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ABSTRACT

Title of Document: HUMAN-MACHINE INTELLIGENCE:
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Mahbubur Rahman, Doctor of Philosophy, 2020

Directed By: Dr. Nilanjan Banerjee, Associate Professor
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In this age of artificial intelligence, we are witnessing the power of human-

machine collaboration in transforming the way we live, work, and solve different problems.

Humans and machines can complement each other in resolving intractable and sophisti-

cated issues that are hard or impossible for computers alone. The collaboration achieved

great results addressing the problems of digitizing books, detecting star clusters, and tran-

scribing audio and video, etc. Researchers investigated these problems in isolation. There

is no clear guideline about why and when human intelligence can be useful and, if so, what

design pattern to follow. Integrating humans will add human knowledge, which can help

to solve complex, open-ended, and uncertain problems. However, this will also bring the

human limitations of less automation, less precision, and biased opinion. Analyzing the

tread-off of integrating humans is necessary before designing a collaborative system.

In this dissertation, we have addressed the issues described above and propose a

collaborative system design paradigm. Analyzing the general architecture of such a sys-

tem, we found that human intelligence can help at three different functional positions - data

preprocessing, feature extraction, and decision making. In all these functional areas, hu-

mans can help to improve the performance of a system. We also provide the conditions that

will help a system to get rid of humans in the long run. We have developed four different



systems that represent all four conditions mentioned above and provide detailed guidelines.

We provided detailed steps of integrating humans in decision making, feature extraction,

and preprocessing through our weed identification system, resource localization, and group

conversation analysis system, respectively. We also explained the conditions and steps to

reduce human contribution in the long run through the object detection system.

In each system, we showed - a) why humans over computer intelligence are nec-

essary? b) what are the steps to integrate human knowledge to overcome the difficulties?

c) what are the trade-off on integrating humans instead of machines?
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Chapter 1

INTRODUCTION

We are living in an exciting time in the history of technology where artificial

intelligence (AI) (Marr 1977; Russell & Norvig 2016) is taking over every aspect of our

life. Human beings are the most intelligent species. They learn a lot of different things

very quickly. A machine, on the other hand, is precise at work if it is designed correctly

and trained to do a specific task. Thus, machine-human augmentation to replicate human

intelligence and beyond, through computers, brought a breakthrough in technology and

automation.

In recent years, machine learning (ML) is emerging as the most significant tech-

nique. ML is very efficient at optimizing if there is a clear goal set up. It has been instru-

mental in accumulating data from different sources, enriching it, and classifying at a scale

and speed. It can also generate insight from the training dataset. However, it fails if there

is no clear goal set, or the data is not significant enough to train a good ML model. The

lack of data can be leveraged using human intelligence because humans are more efficient

at making judgments even with a small set of data. For these reasons, human-machine

intelligence augmentation to enable a better decision-making system is a sweet spot.
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Integrating human intelligence brings a new level of intelligence to human-

machine collaborative systems, as well as some flaws that humans possess. Humans have

extraordinary cognitive intelligence, but their abilities vary in quality from person to per-

son, and they often introduce errors. Compared to humans, machine intelligence is ex-

cellent at large-scale storage, high computation, and high precision. Researchers tried to

optimize human-machine intelligent systems integrating humans as less as possible to avoid

the side-effects of adding human intelligence. The evolutionary result comes through ML,

which becomes the leading technology to solve problems in every aspect of human life.

From natural language processing, video analysis to self-driving cars, ML is becoming one

of the successful techniques. However, ML requires a significant amount of structured and

labeled data that we get from humans. Moreover, addressing all problems with ML is im-

possible as not all domains have sufficient data to train an ML model. The partially trained

model with limited data creates multiple competitive outcomes from a set of classes and

could not disambiguate them precisely. ML also requires high storage and high processing

power, which is not available in embedded, mobile, and sensor systems. However, humans

have a unique quality of analyzing things with a limited number of instances, which can

leverage the lack of data, big storage and high processing power.

Many researchers proposed human-machine augmented systems to solve prob-

lems in different domains. However, none offers a comprehensive analysis of human-

machine collaboration, where and how human intelligence can be useful with limited in-

tervention by humans and what is the trade-off of integrating humans. In this dissertation,

we present a comprehensive analysis of human-machine collaborative systems and propose

various techniques to answer these questions. It also finds out answer for- a) When should

we consider to integrate humans?, and b) Can we reduce human dependency eventually?
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1.1 Human-machine Integration

Humans and machines can play a complementary role in the human-machine in-

telligence system. However, it is very challenging to integrate both of their better skills.

Humans are very good at making a decision even with limited information and in varying

environmental conditions with ease, which is very difficult for a machine. Incorporating

human intelligence also adds human weaknesses to the system as well. It increases system

latency, decreases precision, and is prone to subjective decisions. The process of inte-

grating human intelligence into machine algorithms is very challenging and increases the

sophistication of any system.

The typical way of incorporating human intelligence is to find out what infor-

mation the system requires from humans, how to get that information, how to make sure

about its quality. The target is always to use as less information as possible from humans.

The devices with high processing power and energy and with a significant amount of struc-

tured data ensure the minimal level of human intervention in human-machine collaborative

systems. Data scarcity or less sophisticated devices require more help from human intel-

ligence. Furthermore, if the number of data instances increases overtime of a domain, the

dependency on humans may decrease in the future with data-driven design.

This research attempted to discover the scope and requirements of integrating

human intelligence at each functional position of an application. We researched and devel-

oped a few human-machine intelligent systems through which we show a) what informa-

tion from humans will be enough for the specific function of an application? b) How can

that information be obtained from humans? c) What would be the effect of these integra-

tions?
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1.2 Trade-off of Integrating Humans

Human-machine augmented systems introduce attributes related to humans in

addition to software and hardware attributes. Sophisticated designs of any fields embody

trade-offs embedded by designers (Kazman et al. 1998). The software and hardware at-

tributes, i.e., latency, accuracy, and throughput, is impacted by the design choice that the

designer selects over a set of possible design components. When a designer adds human

intelligence as part of the design component, new attributes related to humans, i.e., error,

fatigue, high response time, and complexity, are also added to the architecture. The more a

system accepts human input, the more the system performance and complexity align with

human behavior. Every architect should consider the trade-off of selecting each of the

components. Accepting more information from the human crowd over the machine will

add amazing cognitive skills of humans but will also be affected by human flaws and limi-

tations. This research provides an empirical analysis of the trade-off of integrating humans

with machines in different domains.

1.3 Dissertation Organization

The rest of the research is organized as follows:

Chapter 2 on page 6 is derived from state of the art research articles to discuss

some of the backgrounds and motivations behind this research. It explains where we can

add humans contribution. It also provides different design architectures integrating humans

at different functional levels. Chapter 3 on page 22 is derived from our work on the weed

identification system where a hierarchical human crowd contributes to decision space and

helps identify weeds in the crop fields with high accuracy even with a limited number of

data. Chapter 4 on page 49 is derived from our work on speech dynamics analysis from

a group conversation, where humans contribute at the data preprocessing stage. Chapter 5
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on page 68 is derived from another of our works where human intelligence helps to extract

features. The chapter also shows the case that the enrichment of data does not contribute

to reducing human contribution in the long run. Chapter 6 on page 88 is derived from

our work on obstacle detection on the sidewalk using low powered and less complicated

devices. Chapter 7 on page 109 explains some empirical research findings and how they

affect a system at different performance benchmarks, and finally, Chapter 8 on page 121

describes some of the limitations of this research and shows the future direction of this

domain.



Chapter 2

HUMAN-MACHINE COLLABORATIVE SYSTEM

In the early 90s, human-machine collaboration became an emerging technology.

Researchers at that time defined collaboration as a process in which two or more agents

work together to achieve a shared goal (Terveen 1995). Human-computer collaboration

is the process of collaboration involving at least one computational agents and one hu-

man (Horvitz 1999). In a collaborative system, one of the agents can initiate action, access

information, and send responses. This type of system is often called a mixed-initiative

system (Cook & Thomas 2005). It has been studied in vast areas, including AI problem-

solving (Ferguson, Allen, & others 1998) and knowledge discovery (Valdés-Pérez 1999).

2.1 Importance of Human-machine Collaboration

The recent success of AI, especially ML, is drastically changing the relationship

between humans and their surrounding environment (McCarthy & Hayes 1981; Holland &

others 1992). The new brand of AI is resolving problems of high uncertainty, complexity,

and vulnerability of every field of scientific research, engineering, and social activity (Eakin

& Luers 2006; Ledford 2015; Martin 2012). The success in AI is so disruptive that it is even

6
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challenging humans with its creativity and effectiveness (Monostori & Prohaszka 1993;

Stone et al. 2016). In recent years, the deep learning version of ML development increased

rapidly with the increase of data collection, storage, and processing power (Demuth et al.

2014; Sun, Wang, & Tang 2014). The AI boom touched almost all the fields, especially

wearable devices (Son et al. 2014), big data analysis (Youseff, Butrico, & Da Silva 2008),

cloud computing (Iafrate 2018), and robotics (Lee 2013). The success may lead to think

that every problem can be solved using data, storage, and processing power. However, the

state of art AI still depends on human intelligence, and there are several reasons behind

that.

First, the state of the art AI has several limitations compared to humans. AI can

solve problems based on experience and knowledge. However, AI cannot be considered

simply the combination of models and algorithms from AI methods. Some of the AI sys-

tems succeeded to challenge humans with the vast computing power in some specific fields

like DeepBlue (Campbell, Hoane Jr, & Hsu 2002) in chess, AlphaGo in boardgame (Mnih

et al. 2015) and Watson in question answering (Rachlin 2012). However, these are the

results of high training and computing power, and it does not have creativity and own

thought process. We cannot consider these as general AI as there is a clear gap of self-

learning ability between AI and these systems (Simon 2019; Newell, Simon, & others 1972;

Selfridge 1958). With the widespread success of AI, the intelligent machine has become

an integral part of our day to day life and will be more prevalent in our future society.

However, there is a slight difference between machine intelligence and human intelligence.

Humans face many problems that are very sophisticated, nondeterministic, uncertain, and

open-ended. The intelligence behind any intelligent system is developed based on human

intelligence as the human is the ultimate judge of those attributes (Zheng et al. 2017).
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Second, embedded, and sensor system does not have high processing power and

storage. In the era of IoT, devices works in a group to support humans in carrying out their

daily activities in natural way with ease using the information and intelligence that is hidden

in the IoT network connected sensor and embedded systems (Madakam et al. 2015). More

and more poeple are joining the network and by 2020 more than 7.6 billion people will be

directly connected to get intelligence provided by these smaller devices (Ismail 2019). But,

these smaller devices do not possess high storage and processing power.

Third, data is not the solution for everything. Ultimate AI success depends on the

data. However, only data does not guarantee human intervention free intelligent system.

There are a vast number of problems that are being solved by AI but still need human

intelligence to verify. The very known problems are Alexa, Google voice (Hoy 2018),

search engine, industrial risk control (Mantere et al. 2012; De Rocquigny, Devictor, &

Tarantola 2008), medical diagnosis (Kononenko 2001; Szolovits, Patil, & Schwartz 1988),

and many more. Nowadays, the Internet is so rich in information that we can get any

data by searching and processing from different sources. There is a temptation that the

availability of a vast amount of data will be able to solve every problem using machine

learning. However, the collected data from the internet does not always possesses quality

required for a specific domain. We present two case studies where we collected data from

internet, preprocessed and trained state of the art machine learning model.

2.1.1 Case Studies 1: Medical Activity Detection from Video

Problem Statement: In a neonatal care center, children with health issues are

admitted to the hospital for proper caring and treatment. These children require extra care

during regular health checkups, feeding, diaper changing, give medication, change of oxy-
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gen, and to supply blood. The routine is strict as these children are in a vulnerable situation.

Hence, it is crucial to monitor rigorously that the doctors and nurses are not missing any

step. With so many children, keeping written logs is not enough. There is a chance of hu-

man error as many children are at the same place. An automated process of logging every

activity performed for a child will be a great way to monitor the process. The monitoring

will help to find the anomaly on the treatment process as well as will help to avoid those

steps in the future.

Video 
Database

Label Clips

Train

Long Video Detected Activity
CNN LSTM

Model

FIG. 2.1: System architecture of medical activity detection from videos. Video of different
activities is collected from children hospital as well as from the cloud. A group of experts
annotated actions in a video stream. A deep learning model is trained with a set of annotated
videos. For a long recorded video, the model detects the temporal location and activity type
from the video.

Data: Collecting data of neonatal is very hard as the parents are very concerned

about the privacy of their children. In the national childcare center, we placed a camera

in the child’s bed frame focusing on the children and recorded high-quality videos. We

recorded twelve children’s treatment procedures with their parent’s consent. We recorded

twenty-four hours to seventy-two hours of video for each child. The recorded video con-

tains all the activities performed by the nurses and doctors. We annotated all those videos
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and labeled segments for different actions present at a specific segment. We labeled five

frequent activities from those videos, which are - diaper change, injection, feeding, blood

test, and surgery. From all the recorded video, we created a database of activity that con-

tains twenty-five instances of each activity. However, training deep neural network model

with twenty-five instances of each class is not enough. Online could be a great source of

information. There are lots of video instances of similar activity available on YouTube and

different childcare sites. We searched for those videos to increase the dataset. Though there

are lots of videos available online with related activities, the camera position, quality, and

caring process are different. With our best effort, we were able to increase video instances

from twenty-five to forty only of each class.

Training and Evaluating an ML Model: We designed a deep learning neural

network-based activity detection model as shown in Figure 2.1. We adopted the deep neural

network proposed by Nieto al et. (Montes, Salvador, & Giró i Nieto 2016) and trained the

model with our dataset.

Results and Observation: The trained model is not sufficient to detect video

activity from a long video. The quality of videos recorded in the hospital was at low

resolutions, and a fixed point camera was hiding the actual activities. The internet instances

have a better view but have different camera positions. Also, the number of instances that

represent were limited, comparing the requirements of the state of the art activity detection

model.
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2.1.2 Case Studies 2: Automated Speech Recognition for Children

Problem Statement: Automated Speech Recognition (ASR) is a famous and

influential AI technique that recognizes human speech and can exchange words interac-

tively. Research on automated speech recognition gains much attention nowadays. Though

the research on adult speech recognition is in advance phase, little research has been done

on developing ASR for children. If we have an ASR for children, it will be easier to mon-

itor the children’s language development. It can also help to detect red flags of autism and

to measure step by step language development.

Data: The essential part of any automated speech recognition is the collection

of speech from different types of people to capture all possible environment, scope, and

accent. The voices are segmented into small parts, transcribed, and consolidated to create

a corpus. The corpus can be used to train a statistical or machine learning model to learn

the phonemes. The trained model with decoder forms an ASR which can recognize human

speech in real-time or offline. There are vast collections of speech data that Google, Ama-

zon, or Facebook has gathered. Lots of corpora available online for a different language

to develop ASR for that language. However, there is no corpus with significant speech

collection of children. The major challenge of collecting children’s voices is privacy and

lack of commercial interests. Moreover, children are not active online. Children’s voice is

different from the adults as their vocal cord frequency is different from an adult. Most of

the research done on children’s speech uses adult corpus and transforms the adult frequency

to children. However, the accuracy of those models falls far bellow than expected, since it

also does not reflect children’s accent, language model, and frequency.
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Some language development researchers collected children’s voices to monitor

the development progress. They published those voices online. We collected a few of

the corpora, merged with CSLU kid’s corpus to create a significant corpus. However, the

corpus does not reflect the necessary criteria for designing an ASR. If there are enough

instances of the same sentences or words pronounced by many children, it will help to train

a sound ASR system.

Speech 
and text 

Virtual 
Speaker

Transcription

Decoder

Acoustic 
Model

Lexicon
Language 

Model

Speech Word

Train

FIG. 2.2: Children voices are collected from different research labs. An extensive set
of audio is also recorded using Acapella speech tools. Humans transcribed the audio. A
GMM-based acoustic model was trained. An automated speech recognition(ASR) for kinds
was built with an acoustic model, lexicon, and language model. The trained model accepts
speech and converts it to the corresponding text.

Speech synthesis tool Acapella (Acapella Accessed 2019 08 23) uses real chil-

dren’s voices to generate synthesized speech for children who are not able to talk. Fur-

thermore, many speakers participated in producing core phoneme. This feature makes it a

good candidate for recording the speech of children and build a corpus. The difference of

children corpus from adult one is that the language model and word collection are not the

same for adults and children. To resolve the issue, we selected a list of children’s books and

used the tools to read those books using different child’s voices. The child book collections
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ensure that the vocabulary covers the children’s level of vocabulary. We built a corpus con-

solidating recorded audio and their transcript. The corpus constitutes of one hundred and

twenty hours of audio from fifteen speakers, male and female, combined with different age

groups (3-8).

Training and Evaluation: We used Kaldi ASR (Povey et al. 2011) tool to train

a statistical GMM based acoustic model. The trained acoustic model was combined with a

lexicon and language model ( see the Figure 2.2 ) to build an ASR for kids. The ASR can

take a segment of a child’s voice and translate it into a corresponding text.

Results and Observation: We tested and validated our model using random,

synthesized, and real audio. The word error rate (WER) for synthesized sound was 12%,

but for real children voices, the WER was 81%. It is obvious from this model that even

with a large amount of data, we cannot guarantee accuracy if it does not represent the exact

scenario.

The data that we use in the case of video activity detection is not useful. Also, the

data available on the internet does not represent the exact camera position that is required

to detect activities. In the case of child ASR, we found that with unrelated data, the ML

model failed to achieve acceptable accuracy. The accuracy of an ML model is not all about

data. The reasons explained above brings the interest of using human-computer integration,

resolving problems which computer cannot solve alone. Human intelligence can leverage

some of the factors behind those reasons, which include lack of data, sophisticated com-

putation, ever-changing dynamics of issues, and application acceptance criteria. Human

intelligence can be the leverage of all of these limitations and vice versa.
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2.2 Methods of Integrating Human-machine

The above discussion shows that human-machine integration can be a great tech-

nique to solve many complex problems. However, this introduces an extra level of design

complexity. The foundation of a human-computer collaborative system is to take both of

their better skills. The designers require to optimize the combination to extract both of their

better, avoiding the adverse effects. Researchers have tried to find a systematic approach to

integrating individual or group intelligence and machine intelligence to perform a specific

task. The target of this approach is to be better leveraged by both contributors. However,

the system should be more automated than manual. Fitts (Fitts 1951) attempted to inves-

tigate the characteristics of various tasks better performed by humans than machines and

vice versa. This list was regarded for a long time as the guideline of a collaborative sys-

tem. However, the advancement of technology brought both of these actors more closer

than before. Humans and machines have their distinct skills; at the same time, they can

help each other. Jordan (Jordan 1963) later articulated that human and machine can play a

complementary role, rather than antithetical.

Researchers proposed several techniques to solve different problems integrating

humans and machines. The functional allocation between human and machine is envi-

sioned as an iterative process rather than a definitive listing (Price 1985). A specific human-

machine collaborative system can be optimized by considering many parameters. The it-

erative feedback from the computer can even improve the performance of human skills.

Self-assessment is better than random response, but with external feedback, the individ-

ual yields better performance (Kulkarni, Can, & Hartmann 2011; Dow & Klemmer 2011;

Douglas & Kirkpatrick 1999). Relevant feedback in image processing has already proved

to be successful (Zhou & Huang 2003). Researchers also tried to apply human intelligence

at different stages of a collaborative system. In a sensor-based system, the intelligence can
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FIG. 2.3: In a data-driven system, humans can contribute at different functional positions-a)
data preprocessing, b) feature extraction and c) decision making

be integrated into feature space as well as at algorithmic or functional level (Guo et al.

2015). In the classification system, human intelligence can be integrated into the data col-

lection and labeling stage. Some applications may require more granular level intelligence,

such as for feature extraction, selection, and decision making.

We analyzed a standard collaborative system (see Figure 2.3). A generic collab-

orative system architecture consists of data collection, preprocessing, and labeling. The

labeled data is analyzed to engineer data features that are related to the problem of interest

and are extracted by computer or humans. A set of features related to the actual prob-

lem are selected for training a machine model. Once trained, the model serves to provide

the actual response to a query. There are three distinct functional phases where humans

can contribute-preprocessing phase, feature extraction phase, and decision phase. Also,

the final goal of a collaborative system is to make it more automated by reducing human
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contributions. What humans can contribute to all of these cases are discussed below briefly.

2.2.1 Human Intelligence in Preprocessing Phase

Data from cloud

Structured data 
by application

Preprocess & 
Labeling

Trained Model

Feature 
Extract

New Input
Response

FIG. 2.4: Humans contribute to the data acquisition phase. Online available data are not
complete, dirty, full of uncertainty, and unlabeled. Humans functionality is mainly in data
acquisition and labeling phase. Individuals categorizes data into different classes and re-
moves irrelevant data. The preprocessed data is later used by machine application to extract
features, train model, and to provide services.

Data collection and labeling are the main bottlenecks of a human-machine col-

laborative system. Data storage and processing power have become widely available at a

lower cost, which makes the ML technique more suitable for a wide variety of domains.

However, supervised learning requires to have an adequate amount of labeled data, which

are very hard to get for a specific problem. Deep learning, unlike traditional ML, extracts

features from data automatically (Roh, Heo, & Whang 2018). However, deep learning re-

quires to have a massive amount of categorized data. The data collection and acquisition

process is different for different domains, so are their labeling techniques. The collabora-
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tive systems that have a significant amount of data can apply supervised ML techniques but

require human intervention in data preprocessing, labeling, and categorization (see Fig-

ure 2.4). Traditional ML modeling uses human intelligence offline to annotate datasets.

The preprocessing and labeling of data are different for different types of applications. For

image classification, object detection, and scene understanding, individuals’ knowledge

helps to categorize images, label objects in an image, and detect the context of a scheme

in the picture, respectively. In video activity detection, human intelligence helps to label a

section of the video clip, identify any particular object movement, etc. In natural language

research, transcribing a long audio clip is a vital step. In general business data, human

knowledge helps to categorize data to a particular group or class.

2.2.2 Human Intelligence in Feature Phase

Data-driven application has become more popular because of its immense power

of solving computationally hard problems. However, some problem domains do not have

enough data to design machine only system. The number of problems that have data

scarcity is significant. Different types of applications focus on different features of a

dataset. The feature that has the most significant impact on the outcomes of that model

may not be easy to extract from the instances. With a limited number of examples, get-

ting insight from the dataset is challenging as the deep learning feature extraction is not

possible. The obscurity and fuzziness of detecting and calculating features come from the

complex nature of data instances. The very situation arises where human creativity and

evolutionary experience are necessary to decide rather than computational equations. Indi-

vidual cognitive skills are required to distinguish a few features, mostly in images, scene

understanding, video actions, linguistic meaning, audio, etc. The application that does not

have a significant amount of data can integrate human intelligence in extracting essential
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features that are not possible by computer alone.
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FIG. 2.5: Humans contribution in feature space. A set of data collected or acquired requires
to detect and annotate features by humans. The data is used by the model to train or to build
rules. The model is used to provide services for new input instances.

However, integrating human intelligence increases latency. A system with hu-

man intelligence can not respond in real-time as humans require a significant amount of

time for that. However, If we want to design a real-time system using human intelligence

in extracting features, the system can extract features offline to build a knowledge base

from extracted features. The knowledge database will ensure the system of availability of

features in real-time. A skeleton architecture of this type is depicted in Figure 2.5. This low

processing and storage requirement makes the process suitable for embedded and sensor

systems.

2.2.3 Human Intelligence for Temporary Solution

The idea of a human-machine collaborative system often provides solutions that

prohibit total automation. However, the long term goal of the system is to increase data
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FIG. 2.6: Human contribution in feature space. A set of data collected or acquired requires
humans to annotate features. The data is used by the model to train or to build rules. The
model is used to provide services for new input instances. But, the new instance has the
same features as of the instances used to train the system. The new input is added to the
existing database incrementally and increases the dataset size.

and make the model more independent of human intervention and move towards more

automation. In some cases, every instance represents a different set of features. Adding a

new situation does not add repeated instances to the dataset. However, for most of the ML

problems, a further example contains the same set of parameters that of the previous all

cases. When a partially trained human-machine collaborative system serves a new query, it

will add another instance to the training dataset. This property ensures that, over time, the

database will grow. If humans are selected only because of the scarcity of data, the enriched

dataset will be able to reduce human integration eventually. A skeleton architecture of this

type of human-machine system is provided in Figure 2.6.
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FIG. 2.7: Humans contribution in decision space. A well-organized dataset already ex-
ists, and features are already extracted. However, a decision-making module cannot work
precisely without the help of humans.

2.2.4 Human Intelligence in Decision Phase

The researcher mainly focuses on automatic machine applications where a sig-

nificant benefit comes from the astronomical number of data sets. A well-trained model

with quality data can make the decision more accurate. However, in many sectors, we are

confronted with a small collection of data samples or rare events. With this limited data

set, the training process is not rigorous. Some of the problems are more intractable, even

with a considerable amount of data. It requires human cognitive skills. For example, in

health informatics and medical science, the decision depends not only on the data but also

on domain expertise. Biomedical data sets are full of uncertainty and incompleteness, and

some problems are hard enough to make it fully automated. The complexity of any intri-

cate problem may provide probabilistic decisions, especially if the source of information

is non-expert crowds or machine algorithms. Consequently, integrating domain experts

can sometimes become indispensable, and integrating experts would greatly help in the

knowledge discovery process. Machine, with its enormous power of computation, can help

humans make a better decision (see Figure 2.7), helping to consolidate information within
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the human intellectual ability. The method also helps the machine to achieve the potential

of making an accurate decision even with limited data.

The techniques for integrating human intelligence is different for different phase

and conditions. We proposed various ideas to varying situations by developing four sepa-

rate applications to provide comprehensive coverage of each category discussed above. We

discussed those projects in detail in the following chapters.



Chapter 3

HUMAN INTELLIGENCE IN DECISION SPACE

In this chapter, we discuss a human-machine collaborative system that helps to

identify weeds in crop fields. The system does not have enough data to train a machine

learning model. The system takes human intelligence in the decision-making phase to

overcome the multiple competitive outcomes that arise from an underfitting trained model.

3.1 Problem Statement

Weeds compete with crops for light, water, and nutrients. If left uncontrolled,

crop yields are adversely impacted. Methods of weed control and management are con-

stantly being updated, and more efficient practices emerge as a result of research, but farm-

ers can only benefit from these advances if they have access to the most current information.

The present extension approach to disseminate information on weed identification and their

control practices for weed infestations relies on traditional methods such as extension pub-

lications, county-level meetings, and one-on-one consultations.

The above methods can be slow and unreliable for spread of relevant informa-

tion; additionally, the scope of such methods can be too broad, forcing a farmer in need of

22
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specific advice to search through extraneous information or wait through unrelated meet-

ing lectures in order to receive his desired information. In a social media driven world,

farmers need latest information right there in the field. To satisfy this demand, extension

agencies (Maunder & others 1972) are required to have access to trained manpower, both in

the new technology and subject matter expertise. Economic downturn in the US economy

has resulted in budget cuts in several land-grant universities thus, leading to a reduction in

trained manpower. Given this reality, it is time to start thinking of innovative approaches for

keeping extension and outreach services viable and useful by developing tools that could

potentially be customized by extension agencies for use outside a state or a region. In this

research, we use weed management as a test case to propose a novel identification and con-

trol system that could be used to augment existing programs. A typical weed identification

call from a producer results in field visit by a county extension agent (Maunder & others

1972) 1. The agent either completes the identification or refers to a specialist who in turn

provides the necessary information. Unfortunately this manual process incurs high latency

and increases the burden on extension service agents.

Smartphones have penetrated the rural population both in developing and devel-

oped countries. For instance, low-end Android phones that provide basic cellular data

plans, a camera, and location information are common devices for farmers and exten-

sion agents. In a recent initiative in Arkansas, for example, the extension agents were

provided with data plan-enabled iPads. We leverage this observation to design a sys-

tem that can provide low latency, high accuracy, and low cost control practice dissemi-

nation to farmers when their crops are weed infested. At the core of our technique is a

weed identification system that leverages the concept of crowdsourcing (van Etten 2011;

1Agricultural extension is a general term used for applying research in the field of agriculture through
farmer education. The experts who facilitate agricultural extension are called extension agents.
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Lowry & Fienen 2013) —using a human network to solve a computationally hard

problem— and functions as a weed management information distribution system.

The initiator of the crowdsourcing effort would be the extension services of land-

grant universities and the crowd consists of non-experts provided by services such as Ama-

zon Mechanical Turk 2, and experts employed by land-grant universities. Such a system

would benefit the farmers of the state who are in need of expert advice.

The design, implementation, and evaluation of our weed management architec-

ture presents three novel research contributions. Our first contribution is a system that

combines image analysis (machine intelligence) and crowdsourcing (human intelligence)

to accurately infer the type of weed infecting a farmer’s field. The technique uses a proba-

bilistic decision engine to provide high accuracy, low latency and low cost inferencing. Our

second contribution is the use of two levels of crowdsourcing, non-experts from services

such as Amazon Mechanical Turk (Ipeirotis 2010a) and experts like extension agents. We

propose another probabilistic technique to determine when the system is confident of its

inference, and whether the second layer of crowdsourcing from experts is required. This

helps minimize the use of experts, and can consequently reduce the cost of inferencing.

Our third contribution is an end-to-end system that includes smartphone applica-

tions for farmers and experts, and backend services that house the image processing and

crowdsourcing logic. The present article evaluates the end to end system’s latency, accu-

racy, and energy consumption characteristics.

2Amazon Mechanical Turk is a web service provided by Amazon that provides access to thousands of
workers (Turkers) that can be used to solve tasks.
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3.2 Design Goals

The goal for our weed identification system is to provide a low cost, low latency,

accurate, and highly usable system to automate the weed detection and mitigation problem.

We strictly adhere to the following design goals while implementing our system:

• Reduce the weed identification burden for extension agents and experts and provide

high accuracy weed identification.

• Easy to use end-user applications: The adoption of the weed identification system

is predicated on creating intuitive smartphone interfaces for both the farmer and the

expert. To this end, we have designed our application interface using feedback from

extension agents, farmers, and crop boards.

3.3 Methods and Architecture

The research presented here uses a combination of hierarchical crowdsourcing

and image analysis to provide timely and accurate feedback to farmers requesting informa-

tion on plausible weed infestation in their crop fields. The end-user, for example a farmer,

is assumed to own a camera, and GPS-enabled smartphone. When the farmer determines

that his crop is infested by weeds, he takes a picture using the smartphone camera. Our de-

signed client application uses the picture, automatically geo-tags it with GPS coordinates,

inserts any comments that the farmer may have, and uploads it to our backend database

using a custom designed web-service. The web service first performs an image analysis

that compares the picture of the weed with a database of weeds seen in the region in the

past. The image analysis ranks the images in the database based on the overlap with the

weed. The image processing acts as a low latency mechanism to determine which weed

has infested the farmer’s field, and also acts as a filter to narrow down a subset of plausible
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weeds that might be similar to the weed infecting the crop field. The web-service then uses

two levels of crowdsourcing to identify the weed. First, it uses a set of non-experts, from

a portal like Amazon Mechanical Turk to extract crude but low cost feedback on what the

weed might be. We use a probabilistic decision engine that uses a majority vote on the

results provided by the Turkers to determine if the weed is correctly identified. If there is

no clear majority, the system consults the experts (extension agents). This helps minimize

the use of the extension agents and reduces the overall cost and latency associated with

the weed identification process. The decision engine is detailed in section 3.4.3. Once the

system identifies the weed, it uses a database of control practices to provide accurate and

up-to-date suggestions on how to mitigate the weed infestation.

Our weed identification system architecture is illustrated in Figure 3.1.

The system uses a combination of hierarchical crowdsourcing based on Amazon

Mechanical Turk and experts, augmented with automated image processing, to accurately

identify weeds and provide control practice recommendations to farmers. Interacting with

this backend are the client-side mobile applications. We next describe our smartphone

applications and the backend image processing logic.

3.3.1 Smartphone Applications

The system is comprised of two smartphone applications. The first smartphone

application resides on a farmer’s smartphone (see Figure 3.5). The farmer can use the ap-

plication to take geo-tagged images of weeds in his field. These images, annotated with

text and audio comments, are transferred to our backend server over a cellular or Wi-Fi

connection. The second smartphone application resides on the expert’s device. If our back-

end logic cannot reliably infer the weed species using image processing and the Amazon
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FIG. 3.1: System Architecture for our crowdsourcing-based weed management system. The system
uses smart phone applications, automated image processing, and hierarchical crowdsourcing for
weed identification and low latency dissemination of control practices to farmers.

Mechanical Turk crowd, it notifies a set of select experts, soliciting input on the type of

weed. The smartphone applications (see section 3.5 for screenshots) provide features al-

lowing the users to keep track of the requests submitted by the farmers, responses from the

system and experts, and weed control practices. The app also features a weed database that

the users can manually browse and compare weed images against.

3.3.2 Backend Image Processing Logic

The geo-tagged image and comments, sent by the farmer to the backend server is

submitted to an automated image processing engine for identifying the weed. While image

processing can uniquely identify images if reliable image features are available, it fails to
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correctly identify images in several cases. There are several factors that can affect the accu-

racy of an image processing algorithm. For example, if an image of the same weed is taken

at different growth stages from different angles, at different orientations, or under different

lighting conditions, the image could be mis-identified. Moreover, since farmers are not

expert photographers, and off-the-shelf cell phone cameras are used to take the images, it

is imperative to assume that the image quality may be suboptimal. Additionally, because

our image processing engine compares the query image with a database of weed images, it

is impossible to identify unknown invasive weed species or a new breed of weeds (Com-

mittee & others 2006). While the image processing engine may not be able to identify the

weed images in several cases, it can, however, narrow down the search to a smaller subset

of candidate images. Narrowing down the image search to a few candidate images is es-

pecially important because our system depends on a human crowd to identify the correct

weed image. An Amazon Mechanical Turker, for instance, is unlikely to browse through

hundreds of images in our weed database to identify the correct weed image. There might

be scenarios when the image processing algorithm is unable to find close matches to the

original weed image. For example, if the candidate weed image belongs to a new species,

it will not be present in the weed database. In such a scenario, the image processing algo-

rithm still outputs a set of images that are the closest match to the candidate image. These

images, however, would be discarded by Amazon Mechanical Turkers as the weed image,

and consequently, the experts would have to provide their input on the new weed species.

Our image processing engine, therefore, takes a preset number of images as input

(n), and outputs the top n images that are a close match to the weed image provided by the

farmer. We set n = 5 for our implementation. There are two reasons why we chose this

n = 5. First, the lower bound on the number of images that needs to be displayed to the

turker is 3 since the turkers rank the top three images. Second, we do not want to display a
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large number of images to the turkers. Prior research (Yan, Kumar, & Ganesan 2010) has

shown that tasks that require turkers to browse through a large set of options before they

can respond to the query produce poorer results than shorter and succinct tasks since many

turkers use mobile devices to respond to queries. Our image processing algorithm uses a

concept of multi-feature fusion to extract the best candidate set of five images that match

the original weed image. The multi-feature fusion algorithm is illustrated in Figure 3.2.

The algorithm works in two phases.

correlogram

Image 
database

fcth-fuzzy color

texture

.......

correlogram

fcth-fuzzy color

texture

.......

majority vote

shortest distancefeature
extraction

feature
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cluster
and

centroid

cluster
and

centroid
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FIG. 3.2: The figure illustrates the two phases of the image processing algorithm. During
Phase 1, the features are extracted, clusters are created for each feature, a centroid for each
cluster is calculated, and the centroids are indexed in a database. During Phase 2, the
same features and cluster centroids are calculated for the query image, and the distance
calculated with the centroids in the indexed database. The top five images are calculated
for each figure, and a majority vote is used to find the five images that closely match the
query image.

• Phase 1: Phase 1 is an offline training phase. During this phase , our algorithm

extracts multiple features from the database of images. Specifically, our system uses

the following features: sift-scale invariant features, cedd color edge features, pixel

correlograms, fcth-fuzzy color, and texture histogram (Lux & Chatzichristofis 2008).
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We have chosen these features as they encapsulate a wide range of characteristics

of weed images, and individually can capture leaf shapes, background color, plant

texture, and edges characterized by plant stems. We use an open source lucene index-

based image processing library called LIRe to build our feature extraction databases.

The feature values for the images are clustered and the centroid of the cluster is

stored as a byte payload in a lucene-based index (Lux & Chatzichristofis 2008). For

instance, if the color histogram is a feature extracted by our system, three clusters

are created for the Red (R), Green (G), and Blue (B) values for each image, and the

centroid of each cluster is stored in the index database.

• Phase 2: During phase 2 of the algorithm (online phase) the query image from a

farmer’s smartphone application is processed and the same set of features as Phase

1 are extracted. The feature values are clustered and the center is calculated, like in

Phase 1. For each feature f , the top five images If = {I1, ..., I5} are selected with

shortest distance between the center of cluster for feature f and the center of the same

feature for the query image. To determine the five images closest to the query image,

the system calculates a rank. The rank Ri for image i is equal to the number of sets

If that it appears in. The image processing algorithm choose the images with the top

rank. The image processing algorithm also outputs a probability PI that the image

is the same as the query image. PI is the normalized rank of the image. Hence, if

the ranks of the five images are R1, ..., Ri, ..., R5, PI = Ri∑j=5
j=1 Rj

. These five images

are used as input to our novel hierarchical crowdsourcing algorithm that combines

Amazon Mechanical Turk and experts to determine the weed that closely matches

the query image, or registers a new weed species.



31

3.4 Hierarchical Crowdsourcing for Weed Identification

Humans can perform complex tasks using their vision and thinking capabilities,

a process that remains difficult or sometimes impossible for computers to replicate (Shahaf

& Amir 2007). Vision and image identification is one such application where identifying

a scene or an object is a simple task for a human but is sometimes infeasible for computer

vision algorithms. For instance, consider the weed identification problem. Two images of

the same weed taken from different camera orientations, in different lighting conditions, or

using different camera hardware may bear little semblance. An image processing algorithm

that compares features extracted from raw pixels, therefore, may not be able to infer the

similarities between the two images. An untrained human eye, on the other hand, can

look at two images of the same weed taken in different lighting conditions and can easily

infer that the images belong to the same weed species. The problem of weed identification,

however, is exacerbated by weed images taken at different stages of weed growth. Consider

Figure 3.3 that shows the same weed at different growth stages. To an untrained human eye,

the two images might look different, however, a trained weed specialist or an agricultural

extension agent can easily infer that the images belong to the same weed. Feedback from

experts is however expensive given that the extension agents are already overburdened.

There is a need, therefore, to build systems that augment image processing with untrained

and trained human workers but use trained experts judiciously. To this end, our system uses

a hierarchical approach to crowdsourcing described below.

3.4.1 Low Cost Non-expert Crowdsourcing

Amazon Mechanical Turk (Barowy & Curtsinger 2012) (AMT) is an Internet

marketplace for human crowdsourcing. This marketplace enables a computer system,

known as Requesters, to coordinate the use of human intelligence and machine intelli-
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FIG. 3.3: The figure illustrates the same weed using images taken at different angle at
different growth stages. It is difficult for a non-expert eye to determine that the images
belong to the same weed.

gence to solve a problem that would be difficult or impossible to perform using only ma-

chine intelligence. The Requesters can publish tasks known, as HITs (Human Intelligence

Tasks) (Ipeirotis 2010b), such as choosing the best images, writing product descriptions,

run online surveys or identify performers on music CDs. Workers are called Providers in

Mechanical Turk’s Terms of Service, or, more colloquially, Turkers (Barowy & Curtsinger

2012). These workers can browse existing tasks for which they are eligible and complete

them for a monetary payment set by the Requester. The monetary payment amount is pre-

set by the Requestor and can vary depending on the task, but is always greater than $ 0.005.

However, the recommended minimum payment is 1c per task. The turk web services also

provide tools to keep track of the workers and their performance. A Requestor can choose

workers for the task based on past performance (Barowy & Curtsinger 2012). The time of

publishing HITs, the time the HIT is accepted by a turker and when a response was received

can be tracked using the Mechanical Turk API. In our system, we construct a request using

our query image, and the five candidate images that are outputs from the image processing

algorithm, and publish the request to the AMT webservice using a Java-based application
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interface that communicates with the Amazon Web Services. The detailed rules associated

with the requests are also included to provide the workers with a better understanding of

the questions before answering them.

3.4.2 Expert Crowd

The expert human crowd comprises of individuals who have in-depth knowledge

about the weeds. We have recruited these agents from the State of Arkansas. In the hier-

archical identification system, experts play the role of a top hierarchical object. In many

cases, both the image processing algorithm and the non-expert turkers may fail to identify

the query weed. Our probabilistic decision engine (described below) automatically infers

if the system comprising of the non-expert and image processing algorithm is sufficiently

confident that the weed identified is the correct one. If that is not the case, the system

solicits input from the experts in our database using the expert version of our smartphone

application.

3.4.3 Probabilistic Decision Engine

Our weed identification system works with two constraints: (1) a constraint on

the acceptable latency that the end-user (farmer) can tolerate; and (2) a constraint on the

number of dollars that the system can invest in crowdsourcing results from a public web-

service like AMT and the time offered by extension agents. Throughout our system design,

we assume that our system would be maintained by a government entity like the state, or

private groups like crop commodity boards. In our system configuration, the image pro-

cessing subsystem has been designed to have a low latency signature and zero dollar cost.

However, the subsystem can be potentially inaccurate. For content based image retrieval
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systems, the average retrieval rate is less than 50% (Müller et al. 2001) if queries are ap-

plied to random images from a database. The expert crowd is assumed to have a substantial

dollar cost with it when compared to using an non-expert crowd like AMT. As future work

we plan to accurately model the cost of using experts to respond to image queries. The cost

of using AMT is configurable and the manager of the system can determine the amount

of money spent per request. The goal of our decision engine, therefore, is to calculate

when the system is confident enough that a given weed has been correctly identified while

satisfying the latency and cost constraints.

Quality of AMT 
worker

Probability
(Image=Correct 

Image | X-1 
responses)

Probability
(Image=Correc
t Image | Xth 
Response)

Probability
(Image=Correct 

Image | X responses)

FIG. 3.4: The figure illustrates the probabilistic decision engine that determines the prob-
ability that image I is the correct match for the query image after X responses. The prob-
ability is a product of the quality of the AMT worker, Probability that the image I is the
correct match given X − 1 responses, and the probability that the image I is the correct
match given the X th response.

Our probabilistic algorithm, motivated by greedy Q-Learning (Watkins & Dayan

1992) is illustrated in Algorithm 1 (also illustrated in Figure 3.4). The algorithm takes

as input the n images {I1, ..., In} that is the output of the image processing algorithm, a

constraint on the dollar amount (D), and a constraint on the latency (T ). The latency corre-
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sponds to the actual latency constraint set by the system or the farmer, after subtracting the

estimated constant latency of using extension agents and the image processing subsystem.

The dollar D is used to determine the number of HITs that are published to AMT. For our

present implementation, we use a combination of 1c HITs and 5c HITs. The proportion

of higher cost HITs can be tuned to match the latency constraint—we plan to pursue this

problem as future work. Our probabilistic algorithm is executed every time a response is

received from an Amazon Turker.

Table 3.1: Symbols used in Probabilistic Decision Engine

Symbols Description
#R Number of responses
Ii ith candidate image in the question

Q(w) Quality of worker (scale of 0 to 1)
T Required accuracy threshold

Pcurr(Ii) Probability of ith image being correct in the current response
X Current response number

for every response R from AMT
Calculate P (Ii|#R = X) = Q(W ) · P (Ii|#R = X − 1) · Pcurr(Ii)
IF P (Ii|#R = X) > T BREAK
end for

Algorithm 1: Probabilistic Decision Engine (C, T)

To understand how the algorithm works, lets assume that our system receives the

X th
i response from Turk worker Wi, and has already received X1, ..., Xi−1 responses from

turkers. The system tracks the quality of every Turker Wi using a function Q(Wi), where

Q(Wi) is the fraction of correct responses Wi has historically provided. To determine if

a turker has provided correct responses in the past, we use a manual approach where an

expert extension agent (co-author of our paper in our case) uses a web interface to verify

whether the returned weed image was the correct one. To keep track of Turker perfor-
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mance, the system increments the worker’s positive performance by one if the response is

correct, otherwise the system increments the negative performance of the Turker by one.

The quality of the Turker, Q(Wi) is calculated as the positive performance divided by the

number of times the Turker responded. Therefore, Q(Wi) = 1 represents a high quality

Turker who has always provided the correct answer. Using Q(Wi), the system calculates a

probability P (Ii|#R = X), for every image Ii. P (Ii|#R = X) represents the probability

that Ii is the correct weed image given the number of responses #R is X . The probability

is calculated using Equation 3.1.

P (Ii|#R = X) = Q(W ) · P (Ii|#R = X − 1) · Pcurr(Ii) (3.1)

where P (Ii|#R = X − 1) is the probability that Ii is the correct image after

receiving X−1 responses, and Pcurr is the probability that Ii is the correct image given the

X th response. Pcurr is calculated using a greedy theory technique proposed by Sheng et

al. (Sheng, Provost, & Ipeirotis 2008), and is explained through the following example. The

Amazon turker can rank up to three images out of five images that are provided through the

HIT. However, the turker also has the option to rank fewer than three images. For instance,

the Turker can rank one image as the exact match, or three images as Rank 1, 2, and 3. For

the first case, we assign exponentially reducing probability to the images — 0.5 probability

to rank 1 image, and distribute the rest of 0.5 to the four images (0.12 to each image).

For the second case, the rank 1 image is assigned 0.5, the rank 2 image is assigned 0.25,

and the rank 3 image is assigned 0.125, and the rest is divided between the two remaining

images. Using this method of probability assignment, no image is assigned a 0 probability.

Using this assignment, P (Ii|#R = X) is forced to be a positive value. The initial value

of these probabilities correspond to the output of the image processing subsystem. Finally,
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FIG. 3.5: (a) The Figure illustrates the screenshots from the iOS smartphone application.
(b) The Figure illustrates the screenshots from the Android smartphone application. (c)
Android application interface for the farmer and expert end of the application.

the probabilities are normalized such that
∑
∀i P (Ii) = 1. If the probability for a particular

image is greater than a threshold (set to 0.8 in our system, but is configurable), the system

assumes that the correct image has been identified. If after the latency constraint (T ) is

exceeded, none of the images have a probability of greater than 0.8, the system solicits

feedback from the extension agents.

3.5 System Implementation

Our smartphone application is available on iOS and Android. Figure 3.5 illus-

trates the screenshots of our smartphone applications. We also support a web-based appli-
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cation. The applications are written in Objective C and Java respectively for the two mobile

platforms, while the web-based client is written using a PHP frontend. The image process-

ing algorithm is implemented in Java. The weed image data and data requests made by

the farmers is stored in a backend mysql database. Overall, we have written 8200 lines of

iOS code, 19,665 lines of Android code, 10,000 of image processing and mechanical turk

code and 3000 lines of backend webservice and processing code. We have implemented

several optimizations including background download of images and caching of data on

the smartphone to improve the performance of the system. We profile the memory and

energy signature of the smartphone applications and latency characteristics of our backend

in section 3.6.

3.6 System Evaluation

The goal of our hierarchical crowdsourcing system is to provide accurate and low

latency weed identification at minimal cost. A complementary design goal of the system,

therefore, is to reduce the burden on county extension agents and other weed experts in the

identification process. Hence, our evaluation focuses on the following key questions.

• What is the weed identification accuracy of our image processing algorithm and the

AMT crowdsourcing subsystem?

• What is the latency of weed identification for our hierarchical system?

• What are the trade-offs between the cost of publishing AMT HITs and the latency of

turker responses?

We also present micro-benchmarks on the energy and memory consumption over-

heads of our implemented smartphone applications.
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3.6.1 Experimental setup

Here, we discuss the the experimental setup for evaluating our end-to-end sys-

tem. We break down the system into three components—image capture and upload using

the smartphone applications, backend image analysis, and offload of images to Amazon

Mechanical Turk—and rigorously evaluate each component. While we do not directly eval-

uate the accuracy and cost of using extension agents in the identification process, based on

feedback from domain experts, we assume that both the cost and accuracy of extension

agents’ identifying weed images is high. To evaluate the AMT component, we created 70

instances of each requests. For each request, the cost of each HIT was either 1c per HIT or

5c per HIT. The HITs are comprised of two components—the candidate image and the top

five images that the image processing algorithm selected from our apriori collected weed

image database. On average, we received 66 responses. For our evaluation, we use three

metrics—accuracy of identifying a weed image, the average cost of identifying a weed

image using AMT, and the latency of identifying a weed image.

3.6.2 System Accuracy

In our first set of experiments, we evaluate the accuracy of the weed identification

process using our system. Specifically, we examine the accuracy of our image processing

algorithm and crowdsourcing subsystem. For our experiments, we used a set of candidate

weed images chosen from our database of weed images and injected artificial gaussian

noise to distort the images. The Gaussian noise added had a mean of 0.1 and variance of

0.2. This noise was added to the images since we donot have real time images of weeds

captured by farmers. Therefore, every weed has two sets of images—weed database images

and candidate images (with noise added). We selected 3-8 images of each weed based on

their physical features, i.e physical color, shape of weeds and leaf structure, and availability
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FIG. 3.6: The figure shows the distances calculated by the image processing algorithm for the top
five candidates.

of images at different growth stages. Images were taken at different angles, lens exposure,

and ambient lighting conditions. For our experiments, we were able to use a total of 70

weed types and approximately 5 images per weed type (the number of images per weed

type varied from 3 to 7). Our dataset for this experiment included a total of of 300 images.

For each candidate image, we execute our image processing algorithm described in sec-

tion 3.3.2. The image processing algorithm identifies the top five images and ranks them

by the average distance from the candidate image. Figure 3.6 plots the distance measured

for the top five candidates across 9 distinct runs of the algorithm. From the experiment, we

find that the image processing algorithm identifies the correct image in 89% of the cases

in the top five choices. However, there is a considerable amount of uncertainty associated

with the image matching algorithm identifying the closest image to the candidate image.

As shown in the figure, the difference in the distance between the top candidate image and

second best match is small. Hence, it is likely that the algorithm will get confused between

two images and will not output the actual image as a top candidate. Since our image pro-
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FIG. 3.7: (a) The figure illustrates the cumulative probability calculated using our probabilistic
algorithm for nine independent HITs published to Amazon Mechanical Turk. (b) The figure shows
the average of the probabilities for the nine HITs. The error bars are calculated using standard
deviation. The figure shows that 0.8 is a reasonable threshold for our application and the system
requires at least 10 responses before making a reliable inference.

cessing subsystem calculates different set of features that are used for image analysis in

several competing algorithms, their performance would be similar to the image processing

subsystem in our system. Image processing, therefore, is insufficient for identifying weed

images—the human crowd is required to solve this fairly complicated weed identification

problem.

We next evaluate the accuracy of using the non-expert Amazon Turk crowd to

identify the candidate image. Our HITs published to AMT allows each turker to rank up

to three out of five images that are an output from the image processing algorithm. We

use greedy theory to assign the probability, Pcurr that weed image Ii is the best candidate

image after the the X th
i response. Based on this probability, we calculate P (Ii|#R = X),

the probability that image Ii is the correct image after receiving X responses. We plot this

probability, P (Ii|#R = X), for nine independent HITs published to AMT for the correct

candidate image. Figure 3.7 (a) plots the above probability as a function of the number of



42

responses for each of the nine independent HITs. Each line corresponds to the probability

calculated by the system for the correct weed image. Figure 3.7 (b) plots the average

probability (with error bars) calculated by our system for the correct image as a function of

the number of responses for the nine HITs. From the figures, we can draw two conclusions.

First, for most HITs, the probability of the correct image being selected improves slowly

after ten AMT responses. Moreover, fewer than ten responses are insufficient since the

transients are too noisy to make reliable inferences. Hence, the system should wait for at

least ten responses before making a reliable inference. We find from the figure that as

the number of responses increases the accuracy stabilizes. However, there is still some

fluctuations as late responses are received. However, these late responses do not make the

average accuracy fall below a threshold. Secondly, the figure shows that 0.8 is a reasonable

threshold to determine when the system should decide that it is confident that the right weed

image has been identified. From Figure 3.7 (a), we can also see that there are at least two

out of nine HITs where the probability of selecting the correct weed image is below 0.5.

There are several instances, therefore, when the untrained AMT crowd is unable to identify

the correct image, and it is important to use extension agents. Since extension agents

compare the candidate image with the entire weed database, they can perform accurate

weed detection even if the error is in the image processing subsystem. In more than 80% of

the HITs, it is possible to use the low cost AMT crowd service to get fairly accurate results

without any intervention from extension agents. The 80% is calculated by finding the HITs

were the accuracy is above 0.8 (illustrated in Figure 3.7 (b)). This can substantially reduce

the cost of detecting weed infestations.
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FIG. 3.8: (a) Time taken by different components of the system. The highest overhead corresponds
to the AMT response time (b) The latency incurred by the Amazon Mechanical Turk responses
are magnified in the figure. The figure shows the latency in getting responses as a function of the
number of responses. The latency increases nearly linearly with the number of responses.

3.6.3 System Latency

In our next set of experiments, we evaluate the latency of identifying the correct

weed image. We measure the latency of capturing and uploading images to our backend

server, analyzing the images using our image processing algorithm, and using Amazon

Turk to identifyimages using an untrained human crowd. Figure 3.8 (a) presents a stacked

bar graph that plots the amount of time taken by different components of the system. We

use a threshold of 0.8 to determine when the correct weed image has been identified. The

intuition behind the threshold is explained in the previous section. In the figure, we also

plot the HITs that did not provide the right answer (HIT 1 and HIT 3) after 40 responses.

For the other HITs a threshold of 0.8 was reached in fewer than 35 instance. For each HIT,

we perform 20 iterations for the same experiment and report the average. The y-axis is plot-

ted in log-scale. The “Upload time” corresponds to the time taken to upload the images to

our backend server and is a function of the backhaul connection bandwidth to the Internet

(over Wi-Fi). The “Create Request time” is the amount of time taken to publish a request
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to Amazon Mechanical Turk, and the “AMT Response Time” is the cumulative time of re-

ceiving sufficient responses from turkers that the system is confident that a candidate image

has been identified. For a simple survey that requires less than 10 mins of turker engage-

ment, which is similar to our posted task to mechanical turk, the normal response rate per

hour is 5.6 if the turker is paid 2 cents per request. Our system in most cases can come

up with a decision using an average of 20 responses per question while paying 2.7 cents

per response. On an average, it takes less than 3 hours (minimum of 1 minute and a max-

imum of 25 hours) for us to correctly identify the weed image which is similar to the four

hour time frame seen by other researchers in unrelated application domains (Buhrmester,

Kwang, & Gosling 2011). We log the starting time and end time of our image processing

system for each query and calculate the average time taken by the subsystem to output the

top five images. We found that the average time taken by the image processing algorithm to

determine the top five images is 1.9 seconds, which is minuscule compared to the latency

associated with the other components of the system, hence the image processing numbers

do not appear on the graph. The maximum latency is incurred in receiving responses from

the AMT workers. We magnify this incurred time for each HIT in Figure 3.8 (b) that plots

the amount of time taken by the system as a function of the number of responses for each

HIT. From the figure, we find that the amount of time taken is proportional to the number of

responses and increases nearly linearly for the first fifty responses. It is therefore possible

to design a framework that takes a latency constraint as input and determines the number

of responses that the system should accumulate before it must make an inference.

3.6.4 Cost Vs Latency Trade-offs

An important independent variable in our evaluation is the amount of money

spent on each HIT by the system. Specifically, we study the effect of the amount of money
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FIG. 3.9: (a) Distribution of the response time of turk responses (b) The figure shows the distribu-
tion of the time spent by turkers on a HIT.

spent per HIT on the time to solicit responses from turkers and the amount of time spent by

turkers on generating responses. This is an important variable in our system since it helps

explore the tradeoffs between the cost of publishing HITs and the latency associated with

inferring the correct answer. We explore two cost rates for publishing HITs—5c per HIT

and 1c per HIT. Figure 3.9 (a) plots a cumulative distribution function of the amount of

time taken for a response, and Figure 3.9 (b) illustrates the cumulative distribution function

of the amount of time spent by a turker on a HIT. The lines that correspond to the 5c and

1c HITs are annotated in the graphs. From the graph we find that the median response time

for 5c HITs is one-third of the 1c HITs. However, the amount of time spent by turkers on

these HITs is equivalent (as shows in Figure 3.9(b)). To help understand this observation,

we present Figures 3.10 (a) and (b). The figures illustrate the total amount of time taken

per HIT, the number of responses, and the cost of publishing the HITs. It is clear that

the amount of money spent on the HITs is higher for the 5c case while the total number

of responses received are identical—this is because a minimal number of responses are

required to make an accurate inference. However, these results also show that turkers
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FIG. 3.10: (a) Cost in cents per HIT for 1c and 5c requests. (b) Average response time and number
of responses for each HIT.

prioritize HITs based on the amount of money they earn per HIT. Hence, a HIT with a

larger price tag will be attended by the turker sooner leading to lower overall latency which

in turn leads to a higher overall cost. As future work, we plan to utilize this insight to

design an optimization framework that can determine the optimal price tag for HITs such

that a latency constraint can be met.

3.6.5 Micro-benchmarks

Finally, we evaluate the overhead of our system with respect to the energy con-

sumed by our smartphone applications and the amount of memory utilized by the phone

applications, both for the expert and farmer versions. Specifically, in our experiment we

log the battery depletion as a function of time on the Android and iOS platform as we use

our crowdsourcing application. Figure 3.11 illustrates the energy consumed when creating

a request at the farmer end and uploading that request. We performed the experiment across

twenty different requests. From the figure, we find that the average energy consumed per

request is around 20 J which is equal to 1.7 mAh. Hence, a single request on a 1500 mAh
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FIG. 3.11: Energy consumed in performing different operations at the smartphone application. The
unit of energy is Joules that is equal to the energy transferred (or work done) when applying a force
of one newton through a distance of one meter.

battery (common battery size for iPhone and Android phones) can reduce the battery life-

time by 0.1%. Since a farmer is unlikely to upload more than 2-5 requests per day, the

energy overhead of our system is low. In terms of memory usage, the Android application

uses between 54 MB and 105 MB, and the iOS application consumes between 5 to 20 MB

of RAM. Most of the memory overhead is due to the caching that the application performs

with images in the database to minimize latency.

3.7 Conclusion

In this chapter, we present a hierarchical system that uses smartphone image cap-

ture applications, a backend image processing algorithm, and two levels of crowdsourcing

to identify weed images. The system provides low latency, low cost, and accurate iden-

tification of invasive weed infestations. Such an automated system can help reduce the
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loses caused by the delay in identifying weeds, and hence, lead to quick remedial control

practices applied to contain weed infestations. The two crowdsourcing levels consist of

a non-expert inexpensive AMT crowd and a set of expert county extension agents. We

propose a probabilistic decision engine that determines, in an unsupervised way, whether

inputs from extension agents are required for weed identification or whether the low cost

amazon turk crowd is sufficient to identify the weed image. We evaluate our end-to-end

system using real weed images and show that the system can provide accurate weed identi-

fication within 3 hours while minimally using the extension agents. Moreover, the system

can provide highly accurate weed identification. As future work, we plan to use the insights

gained from the economics underlying the crowdsourcing approach to design a cost model-

driven optimization framework that takes latency and cost constraints and determines the

best possible candidate image. Additionally, we plan to leverage additional contextual data

associated with the images to improve the machine intelligence (image processing) com-

ponent of the system.



Chapter 4

HUMANS IN THE PREPROCESSING PHASE

We have designed and developed an end to end system of detecting human con-

versation from a group of people in workspace. In this system, the database is significantly

big, but the computer algorithm is not able to label speech segments from the group con-

versation in unsupervised training. Humans can help machines annotate the data so that

machine algorithms can handle the rest of the steps. We discuss the details steps of how to

integrate humans in the data processing phase.

4.1 Problem Statement

Language is the light of a human mind, and speech is a fundamental part of any

language. It is also the best way of social interaction, interpersonal and group conversa-

tion (Maynard & Peräkylä 2006; Liddicoat 2011). A conversation is key to language devel-

opment and the exchange of ideas and thoughts. In addition to these, people meet at various

locations to discuss different issues, agreements, and job functions. A deep understanding

of any conversation’s insight helps to improve communication skills and workplace pro-

ductivity. We proposed an ML-based conversation detection method using strain gauge

49
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respiratory sensor data.

Conversation understanding research started in the early 70s (Schegloff 1992)

which mainly focus on speaker identification (Lu et al. 2011; Ahmed, Kenkeremath, &

Stankovic 2015), group size determination (Xu et al. 2013), emotion, stress level deter-

mination (Lu et al. 2012; Rachuri et al. 2010), and to find out the contents of a speech.

However, most of those studies were based on audio and video recording of speakers and

analyzing those contents. Audio and video-based conversation analysis depend on the ut-

terances of the speaker, which relies on the position of the audio input device, amount

of oscillation, and standard environment for audio and video recording. Also, posing to

a microphone or camera has the potential of psycho-physical stress on the speaker, and

may influence not to take a turn when a speaker has the urge to speak (Duncan 1972;

Kumar et al. 2014; Mengis & Eppler 2005). In addition to these, audio and video record-

ings have the issue of privacy concern to the subject (Klasnja et al. 2009).

Conversation analysis with wearable sensors can address all of these limitations.

Researchers over the years have used an automated recording of social interaction using

various wearable devices (Olguı́n & Pentland 2008; Charan 1991) to see the effect of group

conversation in the workplace. They used sensors to analyze different metrics on speech

dynamics, i.e., the average time of speaking during a discussion, the percentage of time

a single speaker participates in that conversation, etc. They applied the wearable device

called sociometric badge in different types of organizations, including banks, call centers,

and hospitals. They found that informal conversation has a significant impact on team-

work and management processes in these organizations. The productivity of any creative

teamwork varies a lot based on casual communication among team members (Waber et

al. 2010). The everyday conversation has a high impact economically, even in online call

centers. Researchers also have used wearable devices to analyze customer behaviour (Kim
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et al. 2009) and behavioral health (Madan et al. 2010). However, these wearable devices

are intrusive and uncomfortable to wear.

While speaking, the mean breathing rate decreases but also becomes more vari-

able, especially in expiratory duration. The utterance also affects tidal volume (Lorig 2007).

The ratio of inhalation and exhalation duration reduces during speech compared with nor-

mal state. Thus, these breathing dynamics can be a good source of information to disam-

biguate between speech and silence. Though research on the conversation is decade old,

respiration-based conversation analysis is not explored to a great extent. Respiratory based

conversation analysis not only remove the existing issues of privacy, but it will also open

the door to another domain, i.e., stress analysis. Wearable sensors provide information

about the complex dynamics of social interaction as they occur in the real-world (Yamada

et al. 2011). A few respiratory measurement sensors are commercially available, as well as

for research. Wearable strain gauge (SG) sensor, although typically utilized to measure res-

piration, can potentially index the dynamics of speech. This sensor is relatively affordable

and non-invasive, perhaps allowing researchers to identify: (a) when someone is talking,

and (b) who is talking in an audio recording of group interaction if group members are

wearing strain gauges.

Respiration strain gauges are composed of a pressure transducer that is placed

above the sternum with a belt that wraps around the upper thorax. This pressure trans-

ducer most directly measures chest movements that are strongly correlated with respira-

tory changes, which are only suggestive of actual breathing dynamics (timing of inspira-

tion/expiration, tidal volume, etc.). Thus, it is reasonable to speculate that strain gauge

data could provide rich information about physical processes that affect chest movement

other than breathing (e.g., speech, sighs, gross motor movement,etc.). Speech can severely

confound estimates of respiratory dynamics derived from the strain gauge signal. This
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FIG. 4.1: Zephyr bio-harness sensor can sense the change in the tidal volume of a human
chest during inspiration and expiration, which can help to identify breathing patterns.

confounding occurs in two significant respects, a) Speech strongly affects the strain-gauge

“respiration” signal, and b) Speech adds substantial noise to the voltage-time series ex-

tracted from the strain gauge pressure transducer. Such noise can be characterized as mo-

tion artifact– i.e., the relatively gross movement of the transducer on the chest resulting

from typical speech. This noise typically obscures researchers’ ability to accurately mea-

sure the morphology of the SG signal and, in turn, biases estimates of respiration rate and

tidal volume. Though the strain gauge shows a strong correlation to speech dynamics, the

added noise poses a significant challenge to use it for conversation analysis.

The experiment design, workplace setup, and training a speech dynamics anal-

ysis project presents two novel research contributions. First, we collected a significant

amount of group conversation data with real-time workplace setup. Second, we developed

a machine learning model that can detect who is speaking at a specific time in a group

conversation with 98% accuracy.
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4.2 Data Collection

The collection of high-quality data from a workplace, a real workplace setup is

critical. Also, it is not possible to tag sensor data as speech or silence directly using only

sensor data. However, if we have the audio stream together with the sensor stream, we can

know the segment of speech or silent from the sensor data stream comparing with the audio

stream. It is also essential to record both audio and sensor streams in the same time frame.

4.2.1 Workplace Setup

We set up a workplace precisely similar to a regular workplace. The designated

room consists of four different desks equipped with a workstation, high oscillation free mi-

crophone, and a Samsung note 7. For further improvement of sound quality, we divided the

room into four separate cubicles, and each cubicle contains a single setup. This setup also

guides the participants to talk with each other online and improves recorded audio qual-

ity. We used Zephyr Bio-harness sensor (see Figure 4.1) to collect respiratory responses of

each participant. It is a little bit uncomfortable to wear Zephyr around the chest, but this is

widely being used to collect respiratory data (Monowar Hossain & Hnat 2019 accessed July

8 2019). Each Bio harness sensor directly connects to its corresponding smartphone. All

four smartphone connects to the central server. We also connected all four workstations to

the same central server to store recorded audio and sensor data of all four participants in a

structured way. The central server also syncs timestamps to all four smartphones, as well as

all four workstations. We developed software to generate the same LSL (lab stream layer)

for all four channels. It also makes sure to store streaming data from all eight channels

together for each session in key-value pair based streaming data.
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w =  a + b

x  =  c + d

y  =  e+ b
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Unlock

Player 2

a  =  2,   b =  4 
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c  =  2,   d =  4 

e  =  2,   b =  4 

FIG. 4.2: Each player have their own screen with different information. Player 1 requires
the value of a, b, c, d and e from other players. Other players have the answers which they
can use to help player 1 to unlock the puzzle.

4.2.2 Group Conversation Data

People in a workplace can make group conversations for sharing ideas, business

roadmap, brainstorming, project analysis, entertainment, and many more. A good work-

place where all members participate creates a lot of new ideas, tackle problems, make

collective improvements, etc. To simulate a real workplace environment, in addition to

workplace arrangement, we also provided the participants tasks that keep them engaged

with one another. We encouraged them to play two computer games- bomb-game, and

empty-epsilon. The sole purpose of these two games is to keep everyone engaged while

playing or solving problems together.

Bomb-Game

Bomb-game is a puzzle game. The bomb defuser of the team has to defuse a
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bomb with a secret key. However, the secret key is not readily available. Instead, it can

be generated based on different information residing in all four computers. Based on the

bomb type, manufacturer, country, and many other criteria, the team as a whole has to

find out the key. The defuser will ask each of his teammates for different codes based on

the various parameters of the bomb. Each member’s computer contains a manual based

on their expertise. Based on the question, the member will look into the manual, find the

appropriate parameter and code, and will tell the defuser. Once the defuser gets the full

code, s/he can enter that code to defuse within a predefined time. If the defuser takes

more time than the defined one, it will explode as well. A simple example of the game is

explained in Figure 4.2. All the communication happens through an audio channel as the

participants are sitting at their workstation. The expiration time makes sure that the work

is not always relaxing that can capture audio of a different mode of the workers.

Empty-Epsilon

Empty-epsilon game (daid 2020) is a space combat game. Four people -a captain,

a helms, a scientist, and a weapons officer, participate in space combat when exploring the

sky with a space ship. The helms search for enemy ships scanning all radar signals. If it

captures any new object, s/he inform the captain about the probable attack. The captain

asks the scientist who has access to a database of all ships, their size, power, weapon, and

origin. Based on the information, the captain orders the weapons officer to load appropriate

ammunition suggested by the scientist. Once the enemy ship is inside the circle of attack,

the soldier attacks the ship. All four participants have their expertise and information and

they work as a team. All the communication happens through a single audio channel.

We hired three different teams of four members and trained them with a session

on how to play these games while wearing the respiratory sensor and communicating with
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FIG. 4.3: An example of recorded audio annotation from a group conversation using au-
dacity. Each audio stream can have their own label stream. Annotated segments can be
edited at anytime and can also be exported to a single text file.

one another with the microphone. The age of those participants was between 18-40. To

avoid the effect of individual intellectual ability, we randomly rotated the role of each

person in each session. Each session was about 30 minutes long, and we recorded ten

sessions for each team. The database thus consists of 30 hours of audio and sensor data.

4.3 Data Annotation and Preprocessing

The data consists of two separate LSL streams- audio stream and respiratory

sensors stream. The two streams are recorded at two different frequencies, but they are

time-synchronized. The starting time and end time of each stream are similar. A temporal

segment in the sensor stream represents the same segment in the audio stream. The audio

stream is in human-readable form as we can use any software to listen to the audio to

determine the parts that represent speaking and which segments represent non-speaking.

We can label sensor data using the audio annotation as the time segments are synchronized.
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4.3.1 Data Cleaning

The respiratory sensor is susceptible to movement as it gives the value based on

chest stretching. It senses the change of a human chest when a person talks. However,

other movements of a human affect the sensor as well. It is not typical that a human will do

nothing while speaking. In our workplace settings, all participants play team games with

lots of excitement, decision making, and do lots of other daily activities like eating snacks

or drinks coffee, etc. All these activities affect the sensor. All these activities produce lots

of noise. The data collected in this way requires to be purified to get the actual changes that

are related to speech-related movement only. Some events, i.e., movement of the chair to

using hands that produces sudden unwanted movement, creates spikes. However, the other

actions create regular changes to a sensor signal.

Speech
Silence

Filtered Signal

FIG. 4.4: Bandpass filtered signal clearly shows the effect of speech and non-speech in
a respiratory signal. During the silence period, the signal remains regular but during a
speech, the shape of the signal changes.
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We applied a Butterworth bandpass filter to get rid of these noises and keeps

signals that are related to chest movement only. Humans breathing band fb = [fs, fe]

range from twelve to sixteen per minute during the normal time. It can go up to forty-

eight to fifty per minute during extreme activities, i.e., exercise and workout. However,

the frequency can go as low as nine breaths per minute when a person speaks. To capture

the whole frequency range that represents the human chest movement, we set the bandpass

filter range [fs = 9/60, fe = 50/60]. The plot in Figure 4.4 reflects the speaking effects on

the respiratory signal.

4.3.2 Sensor Data Labeling from Audio

Annotated audio data streams sampling frequency is fa = 44.1KHz. However,

the sampling frequency of the sensor data stream is fa = 44.1KHz. Both streams are

synchronized. To annotate sensor data using audio, we need the starting data points and

end data points of a segment from the sensor data stream given the segment of the audio

data stream. We used a simple equation to convert any data points from the audio stream

to the sensor data stream. Let’s say Na is the N th data point in the audio stream, and Ns is

the corresponding data points in the sensor stream. Then Ns = Na ∗ fs/fa where fs is the

sampling frequency of the sensor signal while fa is the sampling frequency of audio data.

For example, if an annotated audio segment is (88200, 176400), the corresponding sensor

segment is (36, 39).

The annotation process tagged only temporal segments related to speaking only.

In this case, we only have two classes- speaking and non-speaking. During speaking, a

person takes a short break to keep their breathing regular. We plot the human annotations

of speaking in figure 4.5, where the red color signal represents speaking, and blue rep-

resents silence. The typical gap between two speaking segments varies from zero to six
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FIG. 4.5: Labeling of respiratory sensor stream based on audio annotation. Each audio
stream has the current player’s vocal together with other players speech signals. Respira-
tory sensor is labeled based on audio annotation.

seconds (Jepson 2005). We can merge two consecutive sections if the difference between

them is less than six seconds. Once we get the list of all segments related to speaking, in

the next step, we can invert the annotation to get the tagged temporal parts for silence. The

final annotation database was created merging the above two lists of segments.

4.4 Feature Extraction

The shape of the respiratory sensor waveform changes with the change of chest

movement of the subject. A transition from an exhalation point to inhalation defines the

actual difference of chest movement during inhalation. Similarly, a transition path from a

pick to bottom represents the change during exhalation. Quantization of the signal enables

us to calculate the characteristics of chest movement (Lorig 2007). However, it only cap-

tures a single movement avoiding the relationship from one move to the next. A sliding
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window-based instead of single cycle-based classification might capture the characteristics

of human speaking dynamics.

4.4.1 Window Size, Creation and Labeling

Window size is vital to capture more granular characteristics. A single person

speaking behavior study uses window size of thirty seconds. However, humans’ breathing

rate can go as low as nine breathing cycles per minute while speaking. A thirty-second

window can capture four and a half breathing cycles. We compared thirty, forty-five, and

sixty seconds window experimentally and found that sixty seconds window capture enough

characteristics and improve the accuracy. Previous research has shown that a 50% overlap-

ping in the sliding window performs better (Van Laerhoven & Cakmakci 2000), and we

adopted that idea in our proposed model.

Class

FIG. 4.6: The sliding window slides a specific percentage from one window to next. For
each window, the portion of speech and non-speech majority defines the label of that win-
dow. This figure applies 50% overlapping and majority algorithm to create the window and
assign labels.

Another critical aspect of speech analysis is the label of each window. Speech

analysis is different from other wearable sensors in the sense that the frequency is depen-
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dent on human breathing frequency. The length of a single speaking segment varies from

a few seconds to minutes. It is tough to capture a full speaking segment in a window or to

fill a single-window with either only speaking or only silence. In a group conversation of

four people, at least three fourth of the time, people remain silent or listen to others. We

experimented with threshold 75%, 60%, 50%, and 40% rule that defines a specific window

as a speech segment if the total percentage of speech crosses the threshold. The number

of windows that cross the threshold of 60% is significantly low. The threshold 50% per-

form better in classification. The algorithm of creating and labeling window is explained

in Algorithm 2.

Detecting Breathing Cycle

If a respiratory sensor signal is the result of a regular breathing pattern, a

threshold-based algorithm works well (Figure 4.7). It detects a breath when a sensor sig-

nal’s waveform passes a predefined threshold either in rising or in falling direction. How-

ever, the defined threshold varies for different persons and varied situations. It is tough to

find a gold standard threshold value for a diverse population and various speech dynam-

ics. In addition to these reasons, the Zephyr bio-harness sensor is susceptible to the human

movement that regularly occurs when a person speaks. The spurious peak in the respira-

tory sensor is very common because of these reasons. We implemented the peak detection

algorithm proposed by (Duarte 2015). From the empirical analysis of our collected data,

we found that with a minimum peak difference (MPD) of 10 and a threshold of 0.01 unit

works best and produces less spurious peaks.

We calculate all maxima and minima accurately by executing peak detection al-

gorithms by two iterations and removed spurious peaks at the third iteration. The first iter-

ations detect all peaks, and the second iteration detects all valleys. In the third iteration, we
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Input: A list Ł={(ts, te, l)} segments tuples, where ts is starting time, te is the
end time, and l is the defined class of the segment

Output: A list Lt of equally sliced tuples of segments {(ts, te, lr)} where lr is
defined label

ws ← ∅
we ← ws + ws
st ← ∅, ct ← ∅
N ← end(ln) where ln is the last segments of Ł
while ct ≤ N do

while end(ct) ≤ ct do
if ct = st then

C[class(ct)] = end(ct)-ws

else
x = end(ct)− start(st)
C[class(ct)] = C[class(ct)] + x

end
ct = ct + 1
if we > end(ct) then

v = we − start(cs)
C[class(ct)] = C[class(ct)] + v

end
lr = maxind(C) Lt.append((cs, ct, lr))
C ← ∅ ws = ws + ws− ol
we = we + ws+ ol
while start(st) > ws do

st = st + 1
end

end
end
return Lt

Algorithm 2: WINDOW labeling sensor data (Ł, ws, ol).
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High Peaks
Low Peaks

FIG. 4.7: High and low peaks are detected using peak detection algorithm. The high and
low peaks are merged to get all peaks.

compare the time-stamps of consecutive valley points. If there are multiple peaks between

two valleys, the algorithm takes the one with the highest peaks. The algorithm follows

the same procedure to remove spurious valleys as well. The algorithm returns time-stamps

merging all these peaks and valleys. We plotted all the signals with the peaks returned by

the algorithm, visually observed peaks for 1 hour of sensor signals. This algorithm can

detect the peak points from the breathing sensor with an accuracy of 98%. A small portion

of the results is plotted in figure 4.7.

Breathing Cycle Features

The inspiration duration (Ti) is the time to take air inside the lungs, and the

expiration duration (Te) is the time to remove air from the lungs. This activity reflects

on the sensor signal, which takes upward slopes during inspiration and takes a down-

hill during expiration. The expiration and inspiration of a respiratory sensor signal and



64

the transition path from one state to the other can provide the breathing characteristics.

The quantization of these three parameters enables to capture the speech-related features.

These measurement provides both temporal and spatial properties. Previous researches

on respiratory sensor signals used these to engineer signal features (Bari et al. 2018;

Rahman et al. 2011).

• Inspiration duration((Ti)): The duration to take air inside the lungs.

• Expiration duration( (Te)): The duration to remove air from the lungs.

• Inspiration-expiration duration ratio( (Ti/Te)): The ratio of Ti and Te.

• Inspiration volume(Ai): The volume of the air drawn inside during inspiration. Inte-

gration of the uphill slop provides this information.

• Expiration volume(Ae): The amount of air it leaves during expiration. Integration of

the downhill slop provides the expiration volume.

• Inspiration-expiration volume ratio: The ratio of Ai and Ae

• Inspiration-expiration Stretch: The respiration phase can also be different at different

breathing cycles, which pose different stretch on both peak and bottom. We have

calculated the stretching of these points at each period.

We derived the mean, median, and standard deviation from these characteristics.

Window-Based Features We proposed a window-based speech classification model that

makes the window level features as useful as the cycle based features. Time series analysis

is a matured field of study. Both time domain and frequency domain features are con-

solidated in TSFresh (Christ et al. 2018). Some of those features are- median absolute
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deviation (mad), energy, inter-quartile range, signal magnitude area, skewness, kurtosis,

the entropy of power, and the spectral centroid of frames, etc.

4.4.2 Feature Selection

The number of sensor data features is vast, which puts a big challenge in design-

ing a high-performance model with relevant features only. Some of the features have a

strong relationship with one another. With redundant features, the dimensions of variables

increases as well as the time to train and test the model. Feature selection methods help us

in our mission to create a more predictive model by identifying and removing redundant,

unnecessary, and irrelevant features from the targeted model. It reduces the complexity

of the model by reducing the desired attributes for the model. It also provides a better

understanding of the underlining process that generated the data (Guyon & Elisseeff 2003).

Three different types of feature selection processes are popular in designing a

high-performance machine learning model- filtering, wrapper, and embedded. We em-

ployed the Correlation-based Feature Selection (CFS) (Hall 1999) filtering approach. The

CFS method filtered out redundant and unwanted features and kept only the features that

will be more related to produce better predictions. The implementation of the CFS algo-

rithm may use forward, backward, or best fit heuristics search. We use the best-fit algorithm

to search ahead for features through the search spaces, adding the stopping criteria to five,

as described here to stop the search to the entire search space. The search space will incre-

mentally add features and stop if the five consecutive steps do not show any improvements.

The search space started with several features that researchers have previously used and

are strongly correlated with speech dynamics. We selected a total of sixteen features for

classification.
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4.4.3 Train, Test and Classify

In our experiment, we have found that one-fourth of the time, a human makes

conversation, and three fourth of the time, they remain silent. The number of windows that

represents speaking segments is much less than the number of segments that represents

silence. We used a ski-learn standard imputer, which randomly computes sections from

existing segments and adds to the existing dataset. We applied 80-20 rules and divided

them into three sets. The first 80% of our data was used to train the model, 10% was used

to test, and the rest of the 10% was used to validate our trained model. We applied the

SVM binary classification to train speech and non-speech and evaluated the results. We

have achieved 98.8% accuracy classifying the segments (see ROC curve in Figure 4.8).
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FIG. 4.8: ROC Curve shows the accuracy of our trained model.
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4.5 Future Work

Our proposed speech dynamics analyzing method addresses only two different

classes: speaking vs. silent. However, some other important events take in the workplace,

i.e., laughing, shouting, and various other emotional expressions. In addition to classifying

into two speech segments, we can design a comprehensive model to detect any parson’s

speech dynamics. The study will enable us to analyze whether a person is more interactive

than others or not, how their daily speaking pattern affects the workplace? It will also help

to improve the quality of conversation in the workplace. The future study may analyze

more of these matrices in addition to detecting the conversation.

4.6 Conclusion

This study addresses a unique scenario in conversation analysis in the form of

group conversation in the workplace. The conversation analysis started long ago. How-

ever, most of the cases, the study is being done on single person conversation or two-way

conversation in a doctor’s or lawyer’s office, or at a random place. In addition to that, most

of the researches is based on recording audio that has some privacy concerns. In this study,

we have focused the investigation on analyzing group conversations using respiratory strain

gauge sensors. The state of the art conversation study using a wearable sensor considered

only a single conversation, and also the recording was done in isolation rather than natural

workplace setup. We have collected quality data by setting up a real workplace. We clean

our collected data using both noise removal techniques as well as the frequency filter to

make the data more useful in detecting conversation among participants. We followed the

state of the art machine learning process to design, train, and test model and have achieved

high accuracy in identifying a group conversation as speech or silence. This work might

help to analyze the workplace environment and how to improve its condition.



Chapter 5

HUMAN INTELLIGENCE IN FEATURE PHASE

In previous chapters, we have discussed how human intelligence helps machines

in the data acquisition and decision making phase. The decision model of an application

might depend on multiple features. Some of those features are extractable by machine al-

gorithms, and some are more complicated and open-ended that require human intervention.

The process, algorithms, and integration are different for different types of applications. In

this chapter, we discuss the bus stop resource localization for the visually impaired. We

explain here why human intelligence is required to extract features instead of machines.

We also discuss the detail design of a collaborative system integrating human knowledge

in the feature extraction phase.

5.1 Problem Statement

Over 3 million individuals have a visual impairment (WHO 2010) globally. The

ability of the visually-impaired to use public transport is a key component of indepen-

dent living. Unfortunately, most existing infrastructure incorporates only visually distinct

features, i.e., signs and tags for identification, which are inaccessible to visually-impaired

68
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users. The commonly used technique for blind riders to identify and to localize a bus stop

is GPS-based geographic information systems (GIS). It can guide users to the vicinity of

a bus stop with a median horizontal error of 58 meters (Zandbergen & Barbeau 2011).

However, such precision is not suitable for blind users. They are still required to manually

explore the vicinity of a bus stop location with a cane (Hara et al. 2015). Moreover, in

many cases, points of interest (POI) of bus stops in navigation systems are usually not ac-

curate. They deviate from their actual positions slightly, which introduces additional error

to positioning. These two problems are illustrated in Figure 5.1(a). On the other hand,

though RF-based (Lymberopoulos et al. 2015) systems provide better accuracies, they re-

quire infrastructure modification and maintenance. These also suffer from multipath effect

or Electromagnetic Interference (EMI) due to the highly dynamic real-world environment.

With improved cameras and processing power on mobile devices, a vision-based approach

is a plausible remedy for the “last-mile” problem.

High-level object detection and localization using computer vision are still un-

derdeveloped. Moreover, the accuracy and speed of such algorithms on embedded plat-

forms are still impractical for near real-time applications (Manduchi & Coughlan 2012;

Terven, Salas, & Raducanu 2014). Our proposed system takes a more straightforward

and reliable approach instead of general object detection by identifying an object found

to be universally present in a bus stop– the bus stop sign. Fortunately, the sign itself is

designed to be visually conspicuous, and efforts are made to place it in a highly visible

location. Although the intention of visual design and placement was for sighted users, we

can avail of these attributes to aid people with visual impairments as opposed to requiring

additional infrastructure modifications (Dogs, Catapult, & Microsoft ). Our vision-based

system, LastStep, can accurately localize a bus stop and can help blind riders to navigate

to other resources (e.g., benches) at the stop as well as to a specific position (e.g., where
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FIG. 5.1: Motivating scenario. The map (a) obtained from Google Earth shows the lay of
land in the area of the bus stop (b). The user’s location obtained from GPS is deviated
from the actual location along with a large uncertainty as indicated with the big blue circle.
Additionally, the pin of the bus stop is deviated from the actual location of the bus stop. A
prototype of LastStep implemented on an off-the-shelf smartphone is shown in (b).

to stand or wait for the bus). A vital characteristic of this approach is the use of computer

vision to detect and localize the visual sign at a bus stop. LastStep uses the sign as

a reference point by which to precisely find other objects and key positions in the stop.

The prebuilt fine-grained map guides the LastStep to determine the location of a spe-

cific resource. Figure 5.1(b) illustrates the front-end hardware of LastStep. It consists

of only an off-the-shelf smartphone device and a wireless earphone for verbal feedback.

LastStep uses the smartphone camera to detect the sign with SIFT (Lowe 2004) features

and estimates the distance to the sign with homography transformation and scaling (Li et

al. 2016). A bus stop sign has standard dimensions for a specific state of the united states.

The dimensions can be collected with minimal effort. After detecting the sign and estimat-
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ing the relative position to the sign, the position of a user is mapped onto a fine-grained

bus stop map. A fine-grained map constitutes of spatial location and name of all resources

at that bus stop. The map is constructed with a custom scalable approach with the help of

Google Earth and Google Street View and human annotations.

Research Contributions

The design, implementation, and evaluation of LastStep presents the follow-

ing research contributions.

• An intelligent vision-based localization system that provides positioning infor-

mation of bus stops and facilities in fine granularity to improve accessibility for

blind riders. We present a system, LastStep, that uses computer vision algo-

rithm to detect and localize a bus stop with step-level accuracy for people with visual

impairment. It also improves the accessibility of the whole facility by providing fine-

grained positioning information of other facilities at the stop for users. Specifically,

it provides directions on where to wait, where to sit, where to take shelter from rain

and sun, or the location of other amenities. LastStep describes a method for uti-

lizing existing familiar infrastructure using computer vision with minimal overhead

and setup. It should be considered complementary to RF anchors and could be in-

tegrated with such systems for outdoor and indoor navigation to achieve increased

navigational performance and robustness.

• A lightweight and scalable methodology to extract features from non-expert hu-

man crowd We designed human tasks of creating spatial 2-D map of bus stops-

dividing the complex tasks into optimized pieces and aggregating multiple responses

into one. We generated fine-grained labeling maps of bus stations using human an-
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notations with a combination of Google Earth and Google Street View data. The

generated map was able to localize amenities at a bus stop with high accuracy. This

approach can also be generalized to obtain fine-grained labeled maps of other outdoor

facilities.

• System implementation and evaluation on an off-the-shelf smartphone. We im-

plement a functional end-to-end prototype of LastStep. The front-end is imple-

mented on a smartphone without any auxiliary hardware modules such as stereo

cameras or laser scanners. We evaluate our system using blindfolded participants

and demonstrate that participants can localize bus stops with a higher success rate

and with a lower latency compared to manual searching with a cane.

5.2 System Overview

Figure 5.2 illustrates two different components required to localize objects by

LastStep- a) apriori contextual database and b) vision-based sign detection. The refer-

ence image of the sign is pre-stored along with the physical dimensions of the sign in the

contextual database. The physical dimensions of a bus stop sign are required to estimate

the actual distance of that sign from the camera.
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Features

Crowd
workers

Database

FIG. 5.2: The apriori database (top). The bus stop image is posted to the human crowd.

They identify the amenities in the image, mark their location, and provide the front-facing

direction of the bus stop. Some images of the bus stop sign and their dimensions are up-

loaded to the database as well. The vision component (bottom) downloads the information

of the bus stop from apriori database, detects bus stop sign and user location in the two-

dimensional map, calculates distance and direction from the user to any amenities at that

bus stop.

The contextual database also contains a two-dimensional map of each bus stop.

The two-dimensional map composes of a bus stop sign, other resources at that bus stop,

and the distance from the bus stop sign to each resource. A user visits a bus from one of

two directions along the sidewalk. The two-dimensional map of resources is different from

two different sides. Two-dimensional maps from the two different sides are stored in the

contextual database. The vision component detects bus stop signs using the reference image

stored in the apriori database. LastStep turns on the camera to identify a bus stop sign

by matching SIFT keypoints. It determines the in-situ image as a bus stop sign if it finds
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a sufficient number of matched key points between the in-situ image and the reference

image. A group of pairs of matched keypoints is used to calculate the 3D homography

matrix from the sign in the reference image to the detected sign in the in-situ image. With

the homography matrix and an estimated gravity vector from an inertial measurement unit

(IMU), the system can position the user onto the fine-grained map. Finally, the mapping

information is fed back to visually-impaired users as an audio description of the facilities

at the bus stop, along with the respective directions and distances from the user. It should

be noted that if the only distance from reference points are known, distance from three

such reference points is required to perform localization. In our system, only one reference

object is required to calculate not only the distance but also the three-dimensional direction

of the object.

5.3 Apriori Database

The SIFT based scene detection algorithm requires a reference image. Collecting

a reference image is easy as every state or country has a standard designed bus stop sign.

For example, the state of Maryland has the same bus stop visual signs all over the state. We

need to collect a few of the images of a particular bus stop sign, calculate SIFT features,

and upload it to the apriori database. Another one-time information is the dimension of the

visual signs and average height from the ground to the sign.

The contextual database comprises of a) key points, b) the physical dimensions of

a bus stop sign, and c) a fine-grain map of a bus stop. The key points of a visual sign are pre-

calculated using a reference image of a sign. Our system obtains the physical dimension

of the sign together with a reference image during system setup. Public bus stop signs are

standardized for a state, and it uses the same pattern and physical measurement. We used a

single reference image and physical measurement of a single sign for the state of Maryland.
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A minimal effort is required to set up the system in a new area. Moreover, in some cities,

the image of a bus stop sign and it’s physical dimensions can be obtained directly from

government websites (Authority ).

Sign
Bench

Kiosk

Shelter

Bin

FIG. 5.3: A visual impaired user can locate any amenities using mobile or embedded ap-
plication if the application can detect a bus stop sign using computer vision and know the
two-dimensional map of the bus stop. The app can find the precise user location in the
two-dimensional map and guide the user to his/her desired amenities.

The SIFT algorithm is very fast and useful to detect simple objects in real-time,

even in the low powered devices, i.e., embedded camera. The vision algorithm can detect

signs and can also determine the distance of the user from the visual sign using the height

of the hanging point and dimension of the sign. Once we know the precise user location,

the remaining challenge is to detect the accurate location of other amenities at that bus stop.

Some bus stops have a resource that may not be present at another bus stop. The resources

themselves are different from one another visually; for example, there are multiple types

of trash cans and benches. Detecting an object in real-time in an embedded system is very

difficult even if we use only the trained model. The varied dimensions of an object and

occlusion of one object by another make it very hard to calculate distance from the user
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to a particular object. However, it would be easy if we know the location of any object

from an anchor point. In this case, the bus stop sign is detectable in real-time. If we have

a two-dimensional map (see figure 5.3) of other objects from this anchor point, we can

locate the objects. However, calculating the map using an image is difficult because of

their dissimilarity and the camera position, which usually sees the side view of an object.

Instead of an image, we can use Google maps to generate a 2D map of resources at a bus

stop.

Google Maps is very robust and has several types of information about a specific

location. We can see the top-down view of a bus stop in a Google map satellite view and

can drop a marker at any place. However, the image is not that clear. On the other hand,

Google earth is much clearer but does not provide the location information. So, combining

these two services, we can observe a bus stop and mark all the resources efficiently. For

getting a bus stop’s two-dimensional map, these two pieces of information are enough to

get the GPS location of objects. However, designing a human intelligent task (HIT), and

getting the desired response is tricky. We describe the process of generating a fine-grained

map of a bus stop in the following section.

5.3.1 Web Interface for Human Annotation

We designed a web-based tool (see Figure 5.4) to extract the required features for

a bus stop. The annotation tool consists of two components- (a) an interactive Google Map

tile, and (b) a simple drawing tool. The interactive Google map tile displays the bus stop

in a top-down view with a specific zoom configuration, but it is also possible to zoom in or

out to see the resources. This interactive tool also has the option to toggle to Google earth

view, which helps a crowd worker see the resources in a 3D 3600 view image. The facility

helps the worker identify the correct object. For each bus stop, we need answers for three
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of our questions that are required by LastStep,

• Does the bus stop have amenity X? X could be one of the amenities commonly avail-

able at bus stops. X could be a trash can, a bench, a rest area, or a visual sign, etc.

• If amenity X is present, is it possible to mark the object in the top-down view? and

• What is the direction of the bus stop front-facing side?

If we aggregate the responses of these three questions, we will be able to create

a two-dimensional map of that bus stop. The standard procedure of crowdsourcing is to

create simple tasks so that humans can process quickly and are motivated enough. How-

ever, creating more tasks will increase monetary and computational cost. We designed two

Human Intelligent Tasks (HIT) to get this information from a human crowd.

HIT 1 - Object’s Availability and Its Location: We created a task (see Fig-

ure 5.4) to know whether a specific resource is present at the bus stop. And, if the resource

is present, what is its location? More than one resource can be present at a bus stop. We

created a simple task to get information about each object. The task covers two questions

a) Do you see object X here? and b) If you see the object, drop a marker on the object X.

The task guarantees whether object X is present or not. The drawing tool contains a button

to drop a marker on the object. If the Google Map view is not clear enough to decide, the

crowd worker can select Google earth mode to see the bus stop clearly and mark the correct

resource in Google Maps.

HIT 2 - Orientation of the Visual Sign: We designed a HIT for the human

crowd (figure 5.5). The task contains a frame where the bus stop location can be viewed

in the Google maps. In addition to the frame, a drawing tool is also attached. The drawing

tools contains a line drawing option. A person is asked to draw a line from a point towards
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Do you see a 
bench here?

Yes No

Skip

Submit

Google Street View

FIG. 5.4: Crowdsourcing task: a) (Top) Question to get an object’s availability and location
in Google map, b) (Bottom) Google earth view of the bus stop, which helps to see what is
at that bus stop.

the bus stop sign. The direction is always based on the bus stop sign. We asked the worker

to see the bus stop sign on Google earth and determine which side the sign is facing. We

recorded the clicking events from the crowd worker to determine the direction of the sign.

If the sign is not visible clearly in Google map view, the interactive tool helps to see the

clear image in Google Earth mode.

5.3.2 Data Aggregation

We received responses from multiple humans for the same task as a single re-

sponse is not reliable. The first task that we designed has two parts. First, the system

aggregates the response based on majority voting rules from n number of responses. Sec-
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Sign direction

Sign direction?

FIG. 5.5: The crowdsourcing task to get visual sign direction.

ond, if the answer to this response is positive, the spatial position of a resource is aggregated

using the geometric mean of the x and y position. In our designed tool, human workers

switch between street view and map view to recognize a resource and it’s spatial location

on the map. Thus, the labels will be dropped under different zoomed scales. Our system

records the absolute GPS coordinates when workers drop the pins to avoid the zooming

effects on location. The system uses geometric mean instead of arithmetic mean of GPS

coordinates to minimize the interference of outliers. In the case of the second HIT, we use

the majority voting rule to get the sign direction.

5.3.3 Building Fine-grained Map

A fine-grained map of a bus stop is generated based on responses provided by

humans. The system obtains an image of the Google Map tile on a fixed zoom scale and

converts all GPS coordinates into pixels unit. We calibrated the scaling factor (distance per

pixel), as shown in Figure 5.6. It also calculates the distance between two specific points

with GPS coordinate and their corresponding pixel distance of that same two points in the
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map image. We calculate the distance between two specific points with GPS coordinates

and also find the corresponding pixel distance of that same two points in the map image.

This extracted information is then consolidated to populate the contextual database in a

format of a 2D map of the bus stop that is used to provide positional information of other

objects to improve the accessibility of the entire bus stop.

12.92 m

245 px

FIG. 5.6: Calculate distance from image: Distance between two points in Google map can
be calculated from the GPS location. The number of pixels between those same two points
are calculated to get the distance per pixel at a specific zoom level in Google map.

5.4 Object Localization for a Bus stop

The apparent object in a bus stop is the visual sign of that bus stop, which has a

particular set of standard features. The visual sign also has a standard height and width.

Other amenities at a bus stop surrounds the visual sign in a 2D map. Our proposed method

can easily detect bus stop sign using vision algorithm (Li et al. 2016). Once the visual

sign is detected, using the position of the mounted camera at the user body or stick and

standard height and width of the visual sign, the related distance of the user from the visual
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sign can be detected. To localize the user in the bus stop and compute useful directions

to other facilities such as shelter, bench, and trash cans at the bus stop, we need the user’s

precise location in a fine-grain map. The fine-grained map is generated using close-up

views provided through Google Earth data. The objects in the bus stop are tagged with

human annotation, as described in section 5.3.

Typical positioning techniques use distances to multiple reference points to local-

ize an object. Unfortunately, in most of the cases, all of the signs are mounted on a single

pole representing a single point in a 2D map. So, the use case requires a richer inference

of position from a view of a single sign. In our system, we use a vision-based approach

to position the user’s location by utilizing the orientation of the sign in the map (Li et al.

2016).

5.5 Feeding back the Information to Users

Feedback is an essential part of LastStep as the users are visually impaired.

The positional information in our system could possibly be reported based on a few dif-

ferent coordinates- absolute coordinate (map coordinates) or relative coordinate (camera

coordinates). In the absolute coordinate system, more information (the layout in the map)

must be fed back to the user. The process requires a higher output bandwidth when choos-

ing the feedback medium. Moreover, users are required to scan through the whole map

to understand the layout of resources in the real world. It introduces higher latency in the

runtime interpretation. A more direct feedback strategy is to report the object distance and

direction in an ego-coordinate system (relative to the camera).

The detailed feedback flow is shown in Figure 5.7. A user points the smartphone

in one direction and taps the screen to start the process. The system will first indicate to the
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Detected

End
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Capture video

Detect Sign
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Select Resource X Resource x located r 
feet to your left/right

FIG. 5.7: The operation and feedback flow of LastStep in a smartphone. It is triggered
by the user facing a direction and tapping the screen to start capturing image and finally
reporting the position of targets when detected successfully.

user, the start of the process, then capture an image and detect the bus stop sign in it. The

yes/no detection result will be a verbal output to the user. If not, the user can change the

direction and trigger the detection again. If yes, the system will start to localize the user

in the ground map and output a list of objects in the vicinity of the bus stop. Based on the

user’s selection, the system will report the distance and direction of the object based on the

camera coordinate, which is verbally as “left/right xx meters, front zz meters”.
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5.6 Evaluation

The LastStep is a human-machine collaboration where a computer vision al-

gorithm uses the human-provided resources layout map of a bus stop. The availability of a

resource, its relative distance from the bus stop sign, and its actual angle from a visual sign,

the orientation of the spatial map from the user’s walking direction plays a vital part in

providing correct information to a visually impaired user. We evaluate the human-provided

responses together with the whole LastStep system evaluation that uses human-provided

data.

5.6.1 Evaluation with Human Participants

Evaluating LastStep on ordinary people instead of visually impaired poses

several difficulties. The significant challenge is to mimic the scenario of no visual with

visually healthy people. We evaluated bus stops around our campus by graduate students

who might be familiar with those bus stops. They might have the memory of the layout

of those bus stop and the resources around it that might profoundly accelerate their search

speeds even without the assistance of our system. Besides, we need multiple trials at the

same location to compare results with or without LastStep. The participants might have

an impression of the layout of a bus stop after the first trial that might bias the results

at the second trial. To reduce these biases, we randomize the trials in our experiments.

Specifically, we collected 36 trials in the user study using 3 participants on six different

sites and two trials (with or without LastStep) on each site. The order of performing

the trials was randomized. It means that the participants did not know which site. On a

site, a person was only asked to perform a single trial either with or without our system.

Then they were driven to the next site to perform another single trial and come back to the

previous site later in random order. Also, in between two trials, the participant was taken



84

back to the car and randomly driven around. During the whole process, the participants

were kept blindfolded using an eye mask.

Table 5.1: Amount of time (in minutes) used for searching the bus stops with or without
the aid of LastStep.

Parti- Sites
cipants I II III IV V VI

A
w/ 2.3 4.1 1.2 2.1 1.7 3.5

w/o × × 8.7 10.5 × ×

B
w/ 1.6 3.5 1.3 1.9 2.3 3.1

w/o × × 12.3 × 11.6 ×

C
w/ × 2.5 3.8 2.7 4.5 2.3

w/o × × × × × 5.4

* The entries with “×” mean the participants failed in the searching after a threshold of
10 minutes.

The experiment results are shown in table 5.1. In each trial, the participant was

asked to try his best to search the bus stop at his surroundings. Only after a minimal

searching time of 10 minutes, the participant can commit to failure in the trial that is shown

as “×” in TABLE 5.1. Overall, without the aid of LastStep, participants only succeed

in finding the bus stops 5/18 times. With LastStep, the success rate was 17/18. In

the case of failure (subject C on site I with the aid of our system), the detection of the

sign failed when the subject initially pointed to the correct direction that includes the sign

in the camera view. When the subject re-oriented himself and tried to find directions, he

never turned in the correct direction. In the post-interview, he stated that he thought he

was turning around and trying all directions multiple times. It hints that self-orientation

training will help the users to utilize LastStep properly. Such an orientation training is

common for people with visual impairment who would like to travel independently (AFB

). Moreover, in the trials where the participants found the bus stops successfully with the
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manual search without LastStep, the search time was 4-times longer on an average.
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FIG. 5.8: (a) Comparison between experts’ and Turkers’ responses. Matched responses are
plotted in positive and mismatched in the negative direction. Blue color indicate the objects
that are actually present, while those with red color indicate the objects that are actually
absent. With 5 responses from AMT, objects in 22/24 HITs can be identified correctly. (b)
The error of distance from different objects to the anchor point in the 2D fine-grained maps.
Distances from the anchor point are calculated using experts’ and Turkers’ annotations
respectively. The percentage error is the ratio between these two distances, showing how
much the objects’ positions from turker’s responses deviate from that of experts.

5.6.2 Accuracy of Human Annotations

We evaluated human annotations that helped to generate the fine-grained map.

The map comprises three different types of information a) direction of a user moving to-

wards the bus stop, b) labels of the objects at the bus stop, and c) spatial position of re-

sources from the visual sign. A user can walk towards a bus stop from two different sides

of it along the sidewalk. The first one determines the direction of the users walking towards

the bus stop. If the system can determine that correctly, it will be able to find the relational

position of other objects from the sign position. The second one helps to identify which

objects are at the bus stop, and the third one provides the objects’ spatial position. In our ex-

periment, we collected responses from two different sets of human workers. The first set of

workers are experts who have experience in annotating objects correctly. We work here as
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the experts and annotated objects by ourselves. These responses were used as ground truth

or gold-standard data for comparison. The second set of workers are paid human workers

from Amazon Mechanical Turk (AMT). We collected responses from AMT for six different

bus stops around our campus and two of our neighborhood apartment complex. For each

bus stop, we found four different types of objects (sign, shelter, bench, and trash can). We

published twenty-four Human Intelligent Tasks (HIT) for human annotations and collected

around two hundred and fifty responses from available online workers. We found (see in

Figure 5.8) that at least five answers are necessary to get correct annotation.

First, we evaluated the angular error of the user walking direction annotations

comparing Turkers’ and experts’ responses. For each bus stop, we aggregated the re-

sponses of direction annotation using geometric means to minimize the interference of

outliers. Across all six sites, the aggregation of Turkers’ data showed an average angular

error of 13.8o compared to experts’ annotation. Second, we evaluate the accuracy of ob-

ject detection. The online tools designed the first tasks that ask a binary question about

the presence of an object. In further evaluation, this information also works as an initial

filter for outliers. We compared the result of this question to the experts. Using majority

voting aggregation method, LastStep can identify the existence of the objects with 97%

accuracy as shown in figure 5.8(a). Third, we evaluated the error of the spatial position

of an object in Turkers’ responses. In LastStep, the position information of an object

is inferred using the distance of that object from the anchor point (sign). Hence, we used

this distance to evaluate the location accuracy of the turker’s annotation. We calculated all

objects’ distance from the anchor point for all bus stops. We computed the distance of a

resource calculated from the crowd with experts’ responses. The average error for distance

calculation is 11% as shown in Figure 5.8(b). The difference in Scene 2 is about 40%. It is

because there are two bus stop signs mounted on different poles (one from the government
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authority and another from the university transit department) at this bus stop, which might

have confused the Turkers.

5.6.3 LastStep Evaluation

The performance of LastStep depends on the quality of human-provided data.

However, the LastStep performs both sign detection and distance estimation before it

uses human provided data. The SIFT method can successfully detect visual signs in the

range of 3 to 9 meters with 30 fps video recording at resolution 1280× 720). The distance

estimate algorithm (Li et al. 2016) can estimate relative distance in a centimeter range,

significantly better compared to GPS, whose error rate is in few meters. Localizing other

object’s accuracy depends on the accuracy of the precise user location in the fine-grain

map. We evaluated the position accuracy, and it is less than 0.5 meters.

5.7 Conclusion

In this chapter, we present LastStep, a vision-based system for navigating to

resources in a bus stop for visually impaired riders. LastStep can localize anchor points

such as bus stop signs with an error less than 0.5 meters when the user is at a distance of

3 to 9 meters from the sign. LastStep also introduces a scalable approach to generat-

ing fine-grained maps of bus stops using human annotations on data gathered from Google

Street View with the help of Google Earth. We evaluated our proposed system LastStep

and showed that users using LastStep could perform localization with a higher success

rate and four times faster than manual searching. Since LastStep utilizes existing infras-

tructures and the system setup time is minimal, it can be considered as a complementary

approach in cases where RF anchors are unavailable or infeasible to deploy. It could also

be used for indoor and outdoor navigation, potentially in conjunction with RF anchors for

increased system reliability and accuracy.



Chapter 6

HUMAN INTELLIGENCE FOR TEMPORARY

SOLUTION

In the previous chapter, we have discussed our proposed human-machine collab-

orative system to localize resources at a bus stop. There is a standard set of resources, i.e.,

bench, shelter, trashcan, etc., that could be available at a bus stop. However, there is no

guarantee that the whole set of resources is present at all bus stops. In that system, humans

help to build the spatial topology of all resources at a bus stop. Each bus stop has its own set

of resources, and each bus stop is different from another bus stop. Once a bus stop spatial

map is generated, no need to create the same spatial map again. Hence, collecting data over

time will not help in the long run to reduce the necessity of human knowledge. However,

If an application uses the dataset where each instance has a standard set of properties or

features, then a new instance can be added to the existing dataset as the new input will add

another instance to the current dataset.

While designing the human-machine collaborative system, the goal is to mini-

mize human contribution as much as possible to make the system more automated. If the

number of instances is insignificant and data acquisition is very hard or time-consuming, a

88
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machine learning model is not a good idea. Instead, we can integrate human intelligence to

leverage the data. The human-machine collaborative system will add new instances every

time it servers a new query and will enrich the database. The enriched dataset can help

to reduce or even eradicate the dependency of humans in the long run and can make the

system fully automated. In this chapter, we walk through an application called PreSight

where a new query will add a new instance to the database. We showed here how humans

could help machines providing features extracted from the data instances. Each instance

has a common set of features that can help to build a machine learning model in the future

when we would get enough data to train a machine learning model. Each new query will

enrich the dataset, and the enriched dataset will help to reduce human intervention in the

long run.

6.1 Problem Statement

A key element to improving the standard of living for people who have a visual

impairment is independence (WHO 2010). Navigation on sidewalks and other walkways

comprise a major ingredient of independent living. Unfortunately, sidewalks today are

ridden with accessibility problems such as obstacles in path and unexpected flights of stairs.

Existing systems such as smart canes (Shoval, Ulrich, & Borenstein 2003; Borenstein 2001)

or smart wheelchairs (Ivanchenko et al. 2008) suffer from the limitations of sensors such

as ultrasound or infra-red used in these systems (Hersh & Johnson 2008). These sensors

are not suitable for detecting multiple obstacles, or for applications that require object

recognition, such as landmark detection for navigation.

A camera-based system is a plausible solution to the problem. Embedded cam-

eras worn by users or built into canes combined with computer vision algorithms can be

used for object detection and recognition. Unfortunately, current discriminative object de-
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FIG. 6.1: A cartoon figure illustrating the operation of PreSight. In the pre-computing
process, the blind user-A reports the scene with the accessibility problem to our system
by taking an image of the scene in the first step. Then our system publishes a HIT of the
scene image and then the Turkers extract the parameters for the scene-specific detector in
the second step. In the real time subsystem, the smartphone-based system worn in another
user-B retrieves the parameters from a pre-cached local database when approaching the
scene, as shown in the third step. Based on the scene attributes, the system focuses on
sparse areas in the view to detect the object in real time, as shown in the fourth step.

tectors (Dalal & Triggs 2005; Felzenszwalb et al. 2010) require extensive training in a

high-dimensional feature space. During sensing and classification, the high-dimensional

feature extraction and matching can be prohibitively expensive to compute in real time on

embedded platforms.

To address this problem, we derive insight from the following human vi-

sion attribute: a person at a given scene can quickly select candidate regions of an

object-based on approximate descriptions of location, color, and size. These coarse-

grained selections are considered top-down pre-attentive computation with prior knowl-

edge (Itti & Koch 2001), that can guide a human’s attention (Moran & Desimone 1985;

Wolfe & Horowitz 2004) into narrow regions for further fine-grained processing. This

suggests that a faster searching scheme on limited hardware can be performed for a given

object in a given scene if the object guidance attributes are known on a per-scene basis.
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Inspired by this observation, we propose a system PreSight that accelerates

general object searching using per-case a priori characteristics. PreSight detects obsta-

cles on sidewalks accurately in real-time with limited computational resources. The system

guides its “attention” into narrow areas by incorporating prior knowledge of individual ob-

jects. For example, if we know a priori the color of the object, the regions in the view

that have similar color can be pre-selected for further processing. Note that while the de-

tection process is accelerated with per-case priors, additional complexity is introduced in

the off-line data collection and extraction. Fortunately, the growth of crowdsourcing and

smartphones provide a low-cost scalable solution for this task.

The overall operation of PreSight is illustrated in Fig. 6.1. In PreSight we

build a priori scene specific information using data provided by the system users. When

a user pass by an obstacle and do not get avoidance notification, s/he can provide infor-

mation (image) of obstacle using preSight mobile application. These geo-tagged images

are then annotated using Amazon Mechanical Turk (AMT). Scene specific object data such

as the type, color, and physical size of the obstacle is collected using Mechanical Turk.

The scene-specific attributes lazily populate a backend database. In the real-time detection

system, an embedded camera retrieves data of the scene from a pre-cached local database.

It is noteworthy that the data cached per scene is as minimal as 415 Bytes (only specific

extracted features will be cached) and it can also be pre-cached when there is Wi-Fi avail-

able. The embedded system (a generic smartphone) utilizes the prior data to accelerate the

detection process.

Research Contributions

The design, implementation, and evaluation of PreSight presents two novel

research contributions.
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A heuristic strategy to accelerate object detection by utilizing case-specific a

priori characteristics to pre-filter live images: For individual scenes, this heuristic strat-

egy enables attentive machine vision for which machines are able to focus the computation

power on narrowed areas in the view with the help of a priori characteristics of the tar-

get. In another word, we offload the on-line machine computation by performing off-line

prior extraction using human computation. This enables real-time computer vision object

detection in embedded platform.

An end-to-end implementation and evaluation of the framework with ap-

plication to accessibility problem detection: We demonstrate a functional prototype of

PreSight that can accelerate general object-detection algorithms and achieve real-time

obstacles detection in a commercially off-the-shelf smartphone. Our prototype PreSight

system includes an interactive crowdsourcing web interface for prior data extraction, and

a fully functional smartphone-based vision system. The evaluation shows that PreSight

gains an 8x speedup on two benchmark object detection algorithms HOG (Dalal & Triggs

2005) and DPM (Felzenszwalb et al. 2010)) without degrading detection accuracy.

6.2 System Overview

PreSight comprises of three key components illustrated in Figure. 6.1- (1)

UserSense; (2) PreVision; and (3) RTVision (Real-time Vision). Our system senses scenes

with accessibility issues and extracts scene-specific prior in UserSense and PreVision, and

performs real-time obstacle detection using RTVision. In UserSense, blind users capture

images of accessibility problems on sidewalks using the mobile application when they find

a problem on a sidewalk. The application transfers the geotagged image to a backend

server. The image is then encoded as a HIT (Human Intelligent Task) and disseminated

to AMT in PreVision. Turkers annotate accessibility problem in the image, classify them,
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and provide data on the color and physical dimension of the accessibility problem. The

collected data is then aggregated to build a geotagged database of scene-specific informa-

tion. When a new user visits the scene, the front-end smartphone-based application starts

detecting the object. The application utilizes the prior data in the contextual database to

accelerate general object detection algorithms to detect accessibility problems in real-time.

This front-end, called RTVision, triggers the preprocessing and object detector only when

the user is within a radius r of an accessibility problem registered in the PreVision database.

Next, we discuss the three key components of our system in detail.

6.3 PreVision: Extracting Scene-specific Features

In PreVision, the geotagged images collected by users are used to generate HITs

(Human Intelligence Tasks) automatically. The HITs are then disseminated to Amazon

Mechanical Turkers to extract scene- and object-specific features. While data collected

using Turkers can be subjective and biased, it is possible to design HITs to control quality,

and de-bias by aggregating data from multiple Turkers. In this section, we first describe the

design of HITs. We then describe how we aggregate data from multiple Turkers.

6.3.1 HIT Design

Our system (described in Section 6.4) uses two characteristics that humans use

in their pre-attentive vision (Wolfe & Horowitz 2004) (color and size) to accelerate object

detection. Specifically, two key attributes of the scene are used to select candidate regions

by a color segmentation and multi-scale size matching: (i) color of the obstacle in the

image; and (ii) physical dimensions of the object. However, the HITs must be presented

using an intuitive and easy to understand interface (Kittur et al. 2011; Dow et al. 2012;

Finnerty & Kucherbaev 2013). In PreVision we provide explicit real-time feedback to the
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Turker on how well s/he has answered the HIT. Through this feedback, the Turker has the

opportunity to correct his/her answer and converge to a more precise answer. We explain

this feedback mechanism in the context of collecting the two scene-specific attributes.

HIT 1: Extracting Object Color

The first HIT focuses on extracting the color of the obstacle in the image. Finding

the color of a specific object from an image using a vision algorithm is a complex task as

lots of other objects of the same color may coexist in the image. One way to get the

color of an object in the image is to tag that specific object, segment object by a color

segmentation algorithm, create a color histogram that represents the object. The accuracy

of color information thus depends on the segmenting accuracy. However, this process is

useful only for the color retrieval process. For example, if we require the ground color

instead of background color, this process may fail. The background of an object may

consist of different type of objects, i.e., trees, sky, grass, and more. We can determine

background color using the process, but it does not guarantee us to give the ground color.

We use here the process of finding a specific feature of an object from an image asking

a human to provide information about that feature. In the first HIT, we ask humans to

provide best representative color of an obstacle on the sidewalk. Instead of directly asking

the color of the obstacle (fire hydrant in Fig. 6.2(a)) we have designed a HIT where the user

annotates a quadrilateral inside the object (shown in Fig. 6.2 (a)). Drawing a quadrilateral

has two distinct advantages. First, a single object may have more than one color. Hence,

a quadrilateral inside the object helps us infer the majority color. Second, it is easier for a

Turker to annotate a shape inside the object rather than accurately point out the color of the

object.
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FIG. 6.2: Amazon Mechanical Turk task for collecting data on color. (left) Selecting object
area and (right) corresponding feedback on the selection to the Turker.

A key component of PreVision is that it provides real-time feedback to Turkers

while they perform the annotation. The real-time feedback serves two purposes. First, it

allows the worker to correct mistakes by allowing them to see the impact of their input. In

the most obvious case where they misunderstood the directions, the results of the feedback

should make the error visible. For example, in the color extraction HIT, the system com-

putes a segmentation immediately using the input and returns a visible result to the worker.

If the Turker accidentally selects a region which does not represent the object color, the

feedback results make a mistake visible. The Turker is allowed to correct before complet-

ing the HIT. This feature minimizes the bias when aggregating data from multiple Turkers.

Thus, a human that does not necessarily understand the image processing operations (a

non-expert) may still work to produce a result meant for the machine-vision system. The

Turker can modify the annotations as many times as he wants. Fig. 6.3 shows three it-

erations where the Turker annotates the image, observes the segmented image, and then

modifies the annotations to provide more accurate results.
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FIG. 6.3: Interactive color selection of an object by a Turker. (1st column) is the first
attempt the Turker made and s/he can see the segmented image on the bottom. In (2nd col-
umn), s/he tried to correct her/his annotation based on the feedback shown on the bottom.
When s/he is satisfied with her/his annotation (3rd column), then s/he submits the response.

HIT 2: Annotating Physical Dimensions

Another attribute that the real-time detection algorithm used is the physical di-

mensions (height and width) of the vertical object. To elicit this data, we have designed

another HIT. In this task, the Turker draws a bounding box around the object and provides

the physical height and width of that bounding box. However, it is difficult for common

Turkers to provide the absolute dimensions of the object accurately. Humans are better at

relative rather than absolute measurements (Wu, Ooi, & He 2004). So, to this end, we pro-

vide a reference object, a United States 100-dollar bill, which measures 6.14 in × 2.61 in.

When the Turker selects an object and provides the dimension, the selected part or object

is cropped from the image and is displayed side by side with the dollar bill. The object

is transformed into a new dimension using a perspective transform of the object using the

height and width provided by the user. For example, if a Turker provides the dimension of
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an object as 22 in× 9 in, the Turker will see an object image, juxtaposed to a dollar bill and

scaled to about three times the size of the dollar bill. In Fig. 6.4, we can see that one of

the Turker annotations together with the preview image wherein the Turker provided 34 in

as the height of the vertical pole. So, the vertical pole looks almost 5 times longer than the

one-dollar bill. Based on this feedback, the Turker can change the dimensions he provided

for the object dimensions.

$
1

0
0

 b
ill 

FIG. 6.4: Interactive physical dimension estimation. Turker selects an object using a bound-
ing box (left) and provides height and width, gets the feedback (right side). The feedback
is the comparison of the dimensions between a US 100-dollar bill and the selected object
which is rescaled based on the Turker’s provided dimension.

6.3.2 Data Aggregation

The PreVision subsystem of PreSight uses Turkers to extract a priori scene-

specific data in the form of approximate geolocation of the accessibility problem, the color

and physical dimensions of the object. For a single image this annotation is provided by

multiple Turkers, and for a single scene, multiple volunteers may provide an image of the

scene from different perspectives. This data, therefore, must be aggregated for the front-

end RTVision system described in the next section. On average, we received 15 responses

from Turkers for each HIT.
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FIG. 6.5: Color extraction from user annotation. Histograms of annotation for all three
channels are generated by PreVision. From the histograms, three peak values are extracted
as the representing color of that annotated area.

PreVision aggregates data from Turkers responding to HIT 1 (object color). For

this HIT the Turkers select an area within the object of interest (accessibility problem). The

RTVision algorithm described in the next section uses a color value in the CIELAB color

space. To extract the representative color of the object, we first crop the image based on the

Turker selection and then generate a distribution of the pixel color values in the CIELAB

color space for the cropped image. Fig. 6.5 illustrates a histogram for a single Turker

selection. From the histogram, we pick the mode color value in each of the color channels.

This color represents the most frequently occurring color value for pixels in the selection

made by the Turker. This algorithm is robust to poor selections made by the Turkers.

Because of the color channel histogram mechanism, the algorithm will always return the

object color unless the selected area is dominated by objects other than its background. We
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aggregate the results across Turkers by taking an average of the pixel color values selected

by each Turker.

The goal of the second HIT is to extract the physical dimensions of the object.

For aggregating data from multiple Turkers, we can calculate the arithmetic mean of the

dimension values, however, arithmetic mean is not robust to outliers. The Harmonic mean

can handle outliers but it requires a large set of samples. We can also use a pruning-based

outlier removal technique if we have a large training data. But, in our case the cost of re-

cruiting Turkers prohibits the collection of a large training sample. In PreVision, therefore,

we use the geometric mean of the dimension values to aggregate data from multiple Turk-

ers. The geometric mean can handle a small training sample size and produces favorable

results for our vision algorithm. The aggregate value of the dimensions populates a back-

end contextual database in PreVision and used in the RTVision subsystem. The RTVision

system is described below.

6.4 RTVision: Real-time Accessibility Problem Detection and Localization

Our front-end system, RTVision, is implemented on a smartphone as shown in

Fig. 6.6. RTVision takes GPS readings and queries a locally cached version of the Pre-

Vision database for accessibility problems in the vicinity of the GPS coordinates. It then

uses the embedded camera to take images and uses the scene-specific features to preprocess

the images, which will select a set of regions in the images for further processing. Then,

general object detection algorithms can be run on only specific regions instead of the entire

image to detect the accessibility problems. The underlying RTVision preprocessing algo-

rithm comprises two parts: (1) segmenting the image using the color information; and (2)

searching for a target in possible scales.
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Smartphone
mounted on waist

FIG. 6.6: Prototype of the front-end system, RTVision. It is implemented in a generic
smartphone and utilizes the camera, the GPS sensor which is used to trigger the camera,
and the Wi-Fi module used to download the contextual database (Li et al. 2017).

Color Image Segmentation Based on the color information provided by the

PreVision system, a typical way to segment the colored image is transforming the image

from RGB into HSV and segmenting the image in a particular range in the Hue-Saturation

plane. However, the reference image might be taken with another user’s mobile device.

The HSV color value might drift or scatter across different devices. Thus, instead of using

HSV value, the proposed system segments the color image in CIELAB space, which is

device-independent.

Distance-based Multi-Scale Searching By knowing the aspect ratio of the tar-

get, we can also select regions with reasonable scales by multi-scale searching. Traditional

scale-space (Lindeberg 1994) searching approaches down-sample the image by a scaling

factor σ into sufficient levels to construct an image pyramid. Then a fixed-size feature tem-

plate is used to match across the entire image in each layer of the pyramid. This method

searches several scales of the object exhaustively. While it might get all possible matching,
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it also generates more false positives areas at different scales. It produces more candidate

areas for the following expensive detection operation, and degrade the acceleration.

(a)

(b)

(c)

(d)

FIG. 6.7: Multi-scale searching in the scale-space pyramid and proposed distance-based
pyramid (Li et al. 2017). (a) the image to be searched in. (b) the scale-space pyramid in
which the target template is searched across both directions. (c) the geometry relation of
the mounted camera, target and the projections of that in the image. (d) the narrow band
needed to be searched in a specific layer in the pyramid. Compared to using a scale-space
pyramid, our method only requires searching in much narrower area, hence it incurs less
false positives and is faster.

As the scale is varied with the distance to the target, the search time can be re-

duced significantly by only searching one scale at a specific distance. The smartphone is

mounted onto the waist of the user at a fixed height for retrieving the distance (depth) in-

formation in the image pixels. With pre-calibration for each user, the height can be used

for computing the distance based on the geometry relation. As illustrated in Fig. 6.7, the

distance value can be warped onto the image pixels with the assumption that the ground

between the camera and the target is parallel to the look-at vector of the camera. The sys-
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tem can eliminate false positives at unreasonable distance-scales using this approach. Also,

the computation time for this preprocesses itself will also decrease since less convolution

is needed compared to the scale-space method. RTVision generates the matching template

T for the obstacle in its lowest scale based on the physical height and width of the obstacle

provided by the PreVision.

6.5 Evaluation

The proposed system comprises of two parts. The accuracy of contextual

database depends on the accuracy of turkers’ provided data. In this section, we evaluate the

turkers data as these are the vital information to develop successful obstacle detection and

localization system.

6.5.1 Analysis of Turkers Data
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FIG. 6.8: Turkers’ responses of object color in L*a*b color space. The distance from solid
line to circular points represent the differences between Turkers’ and experts’ responses.

We next evaluate data provided by Turkers that has been used to generate contex-



103

tual database off-line. The obstacle detection algorithm depends on three different features

of an object. The PreVision thus has two different HITs to collect information about those

two features from human crowd of Amazon Mechanical Turk. To evaluate PreVision data,

we take images from 10 different sites around the campus and publish those to Amazon

Mechanical Turk for human annotation. The color that largely represents the object is ob-

tained from those responses using the process described in Section 6.3. The graph (see Fig.

6.8) shows that the difference between human responses and actual color is very small.

The aggregated colors of obstacles (see Fig. 6.9) show that for channels a and b in

L*a*b color space, the human provided and expert provided colors are almost equal all the

time. The only difference is the L-channel value. L-channel represents the luminosity of

that object. In our designed HITs, the turkers select an area of their choice from the object

in order to find its color. The brightness of the object is not equal all over its surface though

the color of the object looks the same. And, there is no guarantee that both turkers and

experts select the same area of that object. So, the L-channel value in turkers’ annotation

differs from that in experts’.

Our HIT of finding object dimension takes responses of human crowds for the

object’s height and width from an image. Humans have the intelligence of understanding

object’s dimensions if they ever have seen those objects in real world by their own; or at

least if an object is present in the image that they are familiar with. If so, they will be able

to compare the unknown objects to the known one to guess the dimensions of unknown

object. But they cannot guess the dimensions if they have never seen the object present

in the image, even with the feedback. But, most of the objects are known to the human

crowds which are generally presents on sidewalks. To evaluate the correctness of Turkers’

responses, we measured the objects height and width using a measuring tape. We also use

geometric mean to aggregate human provided height and width of that object. The graph of
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FIG. 6.9: Aggregated color value from Turkers’ and experts’ responses in three different
channels (L, a and b).

the object’s height and width (see Fig. 6.10) shows that most of the Turkers can correctly

provide the object’s height and width if the objects are familiar to them or if any other

familiar object is present in that image.

This is obvious when we see the aggregated responses for all the objects. The

results (see Fig. 6.11) from human crowd comes close to actual values for each object if

that object is known to turkers, i.e, trash cans and fire hydrant. But if the object is an

unknown one or a known one with variable dimensions such as poles, turkers would fail to

guess correct dimensions most of the time.

PreSight uses human crowds to collect information for building contextual

database. But data from human crowds have a cost in the form of money and time. In

Amazon Mechanical Turk, we pay at least 1 US cent to get a single response. If we want at

least 15 responses for unbiased data, it costs approximately 15 cents for each obstacle. We

take into account the time to obtain 15 responses of each request to calculate the annotation
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FIG. 6.10: Turkers’ responses of object height and width. The distance from solid line to
circular points represent the differences between Turkers’ responses and the ground truth
of that object.

time and can see that it takes almost a day (see Fig. 6.12) to get 15 responses for a request.

6.5.2 Evaluating PreSight

We evaluated feature extraction by human turkers. These features are the core

part of the algorithm used in PreSight obstacle detection. The RTVision part of the

PreSight uses these features. However, the performance of PreSight depends on the

combination of PreVision and RTVision. We perform PreSight’s evaluation using data

collected with our prototype system. We identified ten scenes with “obstacles-in-the-path”

types of accessibility problems (Hara, Le, & Froehlich 2013) around our university campus

for our experiments. We collect videos of these scenes by walking on sidewalks with our

system. To take account of the variance in real-world luminance and viewing angle, we

also collect video clips at different times of the day and different approaching directions.

Totally, 40 video clips from the ten scenes are collected for the evaluation. All the videos

are collected with a frame rate of 25 fps and a resolution of 1024× 768.



106

Obstacles Obstacles

FIG. 6.11: Aggregation of height and width from Turkers’ responses.

To evaluate the latency while also demonstrating that PreSight can enable real-

time object detection in the embedded platform, we implement and evaluate the prototype

on a generic smartphone with a 1.3-GHz quad-core ARM Cortex-A7 processor which was

released on 2014.

We discussed the accuracy and latency of PreSight and compared with HOG

and DPM. With our extracted features from the human crowd, the average operating time

of HOG and DPM on the dataset is decreased by 1/12. There is an overhead of compu-

tation in the preprocessing stage, but overall PreSight latency is decreased by 1/7 and

1/10 compared to HOG and DPM, respectively. The accuracy of the system is also af-

fected by preprocessing steps. The F-score of HOG with PreSight is slightly higher

than without PreSight. But, the F-score of DPM with PreSight is marginally lower

than without PreSight. In the case of HOG, the false positive of the ignored area is re-
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FIG. 6.12: The time of collecting fifteen responses from Amazon Mechanical Turk.

sponsible for better F-score, but DPM performs better because DPM is more accurate than

that in the coarse-grained preprocessing. We also evaluated the distance-based multi-scale

preprocessing, which performs computation two times faster than the multi-scale pyramid.

6.6 Conclusions

Table 6.1: Summary of cost and automation of processes in PreSight

Component Description Automated Cost per Scene
UserSense Collect scenes x One image

PreVision
Generate HITs �X < 1 sec

Turkers annotate �X $0.15, < 24 hr
Aggregate data �X < 1 sec

RTvision
Cache database �X 415 Byte

Preprocess �X 0.23 sec
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In this chapter, we present PreSight, a prior-based vision system for speeding

up general object detection and enabling real-time obstacle detection in a smartphone plat-

form. The key idea behind PreSight is to preprocess the image with scene specific a

priori information to select smaller areas for detection. The a priori used in PreSight

includes color of the object and dimensions of the object. This scene-specific a priori

information is collected in our system using mobile user “sensors” who take images of ac-

cessibility problems on sidewalks and Turkers who annotate information in the images. We

have implemented a full functional prototype and automated most processes in low cost, as

shown in TABLE 6.1. In the evaluation, we show that PreSight can accelerate general

object detection algorithms, like HOG or DPM, in an average of 8 times faster without

degrading the detection accuracy by much. While we demonstrate the feasibility of our

approach in the context of sidewalk accessibility problem detection, we believe that such a

strategy could be applied to navigation, indoor location, and augmented reality.



Chapter 7

TRADE OFF OF INTEGRATING HUMAN

INTELLIGENCE

Integrating humans and computers to perform a specific task is not easy (Sheri-

dan 2002). Human integration will bring human-level intelligence to a system which could

be useful to solve many cognitive problems that are hard for computer alone. Humans

are the ultimate designer of software; they know what would be the acceptance criteria.

It may sound like integrating humans will make every cognitive problem easy to solve.

However, there are no free lunch (Wolpert, Macready, & others 1997). Human intelligence

aiding computer will bring both cognitive powers as well as their limitations. The flaws

are related to human weakness in performing various tasks. Humans possess extraordinary

cognitive skills, but their limitations in processing a high number of data, storing big data,

social biases, and fatigue affects the system. In addition to those, adding humans instead

of machines brings less automation, accuracy and increases latency, complexity, and cost.

Thus, it would be a good idea to add humans where they perform better than machines

considering different performance benchmarks. The quality of human input depends on

various design techniques. However, the quality of data sometimes depends on the applica-

109
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tion requirements. We can consider the system response time as one such example. Some

application requires real-time responses, but some may wait a few minutes or a few hours to

get responses from the collaborative systems. Integrating humans also affect different met-

rics of an application. Human intelligence adds monetary cost, complexity, and response

time.

In the following sections, we have discussed a) the trade-off of different tech-

niques of integrating human input into machine algorithms, and b) different metrics of

collaborative systems.

7.1 Trade-off of Different Integration Techniques

We have proposed a different human-machine collaborative system where we

introduced different integration techniques. We optimized the selection of one method

over another based on our application requirements. Each method has it’s own pros and

cons. We discuss the trade-off of these techniques below.

7.1.1 Real-time vs. Offline System

Human-machine integration is older than the internet. The general integration

process is to harness knowledge from a user or an expert and integrate it into machine

algorithms. With the advent of the internet and readily available online crowdsourcing

platforms, intelligence can now be collected from a crowd who are working online. From

experiments, we found that response time for a simple audiovisual task using crowdsourc-

ing can range from three hours to ten hours compared to a machine that can do this thing

within few milliseconds, even with the embedded system. This characteristic affects the

system design to a great extent. With this high latency, the offline model is preferable to
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a real-time system. However, real-time systems are possible to develop with crowdsourc-

ing responses with different design techniques and requirements. If we integrate human

intelligence at feature extraction or preprocessing stage instead of in the decision loop,

crowdsourcing response time will not be a bottleneck. In the PreSight and LastStep,

the systems can respond in real-time. It is possible because the system builds the apriori

database offline, and uses that information during evaluation steps. However, in weed iden-

tification, humans are involved in the decision loop. The users have to wait for responses

on the scale of hours than to seconds or minutes.

7.1.2 Feedback Helps but No Incremental Improvement

The ability of human individuals to recognize thousands of object classes in clut-

tered scenes is one of the most surprising capabilities of visual perception, though the

scenes may have different pose, change in illumination, and occlusion (Oliva & Torralba

2007). The cognitive power is not limited to image, but it is widespread over all real-world

experience that humans encounter. However, knowledge and understanding of require-

ments vary from person to person. A human individual cannot perform any task if the

proper guideline and feedback are absent. They can even perform well if the task pro-

vides the feedback (Dow & Kulkarni 2012) of their responses in real-time. The feedback

could be self-assessment or external. It also could be the result of the very responses they

made because humans have to understand the inherent process of the algorithm that applies

their responses. For example, one algorithm requires only red color and will fail if there is

noise in color. Another algorithm can perform well even if the color is a mixer of red and

others, which form some reddish color. It requires to let the human crowd know how the

intended algorithms are performing based on their responses. Moreover, human individu-

als can provide a better response if they have the option to correct their erroneous response



112

and can identify errors seeing the feedback of their response (Hanrahan & Isaacs 2001;

Vella 1996) and learn from their mistakes.

Number of attempts 

Accuracy vs iteration

FIG. 7.1: Turker’s are not very interested to correct. They do the minimal tasks they are
required to do.

We have designed our crowdsourcing tasks providing feedback and an option to

change their responses as many times as possible to make the response more accurate. We

plot human behaviors (Figure 7.1) of acting on the feedback of their responses. The plot

shows that most of the responders use the feedback process to correct their responses. One

important finding here is that even though repeated feedback helps to improve the response,

most of the people finalized their decision within two iterations. It is also worthwhile to

mention that trying more times to correct did not end up with better responses.

7.1.3 Cost vs Accuracy

The cost of getting human responses is free if there is enough motivation for

people to do it. The online crowdsourcing platform offers money for human intelligence
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and vice versa. People work in crowdsourcing platforms to earn money. They respond

to queries by requesters and get paid by requesters for their responses. Logically, human

individuals working for money will go for those tasks that pay more cash but require fewer

efforts. A significant number of articles have proposed different designs for human tasks

to optimize the cost against task difficulties. We studied the idea and provided separate

payments, 5¢ and 1¢, for the same efforts. We analyzed payment vs. accuracy and payment

vs. response time based on their responses. The experiments’ outcomes clearly showed

that the response time is linearly related to money it pays to perform the job. However, it

showed that the accuracy of the response is not associated with the money it pays for the

task. It implies that most of the crowd workers use their full effort to analyze and respond,

but they always choose those tasks which pay more.

7.1.4 Hierarchical Crowdsourcing vs Unknown Crowd

The online portal, i.e., Amazon mechanical Turk or crowdflower, provides a com-

munication interface between a requester and human crowd. Anyone can request to work

on this platform without proving their expertise. Throwing tasks towards them give leads

to get responses from a general crowd instead of domain experts. However, it is possible to

train a group of individuals to perform specific tasks that assure the response’s reliability.

Upon completing training, the related tasks are posted, targeting those trained experts only,

to get quality responses. There is another type of crowd who does not work on an online

portal. They could be a group of coworkers or domain expertise. In the speech analysis

project, we form a group of graduate students who form an expert group on labeling audio

series from a group conversation. For PreSight and LastStep, we aggregated online

crowd responses instead of going for experts. However, for weed identification, we have

trained a set of an online crowd in the amazon mechanical turk platform. We formed a
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group of agricultural experts. All of these three groups responded to different situations

with varied conditions. We call the process as hierarchical crowdsourcing. The non-expert

crowd from online responds based on their knowledge, but the trained group provides qual-

ity responses using their expertise in that domain. However, the cost is increased to train

each individual. Also, the latency increases as the trained group is a subset of the whole

crowd, and the availability of significant worker decreases with the new constraint. The

proposed hierarchical crowdsourcing request the unexpert crowd for responses. If they

failed to respond, we would forward the requests to the expert crowd. If the combined

group is unable to produce quality results, we would transfer the works to domain experts.

Using hierarchical crowdsourcing, we were able to increase the accuracy to a great extent

with minimized cost.

7.1.5 Crowd Demography

The availability of the human crowd is vital to improve latency. Most of the

people working in crowdsourcing platforms are from Asia and the USA (Difallah, Filatova,

& Ipeirotis 2018), especially one-fifth of them are from India. However, the activity of the

Indian crowd increases at midnight in the USA. If we publish tasks in the evening or the

morning from the USA, the latency is slightly lower than that of the tasks posted at day

time because the activity of both geographical locations remains active at that time. We

have published several tasks, 50% of them were published during midday, and 50% of

them were published at the end of the day. The latency of evening distributed tasks is

slightly lower than those published in the middle of the day. There is a cultural difference

between Asian and western people. Because of that, the infrastructure, metric systems,

and household and public properties have different dimensions, texture, and names. In our

experiment, we asked the crowd about the trash can, pole, or fire hydrant height and width.
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These objects are ubiquitous in the USA, but they are not alike in china or India. It is

difficult for them to estimate the object’s height and width, comparing them with unknown

objects. We received some of the responses regarding trash can and fire hydrant far from

actual dimensions from the crowd workers of that part of the world. So, it would be a good

idea to ask workers from the same demographic if the answers for questions depend on

some localized features.

7.1.6 Training vs. Aggregation

Another important trade-off is selecting trained crowds over aggregation or vice

versa. The purpose of training is to improve the quality of workers to perform specific

tasks. In crowdsourcing platforms, we can arrange a preparatory session where a set of

golden standard tasks are published. Any workers can pick up the task to learn the domain.

The task will provide feedback to the worker after they perform their part. They can do the

training several times until they can answer all the questions correctly. Once the training

completes, the crowdsourcing platforms add a badge against their identification. Upon

completing the whole process, we publish the actual tasks targetting only those workers.

Now they are trained on the domain and will be able to provide quality responses. The

weed identification system takes decisions based on crowd responses. We followed the

procedure to get the final answers from the decision model. However, the training process

limits the accessibility of the number of crowds that we can ask for the actual answer.

Moreover, each training session requires to pay a certain amount of money. We can also

improve the quality of data with a better aggregation algorithm. We can design a robust

aggregation algorithm that can avoid low-quality responses removing outliers and consider

only genuine responses. If we need a quicker response, we can avoid training and go

for better aggregation. Aggregation only method is more cost-effective than the training
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process. However, the accuracy may go down if the aggregation algorithms do not cover

all edge cases. In that case, a trained crowd is more appropriate.

7.2 Humans Impact on System Metrics

Humans are a significant component of human-machine intelligent systems; thus,

humans have a substantial impact on system metrics. Based on our research projects, we

address the effects of humans on system accuracy, design complexity, latency, and cost.

7.2.1 Humans Effect on System Latency

The response time of human and machine are not similar. Some of the time,

humans can respond quickly in the milliseconds’ range when it comes to known and easy

cognitive tasks. However, the process of asking humans, getting the response back, and

integrate it into any machine algorithm is a time-consuming process. Integrating humans

impacts the latency of the system as a whole. However, the requirements of all applications

are not similar. Applications can wait from a few milliseconds to a few hours, and it

depends on the problem domain. In the case of weed identification, latency does not matter.

It can wait for a few hours or even for a day if the farmers get accurate results. However,

all applications are not resilient to time. The response should be real-time in the case of

PreSight and LastStep to inform the user about the possible obstacle and location

of objects, respectively. If the process depends on humans for the whole process, a real-

time response would not be possible. If a system depends on humans only at the training

phase, with a smart design, real-time systems can be developed. The system can process

the training set offline, taking help from humans, and build a knowledge database. Once

apriori information is available, the system can process the evaluation using apriori data

and provide feedback to users. The latency of the system depends on the complexity, size
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of the trained model, and the device’s processing power. For smartphones, it is possible to

process requests online. If the trained model is huge, it still needs lots of processing power.

For sensors and embedded systems, it is still a big problem. The apriori database should be

small enough for these small devices to respond in real-time. In the case of PreSight and

LastStep, we proposed algorithms that process complicated features extraction offline,

build an apriori database. We use the apriori database later to process the actual query in

real-time. However, if the query processing phase requires feature extraction with the help

of humans, real-time system development is not possible.

7.2.2 Human Effect on System Accuracy

Both humans and machines are a source of truth for a collaborative system. The

accuracy of a system is the combined accuracy of humans and machines. There are lots

of researches on machine accuracy of different problems, but here we are focusing on

the human impact on collaborative system accuracy. The less we use human-provided

information, the less impact it will have from human limitations and intelligence. We

have studied the integration of human knowledge at three different functional phases of a

collaborative system. We explain the impact of human integration on a system accuracy at

all three steps below.

In our speech dynamics research, we integrated human intelligence at the data

preprocessing stage. We applied both automated labeling algorithms and humans to detect

speech and silence from a group conversation. First, we used the ICA (Hyvärinen & Oja

2000) algorithm, which can isolate channels for all participants. However, in a group con-

versation, all four participants’ voices are mixed and impact the algorithm performance.

We noticed that some participants speak louder than others. The louder voices add noise to

each channel and make the isolation process very hard. The louder speaker interferes with
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the ICA channel isolation. Because of this reason, the filtering algorithm fails to detect the

segment representing silence and speaking. We also applied the silent detection algorithm.

The algorithm works well if the source is a single speaker. However, the algorithm fails for

a group conversation. Humans deliver better performance in labeling audio, listening to all

four voices as their cognitive power in these situations is excellent. However, the accuracy

of the final results depends significantly on the labeling step. The accuracy of the labeled

audio guarantees the accuracy of the trained model. The proper tools can assist humans in

providing high-quality data and improving the efficiency of label data.

The accuracy of the extracted features reflects the accuracy of the final trained

module. Features are a very abstract concept to human beings, and getting appropriate

responses from them depends on the tasks we design by providing proper guidelines, train-

ing, and presenting questions in human-readable form. We expect quality results from

people with natural thinking. If task design instructions are adequately forwarded, we can

expect a quality response from human workers, but still, some individuals provide biased

and random responses. We found from our experiment that a proper aggregation algorithm

can remove those responses as outliers and can provide highly accurate information to the

collaborative system.

The impact of humans is pivotal if the decision model of any system depends on

human intelligence. In weed identification, we found that a proper decision algorithm can

ensure a high accuracy system. We also tried hierarchy crowdsourcing, where we forward

the tasks to expert groups if the crowd failed to provide a correct response. The process

ensures the system with a near hundred percent accuracy.
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7.2.3 Design Complexity

Traditional machine learning is widely studied and has lots of existing tools to

develop, train, and test. If the problem domains are well-known, there are lots of tools and

tools available for labeling, feature extraction, and training. However, if we add humans

to any stage, it adds an extra level of complexity to the system. In our speech dynamics,

group conversation monitoring is not traditional. However, the mixture process of different

audio channels is one of the important audio features. We use audacity audio tools that

have the features and helps us to listen to all four channels together to annotate the group

conversation. The feature extraction is more complicated than labeling as the features are

very different from application to application. In the case of LastStep, we designed a

web interface to extract color and dimensions. In the case of PreSight, we developed

an interface to annotate google map tile. For our weed identification, we designed the mo-

bile interface to integrate expert responses and an amazon mechanical turk interface, to get

crowd input to the applications. In all four cases, lots of research and brainstorming were

put behind the idea and development of different interfaces and algorithms. The human

intelligence integration in decision making requires extra care in designing algorithm as

well as the interface. The decision algorithm consolidates machine intelligence as well as a

cognitive response from the human crowd using a probabilistic decision model and thresh-

old techniques. All these steps are necessary because of human intelligence integration. If

we could avoid humans, we could easily avoid all these complications in designing these

systems.

7.2.4 Cost

The cost of getting a response from an algorithm is an essential part of any system

design. The machine cost, i.e., the server, power, and computation cost, is typical for any
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machine algorithm as well as for the collaborative system. In addition to these costs, human

intelligence adds extra expense. There is a monetary cost for every response from humans.

Each labeling and categorizing tasks costs money, and it linearly increases with the increase

in task complexity or with the decrease of latency.

The monetary cost can be of two types. In preprocessing steps, labeling is a one

time process and does not increase cost over time. However, feature extraction may be

needed in the decision process as well as in the training time. If it is not required during

decision making, the cost is also a one time process. However, if the system accepts help

from human intelligence in the decision phase, for each response, a certain amount of

money has to be spent. We can optimized cost designing robust aggregation algorithms.

In our experiment with bus stop localization and obstacle detection, we designed simple

tasks, and we kept the number of responses bellow ten, which costs almost ten cents per

task. Two separate tasks provide the necessary information for both of the projects, which

costs twenty cents per bus stop or obstacle information collections. In the case of weed

identification, the decision model works in probabilistic fashion and requires at least ten

responses or as much as thirty, which costs us an average of twenty responses. The average

cost for each request was twenty cents.



Chapter 8

CONCLUSION AND FUTURE DIRECTIONS

Human and machine collaboration is one of the essential subsets of AI. Re-

searchers proposed several techniques to solve different problems integrating humans and

machines. Many researchers suggested methods of resolving issues integrating humans

in the decision loops. Some others proposed guidelines for improving feature extraction

techniques, and some of them provided procedures and guidelines to improve data qual-

ity. However, no comprehensive analysis and instruction was offered, covering all these

situations. We proposed a collaborative system design paradigm that provides a detailed

analysis of a collaborative system, different techniques to improve performance, and trade-

off of integrating humans in a system.

Analyzing a collaborative system, we found three functional phases where hu-

man intelligence can be integrated - data preprocessing, feature extraction, and decision.

Humans can help to improve quality in one or more of these functional phases. We also

have analyzed how a human-machine system can reduce human impact in the long run. We

have developed an end to end system covering all of these conditions and provided detailed

steps of designing a collaborative system.

121
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We designed an agricultural system to help farmers identify weeds in their crop

fields, analyzing weed images through hierarchical crowdsourcing. We did not have enough

data to train a machine learning model. We trained a model partially to retrieve multiple

competitive outcomes and integrated human intelligence to identify the correct weed from

a set of competitive results. We designed a bus stop localization system for visually im-

paired people applying image processing algorithm to detect bus stop signs and human

intelligence to localize other resources. A two-dimensional layout of resources is a vital

step for the system. However, it is not easy to obtain layout features with unsupervised

learning or with less powerful embedded devices. Human intelligence is widely used in

preprocessing data. We developed a machine learning model to analyze speech dynamics

in a group conversation by analyzing respiratory sensor data. Human intelligence helped to

segment sensor data listening to the audio recording of a group conversation, which is very

hard for a machine. We also address the situation and necessary condition where a human

can be integrated as a temporary solution and can be removed when certain conditions are

fulfilled. We designed a sidewalk obstacle detection system for visually impaired people

in low powered devices. We developed an object detection algorithm that uses only color

and dimensions provided by humans to detect an object in real-time. However, color and

dimensions can automatically be extracted if there is a huge amount of data. When the

dataset meets the necessary condition, human intervention can be reduced or removed in

the long run.

Each of the systems has a different level of dependency on humans and data

instances. So, there is a significant performance, cost, and development complexity dif-

ference among each system. The system designer will have to decide what system will fit

with their needs and what they have to consider to design a human-machine collaborative

system to be successful.
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We provided a design paradigm by developing applications in the audio and vi-

sual domains. We provided techniques to annotate audio and video data to extract features

from images and to make decisions analyzing visual features. However, we have not cov-

ered other domains that are important to provide a generic guideline. A generic architecture

can be developed in the future with a detailed analysis of all critical fields. This may help

the system designer to get all information at one point and decide a template pattern based

on their problem domain.
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