by both methods. All the subfigures share the same plot marker symbols. Three viewing azimuth
angles are shown: φ = 0, 90◦ and 180◦. The agreements for all four Stokes parameters between the SOS and
MC methods are excellent for all viewing angles at all four locations. The maximum percentage difference
between the two methods are smaller than 0.1% percents (not shown) for all locations and angles. Hereafter
the SOS results shown in Figs. 1, 2, 3, and 4 are regarded as the ”true” solution to the test case due to
the unambiguous agreements between two independent methods. Specifically, the radiances are smooth at the
TOA with respect to the viewing zenith angles, but show rather abrupt changes for all other locations. At
the TOO, the radiances are nearly symmetrical around viewing angle of 90◦ due to the total reflection. At
the critical angle of 180 − asin(1.0/1.338) = 131.6357◦, the radiance is discontinues because the atmospheric
radiance transmission. At the BOO, the radiances show similar features but with smaller magnitude. The
circular polarization components V/I for all locations are small but not negligible.

The single scattering correction scheme is useful in a sense that it should improve the simulation accuracy
for smaller and insufficient number of streams. Therefore the calculation in Figs. 1, 2, 3, and 4 are repeated
with NG = 30 in the atmosphere (NG = 60 in the ocean), with and without the single scattering correction
scheme. Figure 5 shows the percentage error of the SOS radiances for NG = 30 without the single scattering
correction, using the case of NG = 100 as the benchmark. Figure 6 is the same as Fig. 5 but with the single
scattering correction. The relative errors of the radiance at the TOA are smaller than 0.5% for viewing zenith
angles smaller than 60%, with or without the correction, but increase to 3% for larger viewing zenith angles if
no single scattering correction is used. The single scattering correction decreases the relative errors at the TOA,
especially for viewing zenith angles larger than 60◦. For the BOA, the single scattering correction improves the
results for φ = 90◦ and 180◦, but not for φ = 0◦. This is because the radiance field for φ = 0◦ is rapidly changing
around the forward scattering direction (see Fig. 2). The SOS model only calculates the radiance field at the
Gaussian quadrature angles. A polynomial interpolation is used to obtain the radiances at arbitrary output
angles. In the case of non-smooth radiance field, the interpolation error dominates the error introduced by the
phase matrix approximation used in the calculation. Thus the single scattering correction does not help much.
For the same reason, the single correction scheme does not improve the accuracy of the radiance fields at the
TOO and BOO. In order to improve the simulation for cases of non-smooth radiance field, a better interpolation
scheme is desired. We have developed an advanced interpolation scheme based on the technique in Ref. 29,
which improves the accuracy a lot. However, the detailed discussion of the interpolation scheme is out of the
scope of this paper. We will prepare and submit a separate paper to discuss the usage of that interpolation
technique in the CAOS.

4. SUMMARY

In this paper the single scattering correction technique is extended to the CAOS and implemented in the vector
radiative transfer code based on the SOS method. The Stokes parameter as a function of the viewing angles
are calculated for a test case for the TOA, BOA, TOO, and BOO. Two independent methods, the SOS and
MC methods, are used to calculate the polarized radiance field. For a sufficiently high number of Gaussian
quadrature points, the agreement of the SOS and MC results is excellent (percentage error smaller than 0.1%
for all locations and viewing angles). If the Gaussian quadrature number is not large enough, the accuracy of
the SOS method decrease. If the radiance field is smooth with respect to the viewing zenith angle, the single
scattering correction scheme improve the accuracy from 3% to within 1%. On the other hands, single scattering
correction does not help much for a non-smooth radiance field as the interpolation errors dominate.
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Figure 1. Stokes parameters at the TOA.
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Figure 2. Stokes parameters at the BOA.
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Figure 3. Stokes parameters at the TOO.

90 105 120 135 150 165 180
10

−2

10
−1

10
0

10
1

Viewing angle (Deg)

R
a
d
ia

n
c
e
 a

t 
B

O
O

 

 

SOS φ=0

MC φ=0

SOS φ=90

MC φ=90

SOS φ=180

MC φ=180

90 105 120 135 150 165 180
−0.2

−0.1

0

0.1

0.2

Viewing angle (Deg)

Q
/I
 a

t 
B

O
O

90 105 120 135 150 165 180
−0.01

0

0.01

0.02

0.03

0.04

Viewing angle (Deg)

U
/I
 a

t 
B

O
O

90 105 120 135 150 165 180
−4

−2

0

2

4

6
x 10

−3

Viewing angle (Deg)

V
/I
 a

t 
B

O
O

Figure 4. Stokes parameters at the BOO.
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Figure 5. Radiance Percentage Error for NG=30 without the single scattering correction.
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Figure 6. Radiance Percentage Error for NG=30 with the single scattering correction.
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