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ABSTRACT

Title of dissertation: BUILDING PRACTICAL, EFFICIENT,
AND RELIABLE FAULT-TOLERANT
DISTRIBUTED SYSTEMS

Chao Liu, Doctor of Philosophy, 2021

Dissertation directed by: Professor Alan T. Sherman
Computer Science and Electrical Engineering

Building a real-world distributed system should consider a range of funda-

mental design objectives, including fault tolerance, reliability, performance, and

scalability. Modern distributed systems require tolerance to any kind of service

disruption, whether caused by a simple hardware fault or by a large-scale disaster.

Famous systems like ZooKeeper, Google file system (GFS) and Bigtable are designed

to tolerate benign faults. Byzantine fault-tolerant (BFT) state machine replication

(SMR) is regarded as an ideal candidate that can tolerate arbitrary faulty behaviors,

and can be applied to multiple real-world systems. BFT SMR as one of consensus

protocols is the core of blockchain to provide agreement services, and its efficiency

highly affects the performance of a blockchain system. This dissertation presents

three fault-tolerant distributed systems by leveraging novel BFT protocols, practical

cryptographic schemes and libraries, efficient and scalable system designs, modern

programming language, and complete and detailed evaluations and deployments.

Besides fault tolerance, this dissertation also presents different approaches to build

distributed systems toward high performance, scalability, and usability.



In this work, we first focus on constructing distributed systems with asyn-

chronous BFT protocol. Asynchronous BFT protocols such as HoneyBadgerBFT

and BEAT can achieve only static security. Unfortunately, the weaker static model

of security does not capture the power of several types of attackers. We develop

two protocols EPIC and HALE to defend against adaptive corruption, where the

adversary can corrupt the replicas at any moment during the execution of the pro-

tocol. Meanwhile, when there is no contention or contention is rare among correct

replicas, it is necessary for correct replicas to terminate fast so that performance can

be improved. We develop MiB, a novel and efficient asynchronous BFT framework

using new distributed system constructions as building blocks. We also systemat-

ically carried out experiments for asynchronous BFT protocols with failures and

evaluated their performance in various failure scenarios. Finally, we present Chios,

an intrusion-tolerant publish/subscribe system which protects against Byzantine

failures. Our publish/subscribe system achieves decentralized confidentiality with

fine-grained access control and strong publication order guarantees.
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Chapter 1

Introduction

Modern society has been growing increasingly dependent on real-world networked

computer systems. A distributed system is a collection of multiple computers (pro-

cessors) working closely together to solve a single problem. Distributed systems

take many forms and cover a variety of system architectures. To build a distributed

system, a range of fundamental design objectives should be considered, including

fault tolerance, performance and cost, availability, flexibility and extensibility, and

scalability.

Fault tolerance is one of the hot topics in modern distributed system. A fault-

tolerant system can experience failure (or multiple failures) in its components, but

still continue operating properly. Crash fault tolerance assumes that servers (pro-

cessors) fail in a silent manner and never send incorrect messages. When considering

more powerful adversaries or attacks, Byzantine fault tolerance makes it possible to

design systems that are resilient against arbitrary faults and attacks. An increasing

number of practical systems use BFT, such as permissioned blockchains [9, 13, 74],

firewalls, SCADA systems [63, 109], Boeing 777 aircraft information management

system [172], and Boeing 777 flight control system [165]. Byzantine fault tolerance

is also considered in SpaceX Dragon. 1

Even though BFT has been researched more than thirty years, it is still a chal-

1https://en.wikipedia.org/wiki/Byzantine fault
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lenge to design and deploy it in modern distributed systems. Existing requirements

on permissioned blockchain push research on BFT protocols. Facing the challenge of

new problems in distributed systems, this dissertation proposes novel BFT protocols

and system designs toward building real-world distributed systems.

1.1 Dissertation Statement

I adopt the following dissertation statement:

Real-world fault-tolerant distributed systems can be designed and implemented

in a more efficient, secure, scalable, practical, and reliable fashion by leveraging

novel BFT protocols, practical cryptographic schemes and libraries, efficient and

scalable system designs, modern programming languages, and complete and detailed

evaluations and deployments.

The dissertation statement brings out two things. First, building a real-world

distributed system is complex and challenging, and a range of fundamental design

objectives should be taken into account. I will show our various design strategies

for different required tasks in different chapters. Second, multiple techniques can be

used to design and implement distributed systems. To design a system that satisfies

detailed requirements and solves the issues we proposed, I will present the methods

and techniques and mix and match them in different chapters.
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1.2 Challenges

There are many different concepts associated with distributed systems, including

distributed file systems, distributed pervasive systems (e.g., sensors, mobile devices),

distributed Web-based systems etc. All of these systems have been built to fulfil the

following objectives [60, 136, 161]:

• Fault tolerance and failure management,

• Scalability,

• Security,

• Heterogeneity,

• Performance, and

• Transparency.

This dissertation focuses on fault tolerance of distributed systems and also

seeks methods to improve the performance, guarantee the security, and maintain

scalability of the distributed systems.

The existing weakly synchronous protocols such as PBFT can not be scal-

able. An adversary can halt the consensus resulting in the PBFT achieving zero

throughput. Practical asynchronous BFT with modern framework, such as Honey-

BadgerBFT [130] and BEAT [70], has been extensively studied in recent years and

can scale up to 100 replicas. However, these protocols can defend only against static

corruption, where the adversary is restricted to choose its set of corrupted replicas

at the start of the protocol and cannot change this set later on. To capture general

attacks and real threats where the adversary can choose its set of corrupted replicas

3



at any moment during the execution of the protocol, based on the information gath-

ered by the adversary, it is challenging to design adaptively secure asynchronous

BFT protocols. Asynchronous BFT protocols are complex, consisting of different

distributed components (RBC, ABA, and crypto). It is necessary to understand the

performance bottleneck(s) for asynchronous BFT. HoneyBadgerBFT, BEAT, and

Dumbo [85] assume optimal resilience with 3f + 1 replicas (where f is an upper

bound on the number of Byzantine replicas). It is interesting to ask whether more

efficient protocols are possible by relaxing the resilience level. Meanwhile, these

recent BFT protocols evaluated their performance under failure-free scenarios. It is

unclear if these protocols indeed perform well during failures and attacks. Existing

pub/sub systems have no strong fault tolerance (BFT) guarantees. It is challenging

to define the properties of a BFT and confidentiality-preserving pub/sub system,

covering strong access control and message ordering guarantees, in the sense of cryp-

tography and reliable distributed systems. It is desirable to evaluate and compare

our system with some real-world systems systematically, such as Kafka, Kafka with

passive replication, and Hyperledger Fabric modules.

1.3 Contributions

This research makes several valuable contributions to the field of distributed systems.

It focuses on developing new BFT protocols and system designs for new problem

models.

In the first portion of our research, we develop EPIC and HALE to build practi-

4



cal asynchronous BFT protocols with adaptive security in the computational setting

(where the adversary is limited to polynomial time) and the stronger information-

theoretic model (where the adversary is unbounded). In the computational model,

we provide EPIC using adaptively secure key generation and common coin proto-

cols. In the information-theoretical model, we provide HALE leveraging the classic

local coin protocol of Bracha. HALE is more robust than EPIC and does not

need distributed key generation. We first characterize efficient BFT protocols using

corruption models (adaptive vs. static corruptions). We discuss how to achieve

adaptive security for various candidate asynchronous BFT protocols. In this work,

we also clarify three “understandings”, understanding the performance bottlenecks

for asynchronous BFT, understanding the impact of cryptography in asynchronous

BFT, and understanding benefits and drawbacks of common coins and local coins.

In the second portion of our research, we design new distributed system primi-

tives with suboptimal resilience, including new RBC constructions and ABA combi-

nations. In particular, we provide an erasure-coded version of IR RBC using Merkle

tree and provide a learner-version of RBC (where some replicas are passive learn-

ers). We formally prove the correctness of the new RBC constructions. We build

a highly flexible MiB [120] framework allowing mixing and matching different RBC

and ABA primitives. We designed experiments for asynchronous BFT protocols in

failure and attack scenarios. This is the first systematic evaluation for these recent

asynchronous BFT protocols using the ACS framework.

Then, in the third portion of our research, we designed, implemented, and eval-

uated Chios [67], a Byzantine fault-tolerant (BFT) pub/sub system with fine grained

5



access control and strong reliability, without sacrificing the decoupling property of

pub/sub. We formally define the properties of a BFT and confidentiality-preserving

pub/sub system, covering strong access control and message ordering guarantees,

in the sense of cryptography and reliable distributed systems. Chios is the first

pub/sub system achieving decentralized and fine-grained access control as well as

publication total order. Chios is versatile and modular, supporting three additional

and fully-fledged pub/sub instances designed to meet different goals.

1.4 Roadmap

The remainder of this dissertation is organized as follows. Chapter 2 shows the back-

ground and related work. Chapter 3 presents our work, EPIC and HALE, which

achieves adaptive security. Chapter 4 presents our efficient asynchronous BFT pro-

tocol with more replicas. Chapter 5 presents our work, Chios, for intrusion-tolerant

and confidentiality-preserving publish/subscribe messaging. Chapter 6 concludes

this dissertation and discusses future work.
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Chapter 2

Background and Related Work

In this chapter, we present the background and related work of Byzantine fault

tolerance, Byzantine reliable broadcast, and asynchronous binary agreement. The

first and second chapters are constructed on the modern asynchronous common

subset framework so that we review it here without showing the same content in

different chapters.

2.1 Byzantine Fault Tolerance

The reliance on online service accessible on the Internet demands highly-available

systems that provide correct service without interruptions. Byzantine fault tolerant

(BFT) protocols are used to build replicated services. Lamport et al. [115] defined

the concept of the Byzantine fault tolerance system. This system should satisfy two

properties:

• If all correct servers input the same value, they produce the same output;

• If the input message is correct, then all correct servers use the value as input and

use it to produce the output.

BFT should provide both safety and liveness properties [113].

• Liveness: ensures that all requests from correct clients are eventually executed.

• Safety: ensures that requests are executed sequentially under a single schedule

7



consistent with the order seen by clients.

PBFT [51] proposed by Castro and Liskov is a well-known consensus protocol

to cope with Byzantine systems and is regarded as the baseline for almost all BFT

protocols published afterward. Zyzzyva [107] employs speculation in the execution

of state updates, allowing a high throughput pipeline of state-machine replication.

The Next 700 BFT Protocols [81] provide a principled approach to view-change in

BFT protocols. Their approach switches not only leaders, but also entire regimes, to

respond to adaptive system conditions. BFT-SMART [35] is an original open-source

library, which was developed in Java and implements a protocol for SMR similar to

PBFT. Hotstuff [167] uses a threshold signature scheme to reduce communication

complexity and Facebook is building Libra [29] on top of its variant. RBFT [25]

uses multiple concurrent instances of PBFT to detect a slow master instance and

triggers a leader replacement through PBFT’s complex view change. Many BFT

protocols have been proposed, such as Upright [55], ABFT [64], ByzID [66], BChain

[68], hBFT [69], FastBFT [121].

The BFT consensus algorithms such as scalable BFT [30], practical BFT

(PBFT) [51], Zyzzyva [107], are used in consortium blockchains.

2.2 Byzantine Reliable Broadcast

In distributed systems, a set of processes can use the powerful primitive Byzantine

reliable broadcast (RBC) to agree on a message from a designated sender, even if

some processes (including the sender) are Byzantine. The RBC is appealing since

8



this primitive can be used in a completely asynchronous environment and it can be

implemented in important applications such as payment systems.

RBC protocols are starting with the algorithm of Bracha and Toueg [37, 39]

and then Bracha described the first RBC protocol for asynchronous and fully con-

nected reliable networks (i.e., networks where each process is able to communicate

with any other in the system and where messages cannot be lost). Guerraoui et

al. [83] proposed the scalable RBC. They achieve a scalable solution by relying on

stochastic samples instead of quorums, where samples can be much smaller than

quorums. In dynamic RBC [82], a process can enter and leave the system at any

time without requiring consensus. RBC [138] is an efficient algorithm and proved

to have optimal bit complexity. The RBC [62] implements the algorithm with only

two communication steps, two message types, and n2 − 1 protocol messages but is

a weaker t−resilience, namely t < n/5.

2.3 Asynchronous Binary Agreement

Byzantine agreement (BA) is one of the most fundamental problems in distributed

computing and cryptography. In this problem, a set of n parties, each holding an

input vi, aims to agree on a value v by jointly running a distributed protocol. The

BA is appealing because it is used as a building block to design more complex

systems and regarded as strong consistency guarantees, e.g. databases, replicated

services, or secure voting mechanisms.

Lamport et al. [115] first introduced the problem of BA. The BA protocol has
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since been extensively studied for almost four decades under various assumptions.

The asynchronous binary agreement (ABA) does not require a global clock shared

among the parties, so it is more preferable to its synchronous counterparts.

Consensus, however, is impossible to solve deterministically in asynchronous

systems (FLP result [78]). Randomization is a solution to circumvent the FLP result,

which is based on a random operation, tossing a coin (0 or 1 with equal probability).

Ben-Or [31] and Rabin [147] provide two different and classic approaches to coin

tossing.

• Local coin (Ben-Or): each node tosses a coin locally.

• Common coin/shared coin (Rabin): a common/shared coin gives the same

values to all nodes.

The local coin approach is simpler but needs to terminate in an expected expo-

nential number of rounds. The common/shared coin approach requires an additional

coin sharing scheme but can terminate in an expected constant number of rounds.

There are multiple version of ABA protocols proposed by Mostefaoui et al.

However, the efficient ABA [134] is reported with liveness problem [158]. Cachin et

al. [47] proposed a method that overcomes the problem and maintains the simplicity

of the original approach of ABA [134]. The binary consensus problem allows a

process to agree only on a single binary value. To allow processes to agree on

arbitrary values, there exist many reductions to multi-value consensus work [135].
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Figure 2.1: The ACS consensus workflow.

2.4 Review of Efficient Asynchronous BFT Protocols

We consider the ACS (asynchronous common subset) framework for asynchronous

BFT. In the framework, servers propose a subset of transactions in their transac-

tion pool and deliver the union of the transactions in the agreed-upon vector. The

framework was used by Ben-Or et al. [32], CKPS [43], SINTRA [45], HoneyBad-

gerBFT [130], BEAT [70], and Dumbo [85].

Figure 2.1 reviews the framework for HoneyBadgerBFT and BEAT (with

threshold encryption ignored). The protocols proceed in epochs. Each epoch con-

sists of two phases: an RBC phase and an ABA phase. In the RBC phase, each

replica proposes a subset of transactions from its transaction pool (a proposal) and

uses RBC to broadcast the transactions. In the ABA phase, replicas run n parallel

ABA instances, the i-th of which is used to agree on whether the proposal from

replica pi has been RBC-delivered.

In Figure 2.1, replicas pi (i ∈ [0..3]) propose transactions txi, respectively.

When a replica delivers a value from an RBC instance j ∈ [0..3], it inputs 1 to
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the j-th ABA instance. HoneyBadgerBFT and BEAT follow Ben-Or et al. [32] and

ask each replica to abstain from proposing 0 until n − f ABA instances have been

delivered by the replica, which guarantees system throughput.

Also for high throughput, HoneyBadgerBFT ensures that each replica pro-

poses mostly disjoint sets of transactions. Thus, replicas in HoneyBadgerBFT pro-

pose randomly selected transactions. To prevent an adversary from censoring a

particular transaction, HoneyBadgerBFT requires replicas to use threshold encryp-

tion to encrypt transactions. After delivering transactions in ciphertext, replicas

collectively decrypt them.

HoneyBadgerBFT uses the bandwidth-efficient AVID broadcast for RBC [46]

and the MMR protocol for ABA [134]. BEAT is a family of five asynchronous

BFT protocols, providing a series of improvements to HoneyBadgerBFT. In par-

ticular, the baseline protocol in BEAT (hereinafter BEAT) eliminates the usage of

pairing-based cryptography and leverages more efficient threshold cryptography us-

ing elliptic curves. Other protocols in BEAT mainly explore the performance impact

using different RBC or information dispersal protocols.
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Chapter 3

How to Achieve Adaptive Security for Asynchronous BFT?

3.1 Overview

State machine replication (SMR) [151, 114] is a proven software technique to en-

able fault-tolerant and highly available services in critical distributed systems (e.g.,

Google’s Spanner [41], Apache ZooKeeper [90]).

Byzantine fault-tolerant (BFT) SMR is the only known software solution for

masking arbitrary failures and malicious attacks. BFT has been regarded as the

model for building permissioned blockchains, where the distributed ledgers (i.e.,

replicas) know each other’s identities but may not trust one another. BFT can

also be used to improve the performance and deal with the lack of finality for

permissionless blockchains, where enrollment is open to anyone and nodes may join

and leave dynamically. These permissionless blockchains using BFT are also known

as hybrid blockchains (e.g., [18, 65, 75, 104, 105, 126, 143, 168]).

BFT protocols can be roughly divided into three categories according to their

timing assumptions: asynchronous, synchronous, or partially synchronous [72]. In

asynchronous BFT, neither safety nor liveness relies on timing assumptions. In syn-

chronous BFT systems, both safety and liveness may be violated if the synchrony

assumption fails to hold. Partially synchronous BFT systems never violate safety

but they achieve liveness when the network behaves synchronously only. (It was
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demonstrated in [130] that PBFT [50] would achieve zero throughput against an

adversarial asynchronous network scheduler, echoing the celebrated FLP impossi-

bility result [78].) For this reason, asynchronous BFT protocols are inherently robust

against timing, performance, and denial-of-service (DoS) attacks and (arguably) the

most appropriate solutions for mission-critical blockchain applications.

Due to its inherent robustness, asynchronous BFT (and atomic broadcast)

have been extensively studied [19, 32, 43, 45, 59, 70, 112, 130, 133, 149]. Most no-

tably, two recent asynchronous BFT systems, HoneyBadgerBFT [130] and BEAT [70],

have comparable performance as partially synchronous BFT protocols and can scale

to 100 replicas. In particular, HoneyBadgerBFT is an efficient asynchronous pro-

tocol with a modern implementation and a scalable real-world deployment, while

BEAT offers various performance improvements for different application scenarios.

Despite the impressive performance and robustness for HoneyBadgerBFT and

BEAT, the protocols have several major issues.

Static vs. Adaptive corruptions. Depending on how the adversary decides to

corrupt parties, there are two types of corruptions for BFT protocols:

• Static corruptions, where the adversary is restricted to choose its set of corrupted

replicas at the start of the protocol and cannot change this set later on.

• Adaptive corruptions, where the adversary can choose its set of corrupted replicas

at any moment during the execution of the protocol, based on the information

it accumulated thus far (i.e., the messages observed and the states of previously

corrupted replicas).
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There is a strong separation result: statically secure protocols are not neces-

sarily adaptively secure [48, 61]. HoneyBadgerBFT and BEAT (and a prior system

SINTRA [45]) defend against static adversary only. The reason is that these pro-

tocols rely heavily on efficient but statically secure threshold cryptography. The

situation is in contrast to that of partially synchronous BFT protocols, most of

which achieve adaptive security [24, 35, 50, 56, 68, 81, 89, 107, 129].

Computational vs. Information-theoretic security. Depending on the capac-

ities of the adversary, BFT protocols can be in one of the following two models:

• Computational security, where the adversary is restricted to probabilistic polyn

omial-time (PPT).

• Information-theoretic security, where the adversary is unbounded.

There are good reasons why one may favor information-theoretic security over

computational security. Information-theoretically secure constructions do not rely

on any cryptographic assumptions, while computationally secure constructions as-

sume the hardness of some intractability problems (e.g., RSA, Diffie-Hellman).

These mathematical problems may, in the future, be proven to be “easy,” or be

(partly) broken by newly developed cryptanalysis techniques, or become trivially

solvable due to some technological breakthrough (e.g., quantum computer). We

stress that favoring information-theoretic model is not merely a theoretical con-

cern: it is a common consensus in the cryptography community to minimize use of

cryptographic assumptions.

Understanding the (exact) performance bottleneck(s) for asynchronous
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BFT. Asynchronous BFT protocols are complex, consisting of different distributed

components and cryptographic building blocks. Both HoneyBadgerBFT and BEAT

use reliable broadcast (RBC), asynchronous binary agreement (ABA), and threshold

cryptography. Duan et al. [70] showed in BEAT that asynchronous BFT can perform

rather differently if using different RBC protocols: Bracha’s broadcast [37] results in

a latency-optimized asynchronous BFT, AVID broadcast [46] leads to bandwidth-

efficient and high-throughput ones, and AVID-FP [88] and its variant can be used

to build bandwidth-optimal asynchronous BFT storage. In this paper, we find that

not just RBC, the other two building blocks — ABA and threshold cryptography

— can impact the performance significantly.

The case of ABA. Both BEAT and HoneyBadgerBFT utilize an ABA pro-

tocol proposed by Mostefaoui, Moumen, and Raynal [134] (MMR ABA). The MMR

ABA protocol is known as the most efficient ABA protocol that terminates in two

rounds in expectation (completing within O(r) rounds with probability 1 − 2−r).

In each round, the MMR protocol has two or three steps. (In contrast, the entire

PBFT protocol has three steps only.)

The situation is exacerbated by a liveness issue recently reported [4]. Specif-

ically, the MMR protocol assumes perfect random coins completely independent of

the state of all correct nodes when they query the coin. The property is not guar-

anteed by any existing cryptographic common coin protocols. A malicious network

scheduler can keep correct nodes entering the next round with inconsistent values,

causing the protocol not to terminate. The best known solution to date is to use

Cobalt ABA [127] which has one additional step for each round. The added cost,
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by percentage, could be significant, considering the MMR ABA terminates in two

rounds in expectation and in each round there are only two or three steps.

While theoretically the resulting asynchronous BFT has much more rounds

than PBFT, it was demonstrated that some ABA protocols may terminate faster

than expected [132, 133]. The experimental result, however, was reported for ABA

protocols terminating in an expected exponential number of rounds and for settings

where the total number of replicas is at most ten. It is still unclear how the ABA

protocols that use common coins and terminate in expected constant rounds and the

ABA protocols that use local coins and terminate in expected exponential rounds

perform with more replicas. More importantly, it is interesting to evaluate the

performance of asynchronous BFT using these ABA protocols for settings with

more replicas.

The case of cryptography. It is well known that cryptography can be vital

to the performance of BFT protocols. It was originally believed that signature-

free BFT protocols such as PBFT are (much) more efficient than BFT protocols

using signatures. It was later reported (e.g., BFT-SMaRt [35]) that with modern

infrastructures, BFT protocols using signatures can be comparable to those without

signatures. Some recent protocols such as SBFT [80] using more expensive threshold

signatures were also shown to be both efficient and scalable.

The situation for asynchronous BFT is arguably more complicated. First,

HoneyBadgerBFT and BEAT use two (instead of one) threshold cryptographic prim-

itives — threshold encryption and threshold pseudorandom function (PRF). Both

protocols use them extensively. Second, the way of using threshold cryptography
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for them is quite different from that of partially synchronous BFT protocols. The

threshold cryptographic operations in these asynchronous BFT protocols are evenly

distributed among n replicas. The two features make it difficult to predict the ex-

act bottlenecks for asynchronous BFT. In particular, if one aims to build a BFT

protocol by modifying two primitives, one would have to implement and evaluate

multiple protocols.

Besides, most known adaptively secure cryptographic schemes are known to

be (much) more expensive than their statically secure ones [117, 118, 122].

It is unclear if asynchronous BFT protocols using adaptively secure schemes

can be practical. This question has to be answered via rigorous implementation and

extensive evaluation.

3.1.1 Our Contribution

Characterizing BFT protocols. We first characterize efficient BFT protocols

using corruption models (adaptive vs. static corruptions). We discuss how to achieve

adaptive security for various candidate asynchronous BFT protocols.1

EPIC. In the computational model, we provide EPIC that uses an adaptively secure

key generation and secure common coin protocols.

EPIC takes a new approach to adaptively secure asynchronous BFT. First,

EPIC uses the LM-LJY adaptively secure threshold PRF scheme [117, 122] for

common coins. Second, EPIC uses the Cobalt ABA protocol [127] which resolves

1We discuss protocols published after the conference version [119] of this submission that merely

considers the computational security model.
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the liveness issue of HoneyBadgerBFT and BEAT. Last, EPIC uses a hybrid method

of the random transaction selection (as used in HoneyBadgerBFT and BEAT) and

the FIFO transaction selection (as used in CKPS [43] and SINTRA [45]), eliminating

the use of expensive threshold encryption.

Both HoneyBadgerBFT and BEAT use threshold PRF and threshold encryp-

tion and require a trusted dealer to generate the cryptographic keys for individual

replicas. The key generation procedure for HoneyBadgerBFT and BEAT is thus

centralized. In contrast, most of the efficient BFT protocols rely on authenticated

channels or digital signatures and do not need a trusted setup. It is desirable for

efficient asynchronous BFT protocols to support a distributed key generation. In

fact, we should build asynchronous BFT protocols with distributed key generation

that is secure against adaptive corruptions.

EPIC instantiates and implements the distributed key generation protocol [117]

which is also secure against adaptive corruptions. In comparison, HoneyBadgerBFT

and BEAT do not have distributed key generation protocols, and most of the multi-

party computation protocols simply do not instantiate ideal broadcast channels. We

view this contribution as an important one, as our implementation and evaluation

will help understanding the difficulty of distributed key generation and guiding the

parameter selection for these protocols.

EPIC relies on an adaptively secure common coin protocol which uses a pairing-

based assumption [117]. The adaptively secure common coin protocol is the only

known such protocol. The corresponding mathematical problem is weaker than well-

studied problems such as RSA. Admittedly, if, in the future, the problem is proven
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to be not as difficult as one might thought (which is likely), the architecture that

EPIC uses is no longer viable (unless one could find a new construction for adap-

tively secure common coin protocol based on a different cryptographic assumption).

HALE, which we introduce right below, does not have the potential drawback.

HALE. In the stronger information-theoretical model, we provide HALE. HALE

aims to “revive” the original idea of Ben-Or, Kemler, and Rabin [32]: their ACS

construction was designed to work in the information-theoretic setting from the

perspective of theoretical feasibility. HALE, on the other hand, aims to be practical

and HALE relies on three novel ideas with the first one being our new transaction

selection process (the same one as in EPIC). For ABA, HALE uses Bracha’s ABA

protocol that leverages local coins instead of common coins [37]. For RBC, one

can choose the well-known Bracha’s broadcast protocol [38] that is secure against

adaptive corruptions.

HALE just needs the minimum assumption that there exist authenticated

channels. Very importantly, HALE does not rely on threshold cryptography and

therefore does not need the costly distributed key generation phase.

Understanding the performance bottlenecks for asynchronous BFT. As

our new protocol modifies almost all building blocks for asynchronous BFT (includ-

ing ABA, threshold PRF, and threshold encryption) but RBC, evaluating which

component dominates the performance bottleneck is a difficult task. We there-

fore mix and match different building blocks to implement four asynchronous BFT

protocols and evaluate their performance difference. Besides, to understand the
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cryptographic overhead, we implemented our baseline protocol with static security

and our systems with adaptive security. Our approach complements BEAT which

essentially evaluated the performance difference using different RBC protocols.

Understanding the impact of cryptography. In the literature of asynchronous

BFT protocols, it does seem that they adopt quite different cryptographic primitives.

HoneyBadgerBFT uses some pairing-based cryptography (that is slightly outdated)

and Dumbo [85] uses the same cryptographic libraries with no modifications. BEAT,

on the other hand, strives to use standard elliptic curve cryptography with standard

128-bit security. As EPIC uses pairing-based cryptography, we want to use the well-

received and the-state-of-the-art pairing types, and meanwhile, understand the exact

cryptographic overhead differences among various pairing curves (some of which are

more efficient but less secure).

Understanding benefits and drawbacks of common coins and local coins.

It was shown that Bracha’s ABA protocol [37] may exhibit better performance than

the ABA protocol of Cachin, Kursawe, and Shoup [44] in the LAN environment

where the total number of replicas is at most ten [132].

Compared to ABA protocols, BFT protocols are much more complex. It is

hard to predict how BFT protocols would perform using common-coin vs. local

coins. In particular, it is interesting to find if local-coin based BFT protocols may

have some benefits compared to well studied common-coin based BFT protocols.

Practicality of EPIC and HALE. We show that EPIC is slightly slower than

asynchronous BFT protocols with static security if the network size is small; how-
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ever, if the network size grows larger, EPIC is not as efficient as those with static

security. Besides, EPIC achieves its peak throughput when the network size is small,

but even with 31 replicas, EPIC can still achieve throughput of 10,000 tx/sec for

transactions of size 250 bytes.

We also show while in most scenarios, HALE is less efficient than EPIC, HALE

is reasonably fast. HALE achieves 42,000 tx/sec and 3,400 tx/sec for the 4-server

setting in the LAN and WAN environments, respectively. Remarkably, HALE is

more efficient than EPIC in the LAN setting when the number of replicas is smaller

than 16.

3.2 Related Work

BFT assuming partial synchrony. Efficient partially synchronous BFT has been

extensively studied [24, 27, 35, 56, 68, 80, 81, 89, 107, 129, 167]. Even for partially

synchronous BFT protocols focusing on robustness [24, 56], their performance can

drop 78% - 99% in the presence of Byzantine replicas and/or clients [25]. It is

demonstrated that PBFT would achieve zero throughput against an adversarial

asynchronous scheduler [130].

Asynchronous binary agreement (ABA). ABA was introduced independently

by Ben-Or [31] and Rabin [147]. ABA is a fundamental primitive to build most

complex distributed system protocols [32, 42, 43, 45, 59, 131, 133]. For this reason,

a significant number of ABA protocols have been proposed [34, 38, 44, 49, 79, 127,

134, 147, 154, 155, 159, 171]. Cachin, Kursawe, and Shoup (CKS) [44] proposed an
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efficient ABA which achieves optimal resilience and runs in O(n2) message complex-

ity. The CKS ABA heavily uses RSA-based dual-threshold signatures [152] which

are computationally expensive. Mostefaoui, Moumen, and Raynal (MMR) [134]

presented the first signature-free ABA that has the same message complexity as

the CKS ABA [44]. The MMR ABA is used in HoneyBadgerBFT and BEAT. It is

reported that the MMR ABA, however, has a liveness issue, if being instantiated

using any existing cryptographic coin flipping protocols [4].

Asynchronous atomic broadcast and BFT. In an atomic broadcast, a broad-

caster (one of the replicas) broadcasts messages to all replicas, and all replicas should

deliver messages in the same order. Instead, BFT state machine replication specifies

clients and replicas, and all replicas delivers client messsages in the same order. We

do not distinguish Byzantine atomic broadcast and BFT and collectively call them

BFT.

Asynchronous BFT protocols, such as SINTRA, HoneyBadgerBFT, and BEAT,

follow the asynchronous common subset (ACS) framework [32, 43] which can be real-

ized using RBC and ABA. The underlying ABA protocols are efficient, terminating

in an expected constant number of rounds.

RITAS is a stack of randomized distributed protocols defending against Byzan-

tine failures [133], RITAS consists of an efficient atomic broadcast implementation

of Correia, Neves, and Verissimo [58]. While the protocol theoretically terminates in

an expected exponential number of rounds, it was demonstrated that the protocol

in practice may execute in only a few rounds for certain conditions. The RITAS

protocol is shown to be efficient for a cluster of ten replicas.
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Recently, Abraham, Malkhi, and Spiegelman provided an asynchronous BFT

protocol that reduces message complexity to O(n2) [20], utilizing a similar workflow

used in HotStuff [167]. Besides its higher latency, the protocol has theoretically lower

throughput than HoneyBadgerBFT and BEAT which can select random transac-

tions for high throughout.

Asynchronous hybrid BFT protocols. KS [112] and RC [149] are asynchronous

hybrid BFT protocols guaranteeing both safety and liveness under asynchronous

environments. Both protocols have an optimistic BFT protocol under “normal”

circumstances (where there is no failure or the primary is correct) and a pessimistic

BFT protocol under “rare” circumstances (e.g., asynchrony). KS [112] and RC [149]

use PBFT-like protocols during normal operations and randomized asynchronous

BFT for recovery in case of failures or asynchrony. KS proceeds in epochs and

uses Bracha’s broadcast [37] during the normal-operation phase, just like in PBFT.

It suggests using randomized Byzantine agreement for backup and delivers some

requests for liveness. It has the same efficiency as PBFT during gracious execution.

RC replaces the reliable broadcast primitive in KS using consistent broadcast, a

weaker primitive. RC is the first BFT protocol (atomic broadcast) with the message

complexity only O(n) in its normal case, while all other BFT (atomic broadcast)

protocols have the message complexity O(n2). The improvement comes at the cost

of more expensive recovery phase using heavy public-key cryptography. There is no

implementation for either KS or RC.

Asynchronous MPC. Lu et al. [123] recently provided the first robust asyn-
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chronous multi-party computation system with guaranteed output delivery using

HoneyBadgerBFT. The protocol achieves static security.

3.3 System and Threat Model

BFT. We consider a Byzantine fault-tolerant state machine replication (BFT) pro-

tocol, where f out of n replicas can fail arbitrarily (Byzantine failures) and an adap-

tive adversary can coordinate faulty replicas. The adaptive adversary can choose its

set of dishonest parties at any moment during the execution of the protocol, based

on the messages transmitted and the internal states of previously corrupted replicas.

The BFT protocols considered in this paper tolerate f ≤ bn−1
3
c Byzantine failures,

which is optimal.

When considering the information-theoretic setting, we assume there exist

authenticated channels, a minimum assumption that nodes can use to authenticate

with each other.

A replica delivers operations, each submitted by some client. The client should

be able to compute a final response to its submitted operation from the responses

it receives from replicas. We use operations, (client) requests, and transactions

(blockchain terminology) interchangeably. Correctness of a BFT protocol is specified

as follows.

• Agreement: If any correct replica delivers an operation m, then every correct

replica delivers m.

• Total order: If a correct replica has delivered an operation m with a sequence
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number, and another correct replica has delivered an operation m′ with the same

sequence number, then m = m′.

• Liveness: If an operation m is submitted to n − f correct replicas, then all

correct replicas will eventually deliver m.

The liveness property has been referred to by other names (e.g., “fairness” [43],

“censorship resilience” [130]).

Timing assumption. We can roughly divide BFT protocols into three categories

according to their timing assumptions: asynchronous, synchronous, or partially syn-

chronous [72]. An asynchronous BFT system makes no timing assumptions on

message processing or transmission delays. If there is a known bound on message

processing delays and transmission delays, then the corresponding BFT system is

synchronous. Partially synchronous BFT lies in-between: messages are guaranteed

to be delivered within a time bound, but the bound may be unknown to participants

of the system or system designers.

Asynchronous BFT protocols are inherently more robust than other BFT pro-

tocols. Due to the celebrated FLP impossibility result [78] which rules out that

deterministic protocols reach consensus in fully asynchronous environments, asyn-

chronous BFT protocols must rely on randomization and be probabilistically live.

We consider purely asynchronous systems making no timing assumptions on mes-

sage processing or transmission delays. We assume synchrony for the distributed

key setup phase, which is a one-time event. We will discuss the implication of the

system choice.
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3.4 Primitives and Building Blocks

This section reviews the cryptographic and distributed systems building blocks for

EPIC.

Threshold pseudorandom function (PRF). We describe threshold PRF with

a decentralized key generation (e.g., [117]).

A (t, n) threshold PRF scheme for a function F consists of the following algo-

rithms (FGen, Eva, Vrf, FCom).

• An interactive key generation algorithm FGen involves n players p1, · · · , pn. Each

player pi takes as input common public parameters, a security parameter l, the

number n of total servers, and threshold parameter t. The output of the protocol

is (pk, vk, sk), where pk is the public key, vk is the verification key, and sk =

(sk1, · · · , skn) is a list of private keys. Both pk and vk are known to anyone, and

pi only obtains ski.

• A PRF share evaluation algorithm Eva takes a public key pk, a PRF input m,

and a private key ski, and outputs a PRF share σi.

• A share verification algorithm Vrf takes as input the verification key vk, a PRF

input m, and a PRF share σi, and outputs a single bit.

• A combining algorithm FCom takes as input the verification key vk, a PRF input

m, and a set of t valid PRF shares, and outputs a PRF value σ.

We require the threshold PRF value to be unpredictable against an adversary

that controls up to t− 1 servers. We also rely on an additional uniqueness property,

which guarantees that for a given public key pk, there exists exactly one valid

27



signature on each message m. One can consider both static and adaptive adversaries

just as in BFT protocols. In the adaptive corruption model, the adversary can

corrupt players and query signing oracles at any moment of the protocol, based on

the information collected so far.

Byzantine reliable broadcast (RBC).

In RBC, a sender (one of the replicas) sends a message to all other replicas.

An asynchronous RBC protocol [114] satisfies the following properties:

• Agreement: If two correct replicas deliver two messages m and m′ then m = m′.

• Totality: If some correct replica delivers a message m, all correct replicas deliver

m.

• Validity: If a correct sender broadcasts a message m, all correct replicas deliver

m.

• Integrity: Every correct replica delivers a message m from sender p at most

once. If p is correct, then m was previously broadcast by p.

Bracha’s broadcast [37] is a well-known implementation of RBC. To broad-

cast a message m, its communication complexity is O(n2|m|). Cachin and Tes-

saro [46] proposed an erasure-coded RBC (AVID broadcast) reducing the bandwidth

to O(n|m|). EPIC is compatible with any RBC and implements AVID broadcast as

in HoneyBadgerBFT and BEAT.

Asynchronous binary agreement (ABA). In an ABA protocol, each replica has

a binary value as an initial input vinput (also known as a vote). ABA allows replicas

to agree on the value of a single bit and deliver the value. ABA should satisfy the
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following properties:

• Validity: If all correct replicas have the same input value v, correct replicas will

deliver v.

• Agreement: If a correct replica delivers v and another correct replica delivers

v′, then v = v′.

• Termination: All correct replicas eventually deliver a binary value with proba-

bility 1.

An ABA protocol proceeds in rounds, where for a round r, a replica has

an input estr. ABA protocols considered in the paper have an expected constant

number of rounds. In each round, there are a small number of steps (two to four

steps for the ABA protocols we consider), and replicas query the common coin

(realized using threshold cryptography) and decide to either terminate the protocol

or propose some values for the next round.

3.5 Problems and Technical Overview

Figure 2.1 reviews the framework for HoneyBadgerBFT and BEAT.

3.5.1 Characterizing BFT Using Corruption Models

We characterize existing BFT protocols using corruption models. For static security,

the adversary needs to decide which replicas to corrupt before the execution of the

system, whereas for adaptive security, the adversary can adaptively choose which

replicas to corrupt, based on information the adversary has accumulated thus far.
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Common-coin asynchronous BFT. Efficient asynchronous BFT systems, such

as SINTRA, HoneyBadgerBFT, and BEAT, use the ACS framework and rely on

cryptographic common coins.

SINTRA uses the RSA-based dual threshold signature scheme of Shoup [152]

and the Diffie-Hellman problem based threshold PRF scheme of Cachin, Kursawe,

and Shoup [44] implemented using finite fields. HoneyBadgerBFT uses the pairing-

based threshold encryption of Baek and Zheng [97] and the pairing-based threshold

signature of Boldyreva [36]. BEAT uses the threshold encryption scheme of Shoup

and Gennaro [153] and the threshold PRF scheme of Cachin, Kurasawe, and Shoup,

both of which are implemented using elliptic curves. All of the above threshold

cryptographic schemes are proven secure against static corruptions only. Therefore,

the corresponding asynchronous BFT systems achieve static security.

A recent protocol, Dumbo [85], refines the framework of Cachin, Kursawe,

Petzold, and Shoup [43]. It was shown in Dumbo [85] that Dumbo has better

performance than HoneyBadgerBFT in WAN environments.

Unfortunately, in each epoch, Dumbo uses n3 + 12n2 threshold signatures

which are based on pairing operations. As in HoneyBadgerBFT, Dumbo uses some

outdated pairing types. One would need to use well-received pairing types that

achieve standard 128-bit security. Note one pairing operation with such a level of

security is about 10 times slower than the conventional elliptic curve operation.

In order to make Dumbo work in the adaptive security model, one would be have

to replace all the threshold signatures in the static security model with ones with

adaptive security. This replacement potentially makes the approach prohibitively
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expensive.

Local-coin asynchronous BFT. RITAS is a stack of randomized distributed pro-

tocols defending against Byzantine failures [133] in the adaptive corruption model.

It comprises an efficient atomic broadcast protocol of Correia, Neves, and Verissimo

(CNV) [58]. Instead of using common coins, the CNV protocol relies on local coins.

While the protocol terminates in an expected exponential number of rounds, it was

demonstrated that the protocol in practice may execute in only a few rounds for

certain conditions. In a different scenario, the classic Bracha’s ABA protocol [37]

was shown to have better performance than the ABA protocol of Cachin, Kursawe,

and Shoup [44] in the LAN environment where the total number of replicas is at

most ten [132].

The CNV atomic broadcast protocol is much more bandwidth and round ex-

pensive than both HoneyBadgerBFT and BEAT. This expenses make it theoreti-

cally less efficient in a scalable WAN environment. No known experimentation was

conducted for the CNV protocol with more than ten replicas.

Partially synchronous BFT. Most of the existing BFT protocols in partially

synchronous environments [24, 35, 56, 81, 89, 107, 129] achieve adaptive security.

Protocols such as SBFT [80] and HotStuff [167] rely on statically secure threshold

signatures and achieve static security only.

Committee-based (BFT) protocols. Some scalable hybrid blockchain proto-

cols [144] or Byzantine agreement protocols [103] do not use threshold cryptography

but involve the selection of a small committee among all replicas for consensus,
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which makes adaptive security a non-trivial task for them. This situation is not

our concern, as we study conventional BFT protocols where all replicas, not just a

fraction of them, need to participate in the consensus process.

3.5.2 Achieving Adaptive Security for EPIC

EPIC follows HoneyBadgerBFT and BEAT and uses a novel combination of new

primitives to achieve adaptive security.

As we mentioned above, both HoneyBadgerBFT and BEAT use threshold

common coin and threshold encryption schemes which are statically secure. Intu-

itively, to achieve adaptive security, one would have to replace both statically secure

primitives using adaptively secure ones.

First, we adopted and implemented the adaptively secure threshold PRF

scheme of Loss and Moran [122], which is built from the adaptively secure threshold

signature scheme of Libert, Joye, and Yung [117].2 The adaptively secure threshold

PRF scheme (hereinafter the LM-LJY threshold PRF) requires four pairing com-

putation for signature verification, twice more expensive than the threshold PRF

scheme in HoneyBadgerBFT which requires two pairing computation. The LM-

LJY scheme is much more expensive than the pairing-free threshold PRF scheme in

BEAT. It is natural to explore the performance penalty of using adaptively secure

threshold PRF protocol.

2Specifically, Loss and Moran [122] proved that the signature scheme of Libert, Joye, and Yung

satisfies the uniqueness property. It is therefore trivial to derive a threshold PRF scheme in the

random oracle model.
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To handle threshold encryption, one could use an adaptive secure one as well.

To our knowledge, the scheme of Libert and Yung [118] is the most efficient thresh-

old encryption scheme. The scheme, however, relies on a bilinear group of composite

order, which is much less efficient than a regular, prime-order bilinear group [84].

We take a different approach without using threshold encryption. In our approach,

replicas maintain a transaction buffer. Replicas select a random subset of T trans-

actions in plaintext for most epochs. They periodically switch to select the first T

transactions in their buffer. Doing so can keep the efficiency as HoneyBadgerBFT

and BEAT, while ensuring any transaction cannot be censored for too long.

On the one hand, EPIC eliminates the usage of any threshold encryption

scheme, thereby potentially improving the performance of asynchronous BFT. On

the other hand, the periodical switch for selecting transactions in a FIFO manner

may reduce performance. Therefore, we must experimentally verify which of the

above two factors will dominate the performance overhead.

Loss and Moran [122] claimed that they obtained the first adaptively secure

ABA protocol running in O(n2) communication complexity by using the LM-LJY

threshold PRF to obtain common coins for the MMR ABA. The scheme, unfortu-

nately, has the same liveness issue as reported [4]. In contrast, EPIC combines the

LM-LJY threshold PRF and the Cobalt ABA to obtain an adaptively secure ABA

protocol running in O(n2) communication complexity.

As the LM-LJY threshold PRF scheme is the only threshold cryptographic

scheme used in EPIC, we just need to build a decentralized key generation protocol

for the LM-LJY threshold PRF scheme. A decentralized key generation protocol
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has already been described in the same paper by Libert, Joye, and Yung [117]. The

key generation algorithm assumes a broadcast channel and private and authenti-

cated pairwise channels. Most cryptographic and multi-party computation systems

assuming broadcast channels simply use best-effort broadcast (see [87] and refer-

ences therein) and therefore do not provide the fault tolerance needed. We provide

a concrete instantiation using Bracha’s broadcast [38] and an implementation for the

protocol. Our key generation process works in synchronous environment, tolerating

up to n/2 Byzantine faulty replicas.

3.5.3 Achieving Adaptive Security for HALE

HALE aims to “revive” the original idea of Ben-Or, Kemler, and Rabin that ACS

works in the information-theoretic setting. We carefully build HALE so it can be

instantiated efficiently. In contrast to BEAT, HALE relies on three novel ideas with

the first one being our new transaction selection process (the same one as in EPIC).

For ABA, HALE uses Bracha’s ABA protocol that leverages local coins instead

of common coins [37]. Local coin based ABA does not rely on any cryptographic

assumptions. To ensure its correctness, one just needs the authenticated channel

assumption. For RBC, to enforce strict information-theoretic security, one should

choose one that is secure against unbounded adversaries; for instance, the well-

known Bracha’s broadcast [38] is indeed secure against adaptive corruptions.

The CNV atomic broadcast protocol (implemented in the RITAS framework)

also works in the information-theoretic setting but it has a significantly large number
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of steps even in the normal scenarios. The feature makes it less efficient even in

the failure-free scenario. Instead, jumping ahead slightly, HALE can achieve high

throughput in the LAN setting and reasonable throughput in the WAN setting when

n is small; HALE can even outperform EPIC in the LAN setting when n is smaller

than 16.

3.6 EPIC

In this section, we describe the design of EPIC. EPIC follows the ACS framework

and has an RBC phase and an ABA phase. Different from HoneyBadgerBFT and

BEAT, EPIC achieves adaptive security and decentralized key generation. Figure 4.1

describes the EPIC protocol using RBC and ABA in a black-box manner.

We begin with a high-level overview. The protocol proceeds in epochs num-

bered by s (initialized as 0). In each epoch, replicas select a subset of transactions

as a proposal from their transaction buffer and agree on a set of transactions con-

taining the union of the proposals of at least n− f replicas. Let B be the batch size

of the transactions for an epoch. In an epoch, each replica proposes transactions of

size b = dB/ne (the batch size for a replica). In the RBC phase, replicas use RBC

to broadcast the proposals. In the ABA phase, n parallel ABA instances are run.

The i-th ABA instance is used to agree on whether the transactions from replica pi

have been delivered in the RBC phase. If a correct replica pj terminates the i-th

ABA instance with 1, the transactions from pi are delivered. Otherwise, the trans-

actions will not be included. We follow Ben-Or et al. [32] (and HoneyBadgerBFT
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Initialization
buf ← ∅ {transaction buffer}
B {batch size}
µ, δ {parameters for transaction selection}
s← 0 {epoch number}
i {replica id}
{RBCj}n {n RBC instances where j is the sender of RBCj}
{ABAj}n {n ABA instances}

epoch s
if s = 0, · · · , µ− 1 mod (µ+ δ)

let value be a random selection dB/ne of transactions for the first B
elements in buf

else let value be the first dB/ne transactions in buf
input value to RBCi

upon delivery of valuej from RBCj

if ABAj has not yet been provided input, input 1 to ABAj

upon delivery of 1 from ABAj and valuej from RBCj

output← output ∪ valuej
upon delivery of 1 from at least n− f ABA instances

for each ABAj instance that has not been provided input
input 0 to ABAj

upon termination of all the n ABA instances
deliver output

s← s+ 1

Figure 3.1: EPIC algorithm for pi.

and BEAT), ensuring at least n− f ABA instances terminate with 1, and thus the

union of the transactions from at least n − f replicas are delivered. To this goal,

every replica abstains from proposing 0 until n − f ABA instances have been de-

livered by the replica. Each ABA instance terminates with probability 1/2 for each

round. As EPIC must wait for all ABA instances to finish, the expected running

time of EPIC is O(logN).

As in HoneyBadgerBFT and most BEAT instances, EPIC uses an adaptively

secure RBC — AVID broadcast [46]. In the following, we specify other building

blocks for EPIC:
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• the transaction selection approach in EPIC,

• the decentralized key distributed algorithm for EPIC,

• EPIC’s ABA protocol—the Cobalt ABA, and

• the adaptively secure common coin protocol from the LM-LJY threshold PRF

scheme.

Transaction selection for EPIC. EPIC uses a novel transaction selection ap-

proach which is distinguished from prior asynchronous BFT protocols such as SIN-

TRA, HoneyBadgerBFT, and BEAT.

In SINTRA, replicas maintain a log of transactions according to the order

they are received and replicas select as input the first subset of transactions in the

transaction buffer. We call the approach FIFO selection. The approach can be easily

shown to achieve liveness but leads to low system throughput. This slowdown is

because the transactions delivered are unions of the transactions selected by replicas,

and replicas tend to select the same transactions in each epoch.

In HoneyBadgerBFT (and BEAT), replicas propose randomly selected sets

of transactions to improve throughput. Doing so directly causes a liveness issue,

as a network adversary can censor certain transactions so that they will not be

delivered. Thus, HoneyBadgerBFT (and BEAT) choose to use threshold encryption

to avoid censorship. In their approach, replicas first encrypt the proposals and then

decrypt them collectively when transactions in ciphertext are delivered. We call this

approach ETD (standing for “encrypt-then-decrypt”). HoneyBadgerBFT uses the

pairing-based threshold encryption scheme of Baek and Zheng, while BEAT uses
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the threshold encryption scheme of Shoup and Gennaro [153]. Both schemes are

efficient but only statically secure.

In EPIC, we take a different approach without using threshold encryption. We

ask replicas to select random transactions in plaintext for most epochs (e.g., 4/5 of

the total epochs) and periodically switch to the FIFO selection. The strategy is

performed deterministically for all replicas.

More formally, let s be the epoch number initially numbered 0. Let µ and δ

be two system parameters determining how often the protocol switches between the

two modes. In EPIC, replicas can first perform random selection for µ epochs and

then the FIFO selection for δ epochs. Our approach can be generalized to many

other scenarios, as long as the switching strategy is deterministic (and known to

all replicas), and the system can perform the FIFO selection for a non-negligible

fraction of epochs (to ensure liveness).

Our transaction selection approach can keep the efficiency of HoneyBadgerBFT

and BEAT, while avoiding censorship. Since our approach can be somewhat viewed

as a hybrid of HoneyBadgerBFT and SINTRA, we call it HYB (standing for “hy-

brid”).

The HYB approach eliminates the use of (expensive) threshold encryption

scheme, which would improve efficiency. The periodical transaction switch to the

FIFO selection may reduce performance. Besides, the approach provides trade-offs

between latency and throughput. Roughly, if µ is reasonably larger than δ, the

system favors throughput over latency, and otherwise the opposite is the case.

The Cobalt ABA. HoneyBadgerBFT and BEAT use the MMR protocol in the
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ABA phase. It was reported that the MMR protocol is not live if being instantiated

using any existing cryptographic common coin protocols [4]. Essentially, the MMR

protocol makes a strong common coin assumption which existing cryptographic com-

mon coin protocols fail to satisfy. Besides, the MMR protocol in HoneyBadgerBFT

and BEAT achieve static security due to the use of statically secure common coin

protocols.

EPIC thus enhances the ABA choice in HoneyBadgerBFT and BEAT in two

aspects. First, we use the Cobalt ABA protocol [127] instead of the MMR ABA to

resolve the liveness issue. Second, we instantiate the Cobalt ABA protocol using

the adaptively secure LM-LJY threshold PRF scheme.

The MMR and Cobalt ABA protocols are illustrated in Figure 3.2, where

the Cobalt ABA includes the boxed code but the MMR ABA does not include.

Specifically, the MMR protocol has two to three steps in each round. In the first

step, all replicas broadcast their input. If a replica receives f + 1 matching input

value that is different from its input, it triggers the second step by broadcasting the

value. In the last step, if a replica receives 2f + 1 matching value v, it broadcasts

an aux(v). Next, if a replica receives 2f + 1 aux() messages, it either uses the only

available binary value from the aux() messages or the common coin value to enter

the next round. The liveness issue for MMR protocol is due to the usage of the

cryptographic common coin. The adversary (and network scheduler) can learn the

value of the common coin and manipulate the sequence of messages received by

other replicas to make the protocol never terminate. To solve the issue, the Cobalt

ABA protocol introduces one more step in each round. In the Cobalt ABA protocol,
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each replica needs additionally to broadcast the values received in the aux() step.

We use the Cobalt ABA to obtain an adaptively secure ABA protocol running in

O(n2) communication complexity.

The additional step in the Cobalt ABA protocol can be significant, as the

Cobalt ABA only has three or four steps in each round and it may run in several

rounds (two on average). On the other hand, it was shown that some ABA protocols

may terminate faster than expected (in a small-scale setting) [133, 132]. It is natural

to ask what the performance penalty of both BEAT and EPIC using the Cobalt ABA

would be.

Initialization
r ← 0 {round}
est0 ← vinput {set input for round 0 to initial input}

round r
broadcast bval(estr) {broadcast input}
upon receiving bval(v) from f + 1 replicas

if bval(v) has not been sent, broadcast bval(v)
upon receiving bval(v) from 2f + 1 replicas
bin values ← bin values ∪ {v}

wait until bin values 6= ∅ {move to the second step}
broadcast aux(v) where v ∈ bin values

upon receiving n − f aux() such that the set of values vals the messages
is a subset of bin values

broadcast confr(vals) {move to the third step}
upon receiving n− f confr() such that the set of values vals is a subset

of bin values
c← Coin() {obtain common coin}
if vals = {ρ}
estr+1 ← ρ
if ρ = c, deliver ρ {terminate the protocol}

else estr+1 ← c {enter the next round}
r ← r + 1

Figure 3.2: The MMR and Cobalt ABA protocol. The Cobalt ABA includes the
boxed code, while the MMR ABA does not.

Distributed key generation. EPIC uses one threshold cryptographic primitive
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only, the LM-LJY adaptively secure threshold PRF. The threshold PRF scheme

is the adaptively secure threshold PRF scheme of Loss and Moran [122], which

is built from the adaptively secure threshold signature scheme of Libert, Joye, and

Yung [117]. If the key generation for the threshold PRF is decentralized, so is EPIC.

In fact, a decentralized key generation protocol has been described in the same

paper by Libert, Joye, and Yung [117], but no implementation is provided. The key

generation algorithm assumes a broadcast channel and private and authenticated

pairwise channels.

While most of existing distributed cryptographic and multi-party computation

systems [87] relying on broadcast channels simply use best-effort broadcast, we

provide a concrete instantiation using Bracha’s broadcast [38]. Bracha’s broadcast

has three steps, achieving adaptive security in asynchronous environments.

It is straightforward to build a synchronous version for it. We describe the

EPIC distributed key generation protocol in Figure 3.3.

Though a distributed key generation protocol should ideally work in asyn-

chronous environments, our protocol works in synchronous environments only. We

made the system decision, in part because the protocol is simpler to implement than

existing asynchronous protocols [98, 106]. Another reason is that the key genera-

tion procedure is a one-time event, and replicas can set an adequately large timeout

value to ensure safety. Note that key generation protocol can tolerate up to n/2

Byzantine failures, while an asynchronous key generation protocol only tolerates up

to n/3 Byzantine failures.
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Common public parameter setup: Let BG = (q,G, Ĝ,GT , e) be an asym-
metric bilinear group, where G, Ĝ, and GT are cyclic groups of prime order q,
g and ĝ are generators for Ĝ, and e : G× Ĝ→ GT is an efficiently computable
bilinear map.
• pi chooses random polynomials for k ∈ {1, 2}: Aik[X] = aik0 + aik1X + · · ·+
aikfX

f and Bik[X] = bik0 + bik1X + · · ·+ bikfX
f of degree f . pi runs RBC to

broadcast Cikd = gaikd ĝbikd for d ∈ [0..f ]. pi sends {Aik(j), Bik(j)}2
k=1 to pj for

j ∈ [1..n].
• pi sends a complaint against pj for any of the conditions:

• pi received {Ajk(i), Bjk(i)}2
k=1 from pj and checks

gAjk(i)ĝBik(i) =

f∏
d=0

Cid

jkl for k = 1, 2 (1),

but these equalities do not both hold,

• pi did not receive values from pj, or

• pi received more than one set of values.

• Upon receiving a complaint from pj, pi runs RBC to broadcast
{Aik(j), Bik(j)}2

k=1 that satisfy (1).
• pi marks pj as disqualified if

• pi received more than f complaints against pj, or

• pj answered a complaint with values that falsify (1).

pi then builds the set of non-disqualified replicas Q.
• pi computes (pk, vk1, · · · , vkn, ski) as follows:

•
pk ←

∏
i∈Q

Cik0,

•

vkj ←
(∏

u∈Q

t∏
d=0

Cid

u1l,
∏
u∈Q

t∏
d=0

Cid

u2l

)
for j ∈ [1..n]

•

ski ←
{∑

j∈Q

Ajk(i),
∑
j∈Q

Bjk(i)

}2

k=1

Figure 3.3: The distributed key generation algorithm FGen for (f + 1, n) threshold
PRF for replica pi, where the output of pi is (pk, vk1, · · · , vkn, ski). The algorithm is
executed only once and tolerates n

2
corruptions. The first three steps are interactive,

while the last two steps involve local computation only.
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Common coin protocol. For the adaptively secure common coin protocol, we use

the LM-LJY threshold PRF scheme of Loss and Moran [122] based on the adaptively

secure threshold signature scheme of Libert, Joye, and Yung [117] (Figure 3.4). The

threshold PRF scheme requires four pairing computation for signature verification.

It is thus twice more expensive than the threshold PRF scheme in HoneyBadgerBFT

and much more expensive than the pairing-free threshold PRF scheme in BEAT.

The threshold LM-LJY PRF scheme provides adaptive security under the Symmetric

eXternal Diffie-Hellman (SXDH) assumption.

Finally, we illustrate in Figure 3.5 the common coin protocol based on the

LM-LJY (f + 1, n) threshold PRF scheme (Eva,Vrf,FCom).

3.7 HALE: Achieving Adaptive Security using Local Coin

We study asynchronous BFT in the EPIC framework using ABA from local coins.

Since ABA from local coins usually involves significantly more steps than those from

common coins, it remains to see how the corresponding BFT protocols perform in

the EPIC framework.

HALE follows the ACS framework and achieves adaptive security using local-

coin based ABA protocols. Specifically, we use Bracha’s ABA [37]. The pseudocode

of Bracha’s ABA is shown in Figure 3.6. We use |ρ| to represent the number of

delivered messages with value ρ. In addition, we add vset to represent valid binary

values that can be accepted by a correct replica in each round. In the Bracha’s

ABA protocol, the key to correctness is that each replica accepts only valid values
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Common public parameter setup: The same as Figure 3.3; besides, define
two hash functions H : {0, 1}∗ → G2, H ′ : G2 → {0, 1}.
Eva(pk,m, ski)

(h1, h2)← H(m)
parse ski as {Ak[i], Bk[i]}2

k=1

zi ←
∏2

k=1 h
−Ak[i]
k ; vi ←

∏2
k=1 h

−Bk[i]
k

return σi ← (zi, vi).
Vrf(vk,m, vki, yi)

parse σi as (zi, vi) and vki as (V1i, V2i)
(h1, h2)← H(m)
if e(zi, g) · e(vi, ĝ) ·

∏2
k=1 e(h1, vki) = 1 return 1

else return 0
FCom(vk,m, {σj}j∈S)

upon receiving f + 1 valid PRF shares {σj}j∈S
for j ∈ S, parse σj as (zj, vj)

z ←
∏

j∈S z
∆j,S(0)
i ; v ←

∏
j∈S v

∆j,S(0)
i

{∆j,S denotes the Lagrange polynomial for j ∈ S}
return σ ← H ′(z, v).

Figure 3.4: The LM-LJY (f + 1, n) threshold PRF scheme (Eva,Vrf,FCom).

upon receiving Coin(sid)
m← sid
σi ← Eva(pk,m, ski)
broadcast (i,m, σi)

upon receiving f + 1 valid threshold PRF shares {σk}k∈S on m
return σ ← FCom(vk,m, {σk}k∈S)

Figure 3.5: The common coin protocol from the LM-LJY (f + 1, n) threshold PRF
scheme, where sid is a session identifier and consists of an epoch number s, a round
number r, and an ABA instance number j ∈ [1..n].

in each step. Specifically, a value a replica accepts in each step must be congruent

with the messages it received in the previous step/round. Therefore, to simplify

the representation, we use vset to represent the valid values in each step. In the

first phase of the first round, a correct replica can accept and deliver any values. In

other phases and the first phase in other rounds, however, correct replicas accept a

binary value only if it previously received the value from a sufficiently large fraction
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Initialization
r ← 0 {round}
est0 ← vinput {set input for round 0 to initial input}
vset← {0, 1} {valid binary values that will be accepted}

round r
RBC0(estr) {broadcast input using reliable broadcast}
upon receiving RBC0() with vals ∈ vset from n− f replicas

if vals = {ρ}, deliver ρ, vset← {ρ}
else
v = majority(vals)
RBC1(v) {move to the second step}

upon receiving RBC1() with vals ∈ vset from n− f replicas
if |ρ| > n/2, v = ρ, vset← {ρ}
else
v =⊥, vset← {0, 1}

RBC2(v) {move to the third step}
upon receiving RBC2() with vals ∈ vset from n− f replicas

if |ρ| ≥ 2f + 1, deliver ρ, vset← {ρ}
else if |ρ| ≥ f + 1, estr+1 = ρ, vset← {0, 1}
else
c← Random() {obtain a local coin}
estr+1 = c, vset← {0, 1}

r ← r + 1

Figure 3.6: The Bracha’s ABA protocol [37].

of replicas.

As shown in Figure 3.6, Bracha’s ABA protocol has three phases. In each

phase, each replica uses RBC to broadcast its value. In other words, each round

involves 9 steps in total. In the first phase, every replica broadcasts its input value.

If a replica receives values from n− f replicas, it delivers a value ρ if ρ is the only

value it has received. Otherwise, a replica uses the value from the majority of the

n − f replicas as input for the next phase. In the former case, a replica will only

accept ρ value in the following phase. Otherwise, both 0 and 1 are considered valid

which can be accepted in the next phase. In the second phase, if a replica receives
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matching value ρ from more than n/2 replicas, it uses the value as input for the

third phase. Otherwise, it broadcasts ⊥ in the third phase, representing that it has

previously received both 0 and 1 that might be valid. Finally, in the third phase, if

a replica receives a value ρ from more than 2f + 1 replicas, it delivers ρ and will not

accept any values other than ρ in the first phase of the following round. If a replica

receives ρ from more than f + 1 replicas, it uses ρ as input for the next round and

considers both 0 and 1 as valid. Otherwise, a replica generates a random local coin,

uses it as input for the next round, and considers both 0 and 1 as valid.

As Bracha’s ABA relies on local coins, the expected rounds of termination

is O(2n), which is significantly higher than O(1) in ABA protocols that rely on

common coins. Put in the ACS BFT framework, Bracha’s ABA may not result

in significantly longer latency or lower throughput, especially when there are no

failures. This situation is mainly because Bracha’s ABA may terminate in one

round when a correct replica delivers n− f RBC0(ρ). In other words, if all replicas

use 1 as input for the ABA, the protocol will terminate in 9 steps (1 ABA round).

In the ACS framework, replicas refrain themselves from using 0 for ABA instances

before each replica terminates n− f ABA instances with value 1.

Our implementation choice. Like all information-theoretically secure construc-

tions, we need to consider how to instantiate concrete building blocks for HALE

in a reasonable manner. For authenticated channels, the most natural method is

to use message authentication codes (MACs), or digital signatures. For RBC, we

decide to stick to the AVID broadcast. Note the AVID broadcast uses a collision-

resistant hash function. Strictly speaking, one should not use hash functions, as hash
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functions are cryptographic tools (though they are not based on some mathematical

hardness problems). However, our thesis remains that they are simply instantiations

of building blocks for HALE. If in the future the underlying MAC, digital signature,

or hash function is found to be less intractable, one can easily replace it using one of

secure schemes. There are numerous choices for them, as authentication and hash

functions are basic tools in the information security field.

It is in sharp contrast to EPIC, which relies on a highly sophisticated cryp-

tographic scheme—adaptively secure threshold PRF. So far, we have only one such

realization and the realization is based on a non-standard pairing-based mathemat-

ical problem. Moreover, the realization is in the random oracle model (where the

hash function is modeled a perfect random function), while our HALE instantiation

is in the standard model.

3.8 Implementation

The entire EPIC library includes 13,000 lines of Python code, among which 900

lines of code are written for key distribution and 1,200 lines of code are used for

evaluation. In total, we implemented four asynchronous BFT protocols summarized

in Table 3.1. For both EPIC and EPIC-MMR, we use the BN256 pairing curve to

understand the performance overhead incurred by threshold cryptography.

BEAT is our baseline protocol. We used the BEAT0 protocol, which leverages

more efficient cryptography than HoneyBadgerBFT. While using BEAT0, we call

our baseline protocol BEAT for simplicity.
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Protocol ABA Common Coin
Transaction

Selection

Liveness
Adaptive

Security

BEAT MMR [134] CKS [44] ETD No No

BEAT-Cobalt Cobalt [127] CKS [44] ETD Yes No

EPIC-MMR MMR [134] LM-LJY [117, 122] HYB No Yes

EPIC Cobalt [127] LM-LJY [117, 122] HYB Yes Yes

HALE Bracha’s ABA Bracha [38] HYB Yes Yes

Table 3.1: The implemented asynchronous BFT protocols.

We use the BN256 curve [28] for the LM-LJY threshold PRF scheme. BN256

and BN254 curves achieve 110-bit security and have been widely used in many other

BFT and blockchain systems (e.g., SBFT [80]). We modified the Charm Python

library [22] to wrap a version of the relic C++ library [12] and then implemented

the LM-LJY threshold PRF scheme using the modified Charm library.

To understand the overhead incurred by threshold cryptography, we also di-

rectly use Charm’s PBC library to implement threshold PRF schemes two other

pairing groups: the MNT224 (an asymmetric pairing group) and SS512 (a sym-

metric pairing group). Both groups have less than 100-bit security, which is below

the well accepted level of security (and should not be directly used for real-world

applications or critical infrastructure).
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3.8.1 Average throughput vs. Total throughput.

To present our results better, we further distinguish total throughput TH in the con-

ventional sense and the average throughput per replica AT . The latter is defined

as the actual average delivered transactions per second proposed by each replica.

In other words, the total throughput is the aggregation of average throughput per

replica. Note that conventially BFT protocols under the partially synchrony model

(e.g., PBFT [50]) only has total throughput. This difference is because contential

BFT protocols are usually leader-based where the leader proposes transactions and

other nodes decide whether they can reach a consensus about the results. Therefore,

even when the network size f grows, in every epoch, only one batch of transactions

are proposed. In comparison, in leaderless asynchronous BFT protocols, every node

proposes a batch of transactions in each epoch. Therefore, the average throughput

matches the throughput of leader-based protocols. In comparison, the total through-

put of asynchronous protocols is the aggregated throughput, which potentially can

grow as the network size grows.

Existing asynchronous BFT protocols report different throughput. Specif-

ically, HoneyBadgerBFT and BEAT report different throughput numbers where

HoneyBadgerBFT reported for TH (without considering overlapped transactions

proposed by different replicas) and BEAT reported for AT . Although the (total)

throughput represents the actual system throughput, we do find that both total

throughput and average throughput are worth reporting. Specifically, the average

throughput can better illustrate the performance downgradation when the network
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size grows. In comparison, the total number of proposed transactions grows as the

network size increases since replicas all propose transactions concurrently. There-

fore, the total throughput does not necessarily downgrade as f increases.

3.9 Evaluation

Overview. We evaluate the protocols on Amazon EC2 using up to 91 virtual ma-

chines (VMs) in different regions across five continents. Each VM is the t2.medium

type with two vCPUs and 4GB memory, running Ubuntu 16.04. We evaluate the

protocols in both LAN and WAN settings, where the VMs are launched in the same

EC2 region in the LAN setting, and the VMs are evenly distributed in different

regions in the WAN setting. We evaluate the protocols using different network sizes

and batch sizes.

We evaluate the protocols with different network sizes. We use f to represent

the network size, and the total number of replicas is n = 3f + 1. Recall B and

b = dB/ne are the batch size for the protocol and the batch size for transactions

proposed by each replica, respectively. All transactions are of size 250 bytes.

When evaluating latency only, we have b = 1, where each replica proposes

a single transaction. When evaluating throughput, we vary the size of b until the

throughput reaches its peak and stabilizes.

The system throughput is evaluated according to the actual delivered transac-

tions using real transaction buffers. In particular, overlapping transactions delivered

are counted once. Unless stated otherwise, we let the transaction buffer at each
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replica be 10 · b.

Our approach is more precise than HoneyBadgerBFT and BEAT. In their

approaches, replicas use local random coins to generate independently distributed

transaction sets from a large space, and the probability of any two sets being over-

lapping is negligible. Our approach is needed to understand the exact impact of

using various transaction selection approaches.

We run each experiment five times, and each experiment runs 20 epochs. We

then calculate the average results. For HYB in EPIC, we let µ be four and δ be one.

Namely, we first run four epochs using random selections and then one epoch using

the FIFO selection.

Our results show that EPIC achieves adaptive security with low overhead when

f is small. In the WAN setting, EPIC has only 2%, 5%, 21% lower throughput than

BEAT-Cobalt when f = 1, 2, 5, respectively. When f further grows, the performance

overhead for EPIC compared with BEAT-Cobalt is significantly higher. When f =

30, EPIC achieves 68% lower peak throughput than BEAT-Cobalt.

Besides the conventional metrics (latency, throughput, and scalability), our

evaluation also aims to identify the performance bottlenecks using a variety of ex-

periments.

MMR ABA vs. Cobalt ABA. Both HoneyBadgerBFT and BEAT use the MMR

ABA. The Cobalt ABA solves the liveness problem at the cost of an additional step

in each round. We find that in all of our experiments, BEAT (using MMR) outper-

forms BEAT-Cobalt and EPIC-MMR outperforms EPIC (using Cobalt) in terms

of both latency and throughput. We also find that the performance degradation
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Figure 3.7: Latency for f = 1 in both LAN setting and WAN setting under no

contention.

caused by the extra step in the LAN setting is small but certainly noticeable, while

it becomes more visible in the WAN setting. This result is expected, as the network

latency caused by the extra step has a more significant impact in the WAN setting.
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Figure 3.8: Throughput of BEAT, EPIC, HALE for f = 1 in the LAN setting.

Figure 3.8 and Figure 3.9 show the throughput of the BFT protocols for

f = 1 in LAN and WAN environments, respectively. In the LAN setting, BEAT-

Cobalt achieves 0.02% lower throughput than BEAT, and EPIC achieves 1% lower

throughput than EPIC-MMR. In the WAN setting, BEAT-Cobalt achieves 2% lower

throughput than BEAT and EPIC achieves 8% lower throughput than EPIC-MMR.

52



0 2 4 6 8 10

·103

0

5

10

15

20

·103

Batch Size

T
h
ro

u
gh

p
u
t

(t
x
/s

ec
)

BEAT(f=5) BEAT-Cobalt(f=5) EPIC-MMR(f=5)
EPIC (f=5) BEAT(f=1) BEAT-Cobalt(f=1)

EPIC-MMR(f=1) EPIC (f=1)
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As for latency, we show in Figure 4.9 BEAT-Cobalt has 16%-34% higher latency

than BEAT and EPIC has 18%-31% higher latency than EPIC-MMR.

0 2 4 6 8 10

·103

0

2

4

6

Throughput (tx/sec)

L
at

en
cy

(S
ec

)

BEAT BEAT-Cobalt EPIC-MMR EPIC
HALE

Figure 3.10: Latency vs throughput for f = 1 in the WAN setting.

Adaptive vs. Static security. We compare EPIC with BEAT-Cobalt, a live,

asynchronous BFT protocol with static security. As shown in Figure 4.9-4.11, EPIC

protocols consistently achieve lower throughput and higher latency than BEAT-

Cobalt. This finding is due mainly to the fact that LM-LJY involves more expensive

cryptographic computation. The performance difference in the WAN environment

between the two protocols is relatively small: EPIC has 13% higher latency and

53



5% lower throughput than BEAT-Cobalt. In the LAN setting, the difference is

considerably larger where the peak throughput of EPIC is 29% lower than that

of BEAT-Cobalt. Besides, we show latency vs. throughput in Figure 3.10. We

observe that for both BEAT and EPIC, their latency increases dramatically when

the throughput is close to 9,000 tx/sec.

Performance breakdown for threshold cryptography. To understand the

performance bottlenecks caused by the underlying threshold PRF components, we

test the performance of various threshold PRF protocols, including CKS, LM-LJY,

and Boldyreva’s [36] (used in HoneyBadgerBFT). CKS uses NIST P256 curves,

while the other two use BN256 pairing curves. We assess the latency of various

schemes on a local machine (3.2GHz CPU, 16GB memory, Intel core i7) for f = 1

and n = 4. The result is summarized in Table 3.2. Among CKS, LM-LJY, and

Boldyreva’s, CKS has the lowest latency as it uses efficient regular elliptic curves.

The performance breakdown result for the three threshold PRF schemes matches the

system throughput result in Figure 3.8 and confirms the performance comparison

result [70] between BEAT and HoneyBadgerBFT.

BFT using LM-LJY with different pairing curves. EPIC uses BN256 curves

to implement the LM-LJY threshold PRF scheme. To understand the exact cryp-

tographic overhead and impact of EPIC further, we additionally implement EPIC

using three different pairing curves: EPIC (i.e., EPIC(BN256)), EPIC(SS512), and

EPIC(MNT224). Moreover, for comparison, we also implement EPIC-MMR(BN256),

EPIC-MMR(SS512), and EPIC-MMR(MNT224).
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schemes Eva Vrf FCom

CKS (NIST P256) 0.138 0.191 0.152

Boldyreva’s (BN256) 0.233 4.190 0.123

LM-LJY (BN256) 1.849 8.071 0.231

LM-LJY (MNT224) 2.578 14.432 1.445

LM-LJY (SS512) 3.873 2.316 2.069

Table 3.2: Latency (ms) of different (2, 4) threshold PRF schemes (Eva, Vrf, FCom).

We demonstrate in Table 3.2 the latency breakdown of the LM-LJY scheme

using BN256, SS512, MNT224. We assess the throughput of EPIC and EPIC-MMR

using the three curves and compare the performance with BEAT and BEAT-Cobalt

in the LAN setting, the results of which are shown in Figure 3.8. Among all these

protocols, the ones using BN256 curves achieve the highest throughput and the ones

using MNT224 achieve the lowest throughput. For instance, the peak throughput

of EPIC-MMR using MNT224 is 35% lower than that of EPIC-MMR using BN256.

The peak throughput of EPIC-MMR using MNT224 curve is rather similar to that

of EPIC which uses the Cobalt ABA and MNT224 curve. Among the three pairing

curves, BN256 is not only the most secure one but also the most efficient one. Our

evaluation thus validates our design choice of using BN256. Besides, the result

in Table 3.2 explains (perfectly) the performance difference among the evaluated

protocols.

Transaction selection. We evaluate the transaction selection approach (HYB)

for EPIC in both LAN and WAN environments. In our experiments, we let δ be
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one and run 100 epochs with different µ values. We run the experiments using

f = 1 and varying b sizes. As we observe similar results for different b sizes, we

selectively present the results for b = 1000 in Table 3.3. Our experiment shows our

HYB strategy provides efficient trade-offs between latency and throughput: if µ is

small, the system achieves lower throughput in both LAN and WAN settings.

µ LAN WAN µ LAN WAN

2 5684.10 1147.02 3 6650.40 1341.90

4 7104.66 1433.63 5 7388.17 1490.97

10 7955.31 1605.40 15 8182.70 1651.24

20 8239.33 1662.64 50 8409.91 1697.20

Table 3.3: Throughput of EPIC in both LAN setting and WAN setting when f = 1

and δ = 1. Each experiment is run for 100 epochs.

f = 1 f = 2 f = 5 f = 10 f = 15 f = 20 f = 30
0

5

10

15

20

25
·102

T
h
ro

u
gh

p
u
t

(t
x
/s

ec
)

BEAT-Cobalt EPIC

Figure 3.11: Average throughput per replica of BEAT-Cobalt and EPIC when b =

5000 in the WAN setting as f increases.

Scalability. We evaluate the scalability of all our implemented protocols by varying

f from 1 to 30. We report the average throughput in Figure 3.11 and the (total)
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Figure 3.12: Throughput of BEAT-Cobalt and EPIC when b = 5000 in the WAN

setting as f increases.
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throughput in Figure 3.12 and Figure 4.11. The average throughput is the average

of the actual delivered transactions per second of the replicas. The total throughput

is the throughput in the conventional sense.

We evaluate the throughput by varying b and observe a similar trend in all

protocols. We report the throughput of BEAT-Cobalt and EPIC as b increases in
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Figure 4.11. We also report the average and total throughput for BEAT-Cobalt

and EPIC for b = 5000. First, all the protocols achieve lower average throughput

per replica when f grows. When f = 1, EPIC has 2% lower average throughput

per replica than BEAT-Cobalt. When f = 2 and 5, EPIC has about 5% and 21%
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Figure 3.14: Average throughput for BEAT-Cobalt, EPIC and HALE in the LAN

and WAN setting when b = 5000 as f increases.

lower average throughput per replica, respectively. But if f further increases, the

difference for average throughput becomes significantly larger. (When f = 10, the

peak (total) throughput of EPIC is around 10, 000 tx/sec.)

For the total throughput, however, we find that as f increases, the through-

put for all asynchronous BFT protocols first increases and then decreases. This

is (quite) expected, though it has been formally reported by HoneyBadgerBFT or

BEAT. Indeed, when f first grows, the number of concurrently proposed trans-

actions grows significantly, making the system throughput higher than that with

smaller network sizes. When f grows further, the average throughput per replica

becomes much smaller; even if the average throughput per replica gets multiplied

by a large dtx ≥ (n − f) (the number of ABA instances that deliver 1), the total

throughput remains smaller. In our experiments (using b = 5000), we observe that

BEAT-Cobalt achieves the largest throughput when f = 15, and the throughput of
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EPIC is the largest when f = 5.
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HALE. We evaluate the throughput and scalability of HALE and compare the

performance with BEAT-Cobalt and EPIC. We evaluate the throughput of the pro-

tocols in both LAN and WAN settings to understand the overhead of HALE fully,

the asynchronous BFT protocol using local coins. Since we aim to present scala-

bility (throughput as f increases), we present only the average throughput of the

protocols where the total throughput is roughly average throughput times n− f .

We first compare HALE, EPIC, and BEAT-Cobalt in LAN settings and show

the results in Figure 3.13. When f is small (in our experiments f < 5), the through-

put of HALE is close to that of BEAT-Cobalt and is much higher than that of EPIC.

Specifically, when f = 1 and f = 2, HALE achieves 38% and 22% higher average

throughput than EPIC. This finding is expected since in a LAN environment, the

network latency is low. Therefore, the communication overhead of HALE is low.

Furthermore, HALE does not involve any threshold cryptography, which explains

why the throughput of HALE is much higher than that of EPIC. The results roughly

60



match the observation from previous work [132].

When f increases, the performance of the three protocols is similar. This result

is because the throughput of all protocols degrades as f increases. When f is greater

than 5, the average throughput of EPIC is higher than that of HALE. This outcome

is mainly because Bracha’s ABA in HALE involves nine steps in each round, which

results in significantly higher latency. When f is big, the communication overhead

is high for HALE.

The performance in WAN environments is different. As shown in Figure 3.14(a),

HALE achieves significantly lower throughput and scalability than BEAT-Cobalt in

the WAN setting. When f = 1 and f = 2, HALE has about 37% and 35% lower peak

average throughput compared to BEAT-Cobalt, respectively. On the other hand,

HALE also achieves lower throughput than EPIC, as shown in Figure 3.14(b). When

f = 1 and f = 2, HALE has about 35% and 31% lower throughput than EPIC.

When f increases, the difference also becomes larger. This result is mainly because

the Bracha’s ABA in HALE creates high communication overhead in the WAN

setting.

We also show the peak throughput of the three protocols in both LAN and

WAN, as shown in Figure 3.14. The performance of all protocols in the LAN setting

is significantly higher than that in the WAN setting. Even when f = 10, the

LAN setting still has about 57%, 70% and 40% higher average throughput than the

WAN setting for BEAT-Cobalt, EPIC and HALE, respectively. The peak average

throughput for HALE where f = 1 is 13,999 tx/sec in the LAN setting and 1,125

tx/sec in the WAN setting. In other words, the peak total throughput is 42,000
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tx/sec and 3,400 tx/sec in LAN and WAN settings, respectively.

Distributed key generation. Figure 3.15 summarizes the latency of our (f+1, n)

distributed key generation protocol in LAN environments. We evaluate the failure-

free scenario, where all replicas are correct and the non-disqualified set includes all

replicas, and the failure scenario, where there exists a single malicious replica. We

also compare the two scenarios with a centralized key generation scenario where

there is no interaction. Since the distributed key generation protocol runs in syn-

chronous environments, we test only the optimal scenario where the timer equals

the message processing and message transmission delays. Therefore, our evaluation

result can be used to guide the timer setup for the protocol. One should setup much

larger timers in practice. As shown in Figure 3.15, the distributed key generation

incurs much higher latency compared to the centralized approach. The performance

difference between the failure scenarios and the failure-free scenarios is noticeable

but comparatively small.

3.10 Conclusion

We design and implement the first efficient asynchronous BFT protocols achieving

adaptive security: EPIC (in the computational security model) and HALE (in the

stronger information-theoretic security model). We evaluate both EPIC and HALE

in both LAN and WAN environments. We show that EPIC is not much slower than

asynchronous BFT protocols with static security; we also show while HALE is in

general less efficient than EPIC, it outperforms EPIC in the LAN setting for n ≤ 16.
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Chapter 4

MiB: Asynchronous BFT with More Replicas

4.1 Overview

State machine replication (SMR) is a popular software technique achieving high

availability and strong consistency guarantees in today’s distributed applications

(e.g., Apache ZooKeeper [90]), Google’s Spanner [41]). Byzantine fault-tolerant

SMR (BFT) is known as the model for permissoned blockchains, where the replicas

need to authenticate themselves but do not necessarily trust each other. BFT is

also used in permissionless blockchains (where nodes may join and leave the systems

dynamically) to enhance the performance and achieve finality (e.g., [18, 104, 105,

126, 143, 168]).

Different from partially synchronous BFT protocols, asynchronous BFT pro-

tocols do not rely on any timing assumptions and are therefore more robust against

performance, timing, and denial-of-service attacks. For this reason, many asyn-

chronous BFT (atomic broadcast) protocols have been proposed [19, 31, 32, 43,

45, 59, 112, 133, 149]. In particular, several asynchronous BFT protocols proposed

recently, HoneyBadgerBFT [130], BEAT [70], EPIC [119], and Dumbo [85], have

comparable performance as partially synchronous BFT protocols (e.g., PBFT [50])

and can scale to around 100 replicas. These efficient protocols follow the asyn-

chronous common subset (ACS) framework [31]. The ACS framework consists of a
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reliable broadcast (RBC) component and an asynchronous binary agreement (ABA)

component. HoneyBadgerBFT, BEAT, EPIC, and Dumbo all use RBC and ABA

and are different only in concrete instantiations.

All these efficient asynchronous BFT protocols using RBC and ABA assume

optimal resilience. Namely, if the system has n replicas, it tolerates f < n/3 Byzan-

tine failures. Even in the best-case scenario, each asynchronous BFT epoch has at

least six steps and the expected number of steps is much higher.1 The situation is

in sharp contrast to partially synchronous BFT protocols which usually have fewer

steps (PBFT [50], for instance, terminates in three steps in the worst-case scenario).

We propose MiB, faster asynchronous BFT protocols with suboptimal re-

silience, including MiB5 (the case of n ≥ 5f +1) and MiB7 (the case of n ≥ 7f +1).

Our technique is generic and can be applied to all of the four state-of-the-art asyn-

chronous BFT protocols (HoneyBadgerBFT, BEAT, EPIC, and Dumbo). To illus-

trate our approach, we use BEAT as the underlying protocol, as BEAT is simpler

than EPIC and Dumbo, and has the most efficient open-source implementation

available [3]. (In fact, MiB can be based on any ACS instantiation or any asyn-

chronous BFT using RBC and ABA.) For both MiB5 and MiB7, each epoch may

terminate in as few as just three steps in the best-case scenario.

1In the best-case scenario, ACS includes a RBC phase with n parallel RBC instances and

an ABA phase with n parallel ABA instances. RBC takes three steps whether using Bracha’s

broadcast [37] or the AVID broadcast [46]. The state-of-the-art ABA construction, the Cobalt

ABA [127], has three or four steps in each round and the protocol may terminate in one or several

rounds.
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MiB techniques in a nutshell. At the core of MiB are new RBC constructions

and new ABA combinations with suboptimal resilience, enabling faster termination

and higher throughput.

For MiB5, we devise MBC, an erasure-coded version of Imbs and Raynal’s

RBC (IR RBC) [62] which terminates in two steps by requiring n ≥ 5f + 1. MBC

is bandwidth-efficient and step-optimal. In contrast, previous asynchronous BFT

protocols use Bracha’s broadcast or the AVID broadcast [46], either of which com-

pletes in three steps. MBC integrates the technique of AVID (using Merkle tree)

and we formally prove the correctness of MBC. For MiB5, we instantiate the ABA

construction in the ACS framework using a new combination of Bosco’s weakly one-

step ABA (W1S) [154] that requires n ≥ 5f + 1 and the Cobalt ABA [127]. In ideal

situations, the new ABA construction terminates in just one step; otherwise, it falls

back to the state-of-the-art Cobalt ABA.

For MiB7, considering the step-optimal property of MBC, one may intuitively

use MBC, even if there are more than 7f + 1 replicas. We show that we can achieve

better performance by asking a fraction of replicas to be passive learners rather

than active RBC participants. Our new RBC construction, MBC with learners, or

simply MBC-L, involves (much) fewer messages. We formally prove the correctness

of MBC-L. For ABA, we combine Bosco’s strongly one-step ABA (S1S) that requires

n ≥ 7f + 1 and the Cobalt ABA.

A (powerful) programming and evaluation platform. We build an asyn-

chronous BFT programming and evaluation platform that fulfills two goals. First,

the platform allows us to answer important research questions. For instance, how
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could one be certain that our RBC and ABA choices would perform as expected?

More importantly, do we have other combinations that would lead to BFT with

better performance? The platform allows mixing and matching different RBC and

ABA primitives. Our framework has a flexible but unified API and is highly ex-

pressive: in total, we design and implement seven fully-fledged asynchronous BFT

instances using different RBC and ABA combinations.

Second, the platform allows us to perform experiments under failures and

attacks. To the best of our knowledge, while state-of-the-art asynchronous BFT

protocols, including HoneyBadgerBFT, BEAT, EPIC, and Dumbo, claim that they

are more robust than partially synchronous BFT protocols in failure scenarios, no

experiments are provided to validate the claims. The only framework we know that

does so is RITAS [133], which performs evaluations for one specific asynchronous

BFT protocol using less than 10 replicas in LANs. Our platform can, however,

perform experiments under various failure scenarios (crash, Byzantine, attacks) and

allow us to compare different BFT protocols in a unified framework and systematic

manner.

Our contributions. We summarize our contributions in the following:

• We design new distributed system primitives with suboptimal resilience, includ-

ing new RBC constructions and ABA combinations. In particular, we provide

an erasure-coded version of IR RBC using Merkle tree and provide a learner-

version of RBC (where some replicas are passive learners). We formally prove

the correctness of the new RBC constructions.
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• We build a highly flexible MiB framework allowing mixing and matching different

RBC and ABA primitives. The framework consists of asynchronous BFT proto-

cols described (MiB5 and MiB7) and five other variants. We provide meaningful

tradeoffs among various situations, echoing the well-known claim that there is no

“one-size-fits-all” BFT.

• We design experiments for asynchronous BFT protocols in failure and attack sce-

narios. This work is the first systematic evaluation for these recent asynchronous

BFT protocols using the ACS framework.

• We have evaluated all seven MiB protocols and their competitors on Amazon EC2

with hundreds of experiments using up to 140 instances. We show that almost

all MiB instances, in particular, MiB5 and MiB7, are much more efficient, in

terms of both latency and throughput than their asynchronous BFT counterparts.

Moreover, we show existing asynchronous BFT protocols, not just MiB protocols,

are indeed robust against failures and attacks. We report many interesting results

for different scenarios.

4.2 Related Work

BFT with suboptimal resilience. A number of BFT protocols assume n > 3f+1.

For instance, Q/U requires 5f + 1 replicas to tolerate f failures and achieves fault-

scalability that tolerates increasing numbers of failures without largely decreasing

performance [17]. BChain5 uses 5f + 1 replicas to simplify the failure detection

mechanism and remove the need for replica reconfiguration [68]. Zyzzyva5 uses
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5f + 1 replicas and trades the number of replicas in the system against performance

in the presence of faults [107]. FaB Paxos [128] is an efficient partially synchronous

BFT protocol using 5f + 1 replicas and having 3 communication steps per request.

Efficient asynchronous atomic broadcast and BFT. Most of the efficient asyn-

chronous atomic broadcast (BFT) protocols follow Ben-Or’s ACS framework [31], in-

cluding SINTRA [45], HoneyBadgerBFT [130], BEAT [70], EPIC [119], and Dumbo [85].

They are different only in concrete instantiations. SINTRA, HoneyBadgerBFT,

BEAT, and Dumbo achieve static security, where the adversary needs to choose the

set of corrupted replicas before the execution of the protocol. In contrast, EPIC at-

tains stronger adaptive security, where the adversary can choose to corrupt replicas

at any moment during the execution of the protocol. Dumbo devises a new way of

instantiating the ACS framework by using fewer ABA instances and achieves better

performance. There are, however, efficient asynchronous BFT protocols that do not

follow the ACS framework, including, for instance, RITAS [133]. DBFT [160] relies

on an asynchronous framework but works in partially synchronous environments

and is very efficient.

Asynchronous binary agreement (ABA) with optimal resilience. Begin-

ning with Ben-Or [31] and Rabin [147], a significant number of ABA protocols have

been proposed [34, 38, 44, 49, 79, 127, 134, 147, 154, 155, 159, 171]. Cachin, Kur-

sawe, and Shoup (CKS) [44] proposed an ABA with optimal resilience and O(n2)

message complexity. Mostefaoui, Moumen, and Raynal (MMR) [134] proposed the

first signature-free ABA with the same message complexity as the CKS ABA [44].
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The MMR ABA protocol was used by HoneyBadgerBFT, BEAT, and Dumbo. It

was later reported that the MMR ABA has a liveness issue when being instantiated

using any coin-flipping protocols known [4]. The Cobalt ABA protocol resolves the

issue at the price of one more step for each round [127]. The Cobalt ABA is used in

EPIC and an open-source implementation of BEAT [3]. Dumbo recently updated

its ePrint version [86] by using the Cobalt ABA (code still unavailable).

ABA with suboptimal resilience. Assuming n ≥ 5f+1, Berman and Garay [34]

presented a common coin based ABA protocol that has only two steps in each round.

The ABA protocol by Friedman, Mostefaoui, and Raynal (FMR) [146] extended BG

and reduced the number of steps within a round to one. Song and van Renesse [154]

proposed Bosco that terminates in one step in ideal situations, a protocol that we

use in this paper.

4.3 System and Threat Model

We consider a Byzantine fault-tolerant state machine replication (BFT) protocol

with n replicas, at most f of which may exhibit arbitrary behavior (Byzantine

failures). Most of BFT protocols assume optimal resilience with n ≥ 3f + 1. In this

work, we consider suboptimal resilience with n ≥ 5f + 1 and n ≥ 7f + 1.

In BFT, replicas deliver transactions (requests) submitted by clients and send

replies to clients. A BFT protocol should satisfy the following properties:

• Agreement: If any correct replica delivers a transaction tx, then every correct

replica delivers tx.
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• Total order: If a correct replica has delivered transactions 〈tx0, tx1, · · · , txj〉 and

another has delivered 〈tx′
0, tx

′
1, · · · , tx

′

j′
〉, then txi = tx

′
i for 0 ≤ i ≤ min(j, j

′
).

• Liveness: If a transaction tx is submitted to n − f replicas, then all correct

replicas will eventually deliver tx.

According to the timing assumptions, BFT protocols can be divided into three

categories: asynchronous, synchronous, or partially synchronous [72]. Asynchronous

BFT systems make no timing assumptions on message processing or transmission

delays. Synchronous BFT systems have a known bound on message processing

delays and transmission delays. Partially synchronous BFT systems lie in-between:

messages will be delivered within a time bound, but the bound may be unknown to

anyone. Asynchronous BFT protocols are inherently more robust than other BFT

protocols. We consider purely asynchronous systems making no timing assumptions

on message processing or transmission delays.

4.4 Building Blocks

This section reviews the building blocks for MiB.

Erasure coding. An (m,n) maximum distance separable (MDS) erasure coding

scheme can encode m data blocks (fragments) into n (n ≥ m) coded blocks, and

all blocks can be recovered from any m-size subset of coded blocks via a decode

algorithm. We use MDS erasure coding by default.

Byzantine reliable broadcast (RBC). In RBC, a sender broadcasts a message to

all other replicas in a group. An asynchronous RBC protocol satisfies the following
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properties:

• Validity: If a correct replica p broadcasts a message m, then p eventually delivers

m.

• Agreement: If some correct replica delivers a message m, then every correct

replica eventually delivers m.

• Integrity: For any message m, every correct replica delivers m at most once.

Moreover, if the sender is correct, then m was previously broadcast by the sender.

Asynchronous binary agreement (ABA). In ABA, each replica has a binary

value v ∈ {0, 1} (a vote) as the input, and correct replicas eventually deliver the

same binary value as the output. ABA guarantees the following properties.

• Validity: If a correct replica delivers a value v, the v was proposed by at least

one correct replica.

• Agreement: If a correct replica delivers v and another correct replica delivers

v′, then v = v′.

• Termination: All correct replicas eventually deliver a value with probability 1.

• Unanimity: If all correct replicas input the same initial value v, then a correct

replica delivers v.

ABA protocols proceed in rounds, each of which includes several steps. We

define one-step ABA as one ensuring one-step communication under the unanimity

property, i.e., replicas terminate in one step if all correct replicas propose the same

binary value [154].
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4.5 Technical Overview

State-of-the-art asynchronous BFT protocols, such as HoneyBadgerBFT, BEAT,

EPIC, and Dumbo, follow the asynchronous common subset (ACS) framework which

includes a RBC phase and an ABA phase.

We consider asynchronous BFT protocols (collectively called MiB) using the

ACS framework with suboptimal resilience. At the core of the MiB protocols are new

RBC constructions and new ABA combinations with suboptimal resilience. These

new RBC constructions and ABA combinations are rather generic and can be applied

to any ACS instantiations. For illustrative purposes, we follow the BEAT workflow

(as depicted in Figure 2.1): BEAT is slightly simpler than EPIC and Dumbo and

has the most efficient open-source implementation available [3].

ABA with suboptimal resilience. HoneyBadgerBFT, BEAT, and Dumbo used

the MMR ABA with optimal resilience [134]. The MMR ABA includes two to three

steps in each round. The protocol, however, was found to have a liveness issue [4].

The Cobalt ABA protocol resolves the problem at the price of one more step for

each round [127]. EPIC uses the Cobalt ABA, and some asynchronous BFT libraries

(e.g., BEAT [3]) have updated their implementation using the Cobalt ABA.

For MiB, we use Bosco’s one-step ABA protocols [154]: weakly one-step ABA

(W1S) using n ≥ 5f + 1 replicas and strongly one-step ABA (S1S) using n ≥ 7f + 1

replicas. Both W1S and S1S terminate in as minimum as one single step (one

round). W1S achieves this property when all replicas propose the same binary

input (contention-free) and there are no faulty replicas (failure-free). S1S achieves
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this property under the contention-free condition but does not assume a failure-free

condition. Bosco’s ABA needs to run a backup ABA protocol when the conditions

are not satisfied. We thus use a combination of W1S and the Cobalt ABA for MiB5

(the case of n ≥ 5f + 1) and a combination of S1S and the Cobalt ABA for MiB7

(the case of n ≥ 7f + 1).

RBC with suboptimal resilience. We devise MBC, an erasure-coded version

of IR RBC [62] which terminates in two steps by requiring n ≥ 5f + 1. MBC is

bandwidth-efficient and step-optimal. The low bandwidth property has shown to be

extremely useful for the performance of HoneyBadgerBFT and more so for BEAT;

it turns out that the step-optimal property also improves the system performance.

RBC with learners. When n ≥ 5f + 1, we have already obtained a step-optimal

RBC (MBC) which terminates in two steps. There does not exist a one-step RBC,

no matter how many replicas one uses. While one may consider simply using MBC

directly for the case of n ≥ 7f + 1, we can actually do better.

We use the concept of learners (see, e.g., Paxos [116]) and propose RBC with

learners. If there is a RBC that requires n1 replicas and an ABA that requires n2

replicas, where n2 > n1, then n1 replicas are active replicas and n2− n1 replicas are

learners. The learners do not actively participate in RBC but only learn the results.

When an active replica delivers a message, it forwards the message to all learners.

A learner delivers a message when it receives n1 − f matching messages and then

enters the ABA phase. Compared to regular RBC, RBC with learners reduces the

number of messages transmitted. RBC with learners is a general primitive. The
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specific MBC extension is called MBC-L, and the AVID extension is called AVID-L.

The MiB framework. To examine if the above new primitives or combinations

could improve performance as expected, we build a highly modular and expressive

framework. In such a framework, we mix and match various RBC and ABA primi-

tives to design and implement seven asynchronous BFT protocols with suboptimal

resilience. The framework is modular: various components are programmed to fit

in a unified but flexible standard API (for varying f and n’s). It is the framework

that allows us to have a clear picture on the performance bottlenecks for all MiB

instances, validate our theoretical design, and help find meaningful trade-offs.

4.6 MiB

4.6.1 MiB framework

This section describes the MiB protocols. In MiB, we propose new RBC primitives

and new ABA combinations as building blocks. The building blocks can be applied

to all asynchronous BFT systems using the ACS framework or any asynchronous

BFT using RBC and ABA. To illustrate our approach, MiB is built on top of BEAT

which has the most efficient open-source implementation available [3].

MiB protocols are different only in concrete RBC and ABA instantiations.

So when describing MiB in general, we use RBC and ABA in a black-box manner.

Figure 4.1 depicts the MiB framework which is the same as BEAT. MiB proceeds

in epochs numbered by r (initially, 0). In an epoch, replicas choose a subset of

transactions as a proposal from their transaction pool and agree on a set containing
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the union of the proposals of at least n− f replicas. We define B as the batch size

of the transactions for an epoch; the batch size for a replica b = dB/ne. Replicas

first run a RBC phase to broadcast their proposals. Then they run an ABA phase,

where n parallel ABA instances are invoked. The i-th ABA instance agrees on

whether the proposal of replica pi has been delivered in the RBC phase. If a correct

replica pj terminates the i-th ABA instance with 1, the proposal from pi is delivered.

Otherwise, the proposal is not included. We ensure that at least n−f ABA instances

terminate with 1 and the union of the transactions from at least n − f replicas

are delivered. To achieve this condition, each replica abstains from proposing 0

until n − f ABA instances have been delivered by the replica. As in BEAT, MiB

uses threshold encryption to avoid transaction censorship and achieve liveness (the

pseudocode of threshold encryption is not shown in Figure 4.1).

4.6.2 MiB5

For MiB5, we instantiate the ABA component in the ACS framework using a new

combination of Bosco’s weakly one-step ABA (W1S) [154] that requires n ≥ 5f + 1

and the Cobalt ABA [127]. We also devise MBC, an erasure-coded version of IR

RBC [62] which completes in two steps (optimal) and requires n ≥ 5f + 1.

Weakly one-step (W1S). The state-of-the-art ABA for the n ≥ 3f + 1 case, the

Cobalt ABA, requires at least three steps in each round. For the case of n ≥ 5f + 1,

we use the Bosco’s weakly one-step ABA protocol (W1S) [154].

W1S guarantees that if there are no faulty replicas and all replicas propose the
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Algorithm: MiB Protocol (Replica pi)
Initialization

let B be the batch size parameter
let buf ← ∅ be a transaction buffer
let {RBCj}j∈n and {ABAj}j∈n be the j-th instance for
RBCj and ABAj

let output← ∅ be the output buffer
let r ← 0 be the epoch number

epoch r
select b = dB/ne random transactions from the first B
elements in buf as a proposal value
upon input value value

input value to RBCi

upon delivery of valuej from RBCj

if ABAj has not yet been provided input, input 1 to ABAj

upon delivery of 1 from ABAj and valuej from RBCj

output← output ∪ valuej
upon delivery of 1 from at least n− f ABA instances

for each ABAj instance that has not been provided input
input 0 to ABAj

upon termination of all the n ABA instances
deliver output

r ← r + 1

Figure 4.1: The MiB algorithm for pi.

Algorithm: W1S/S1S
Initialization
r ← 0 {round}
vp {input value}

round r
broadcast bval(vp) {broadcast input}
upon receiving bval(v) from n− f replicas
if more than d(n+ 3f)/2e bval(v) messages contain the same

value v
deliver v {terminate the protocol}

if more than d(n− f)/2e bval(v) messages contain the same
value v, and there is only one such value v
vp ← v

backup-ABA(vp)

Figure 4.2: The algorithm for W1S and S1S.
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Figure 4.3: The MBC workflow, where p0 broadcasts a message m and there are no
faulty replicas.

same initial value v, then all the correct replicas deliver v and terminate the protocol

in one step (one round). Figure 4.2 describes the pseudocode of W1S protocol. Each

replica has a binary input vp to the ABA. In the first step, each replica pi broadcasts

a message bval(vp). A replica pi waits for bval(v) from n − f replicas (including

itself). If more than d(n + 3f)/2e bval(v) messages include the same value v, a

replica delivers v and terminates the protocol. If more than d(n − f)/2e bval(v)

messages include the same v, a replica sets its local value to vp = v. If the replica

does not deliver any value in one step, it invokes a backup ABA protocol. In MiB5,

we use the Cobalt ABA protocol [127] as the backup ABA protocol.

MBC. MBC is an erasure-coded version of IR RBC [62] which completes in two

steps. MBC is bandwidth-efficient and step-optimal. We show the MBC workflow

in Figure 4.3 and the MBC pseudocode in Figure 4.4.

As depicted in Figure 4.4, to broadcast a message m, a replica pi applies the

(n − 2f, n) erasure coding scheme to generate n blocks, where the j-th block is

77



Algorithm: MBC (Replica pi)
upon input(m) {if psender = pi}

let lj be the j-th block of (n− 2f, n) erasure coding
scheme applied to m
h is the root of the Merkle tree for the {lj}j∈[0..n−1] blocks
send init(h, bj, lj) to each pj, where bj is the j-th Merkle
tree branch

upon receiving init(h, bi, li) from psender
broadcast witness(h, bi, li)

upon receiving n− 2f valid witness(h, bj, lj)
interpolate {l′j} from the n− 2f blocks
recompute Merkle root h′ and if h′ 6= h then abort
if witness(h, bi, li) is not sent

broadcast witness(h, bi, li)

upon receiving n− f valid witness(h, bj, lj)
m ← decode({lj}) {from any n− 2f blocks}
deliver(m)

Figure 4.4: The MBC protocol. A message (h, bj, lj) is valid, if bj is a valid Merkle
tree branch for the Merkle tree root h and the data block lj.

denoted as lj. The replica pi then generates a Merkle tree for the n blocks. Finally,

for j between 0 to n− 1, replica pi sends an init(h, lj, bj) message to the j-th replica

pj, where h is the root of the Merkle tree and bj is the j-th Merkle tree branch. We

say a message (h, bj, lj) is valid, if bj is a valid Merkle tree branch for the Merkle

tree root h and the data block lj.

If a replica pi receives an init(h, li, bi) message, pi broadcasts witness(h, li, bi).

If a replica pi receives n − 2f valid witness(h, lj, bj) messages, pi interpolates

all n blocks from n−2f blocks, recomputes the Merkle tree root h′. If h′ 6= h and it

has not broadcast any witness() message, it broadcasts witness(h, li, bi). Otherwise,

it simply aborts.
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If pi receives n − f valid witness() messages, pi recovers the original input m

and delivers m.

As shown in Table 4.1, assuming the same n, MBC has fewer steps and fewer

messages than AVID (used in HoneyBadgerBFT, BEAT, and Dumbo).

resilience level steps number of messages

AVID n ≥ 3f + 1 3 2n2 + n

MBC n ≥ 5f + 1 2 n2 + n

Table 4.1: Comparison of the RBC algorithms.

Theorem 1 The MBC protocol in Figure 4.4 is a reliable broadcast protocol.

Proof: We prove the theorem from scratch (instead of using the proof of IR MBC

in a black-box manner).

We first prove validity. If a correct sender broadcasts a message m, it will

erasure codes the message m into n blocks {lj}j∈[0..n−1] (where n − 2f blocks are

sufficient to recover m), and generates a Merkle tree proof (h, bj) for each block

lj. Then the sender sends j-th block lj and the corresponding proof (h, bj) to the

corresponding replica pj. Upon receiving an init message, each replica will verify

whether the message is valid and then broadcasts the witness messages to all replicas.

Eventually, all correct replicas will receive n − f witness valid messages. Since the

sender is correct, the recomputed Merkle root must equal the agreed one. Any

correct replica pj can recover m using n− 2f erasure coding scheme with matching

root and then deliver m.

We now prove agreement. If some correct replica pi delivers a message m with

79



some h, then the replica must have received n − f valid witness messages with the

matching root h. Among these n − f replicas, at least n − 2f replicas are correct.

These correct replicas must have received the init(h, ·, ·) messages and must have

sent witness(h, ·, ·) messages to all replicas. Therefore, all correct replicas will receive

valid n− 2f witness(h, ·, ·) messages. We claim that if pi delivers a message with h,

then except with negligible probability, any other correct replica will not abort (as

the recomputed Merkle root h′ = h). Otherwise, one can find an adversary attacking

the Merkle tree (more concretely, attacking the collision resistance property of the

underlying hash function of the Merkle tree). Therefore, all correct replicas will

broadcast witness(h, ·, ·) and eventually all correct replicas will receive n− 2f valid

witness(h, ·, ·) messages. Again, according to the property of the Merkle tree, all

correct replicas can recover and deliver the same m.

Finally, integrity holds by inspection of the protocol. This completes the proof

of the theorem. 2

4.6.3 MiB7

In MiB7, we combine Bosco’s strongly one-step ABA (S1S) for n ≥ 7f + 1 and the

Cobalt ABA. We design a new RBC construction, MBC with learners, or simply

MBC-L, to reduce the number of messages transmitted further.

Strongly one-step (S1S). The strongly one-step ABA (S1S) is another one-step

algorithm for n ≥ 7f + 1 in Bosco [154]. S1S runs the same algorithm as W1S but

achieves different properties. If all correct replicas propose the same initial value v,
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all correct replicas deliver v in one communication step. Namely, S1S guarantees

one-step termination under contention-free situations; it does not require the failure-

free conditions needed for the one-step termination in W1S. As in MiB5, MiB7 uses

the Cobalt ABA as the backup ABA protocol.

MBC-L. When n ≥ 5f + 1, MBC is already a step-optimal RBC. While intuitively

for the case of n ≥ 7f + 1, one could use MBC directly, we actually use MBC with

learners (MBC-L). In such a primitive, some replicas are just learners instead of

active replicas participating in the main broadcast process. Nevertheless, MBC-L

remains a standard RBC satisfying all RBC properties.

We show in Figure 4.5 and Figure 4.6 the workflow and pseudocode of MBC-

L, respectively. Assuming n = 7f + 1 replicas, we have 5f + 1 replicas are active

replicas and the other 2f replicas are learners. (We will describe the selection

principle shortly.) To broadcast a message, a broadcaster pi runs MBC to broadcast

its input m among active replicas. When an active replica pj delivers a message, it

broadcasts a ready message to all learners. When a learner receives at least 4f + 1

valid ready messages from active replicas, it recovers the value m and delivers it.

In the MiB7 environment, all replicas are active in the ABA phase. Namely,

each replica votes for 1 for an ABA instance after it delivers a value in the RBC

phase regardless of whether it is an active replica or a learner. Each replica waits

until at least n − f ABA instances terminate with 1 before invoking other ABA

instances with 0 as input.

Our approach is generic. If there is a RBC that requires n1 replicas (e.g.,

tolerating f1 = b(n1 − 1)/3c failures) and an ABA that requires n2 replicas (e.g.,
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Figure 4.5: The MBC-L workflow. Replica p0 is the broadcaster, replicas in solid

circles are active replicas, and replicas in dashed circles are learners. Active replicas

run the MBC protocol to deliver the message m and forward it to the learners once

the message is delivered.

tolerating f2 = b(n2− 1)/5c failures) where n2 > n1, then some n2− n1 replicas are

designated as learners who do not actively participate in RBC but later participate

in ABA. The system tolerates f2 failures. The n1 replicas need to run RBC to deliver

messages. When one of the n1 replicas delivers a message, it forwards the message to

all learners. A learner delivers a message when it receives n1−f2 matching messages

and then enters the ABA phase.

In the ACS framework, n parallel RBC instances are run concurrently. The

principle of selecting active replicas is fairly arbitrary, as long as the system de-

signer takes into account load balancing. For instance, in a system with replicas
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Algorithm: MBC-L in MiB7 (Replica pi)
upon input(m) {if psender = pi}

active rep ← n1 = 5f + 1 active replicas
let lj be the j-th block of (n1 − 2f, n1) erasure coding
scheme applied to m
h is the root of the Merkle tree for the {lj}j∈[0..n1] blocks
send init(h, bj, lj, active rep) to each pj, where bj is
the j-th Merkle tree branch

upon receiving init(h, bi, li, active rep) from psender
broadcast witness(h, bi, li, active rep)

upon receiving n1 − 2f valid witness(h, bj, lj, active rep)
interpolate {l′j} from the n1 − 2f blocks
recompute Merkle root h′ and if h′ 6= h then abort
if witness(h, bi, li, active rep) has not been sent

broadcast witness(h, bi, li, active rep)

upon receiving n1 − f valid witness(h, bj, lj, active rep)
send ready(h, bi, li) to 2f learners
m ← decode({lj}) {from any n1 − 2f blocks}
deliver(m)

upon receiving n1 − f valid ready(h, ·, ·) {learners}
m ← decode({lj})
deliver(m)

Figure 4.6: MBC-L in MiB7. A message (h, bi, li) is valid, if bj is a valid Merckle
tree branch for the Merkle tree root h and the data block lj.

{p0, · · · , pn−1}, the system designer can ask pi (i ∈ [0, · · · , n− 1]) to select replicas

{pi, · · · , p(i+5f) mod 7f} deterministically. One could ask replicas to randomly select

5f + 1 replicas among all replicas, but the strategy is no better than the above-

mentioned deterministic strategy that enables strictly even load balancing when n

concurrent RBC instances are run.

While MBC-L has one more step than MBC, MBC-L in fact greatly reduces

the number of messages in MiB7. As mentioned earlier, the total number of messages
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in MBC is n2 + n. Assuming n = 7f + 1, the total number of messages for MBC is

49f 2 + 21f + 2. In MBC-L we use for MiB7, there are 2f learners. Each MBC-L

instance involves n−2f , (n−2f)2, and 2f(n−2f) messages in the init, witness, and

ready steps, respectively. The total number of messages for MBC-L is 35f 2 +17f+2.

Theorem 2 MBC-L in Figure 4.6 is a reliable broadcast protocol.

Proof: Validity and integrity hold by inspection of the protocol. We focus on

agreement, showing that if a correct replica pi delivers m then a correct replica pj

eventually delivers m. We distinguish several cases:

Case 1: both pi and pj are active replicas. In this case, agreement follows trivially

from that of MBC.

Case 2: pi is an active replica and pj is a learner. If pi delivers a message m

with some h, then according to the agreement property of the underlying MBC,

all correct replicas will deliver m with the same h. These replicas will broadcast

ready messages and eventually all learners will receive n1 − f valid ready messages.

According to the property of the Merkle tree, all learners can recover and deliver

the same m.

Case 3: pi is a learner and pj is an active replica. As pi is an learner, it must have

received n1 − f valid ready messages with matching h. This means that at least

n1 − 2f active replicas have delivered the corresponding m. Due to the agreement

property of underlying MBC protocol, all active replicas will deliver m.

Case 4: both pi and pj are learners. This case is similar to Case 3. Since pi is an

learner, it must have received n1 − f valid ready messages with the matching h.
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Hence, at least n1 − 2f active replicas have delivered the corresponding message

m. Due to the agreement property of underlying MBC protocol, all active replicas

will deliver m. These replicas will send valid ready messages so that all learners will

obtain n1− f ready messages. The learners and active replicas agree on the same h

and except with negligible probability, they will obtain the same m.

This completes the proof of the theorem. 2

4.6.4 Other MiB Variants

We build a modular and expressive MiB framework, where we mix and match various

RBC and ABA primitives to construct five additional asynchronous BFT protocols

with suboptimal resilience. We summarize all MiB protocols in Table 4.2, including

two MiB5 variants (MiB5a and MiB5b) and three MiB7 variants (MiB7a, MiB7b,

and MiB7c). The framework allows us to validate our theoretical design and help

identify meaningful protocol trade-offs among various combinations.

Note the idea of RBC learners in MBC-L applies to the AVID broadcast for

both the case of 5f+1 and 7f+1. We show in Figure 4.7 and Figure 4.8 the workflow

and pseudocode for the AVID-L protocol that we use for MiB5b. In AVID-L, some

3f+1 replicas are active replicas and the rest of replicas are learners. A broadcaster

pi applies erasure coding to generate blocks for input m and broadcasts each block

to the corresponding replica. Active replicas run AVID to deliver the input m. After

the message is delivered, each active replica forwards learners the delivered message.

A learner recovers the value m using blocks received and delivers m. Compared to
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resilience level ABA RBC

MiB5 n ≥ 5f + 1 W1S MBC

MiB5a n ≥ 5f + 1 W1S AVID

MiB5b n ≥ 5f + 1 W1S AVID-L

MiB7 n ≥ 7f + 1 S1S MBC-L

MiB7a n ≥ 7f + 1 S1S AVID

MiB7b n ≥ 7f + 1 S1S MBC

MiB7c n ≥ 7f + 1 S1S AVID-L

Table 4.2: MiB protocols. RBC with -L labels are protocols with learners.

AVID, AVID-L has one additional step but less number of messages.

4.7 Implementation and Evaluation

Implementation. We build MiB from the open-source prototype of BEAT library

[3] written in Python. We use the BEAT0 protocol (hereinafter BEAT for simplic-

ity) as our baseline protocol. The MiB programming framework is modular, with

a unified API encompassing eight protocols—BEAT and all seven MiB protocols

summarized in Table 4.2. We use the zfec library [15] for erasure coding. Follow-

ing BEAT, for all MiB instances, we use Shoup and Gennaro threshold encryption

scheme [162] and the CKS threshold PRF [44] as the threshold encryption and the

coin-flipping protocol, respectively. We use the prime256v1 curve with 128-bit secu-

rity for the above two threshold cryptographic primitives. All the crypto algorithms

are implemented using the Charm Python crypto library [22].
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Figure 4.7: The AVID-L workflow. p0 is the broadcaster. Active replicas are denoted

with solid circles and learners are represented in dashed circles.

Evaluation overview. We deploy the MiB protocols and BEAT on Amazon EC2

and evaluate their performance using up to 140 instances distributed evenly in five

continents. By default, we use the t2.medium type instances. Each instance has

two virtual CPUs and 4GB memory. For one set of experiments, we also evaluate

the peak throughput using t2.micro instances, each of which has one virtual CPUs

and 1GB memory. The size of each transaction is 250 bytes. In every epoch, each

replica proposes b = dB/ne transactions, where B is the batch size.

We distinguish two scenarios: the same n setting and the same f setting. The

same n setting allows evaluating the performance of all protocols with the same

total number of replicas. In a system with n replicas, BEAT tolerates b(n − 1)/3c

failures, MiB5 and its variants tolerate b(n−1)/5c failures, and MiB7 and its variants

tolerate b(n− 1)/7c failures. In our evaluation, we choose n = 16, 31, and 46. For

instance, when n = 31, BEAT tolerates 10 failures, MiB5 and its variants tolerate
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Algorithm: AVID-L in MiB5b (Replica pi)
upon input(m) {if psender = pi}

active rep ← n1 = 3f + 1 active replicas
let lj be the j-th block of (n1 − 2f, n1) erasure coding
scheme applied to m
h is the Merkle tree root of {lj}j∈[0..n1] blocks
send send(h, bj, lj, active rep) to each pj, where
bj is the j-th Merkle tree branch

upon receiving send(h, bj, lj, active rep) from psender
broadcast echo(h, bj, lj, active rep)

upon receiving echo(h, bj, lj, active rep) from pj
check if bj is a valid Merkle tree branch for h and lj
check whether i is in active rep

upon receiving valid echo(h, ·, ·) from n1 − f distinct parties
interpolate {l′j} from any n1 − 2f leaves received
recompute Merkle root h′ and if h′ 6= h then abort
if read(h) has not been sent

broadcast ready(h, active rep)

upon receiving f + 1 ready(h, active rep) from pj
if ready(h) has not yet been sent

broadcast ready(h, active rep)

upon receiving 2f + 1 ready(h, active rep) from pj
send val(h, bi, li) to 2f learners
m ← decode({lj})
deliver(m)

upon receiving n1 − f valid val(h, ·, ·) {learners}
m ← decode({lj})
deliver(m)

Figure 4.8: AVID-L in MiB5b.

6 failures, and MiB7 and its variants tolerate 4 failures. The same n setting can

provide guidance for selecting protocols when one has a fixed number of nodes for

an application. For instance, if one has 31 nodes and is certain there would not be

6 failures, he or she may favor MiB5 over BEAT for performance considerations.
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(c) Latency in WAN for n = 46.
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(f) Latency in WAN for f = 5

The same f setting enables us to assess the performance for systems tolerating

the same number of failures f . In this setting, the total number of replicas for BEAT,

MiB5 and its variants, and MiB7 and its variants is 3f + 1, 5f + 1, and 7f + 1,

respectively. The evaluation for the same f setting is important for three reasons.
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Figure 4.9: Latency of MiB protocols and BEAT in both LAN and WAN settings.

First, when one designs systems with a particular goal of tolerating some f failures,

the evaluation can be directly used as a guideline. In many cases, one may not wish

to adopt a system with fewer replicas, as other systems with more replicas may be

more efficient. Second, it helps understand the performance difference among MiB5

and its variants, as well as the difference among MiB7 and its variants. Indeed, such

an evaluation allows comparing protocols with different RBC and ABA components,

thereby validating our theoretical design. Third, it enables us to analyze some corner

cases: for instance, if one has 6 nodes, the system can only tolerate f = 1 failure,

whether using BEAT or MiB5. The evaluation for the f = 1 case can help users to

understand the trade-offs.

For some experiments, we vary the size of b from 1 (250 bytes per replica) to

10000 (2.38 MB per replica) to evaluate the throughput. We evaluate the latency

when there is no contention, i.e., when b = 1. We evaluate the performance in the

LAN settings (where the nodes are launched in the same EC2 region) and the WAN

settings (where the nodes are evenly distributed in five continents).
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(b) Throughput for n = 31 and b = 5000.
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(c) Throughput for n = 46 and b = 5000.
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(d) Throughput in LAN for f = 1.

4.7.1 Latency

The same n. We first compare the latency of the protocols in the WAN setting

when n is fixed. As shown in Figure 10(a-c), all MiB protocols have significantly

lower latency than BEAT. This result is expected, since all MiB protocols terminate

in fewer steps than BEAT (for both the best-case and average-case scenarios). For

instance, when n = 16, the latency of MiB5 is 63.5% of that in BEAT. When we

have a larger n, the difference between BEAT and MiB5 is more visible. For n = 46,

the latency of MiB5 is 69.1% of that in BEAT.

MiB7 and its variants have consistently higher latency than MiB5 and its
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(e) Throughput in WAN for f = 1.
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(f) Throughput in WAN for f = 5.
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(g) Throughput in WAN for f = 10.
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(h) Throughput in WAN for f = 15.
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(i) Throughput in WAN for f = 20.

Figure 4.10: Throughput of MiB protocols and BEAT in the LAN and WAN settings.

variants. When n = 16, the latency of MiB7 is 25.9% higher than MiB5. This result

is mainly because replicas need to collect more matching messages in both RBC
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and ABA phases. MiB7 protocols need to collect increasingly more messages when

n grows larger and the latency difference between the MiB7 instance and MiB5 is

more significant.

We find that the two MiB5 variants have consistently higher latency than

MiB5. This situation does not hold for the MiB7 variants. Interestingly, we observe

that the result depends on the size of b. When b is small, both MiB7a and MiB7b

have lower latency than MiB7 and MiB7c. Indeed, both MiB7 and MiB7c are RBC

with learners involving an additional step for some replicas. When b grows larger,

the network bandwidth consumption dominates the overhead, and correspondingly,

MiB7 and MiB7c have lower latency.

The same f. Figure 10(d-h) show the latency of the protocols in the LAN and

WAN settings for the same f . Due to the upper bound on the number of EC2

instances we can launch in an EC2 region, we can evaluate the latency in the LAN

setting only when f = 1. As shown in Figure 4.9(d), not surprisingly, the latency

for all protocols is lower than the results in the WAN environment. BEAT has lower

latency than other MiB protocols. Indeed, all MiB protocols have more replicas

given the same f . For instance, when f = 1, MiB7 has 8 replicas, while BEAT has

4 replicas. Replicas in MiB7 and BEAT need to collect 7 and 3 matching messages

in each RBC and ABA invocation, respectively. Thus, MiB7 and its variants have

higher latency. The same result applies to the results in the WAN environment

and when f grows larger. Specifically, all MiB7 protocols have higher latency than

MiB5 and BEAT. MiB5 and its variants have higher latency than BEAT, except

that MiB5a has lower latency than BEAT for the f = 1 case only.
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(b) MiB5a.
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(c) MiB5b.
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(d) MiB7.
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(e) MiB7a.
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(f) MiB7b.

4.7.2 Throughput

The same n. We assess the throughput of the protocols using the same n. We fix

the batch size to 5000 and evaluate the throughput. As shown in Figure 11(a-c), all
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(g) MiB7c.
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Figure 4.11: (a-g) Scalability of MiB protocols; (h) throughput vs. latency in WAN.
MiB protocols achieve significantly higher throughput than BEAT. As an example,

when n = 16, the throughput of MiB5 is 96.5% higher than that of BEAT, while

the throughput of MiB7 is 120.0% higher than that of BEAT. When n = 46, MiB5

and MiB7 achieve 110.4% and 131.5% higher throughput than BEAT, respectively.

The performance improvement is mainly due to the step reduction in both the RBC

and ABA components.

The same f. We report the throughput of the protocols with the same f from

Figure 11(d-i). In both the LAN and WAN settings, when f is no greater than 10, all

MiB protocols achieve consistently higher throughput than BEAT. Even when f is

greater than 10, BEAT outperforms MiB7a and MiB7c only in some cases; other MiB

protocols are consistently more efficient than BEAT. The performance difference is,

in part, because MiB reduces the number of steps. Furthermore, given the same f ,

MiB protocols have a larger n and can propose more concurrent transactions. For

instance, when f = 1 and b = 5000, the number of proposed transactions for BEAT

is 33.3% and 50% less than MiB5 and MiB7, respectively. We also find that when
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f grows larger (when f ≥ 15), the network bandwidth consumption dominates the

overhead and correspondingly the performance difference between BEAT and MiB

protocols becomes comparatively small.

We also report in Figure 4.11(h) throughput vs. latency in the WAN setting

for f = 1.

MiB5 vs. MiB7. We first report the throughput for the same n. When n = 16,

MiB7 outperforms other protocols. When n = 31 and n = 46, MiB5b outperforms

all other MiB protocols. This result is expected, since both MiB5b and MiB7 use

learners to reduce the number of messages transmitted. Due to the use of learners,

MiB7c also achieves higher throughput among the MiB variants. The reason why

MiB7c achieves lower throughput than MiB5b and MiB7 is that AVID has one more

step than MBC.

For all experiments, MiB5a and MiB7a achieve lower throughput than the

other MiB protocols. Note MiB5a and MiB7a use AVID and do not use learners;

AVID has one more step and more messages than MBC.

We also evaluate the performance using the same f . When f = 1 in the

LAN environment, MiB7b outperforms other protocols. This situation is mainly

because more transactions are proposed with a larger n. In contrast, in the WAN

setting, MiB7 outperforms other protocols when f ≤ 10 and MiB5b outperforms

other protocols when f ≥ 15. In particular, both MiB5b and MiB7 use learners to

reduce the number of messages transmitted. Furthermore, MiB7 variants in general

achieve higher throughput than MiB5 variants when f is smaller than 10 and lower

throughput than MiB5 variants when f is greater than 10.
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(a) Throughput in LAN for f = 1 in

failure-free scenario.
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crash failure scenario.
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(c) Throughput in LAN for f = 1 in

Byzantine scenario.
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(d) Throughput in WAN for f = 1 in

failure-free scenario.
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crash failure scenario.
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MiB with learners. MiB5b, MiB7, and MiB7c use learners and thus outperform

other protocols (except for the f = 1 case). For instance, when f = 1 in the LAN

setting, the peak throughput of MiB7b is 1.84% higher than MiB7. When f equals

5, 10, 15, and 20 in the WAN setting, the peak throughput of MiB7 is 6.3%, 2.2%,

5.9%, and 6.8% higher than MiB7b, respectively.

4.7.3 Scalability

We evaluate the scalability of all our implemented protocols by varying f from 1 to

20 and varying b from 1 to 10000. When f increases from 1 to 20, the throughput first

increases and then decreases. As illustrated in Figure 4.11, MiB protocols achieve

their peak throughput around f = 5 and f = 10. The trend is very similar to that

of BEAT (and EPIC): when f increases, the number of proposed transactions also

increases so the throughput becomes higher; when f further increases, the network

bandwidth becomes the performance bottleneck.

4.7.4 Performance under Failures

We now evaluate the performance of the protocols under failures. In Figure 4.12, we

show the throughput of BEAT, MiB5 and MiB7 in three different scenarios: failure-

free, crash failure, and Byzantine. In the crash failure scenario, we stop f replicas

and run the protocols. In the Byzantine scenario, we chose to simulate the Byzantine

behavior in the ABA phase instead of the RBC phase, because asynchronous RBC

protocols are incredibly robust against Byzantine failures (see [57]). For the ABA
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(g) Throughput in WAN for f = 5 in

failure-free scenario.
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(h) Throughput in WAN for f = 5 in

crash failure scenario.
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(i) Throughput in WAN for f = 5 in

Byzantine scenario.
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(j) Throughput in WAN for n = 16 in

failure-free scenario.
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(k) Throughput in WAN for n = 16 in

crash failure scenario.
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(l) Throughput in WAN for n = 16 in

Byzantine scenario.
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Figure 4.12: Throughput of BEAT, MiB5, and MiB7 in the LAN and WAN settings

in failure-free, crash failure, and Byzantine scenarios.

phase, a Byzantine replica may exhibit either of the two following behaviors: not

sending ABA proposals, or sending inconsistent proposals to different replicas. The

former has been captured by the crash failure scenario. Hence, we focus on the latter

one for Byzantine scenarios, where we let Byzantine replicas propose inconsistent

values in the ABA phase. Note that inconsistent votes from Byzantine replicas may

cause the protocols to terminate using more rounds, a strategy that might impact
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Figure 4.13: Throughput of BEAT, MiB5, and MiB7 running on different hardware.

performance. Meanwhile, in this scenario, the ABA phase in both MiB5 and MiB7

would switch to a slower protocol, which may further reduce performance. We vary

f from 1 to 10 in WAN to evaluate the performance. For f = 1, we also evaluate

the throughput in LAN.

Failure-free vs. crash failure. All the three protocols achieve higher throughput

in the crash failure scenario than that in the failure-free scenario. For instance, the

throughput of BEAT in the crash failure scenario is 4.6%-24.5% higher than that
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in the failure-free scenario. The throughput of MiB5 in the crash failure scenario is

0.3%-9.4% than that in the failure-free scenario. For MiB7, the throughput is 1.5%-

10.6% higher in the crash failure scenario than the failure-free scenario. The results

are expected, since the network bandwidth consumption is lower when f replicas

crash compared to the failure-free scenario. Compared to BEAT, the throughput

improvement under crash failures for both MiB5 and MiB7 are lower. This result

is because MiB5 and MiB7 achieve one-step termination in the failure-free cases for

over n− f ABA instances. In contrast, in the crash failure scenario, both protocols

switch to a slower backup ABA protocol under failures.

Failure-free vs. Byzantine. For all the experiments, all the three protocols

achieve higher throughput in the failure-free scenario than the Byzantine scenario.

The throughput of BEAT in the failure-free scenario is 1.9%-4.9% higher than that

in the Byzantine scenario. For MiB5, the throughput is 2.9%-16.1% higher in the

failure-free scenario. The throughput of MiB7 is 2.2%-6.0% higher in the failure-free

scenario. The results are also expected since faulty replicas broadcast inconsistent

messages to all replicas so the network bandwidth consumption is higher than that in

the failure-free scenario. The degradation of performance under Byzantine failures

for MiB5 and MiB7 is higher compared to that in BEAT. This result is because

both protocols switch to a backup ABA under failures.

Performance using different hardware. We assess the performance of the pro-

tocols using both t2.medium instances and t2.micro instances. We show the peak

throughput of BEAT, MiB5, and MiB7. For each protocol, we evaluate the peak
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throughput under failure-free, crash failure, and Byzantine scenarios. For each pro-

tocol, we use protocol name to represent the performance in the failure-free scenario,

-S to represent the performance of the crash failure scenario, and -B to represent the

performance of the Byzantine scenario. We show the performance in Figure 4.13.

All the protocols achieve higher throughput using t2.medium instances. This

is expected since all the computational operations are faster. In the LAN setting,

the performance improvement BEAT in all three scenarios are consistency lower

than that in the WAN setting. For instance, BEAT, BEAT-S, and BEAT-B achieve

9.0%, 9.8%, and 13.1% higher throughput using t2.medium than that in t2.micro

in LAN, separately. In the WAN setting, the throughput are 32.3%, 41.5%, and

29.0% higher in the three scenarios. In contrast, the performance improvement for

both MiB5 and MiB7 are in general higher in the WAN setting. For instance, MiB5

achieves 23.8% and 18.3% higher throughput using t2.medium in LAN and WAN,

separately. MiB7 achieves 15.9% and 13.2% higher throughput using t2.medium in

LAN and WAN, separately. This result is mainly because both MiB5 and MiB7

involve more replicas (5f + 1 and 7f + 1) so the network bandwidth consumption

dominates the overhead of the protocols.

4.8 Conclusion

We study two important directions in asynchronous BFT—BFT with suboptimal

resilience and BFT performance under failures and attacks. This paper provides

MiB, a novel and efficient asynchronous BFT framework using new distributed sys-

103



tem constructions as building blocks (including an erasure-coded version of IR RBC

and a learner-version of RBC). MiB consists of two main BFT instances and five

other variants. We design experiments with failures and systematically evaluate

the performance of asynchronous BFT protocols (including MiB) in crash failure

and Byzantine failure scenarios. Via a five-continent deployment using 140 replicas,

we show the MiB instances have lower latency and much higher throughput than

their asynchronous BFT counterparts, and moreover, asynchronous BFT protocols,

including our MiB protocols, are indeed robust against failures and attacks.
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Chapter 5

Intrusion-Tolerant and Confidentiality-Preserving Publish/Subscribe

Messaging

5.1 Overview

Publish/Subscribe (pub/sub) is a popular messaging pattern allowing disseminating

information from publishers to different subsets of interested subscribers via an

overlay of brokers (servers). Publishers advertise information to the brokers and send

publications as advertised. Subscribers express their interests for receiving a subset

of publications by issuing subscriptions to brokers. Upon receiving publications from

publishers matching the interests of subscribers, brokers send the corresponding

publications to the interested subscribers.

One distinguishing feature of a pub/sub system is that it decouples publishers

and subscribers in both time and space: publishers and subscribers do not need

to know or synchronize with one another. This feature enables system flexibility

and scalability. Pub/Sub systems are widely used in practice, such as Amazon

SNS [1], AMQP [163], Apache Kafka [2], FAYE [7], Google Cloud Pub/Sub [8], and

MQTT [11]. Pub/Sub serves as the core middleware for numerous applications,

e.g., data collection and analysis, Internet-of-Things (IoT), network management

and monitoring, streaming services.
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Despite their popularity, existing pub/sub systems (built in both industry and

academia) suffer reliability and confidentiality problems. Let us illustrate the issues

with a health record exchange pub/sub system [91, 76], where the actors include

patients and providers (physicians, hospitals, pharmacists), each of which can be

publishers and subscribers. Publications may be medical files (e.g., reports, X-ray

images) sent from patients or providers to patients or providers. Publications may

also be new drug information and updates about the availability of facilities sent

from providers to patients. For instance, an emergency unit receives a patient in

critical conditions and disseminates the patient medical files as a publisher to various

hospital units, while the hospital units may submit subscriptions (e.g., specialties,

qualifications, schedule for patient admission and treatment sessions). As another

example, a new-born is identified by a hospital for a rare dermatology disease. The

hospital represents the new-born and the parents to send the medical images to

some local expert dermatologists for timely treatment.

Consider another example of a market report notification system, where pub-

lishers are private sectors publishing paid market reports, and subscribers are in-

vestors who receive reports according to their interests (e.g., reports for certain

categories, reports for specific periods). The brokers match publications with the

interests and send the publications to interested (and paid) investors.

With these examples in mind, we now discuss the challenges of building

intrusion-tolerant pub/sub systems.

Confidentiality and fine-grained access control (Or: Two-way information

control). Publications in both examples (health records, private market reports)
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need to be confidentiality-protected. In fact, confidentiality in pub/sub is strongly

tied to access control, a process by which subscribers are granted access to certain

publications based upon certain rules. The middleware community has long been

expecting pub/sub systems where publishers can define by whom and how their

data can be accessed, preferably not just role-based but also attribute-based.

For instance, the “ideal” situation for health record exchange is that publishers

(patients and providers on behalf of patients) can decide by whom, when, and how

their health records can be viewed or used. Patients should be able to decide which

doctors can see their records, either exactly (by name), or those that meet certain

criteria (e.g., “D.C. doctors”, “more than 15-year practice in dermatology”, “no

malpractice history”) [5]. For the market report example, publishers may enforce

access control based on subscribers’ qualifications, attributes, and if subscribers paid

for the service (to the brokers).

Confidentiality-preserving pub/sub with fine-grained access control enhances

the conventional pub/sub systems with two-way information control. In conven-

tional pub/sub systems, subscribers can filter the information via subscriptions, but

publishers cannot control who can receive the publications. The one-way informa-

tion control is undesirable for applications such as cross-domain pub/sub systems

where publications need to be protected (as shown in the health exchange and mar-

ket report examples), most pub/sub systems in private corporate networks, and any

IoT and big data applications where individual user data are sensitive.

Achieving the goal securely, however, is difficult. Existing pub/sub systems

with confidentiality or access control either rely on non-cryptographic trusted do-
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mains (an overly strong assumption), centralized architectures, and/or violate the

decoupling feature of pub/sub systems [26, 77, 91, 92, 93, 102, 156, 157, 164, 170].

Building a decentralized pub/sub system with fine-grained access control is deemed

to be a major open problem [141]. First, the approach to encrypting publications us-

ing the keys of subscribers does not work, because, due to the decoupling feature of

pub/sub systems, publishers do not know the identities or keys of subscribers. Sec-

ond, publishers cannot encrypt the data using the keys of brokers either, as brokers

would know the publications in plaintext. Even if a single broker is compromised,

all historical publications will be leaked.

Reliability. Another challenge of building intrusion-tolerant pub/sub systems

is reliability under Byzantine (arbitrary) failures. Existing reliable pub/sub sys-

tems [52, 95, 100, 101, 148] only achieve weak reliability notions. One particular re-

liability notion is publication total order which guarantees subscribers should receive

relevant publications in the same order. For instance, in the stock market, seeing

a high price followed by a low price means something very different from seeing a

low price followed by a high price; it is vital to ensure that all subscribers receive

the price information in the same order. Publication total order would be easy to

achieve if brokers use Byzantine fault-tolerant (BFT) state machine replication to

maintain a total order of publications and ask subscribers to deliver publications

according to the total order.

Even so, due to the two-way control (publication filtering via subscriber inter-

ests and publisher access control), not all publications will be sent to all subscribers.

Therefore, the approach that brokers maintain a total order fail to work. In particu-
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lar, subscribers do not know if they should wait for or skip publications with certain

sequence numbers, as subscribers do not know if the corresponding publications are

on the way or will never arrive.

Discussion. With the rise of blockchains, two pub/sub systems using blockchains

(Hyperpubsub [139] and Trinity [148]) were proposed to defend against (Byzantine)

failures. Both systems make a black-box usage of existing pub/sub systems and

blockchain systems. Hyperpubsub uses Apache Kafka and Hyperledger Fabric [74],

while Trinity combines MQTT and one of the four blockchains (Fabric, Tender-

mint [14], and test networks for Ethereum [6] and IOTA [10]). The two systems,

however, suffer from at least three problems. First, both systems are essentially

auditing systems using blockchains. The overall systems are not Byzantine fault-

tolerant, as neither Kafka (only partially crash fault-tolerant) or MQTT (not fault-

tolerant) can defend against Byzantine failures. Both liveness and safety are violated

if any brokers of the two systems are compromised. Second, both Hyperpub and

Trinity leveraging fully-fledged blockchains have demonstrated poor performance,

because blockchains are essentially storage systems not designed for pub/sub sys-

tems, and many features of blockchains are not needed for pub/sub systems. Third,

both Hyperpubsub and Trinity directly combine existing pub/sub and blockchains

systems and therefore require a much larger number of nodes and resources than a

blockchain system or a conventional pub/sub system.

Neither Hyperpubsub nor Trinity achieves confidentiality or publication total

order, two goals we aim to address in this paper.
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Our contribution. We design, implement, and evaluate Chios, a Byzantine fault-

tolerant (BFT) pub/sub system with fine-grained access control and strong reli-

ability, without sacrificing the decoupling property of pub/sub. Chios’s security

assumption is standard to BFT and threshold cryptography, i.e., an adversary can-

not corrupt more than 1/3 of the total brokers. We summarize our contribution in

the following:

systems
brief

description
Byzantine
publisher

Byzantine
broker

confidentiality
and access

control

publication
total order

publication
liveness

Chios
BFT and

confidentiality
-preserving

  
decentralized;

attribute-based
  

Kafka [2]
favor performance

over reliability
# # # # #

AMQP [163]
“pub/sub

for business”
# #

use trusted
virtual host;
password for

control

# #

Hyperpubsub [139]
auditing system

for Kafka
# # # # #

Trinity [148]
auditing system

for MQTT
# # # # #

P2S [52] crash fault-tolerant # # # G#  

PubliyPrime [101]
Byzantine failure

detection
#  # G#  

JM [95]
deconstructing BFT

using a large
number of nodes

  # #  

IRC [93]
access control

using ABE
  

centralized
authority needed;
expensive pairing-

based crypto

# #

EventGuard [156]
use trusted
components

#  
trusted nodes

for confidentiality
# #

Table 5.1: Characteristics of representative pub/sub protocols. G#denotes partial
support. P2S and PubiyPrime achieve weaker ordering guarantees than publica-
tion total order. (The formal definitions of publication total order and publication
liveness are in Sec. 5.3.1.)

• We formally define the properties of a BFT and confidentiality-preserving pub/sub

system, covering strong access control and message ordering guarantees, in the
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sense of cryptography and reliable distributed systems.

• We demonstrate Chios is provably secure under our definitions by devising and

extending cryptographic and reliable distributed system protocols (e.g., vector-

label-input threshold encryption, broadcast encryption with decentralized key

distribution). Chios is the first pub/sub system achieving decentralized and fine-

grained access control as well as publication total order. We compare Chios with

existing pub/sub systems in Table 5.1.

• Chios is versatile and modular, supporting three additional and fully-fledged

pub/sub instances designed to meet different goals (e.g., different performance

metrics, different application scenarios). This situation includes an instance that

combines threshold encryption and broadcast encryption to enable more efficient

and dynamic access control. For the instance, we also provide an optimized in-

stantiation that is more efficient than a trivial instantiation. Both the general

protocol and the instantiation use a novel approach to maintain the decoupling

property of pub/sub.

• We implement and evaluate Chios, showing that all its variants are nearly as

efficient as its unreliable (unreplicated) counterpart and existing pub/sub sys-

tems (Kafka and Kafka with passive replication) and orders of magnitude faster

than blockchain-based systems (Fabric, Trinity, Hyperpubsub). None of existing

pub/sub systems or blockchain-based systems achieve decentralized confidential-

ity or strong order guarantees.
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5.2 Related Work

Fault-tolerant pub/sub. Most of industry pub/sub systems (Apache Kafka [2],

FAYE [7], Google Cloud Pub/Sub [8], and MQTT [11]) do not have strong fault

tolerance guarantees. For instance, Kafka is crash fault-tolerant for its controller

part. For its broker components, most Kafka implementations are not fault-tolerant,

though Kafka can be configured to use passive replication for weak fault tolerance.

Pub/Sub systems with strong reliability have been mostly studied for the case of

crash failures [52, 100, 169]. Only a handful of works consider a weaker subset

of Byzantine failures [95, 101] and none of them achieve publication total order.

Besides, PubliyPrime [101] does not handle Byzantine publishers or subscribers.

Pub/Sub with payload confidentiality. Confidentiality in pub/sub systems

can be generally divided into two categories [141]: 1) confidentiality for publication

headers and subscription constraints; 2) payload confidentiality (the ability to hide

the payload of the publications, e.g., the patient health record). The confidentiality

issue has become a major obstacle to wider adoption of pub/sub systems [141].

Chios addresses payload confidentiality but not confidentiality for publication

headers or subscription constraints. Most prior pub/sub systems that handle pay-

load confidentiality rely on overly strong “trusted domain” assumptions and do not

maintain the decoupling feature of pub/sub systems that is essential to pub/sub

system flexibility and scalability [26, 77, 102, 164, 170]. Srivatsa and Liu [156] de-

vised EventGuard with many goals similar to ours. EventGuard, however, assumes

a trusted service for confidentiality and authenticity.
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Pub/Sub with access control (but no fault tolerance). While there are a

number of pub/sub systems [91, 92, 93, 157] that use attribute-based encryption

(ABE) [96] to achieve fine-grained access control, they all suffer from the following

problems: 1) Efficient ABE schemes rely on relatively slow pairing-based cryptog-

raphy. 2) All these systems use a trusted central authority which is a single point of

failure. While the so-called decentralized ABE schemes exist [23], decentralization

here actually means that anyone can serve as an ABE authority by creating a public

key and issuing private keys to different users, but it does not mean that the keys

are generated interactively among distributed nodes.

Reliable distributed systems with confidentiality. Several works achieve con-

fidentiality in distributed file or storage systems that support store and retrieve

operations [21, 46, 73, 94, 110, 111, 142]. In these systems, clients apply encryption,

or secret sharing, to the data before the data is uploaded to the system.

Notably, Depspace [73] explores how to use publicly verifiable secret sharing

and hash function to encrypt and locate client data, but it does not achieve lineariz-

ability.

AVID [46] suggests the use of threshold encryption to provide access control

for Byzantine reliable broadcast and asynchronous verifiable information dispersal.

AVID, however, considers a much simpler setting and does not have an implemen-

tation.

Yin et al. [166] built a BFT protocol which privately processes user data by

separating agreement from execution and using threshold signatures. Assuming the

same architecture, Duan and Zhang [71] provided a more efficient construction that
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uses only symmetric encryption. Both protocols require a lot more nodes than a

conventional BFT protocol.

Many recent works [54, 40, 108] explore how to perform private computation

on blockchains using trusted execution environments (TEEs), e.g., Intel SGX.

These systems require trusting a single TEE vendor (e.g., Intel). Some cryp-

tographic proposals use zkSNARKs [33] or multi-party computation [145] to achieve

private computation. These approaches are limited in practice, as the cost to deal

with generic operations is very high, and the throughput is low.

5.3 System and Threat Model

Background on pub/sub systems. Pub/Sub systems enable disseminating infor-

mation from publishers (information sources) to subscribers (interested recipients)

via an overlay of brokers (servers). Publishers advertise information to the brokers

and send publications as advertised. Subscribers express their interests for receiv-

ing a subset of publications by issuing subscriptions. Brokers store subscriptions

received from subscribers. Upon receiving matching publications from publishers,

brokers send the corresponding publications to the interested subscribers. Besides

storing subscriptions, brokers may maintain routing tables to deliver subscribers

information.

The communication between publishers and subscribers is decoupled both in

time and space. In particular, publishers and subscribers do not need to know or syn-

chronize with one another. Indeed, direct communication among end-customers may
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not be possible. The decoupling feature enables flexible and scalable information

exchange and also avoids maintenance and charging difficulties for end-customers.

Moreover, this allows anonymity between publishers and subscribers (assuming bro-

kers are correct).

We consider topic-based pub/sub, which is dominant in industry pub/sub sys-

tems (e.g., Kafka, FAYE, MQTT, Amazon SNS, Google Cloud Pub/Sub). In topic-

based pub/sub, a publication includes a header and a payload. The header contains

the topics and their values (e.g., ID = “Alice”, county = “Orange”, price = “105”),

while the payload contains the complete bulk data. Correspondingly, a subscription

includes a set of constraints on the topics (e.g., ID = “Alice”, county = “Franklin”

or “Orange”, price = 100). The brokers need to match publications against stored

subscriptions according to the constraints of the topics (“equation,” “and,” “or” for

topic-based pub/sub).

BFT. We consider BFT state machine replication (SMR) protocols, where f out of

n replicas may fail arbitrarily (Byzantine failures) and a computationally bounded

adversary can coordinate faulty replicas. A replica delivers operations, each sub-

mitted by some client. The client should be able to compute a final response to its

submitted operation from the responses it receives from replicas.

5.3.1 Formalizing BFT Pub/Sub

Syntax. In our setting, publishers and subscribers are clients. Publishers can be

subscribers and vice versa. We use brokers, servers, and replicas interchangeably.
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We consider an overlay network, where brokers are connected in a complete graph.

A BFT pub/sub system consists of the following (possibly interactive) oper-

ations (reg, advertise, sub, pub, notify, read). An interactive registration algorithm

reg is run by clients and brokers. Through the reg algorithm, new clients can be

registered in the system and brokers can verify and store client (access) attributes

(e.g., ages, certificates) enabling them to have access to publications in the future.

For instance, a publisher may want only clients with certain attributes to see its

publications. Clients should be able to register independently, and in particular,

potential publishers and subscribers need not know one another. A client may not

need to decide at this stage if the client would like to register as a publisher, a

subscriber, or both, but rather may do this later via advertise and sub.

Publishers advertise to the replicas information that will be sent to all or a

subset of clients. The advertise messages may be viewed as special publications.

Subscribers send brokers subscriptions to express their interests via a sub operation.

Brokers store subscriptions received from subscribers. Upon receiving matching

publications from publishers via a pub operation, brokers send the corresponding

publications to the interested subscribers via a notify operation. The read operation

is similar to that of popular pub/sub systems (e.g., Kafka) and allows a client to

read particular data of interests from brokers.

Operations (reg, advertise, sub, pub) change broker state and are collectively

called write operations. Operations (notify, read) do not change broker state.

In our system, a publisher can send an encrypted publication together with

access control rules ac to the system. We say a subscriber (a client) is authorized to
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see a publication m, if the publisher submitting m has listed the subscriber in its

access control rules ac.

Goals. The goal of our secure BFT pub/sub system is to achieve CIA (confiden-

tiality, integrity, availability) against malicious brokers, publishers, and subscribers.

As in a BFT system, we assume a strong adversary that can passively corrupt f out

of n replicas and adaptively corrupt an unbounded number of clients. We divide

the goals into confidentiality and reliability goals.

Confidentiality and access control goals. We provide a unified definition of security

covering all confidentiality aspects (access control as specified by data providers and

confidentiality for non-subscribers and brokers). Specifically, given a BFT pub/sub

system, we associate the following game to an adversary A in Figure 5.1.

• A chooses to corrupt a fixed set of f brokers.
• A interacts with honest parties arbitrarily and chooses to corrupt
clients adaptively.
• A selects two messages m0 and m1, an ac, and a unique tag
tid that specifies an instance, and submits them to the encryption
oracle for the system. A cannot corrupt any clients specified by
ac (otherwise, A would have trivially won the game). The oracle
randomly selects a bit b and computes an encryption c of mb with
ac and tid, and sends the ciphertext to A.
• A interacts with honest parties arbitrarily subject only to the
following two conditions that 1) A cannot ask the decryption oracle
for the ciphertext c with ac and tid, and 2) A cannot corrupt any
clients specified by ac.
• Finally, A outputs a bit b′.

Figure 5.1: We define the advantage of the adversary A to be the absolute difference
between 1/2 and the probability that b′ = b.

Note it is easy to have a unique tid for a client operation (e.g., using a con-

catenation of the client identity cid and the timestamp of the operation ts). We

comment that we do not need to additionally define decryption consistency (as in
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threshold encryption), as this process is captured by Agreement 2 of the reliability

goals (introduced below).

Our definition is easily shown to imply input causality (causal order) [150],

which prevents the faulty replicas from creating an operation derived from a correct

client’s but that is delivered (and so executed) before the operation from which it is

derived. The problem of preserving input causality was introduced in BFT atomic

broadcast protocols by Reiter and Birman [150], later refined by Cachin et al. [43],

and recently generalized by Duan et al. [71]. Preserving causal order equally makes

sense in BFT pub/sub systems.

We do not aim to achieve confidentiality on publication headers or subscription

constraints, although they need to be protected for some applications.

Reliability goals. We have the following reliability goals:

• Agreement 1: If any correct replica delivers a write operation m, then every

correct replica delivers m.

• Agreement 2: If any correct subscriber delivers a publication p matching its

subscription T , then every correct subscriber who has the same subscription T

and has access to p delivers p.

• Total Order 1: If a correct replica has delivered write operations m1,m2, · · · ,ms

and another correct replica has delivered m′1,m
′
2, · · · ,m′s′ , then mi = m′i for

1 ≤ i ≤ min(s, s′).

• Total Order 2 (Publication total order): If a correct subscriber has delivered

p1, p2, · · · , ps for a subscription T and another correct subscriber has delivered
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p′1, p
′
2, · · · , p′s′ for T , and if the two subscribers have the same access attributes,

then pi = p′i for 1 ≤ i ≤ min(s, s′).

• Liveness 1: If a write operation m is submitted to n − f correct replicas, then

all correct replicas will eventually deliver m.

• Liveness 2 (Publication liveness): If a publisher is correct and submits p

matching a subscription T , then all correct subscribers that issued a subscrip-

tion T and have access to p will eventually deliver p. If a subscriber issues a

subscription T , then it will deliver all authorized publications matching T .

• No Creation: If a subscriber delivers a publication, then the publication was

published by some publisher.

• No Duplication: A subscriber delivers no publications twice.

Agreement 1, Total Order 1, and Liveness 1 are properties for all write op-

erations. The other properties are ones for pub/sub operations with respect to

subscribers. We have considered access control when defining these properties. The

properties can be easily simplified to work without considering access control.

Prior formalization on reliable pub/sub systems [52, 101, 148, 169] only con-

sider a much smaller subset of properties we defined here. In particular, a weaker

notion of publication total order was considered in several systems [52, 148, 169],

where neither subscription restraints nor access control rules are considered, and

total order is enforced among all publications across all subscribers. The weaker no-

tion is immediately implied by the total order property of brokers (Total Order 1),

as subscribers can directly deliver publications in the sequence number order deter-
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mined by brokers. Moreover, in [169], Total Order 1 is not required, because they

did not use a state machine replication approach.

No Creation and No Duplication have been previously formalized by Jehl and

Meling [95] but with different names (“authentication” and “uniqueness”).

5.4 The Chios System

Chios addresses two important problems in pub/sub systems, achieving decentral-

ized, privacy-preserving pub/sub with fine-grained access control, and ensuring pub-

lication total order even with the two-way information control.

We first review threshold encryption. Then, we describe a toy protocol achiev-

ing all security goals except publication total order. Finally, we show our core

protocol (Chios) achieving publication total order.

5.4.1 Review of VIL Threshold Encryption

Conventional labeled threshold encryption takes a single string as the label. We

extend the primitive to support a vector of strings L = (L1, · · · , Ls) ∈ {0, 1}∗∗ as

labels. By a vector we mean a sequence of zero or more strings, and we let {0, 1}∗∗

denote the space of all vectors. Our scheme supports an arbitrary number of vectors,

each of which can be of arbitrary length.

Syntactically, a robust (t, n) VIL (variable-input-length) threshold encryption

consists of the following algorithms. A probabilistic key generation algorithm TGen

takes as input a security parameter l, the number n of total servers, and threshold
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parameter t, and outputs (pk, vk, sk), where pk is the public key, vk is the verification

key, and sk = (sk1, · · · , skn) is a list of private keys. A probabilistic encryption

algorithm TEnc takes as input a public key pk, a message m, and a vector label L,

and outputs a ciphertext c. A probabilistic decryption share generation algorithm

ShareDec takes as input a private key ski, a ciphertext c, and a label L, and outputs a

decryption share τ . A deterministic share verification algorithm Vrf takes as input

the verification key vk, a ciphertext c, a label L, and a decryption share τ , and

outputs b ∈ {0, 1}. A deterministic combination algorithm Comb takes as input

the verification key vk, a ciphertext c, a label L, a set of t decryption shares, and

outputs a message m, or ⊥ (a distinguished symbol).

Our VIL threshold encryption scheme, TDH2-VIL, extends the TDH2 thresh-

old encryption by Shoup and Gennaro [153].

5.4.2 A Toy Protocol: Chios without Publication Total Order

System setup. We assume that the number of brokers is n, and f out of n bro-

kers can fail arbitrarily (Byzantine failures). We set up an (f + 1, n) VIL threshold

encryption (TGen, TEnc, ShareDec, Vrf, Comb) so that a public key pk and verifica-

tion keys vk are associated with the system, while a secret key is shared among all

brokers, with a broker i having a key ski for i ∈ [1..n].

Publisher and subscriber registration. In Chios, communication among pub-

lishers and subscribers is decoupled both in time and space. Publishers and sub-

scribers do not need to know or synchronize with one another. A client (a publisher
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or a subscriber) registers with brokers using their attributes. During the registra-

tion, the brokers collectively verify and store client attributes. Chios runs BFT to

ensure the registration information is consistent among brokers. More specifically:

• A client sends its attributes and the corresponding proof to brokers as a special

registration operation.

• Upon receiving a registration operation, brokers verify the correctness of client

attributes. Brokers discard the operation if the verification fails. (Note the verifi-

cation of the client attributes can be done offline or online, as in PKI registration.)

Brokers run the BFT protocol to assign a sequence number to the registration

operation and store the operation in sequence number order. Brokers send replies

signaling the success of registration.

• Upon receiving f + 1 matching replies, the client completes the registration.

Advertisements and subscriptions. During the advertisement process, pub-

lishers advertise to the system their publication scopes, and the brokers broadcast

the type of events to all potential subscribers (who show an intent to receive sub-

scriptions during the registration process or later via subscriptions). The advertise

operation can be viewed as a special pub operation. During the subscription pro-

cess, subscribers submit their subscriptions which are stored at the brokers. Adver-

tisements and subscriptions are treated as BFT write operations that need to be

ordered.

Publishing (with confidentiality and fine-grained access control). Let ts,

op, o, hr = [hr1..hrs], ac = [ac1..act], and p be the timestamp, the operation type
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(pub), the executable operation o (which makes Chios stateful), the header, the

access control policies, and the payload of a publication, respectively. The header

hr consists of the topics of a publication and optionally additional associated-data

that do not need to be privacy-protected. The approach provides fine-grained (per-

publication) and attribute-based access control.

• A publisher cid takes as input ts, op, o, hr, p, and ac, and computes a threshold

encryption ciphertext as follows. The vector of labels L for the client is of the

form (cid, ts, op, hr, ac). The client cid takes as input the threshold encryption

public key pk, L, and p, and outputs a labeled ciphertext (L, c)
$← TEnc(pk, p, L)

using our vector-label-input threshold encryption. It sends brokers (L, c) as a

BFT write operation.

• Upon receiving a client publication, brokers run the BFT protocol to order the

publication (by assigning a sequence number to the publication), store the pub-

lication, and execute the associated operation o in sequence number order. The

brokers send replies to the write request which may contain the executed result

for the publisher.

• Upon receiving f+1 matching replies, the client completes the publish operation.

Notify. During the process, brokers enforce access control and send publications to

authorized and interested subscribers. More specifically:

• Brokers decide authorized and interested subscribers for a publication (L, c) by

matching publication topics with existing subscription constraints, checking ac-

cess control policies associated with the publication, and checking global ac-
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cess control policies already installed in the brokers. For authorized and in-

terested subscribers, each broker i ∈ [1..n] sends them its decryption share

τi
$← ShareDecski(L, c) and the sequence number sn assigned to the labeled ci-

phertext (L, c).

• Upon receiving f + 1 matching publications with valid decryption shares from

the brokers with the same sequence number sn, a subscriber runs Comb to obtain

the publication in plaintext and delivers it.

Read. As in Kafka, Chios can serve as a storage system and an authorized client

can read stored data (publications) at brokers via engaging a protocol between the

client and brokers.

• A client sends brokers a read request for a particular publication of the form

(L, c).

• Upon receiving a read request, brokers decide if the client is authorized by check-

ing access control policies associated with the publication. If the client is allowed

to have access to the publication, each broker i ∈ [1..n] sends the client its de-

cryption share τi
$← ShareDecski(L, c).

• Upon receiving f + 1 matching replies with valid decryption shares from the

brokers with the same sequence number sn, the client runs Comb to obtain the

publication in plaintext and delivers it.

The above system achieves all properties in Sec. 5.3.1 except publication total

order.
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5.4.3 Chios with Publication Total Order

Intuitively, to achieve publication total order, each subscriber needs to maintain a

log of valid publications received and deliver them according to the sequence number

order assigned by brokers; however, due to access control and subscriber interests,

not all publications will be sent to all subscribers. Therefore, subscribers do not

know if they should wait for or skip publications with certain sequence numbers.

To tackle the issue, we first require servers additionally to maintain topic-based

sequence numbers in addition to the global sequence numbers. Doing so, however,

does not suffice, as even if two subscribers have the same subscriptions, they may not

receive the same publications due to the access control rules. We thus also require

that servers send empty messages with sequence numbers to subscribers who are

not authorized to receive the corresponding publications. This way, subscribers

can safely skip empty publications and go ahead to deliver publications with larger

publication sequence numbers.

We now describe in more detail how Chios achieves publication total order.

As illustrated in Figure 5.2, we maintain two tables: a table for data blocks and a

table for publication order indices. The data block table maintains all operations

in the system, which are stored in the database. The publication order index table

contains metadata of the data blocks and can be derived from the data block table.

The index table is stored either in the database or in memory.

For each operation, we store the sequence number (sn), the client id (cid), the

operation type (op), the message payload (p), timestamp (ts), access control rules
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(ac), and the publication topics (tp). Certain fields in the data blocks can be NULL.

The publication order index table helps achieve topic-based total order (i.e.,

total order for the publications according to the topics). Specifically, for each topic,

we maintain a simple data structure S-PS, where the S field consists of the sequence

numbers of operations (sn, the same sequence numbers as in the data blocks table),

and the PS field consists of the per-topic sequence numbers (ps).

2 100,101  pub m2 10 price=“105”,
county=“Orange”  

1000 

6 m1 101 NULL write 1 1001 

4 m0 NULL price=“105” 

cid 

pub

p
0 

opts ac 

1000 

tp sn 

Data Blocks

0-0,2-1

county=“Orange” 1-0 

price=“105”  

S-PS  tp 

Publication Order Indices

2

Figure 5.2: Data blocks and the publication order indices.

The PS field contains incremental sequence numbers for a specific topic, ensur-

ing there is no gap in the sequence numbers for operations with the same topic. For

instance, as shown in Figure 5.2, in the data block table, operations with sequence

number 0 and 2 are publications. There are two topics involved in the data block

table: price = “105” and county = “Orange”. Correspondingly, there are two topics

in the publication index table. As both publications have the topic (price = “105”),

the topic in the index table has two S-PS numbers: 0-0 and 2-1. The numbers 0 and

2 in the S field are the sequence numbers in the data block table, while the num-

bers 0 and 1 in the PS field are per-topic sequence numbers. Specifically, brokers

distinguish three cases:

• For authorized and interested subscribers, each broker i ∈ [1..n] sends them

(tp, ps, τi), where tp is the topic, ps is the topic sequence number, and τi
$← ShareDecski
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(L, c) is the decryption share for broker i.

• For unauthorized and interested subscribers, each broker i ∈ [1..n] sends them

(tp, ps,⊥), where ⊥ is a short distinguished symbol denoting an empty message

payload (so that subscribers can safely skip the sequence numbers for a particular

topic).

• For uninterested subscribers, brokers send nothing.

Each subscriber maintains a log of publications (either empty publications or

publications in plaintext) for each topic tp. It delivers publications according to the

ps order, and example of which is illustrated in Figure 5.3. More specifically,

• Upon receiving f + 1 matching publications of the form (tp, ps, τi) from different

brokers, a subscriber runs Comb to obtain a publication in plaintext p and stores

p in ∆ in its ps’s position.

• Upon receiving f + 1 matching publications of the form (tp, ps,⊥) from different

brokers, the subscriber directly skips the empty publication in the array ∆ in its

ps’s position.

• The subscriber delivers a publication p ∈ ∆ with a sequence number ps, if all

publications with sequence numbers smaller than ps are either delivered (for non-

empty publications) or skipped (empty publications).

127



Figure 5.3: An example of how a subscriber delivers publications assuming f = 1

and n = 4. The subscriber receives a sequence of messages from BFT brokers and

stores them in its buffer. It first receives f + 1 = 2 matching messages with ps = 2.

It then runs Comb to obtain a publication p2 in plaintext and stores in its log.

The subscriber has to wait until publications with smaller sequence numbers (i.e.,

ps = 0, 1) have been dealt with. After the subscriber receives 2 matching messages

with ps = 0, it runs Comb to obtain p1 and delivers p1. It then waits for messages

with ps = 1. After the subscriber receives two empty messages for ps = 1, it directly

skips the message and delivers message p2 stored.

5.5 Implementation

Chios consists of a Java library and a Python library with about 30,000 lines of new

code. We use BFT-SMaRt [35] written in Java as the underlying consensus engine,

as BFT-SMaRt is “the most advanced and most widely tested implementation of a

BFT consensus protocol” [99]. We use LevelDB [16] as the database. We extend

the BFT-SMaRt library and implement a key-value store service. The Java library

serves as an ordering service, which assigns a sequence number to a client operation.
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Figure 5.4: System architecture and message flow.

Then, we wrap the library in Python and develop all the core functionalities.

Figure 5.4 illustrates the system architecture and the message flow. The client

operations are first handled through a request handler thread pool and the opera-

tions are then relayed to the BFT core. The BFT core batches concurrent client

operations and assigns a sequence number to each operation. The ordered client

operations are then processed by a pub/sub handler thread pool. Each thread pro-

cesses a client operation at a time and outputs a reply according to the operation

type. Chios uses a batch-process, block-store approach, where operations are batched

according to a tunable parameter BlockSize, ordered, processed, and the results are

stored in the database in blocks.

We use ECDSA for authentication and use SHA-256 as our hash function. We

implement TDH2-VIL and threshold PRF [44] using the Charm Python library [22].

We use the NIST P-256 curve to provide 128-bit security.

We use AES and CBC with ciphertext stealing as our blockcipher and encryp-
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tion scheme, respectively, to implement the NNL scheme [137].

5.6 Evaluation

Settings.

We deployed Chios on Amazon EC2 using up to 31 nodes for brokers and 25

nodes for clients (running up to 1,200 clients in total).

Each node, by default, is a compute-optimized c5.2xlarge type with 8 vir-

tual CPUs (vCPUs) and 16GB memory. We also test the performance using a

general-purpose t2.medium type with two vCPUs and 4GB memory to evaluate the

performance on different hardware. We evaluate our protocols in both LAN and

WAN settings, where the LAN nodes are selected from the same EC2 region, and

the WAN nodes are uniformly selected from different regions.

We evaluate the protocols under different network sizes (number of replicas)

and contention levels (number of concurrent clients). For each experiment, we use

f to represent the network size, where 3f + 1 brokers are launched in total. We

use P, C, and B to represent the encryption-free module (Module 1), the threshold

encryption module (Module 2), and the broadcast encryption module, respectively.

Let Mod ∈ {P,C,B} and let op(Mod) represent the operation op in the operation

using the Mod module. For instance, pub(C) denotes pub operations for Module 2.

We examine the average latency under no contention where only one client

sends a single operation to the servers. We examine the throughput under high

contention of client requests. We evaluate the number of operations processed every
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second for every 2,000 operations and use the average throughput of the entire

experiment.

Overview. For the minimum one failure setting (f = 1), the Chios protocol with

all desirable features (pub/sub, decentralized confidentiality, and fine-grained access

control), achieves throughput of 45 kops/s for pub operations in LAN. To demon-

strate Chios’s performance rigorously, we first compare Chios Module P with five

other pub/sub systems. Next, we evaluate the performance for different Chios Mod-

ules.

Comparison with five other pub/sub systems. We first compare Chios Module

P with the following five systems, where Chios-Solo, Kafka, and Fabric-Solo are

unreplicated systems, while Kafka-Rep and Fabric-Kafka are crash fault-tolerant

systems:

− Chios-Solo. Unreplicated, single-node version of Chios.

− Kafka. As we summarized in Table 5.1 in Sec. 5.1, Kafka favors performance over

reliability and does not achieve any security or reliability goals which we surveyed

even in the crash failure model.

− Kafka-Rep. Kafka also supports passive (primary-backup) replication for its bro-

kers with no total order guarantees.

− Fabric-Kafka [74]. Fabric is a popular permissioned blockchain system. Fab-

ric currently does not protect against Byzantine failures. Fabric-Kafka uses the

Zookeeper [90] system in Kafka to achieve consensus and is thus only crash fault-

tolerant. Hyperpubsub is pub/sub auditing system using Fabric (with Raft [140])
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and it is thus slower than Fabric-Kafka.

− Fabric-Solo [74] uses a single node for consensus and is thus not fault-tolerant.

One Trinity instance [148] uses Fabric-Solo as its pub/sub auditing system and is

slower than Fabric-Solo.

To evaluate the P module of Chios, we randomly assign topic number for pub-

lications during evaluation. We implement a read/write smart contract for Fabric

and use the write operation for the write throughput. Our evaluation for through-

put is standard: publishers send brokers operations, and we increase the number

of publishers to obtain the peak throughput. We first find out the number of pub-

lishers when each system reaches peak throughput. To ensure a fair comparison,

we evaluate the systems under the same total workload. Namely, the total number

of operations sent publishers is the same for all systems. We let the size of all op-

erations be 1kB and we utilize network sizes that tolerate one failure, i.e., four for

Chios and three for Fabric and Kafka.

We report the throughput in LAN using 200 clients of the six systems in

Figure 5.5. Chios Module P is as efficient as Chios-Solo and is only marginally

less efficient than Kafka and Kafka-Rep. Chios is significantly more efficient than

Fabric-Kafka and Fabric-Solo and thus even much more efficient than Hyperpubsub

and Trinity.

It is unfair to compare Chios with Kafka with more nodes, as Kafka uses

independent server instances for horizontal scalability.

Latency of Chios modules. We assess the latency in both the LAN and WAN
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Figure 5.5: Throughput of Chios, Chios-Solo, Kafka, Kafka-Rep, Fabric-Kafka, and

Fabric-Solo.
settings.

We let the BlockSize be one to understand the latency caused by the protocol

itself.

In the LAN setting, the network latency is relatively small, so the overhead

is more caused by the BFT agreement and execution of operations (e.g., verifying

operation types, database interaction). In the WAN setting, the network latency

causes more performance degradation than that in the LAN setting. For the thresh-

old encryption and broadcast encryption modules, the latency evaluated includes

the overhead of client-side encryption.

For read operations. We assess the latency for read operations in all three encryption

modules as the network size increases. Figure 5.6(a) reports the latency for the LAN

setting. As read(P) involves no encryption, it has the lowest latency among all three

modules. For read(C), replicas verify the ac rules, decrypt the ciphertext, and send

decryption shares to the clients.

Additional overhead is thus incurred. For read(B), we test the latency for the
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Figure 5.6: Latency of different Chios modules.

content distribution phase, as the key distribution phase needs to be done only once.

The performance of read(B) is consistently better than that of read(C), as it uses

symmetric cryptography only. In the WAN setting, the latency difference among
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Figure 5.7: Throughput of different Chios modules.
the three modules is smaller, as shown in Figure 5.6(b), mainly because network

latency dominates the overhead.

For pub and sub operations. We report their latency in Figure 5.6(c) and Fig-

ure 5.6(d). We also report the latency of pub using different hardware in Fig-

ure 5.6(e). We find that the latency for pub operations is higher than that of read

operations. We also find that the latency difference for pub operations between the

LAN and WAN settings is much higher than that for read operations. The findings

are expected, as Chios implements the BFT read optimization which reduces much

communication overhead.

Other operations. In Figure 5.6(f), we evaluate the performance of read(B) and
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write(B) operations as the number of subscribers increases. In all these experiments,

we randomly revoke 1/4 of the total subscribers. We find for both operations, the

latency is steady, regardless of the number of subscribers. The reason is that the

broadcast encryption module uses symmetric cryptography only for the content

distribution phase.

Throughput of Chios modules. We evaluate the throughput of Chios with

varying BlockSize in the LAN setting when f = 1. Figure 5.7(a) demonstrates the

throughput when the BlockSize is the 5,000 and as the number of concurrent clients

increases from 25 to 1,000. The system reaches peak throughput when the number

of concurrent clients is larger than 800. The peak throughput that we observe

for pub (P) is around 40 kops/s in LAN and 18 kops/s in WAN. We report the

throughput when the total number of clients is 375 and as the BlockSize increases

in Figure 5.7(b). We observe that the throughput becomes larger when the BlockSize

increases; however, after BlockSize is larger than 10k, the throughput ceases to

increase. In all experiments, the throuhgput for pub (C) is lower than that of pub

(P) due to the cryptographic overhead.

We report the throughput for pub (P) and pub (C) using up to 31 servers and

500 concurrent clients for the LAN setting and the WAN setting, in Figure 5.7(d)

and Figure 5.7(c), respectively.

For both the LAN and WAN settings, we find that the throughput for both

modules degrade when the number of servers increases (resembling that of BFT-

SMaRt, the consensus engine for Chios), and the throughput for pub (C)

degrades more significantly due to the cryptographic overhead.
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5.7 Conclusion

We design and implement Chios, a highly efficient and intrusion-tolerant pub/sub

system. Chios addresses two major challenges in pub/sub in terms of confidentiality

and reliability: Chios achieves decentralized confidentiality with fine-grained and

attribute-based access control and publication total order with two-way information

control. Chios provides modular instances designed to meet different goals. Through

extensive evaluation, we demonstrate Chios is efficient.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The dissertation’s goal is to build the real-world distributed system focusing on

different required tasks. We constructed three fault-tolerant distributed systems.

First, we proposed EPIC and HALE to achieve adaptive security. We de-

signed these adaptive asynchronous BFT protocols and analysed them. Via a five-

continent deployment on Amazon EC2, we showed EPIC is slightly slower for small

and medium-sized networks than the most efficient asynchronous BFT protocols

with static security. As the number of replicas is smaller than 46, EPIC’s through-

put is stable, achieving peak throughput of 8,000–12,500 tx/sec with a transaction

size of 250 bytes. When the network size grows larger, EPIC is not as efficient as

asynchronous BFT protocols with static security, with throughput of 4,000–6,300

tx/sec. We also show, while HALE is in general less efficient than EPIC, HALE is

reasonably fast, achieving 42,000 tx/sec and 3,400 tx/sec for the 4-server setting in

the LAN/WAN environments, respectively. Remarkably, HALE outperforms EPIC

in LANs when the number of replicas is smaller than 16.

Next, We presented MiB, a novel and efficient asynchronous BFT framework.

MiB consists of two main BFT instances and five other variants. As another con-

tribution, we systematically designed experiments for asynchronous BFT protocols
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with failures and evaluated their performance in various failure scenarios. We re-

ported interesting findings, showing asynchronous BFT indeed performs consistently

well during various failure scenarios. In particular, via a five-continent deployment

on Amazon EC2 using 140 replicas, we showed the MiB instances have lower latency

and much higher throughput than their asynchronous BFT counterparts.

We developed Chios, an intrusion-tolerant publish/subscribe system which

protects against Byzantine failures. Chios is the first publish/subscribe system

achieving decentralized confidentiality with fine-grained access control and strong

publication order guarantees. This finding is in contrast to existing publish/subscribe

systems achieving much weaker security and reliability properties. Chios is flexible

and modular, consisting of four fully-fledged publish/subscribe configurations (each

designed to meet different goals). We had deployed and evaluated our system on

Amazon EC2. We compared Chios with various publish/subscribe systems. Chios is

as efficient as an unreplicated, single-broker publish/subscribe implementation, only

marginally slower than Kafka and Kafka with passive replication, and at least an or-

der of magnitude faster than all Hyperledger Fabric modules and publish/subscribe

systems using Fabric.

6.2 Future Work

This dissertation presents a few newest results on distributed system. We discuss

below some topics for future research.
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Dynamic membership in asynchronous BFT protocols. Although current

asynchronous BFT protocols have many advantages and are appropriate for blockchain

system where replicas can distribute in heterogeneous regions, but replicas cannot

join and exit dynamically. The administrators have to stop the whole system to

add or delete the replicas in the system. These protocols also take no measure to

deal with those malicious replicas. It is worth studying how to design the dynamic

asynchronous BFT protocols and make it practical.

Asynchronous BFT protocol in a nutshell? Asynchronous BFT is complex and

includes several components: cryptographic scheme, RBC, and ABA. From 2016,

the modern asynchronous BFT architecture is widely researched and several works

were proposed, including HoneyBadgerBFT, BEAT, EPIC, Dumbo, Dumbo-mvba

[125], Bolt-Dumbo [124]. Compared with the most famous partially synchronous

BFT protocol, PBFT, which has only three steps, it is interesting to ask whether

the performance of asynchronous BFT protocol can be improved.

BFT-SMaRt is a high-performance Byzantine fault-tolerant state machine

replication library and it is already deployed in some real-world systems. Asyn-

chronous BFT can be also implemented for example, BFT-SMaRt. It means that

the asynchronous BFT library can be implemented in practice rather than in a

one-time test.

BFT applications. This dissertation presents a complete and detailed system de-

sign for pub/sub system combined BFT with fine-grained access control. Compared

with centralized system or weak fault-tolerant system, this approach gives us a great
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guidance to employ the BFT as an oracle to achieve strong fault tolerance. Some

applications can also take BFT into account.

Traditional anonymous communications cannot tolerate faulty nodes. They

can detect failures when messages transmitting from senders to receivers using zero

knowledge proof, trap messages or random partial checking. Meanwhile, most of

the systems can only detect failures but how to penalize the faults is not considered.

The nature of BFT is to tolerate malicious attacks and does not need to abort the

whole system as most of anonymous systems do. However, BFT and anonymous

communications have different goals and typologies. Is it possible to design an

anonymous communication with BFT without affecting its efficiency? Low latency

is significant for instant communication.

In the voting system, the election authority (EA) is one of the most important

entities. However, the EA is centralized in some famous voting systems. Anonymous

communications can be used to prevent liking a voter to their vote. However, the

centralized EA can execute arbitrary attacks, for example, it can cancel some votes

or abort the election. BFT can be used to tolerate faults even if some EA were

faulty. It is worth studying whether it is possible to use the verification process to

monitor the behavior of the EA [53]. Is it necessary to use BFT to tolerate a faulty

EA?
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fault tolerance. In 2013 IEEE 33rd International Conference on Distributed
Computing Systems, pages 297–306. IEEE, 2013.

[26] J. Bacon, D. M. Eyers, J. Singh, and P. R. Pietzuch. Access control in pub-
lish/subscribe systems. In Proceedings of the second international conference
on Distributed event-based systems, pages 23–34, 2008.

[27] J.-P. Bahsoun, R. Guerraoui, and A. Shoker. Making BFT protocols really
adaptive. In IPDPS, pages 904–913. IEEE, 2015.

[28] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime
order. In Proceedings of the 12th International Conference on Selected Areas
in Cryptography, 2006.

[29] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li, D. Malkhi,
O. Naor, D. Perelman, and A. Sonnino. State machine replication in the libra
blockchain. The Libra Assn., Tech. Rep, 2019.

[30] J. Behl, T. Distler, and R. Kapitza. Scalable BFT for multi-cores: Actor-based
decomposition and consensus-oriented parallelization. In 10th Workshop on
Hot Topics in System Dependability (HotDep 14), 2014.

[31] M. Ben-Or. Another advantage of free choice: Completely asynchronous agree-
ment protocols (extended abstract). In PODC, pages 27–30, 1983.

[32] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure computations with
optimal resilience. In Proceedings of the 13th annual symposium on Principles
of distributed computing, pages 183–192. ACM, 1994.

143



[33] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for
c: Verifying program executions succinctly and in zero knowledge. In Annual
cryptology conference, pages 90–108. Springer, 2013.

[34] P. Berman and J. A. Garay. Randomized distributed agreement revisited.
In FTCS-23 The Twenty-Third International Symposium on Fault-Tolerant
Computing, pages 412–419. IEEE, 1993.

[35] A. Bessani, J. Sousa, and E. E. Alchieri. State machine replication for the
masses with BFT-SMART. In 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pages 355–362. IEEE, 2014.

[36] A. Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the Gap-Diffie-Hellman-group signature scheme. In PKC, pages 31–
46, 2003.

[37] G. Bracha. An asynchronous [(n-1)/3]-resilient consensus protocol. In Pro-
ceedings of the third annual ACM symposium on Principles of distributed com-
puting, pages 154–162. ACM, 1984.

[38] G. Bracha. Asynchronous Byzantine agreement protocols. Information and
Computation, 75(2):130–143, 1987.

[39] G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols.
Journal of the ACM (JACM), 32(4):824–840, 1985.

[40] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti. Blockchain and
trusted computing: Problems, pitfalls, and a solution for hyperledger fabric.
2018.

[41] M. Burrows. The chubby lock service for loosely-coupled distributed systems.
In Proceedings of the 7th symposium on Operating systems design and imple-
mentation, pages 335–350. USENIX Association, 2006.

[42] C. Cachin, D. Collins, T. Crain, and V. Gramoli. Byzantine fault tolerant
vector consensus with anonymous proposals. arXiv preprint arXiv:1902.10010,
2019.

[43] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asyn-
chronous broadcast protocols. In Annual International Cryptology Conference,
pages 524–541. Springer, 2001.

[44] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in constantinople:
Practical asynchronous Byzantine agreement using cryptography. Journal of
Cryptology, 18(3):219–246, 2005.

[45] C. Cachin and J. A. Poritz. Secure intrusion-tolerant replication on the inter-
net. In DSN, pages 167–176. IEEE, 2002.

144



[46] C. Cachin and S. Tessaro. Asynchronous verifiable information dispersal. In
SRDS, pages 191–201. IEEE, 2005.

[47] C. Cachin and L. Zanolini. From symmetric to asymmetric asynchronous
Byzantine consensus. arXiv preprint arXiv:2005.08795, 2020.

[48] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-
party computation. In STOC ’96, 1996.

[49] R. Canetti and T. Rabin. Fast asynchronous Byzantine agreement with opti-
mal resilience. In STOC, volume 93, pages 42–51. Citeseer, 1993.

[50] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems (TOCS), 20(4):398–461,
2002.

[51] M. Castro, B. Liskov, et al. Practical Byzantine fault tolerance. In OSDI,
volume 99, pages 173–186, 1999.

[52] T. Chang, S. Duan, H. Meling, S. Peisert, and H. Zhang. P2S: a fault-tolerant
publish/subscribe infrastructure. In Proceedings of the 8th ACM International
Conference on Distributed Event-Based Systems, pages 189–197, 2014.

[53] D. Chaum, R. T. Carback III, J. Clark, C. Liu, M. Nejadgholi, B. Preneel,
A. T. Sherman, M. Yaksetig, and F. Zagórski. Votexx: A remote voting system
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[136] K. Nadiminti, M. D. De Assunçao, and R. Buyya. Distributed systems and
recent innovations: Challenges and benefits. InfoNet Magazine, 16(3):1–5,
2006.

[137] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for
stateless receivers. In Annual International Cryptology Conference, pages 41–
62. Springer, 2001.

[138] K. Nayak, L. Ren, E. Shi, N. H. Vaidya, and Z. Xiang. Improved ex-
tension protocols for Byzantine broadcast and agreement. arXiv preprint
arXiv:2002.11321, 2020.

[139] Z. Nejc and J. Kaiwen, Zhangand Hans-Arno. Hyperpubsub: a decentralized,
permissioned, publish/subscribe service using blockchains: demo. In Middle-
ware, 2017.

151



[140] D. Ongaro and J. Ousterhout. In search of an understandable consensus al-
gorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC 14),
pages 305–319, 2014.

[141] E. Onica, P. Felber, H. Mercier, and E. Rivière. Confidentiality-preserving
publish/subscribe: A survey. volume 49, pages 1–43. ACM New York, NY,
USA, 2016.

[142] R. Padilha and F. Pedone. Belisarius: BFT storage with confidentiality. In
NCA, 2011.

[143] R. Pass and E. Shi. Hybrid consensus: Efficient consensus in the permissionless
model. In DISC, 2017.

[144] R. Pass and E. Shi. Thunderella: blockchains with optimistic instant confir-
mation. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 3–33. Springer, 2018.

[145] K. Patel. Secure multiparty computation using secret sharing. In 2016 Inter-
national Conference on Signal Processing, Communication, Power and Em-
bedded System (SCOPES), pages 863–866. IEEE, 2016.

[146] A. Patra, A. Choudhary, and C. Pandu Rangan. Simple and efficient asyn-
chronous Byzantine agreement with optimal resilience. In PODC, pages 92–
101. ACM, 2009.

[147] M. O. Rabin. Randomized Byzantine generals. In SFCS, pages 403–409. IEEE,
1983.

[148] G. S. Ramachandran, K.-L. Wright, L. Zheng, P. Navaney, M. Naveed, B. Kr-
ishnamachari, and J. Dhaliwal. Trinity: A Byzantine fault-tolerant dis-
tributed publish-subscribe system with immutable blockchain-based persis-
tence. In 2019 IEEE International Conference on Blockchain and Cryptocur-
rency (ICBC), pages 227–235. IEEE, 2019.

[149] H. V. Ramasamy and C. Cachin. Parsimonious asynchronous Byzantine-fault-
tolerant atomic broadcast. In OPODIS, 2005.

[150] M. K. Reiter and K. P. Birman. How to securely replicate services. In ACM
TOPLAS, 1994.

[151] F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[152] V. Shoup. Practical threshold signatures. In EUROCRYPT 2000.

[153] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen
ciphertext attack. J. Cryptol., 15(2):75–96, Jan. 2002.

152



[154] Y. J. Song and R. van Renesse. Bosco: One-step Byzantine asynchronous
consensus. In International Symposium on Distributed Computing, pages 438–
450. Springer, 2008.

[155] T. Srikanth and S. Toueg. Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms. Distributed Computing, 2(2):80–94, 1987.

[156] M. Srivatsa and L. Liu. Securing publish-subscribe overlay services with event-
guard. In Proceedings of the 12th ACM conference on Computer and commu-
nications security, pages 289–298, 2005.

[157] M. A. Tariq, B. Koldehofe, and K. Rothermel. Securing broker-less pub-
lish/subscribe systems using identity-based encryption. IEEE transactions on
parallel and distributed systems, 25(2):518–528, 2013.

[158] P. Tholoniat and V. Gramoli. Formal verification of blockchain Byzantine
fault tolerance. arXiv preprint arXiv:1909.07453, 2019.

[159] S. Toueg. Randomized Byzantine agreements. In PODC, pages 163–178. ACM,
1984.

[160] C. Tyler, G. Vincent, L. Mikel, and R. Michel. Dbft: Efficient leaderless
Byzantine consensus and its application to blockchains. In 17th International
Symposium on Network Computing and Applications, 2018.

[161] M. Van Steen and A. Tanenbaum. Distributed systems principles and
paradigms. Network, 2:28, 2002.

[162] S. Victor and G. Rosario. Securing threshold cryptosystems against chosen
ciphertext attack. In EUROCRYPT, 1998.

[163] S. Vinoski. Total order in content-based publish/subscribe systems. In Ad-
vanced message queuing protocol. IEEE Internet Computing, 2006.

[164] A. Wun and H.-A. Jacobsen. A policy management framework for content-
based publish/subscribe middleware. In ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and Open Distributed Process-
ing, pages 368–388. Springer, 2007.

[165] Y. Yeh. Safety critical avionics for the 777 primary flight controls system. In
20th DASC. 20th Digital Avionics Systems Conference (Cat. No. 01CH37219),
volume 1, pages 1C2–1. IEEE, 2001.

[166] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating
agreement from execution for Byzantine fault tolerant services. In SOSP, 2003.

[167] M. Yin, D. Malkhi, M. Reiterand, G. G. Gueta, and I. Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In 38th ACM symposium
on Principles of Distributed Computing (PODC), 2019.

153



[168] M. Zamani, M. Movahedi, and M. Raykova. Rapidchain: A fast blockchain
protocol via full sharding. In CCS, pages 931–948, 2018.

[169] K. Zhang, V. Muthusamy, and H.-A. Jacobsen. Total order in content-based
publish/subscribe systems. In ICDCS, 2012.

[170] Y. Zhao and D. C. Sturman. Dynamic access control in a content-based
publish/subscribe system with delivery guarantees. In ICDCS, 2006.

[171] P. Zielinski. Optimistically terminating consensus: All asynchronous consen-
sus protocols in one framework. In ISPDC, pages 24–33. IEEE, 2006.

[172] R. Zurawski. Industrial communication technology handbook, Second Edition.
CRC Press, 2014.

154






