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Abstract
In this study, we provide error estimates and stability analysis of deep learning
techniques for certain partial differential equations including the incompressible
Navier–Stokes equations. In particular, we obtain explicit error estimates (in suit-
able norms) for the solution computed by optimizing a loss function in a Deep Neural
Network approximation of the solution, with a fixed complexity.

Mathematics Subject Classification 35Q35 · 35Q30 · 65M70

1 Introduction

Machine Learning, which has been at the forefront of the data science and artificial
intelligence revolution in the last twenty years, has a wide range of applications in
natural language processing, computer vision, speech and image recognition, among
others [11, 13, 19]. Recently, its use has proliferated in computational sciences and
physical modeling such as the modeling of turbulence [7, 18, 33–36]. Moreover,
machine learning methods (physics informed neural networks [21, 22, 25, 27, 38]
which are mesh-free) have gained wide applicability in obtaining numerical solutions
of various types of partial differential equations (PDEs); see [2, 3, 12, 21, 23, 26–28,
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754 A. Biswas et al.

30, 38] and the references therein. The need for these studies stems from the fact that
when using traditional numerical methods in a high-dimensional PDE, the methods
sometimes become infeasible. High-dimensional PDEs appear in a number of models
for instance in the financial industry, in a variety of contexts such as in derivative
pricing models, credit valuation adjustment models, or portfolio optimization models.
Such high-dimensional fully nonlinear PDEs are exceedingly difficult to solve as the
computational effort for standard approximation methods grows exponentially with
the dimension. For example, in finite difference methods, as the dimension of the
PDEs increases, the number of grids increases considerably and there is a need for
reduced time step-size. This increases the computational cost and memory demands.
Under these circumstances, implementing the deep learning algorithms can be helpful.
In particular, the neural networks approach in partial differential equations (PDEs)
offer implicit regularization and can overcome the curse of high dimensions [2, 3].
Additionally, this approach provides a natural framework for estimating unknown
parameters [7, 27, 28, 33, 35].

Here our main focus is on numerical analysis of the neural networks techniques for
solving the Navier–Stokes equations, after illustrating the fundamental issues involved
in the elliptic case. The Navier–Stokes equations, either alone or coupled with govern-
ing equations of other physical quantities such as the temperature and/or the magnetic
field, are the fundamental equations governing the motion of fluids. They appear in the
study of diverse physical phenomena such as aerodynamics, geophysics, atmospheric
physics, meteorology and plasma physics. For example, they are used in modeling the
water flow in a pipe, air flow around a wing, ocean currents and weather. They are
employed in the design of cars, aircrafts, and power stations, in the study of blood
flow and many other applications.

There is by now an abundant literature proposing numerical schemes (and demon-
strating their efficacy) employing DNN and machine learning tools for partial
differential equations, including those arising in fluid dynamics; see for instance [7, 12,
21–23, 25–28, 30, 33, 38] and the references therein. However, concrete and complete
mathematical analysis are relatively meager for such methods applied to PDEs, in
particular, for the Navier–Stokes equations, although some results on convergence (as
the complexity of the neural network tends to infinity) in the weak topology for some
semilinear PDEs can be found in [30]. The goal of this paper is to provide a rigorous
error analysis of deep learning methods employed in [12, 26–28], similar in spirit to
the probabilistic error analysis for machine learning algorithms for the Black-Scholes
equations in [3].

The computational algorithm employed in machine learning of PDEs (for instance
in [12, 26–28]) involves representing the approximate solution by a Deep Neural
Network (DNN), in lieu of a spectral or finite element approximation, and then min-
imizing, over all such representations, an appropriate loss function, measuring the
deviation of this representation from the PDE and the initial and boundary conditions.
One important thing to note in this approach is the following. It is well-known that
optimization of loss functions in a deep neural network is a non-convex optimization
problem. Therefore, neither the existence nor the uniqueness of a global optimum is
guaranteed. Typically, repeated application of stochastic gradient descent results in
reaching a local minimum, which may or may not be global. Nevertheless, we side
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Error estimates for deep learning methods in fluid dynamics 755

step this issue by taking advantage of the fact that in these applications, the minimum
value of the loss function at the exact solution must be zero, and obtaining an explicit
error estimate in terms of the attained value of the loss function. The estimate we
obtain in turn guarantees that the approximate solution thus constructed converges, in
the strong topology, to the true solution as the complexity of the networks tends to
infinity.

Here, we briefly describe the results of this paper. The first part of the results are
devoted to a second order elliptic equation posed on a bounded domain in R

2. In the
elliptic case, we choose a loss function that includes two parts; one part measures the
fidelity to the equation, while the other measures the discrepancy with the boundary
condition. Using results from approximation theory, we first show in Theorem 1 that
we can find an approximate solution in a DNN and when the approximate solution and
actual solution are close to each other, we can control the loss function (in terms of the
complexity of the DNN). Theorems 2 and 3 provide in some sense the converse. More
precisely, by establishing explicit error estimates, we show that by controlling the
loss function, we can have a good approximation to the solution using a DNN which
in turn justifies the DNN based numerical scheme. The proof employs interpolation
inequalities and the lifting operator. Moreover, in Theorem 3, we show that by using a
more stringent loss function, the error estimate can be improved. The improved error
rate is optimal for the given regularity of the right hand side. To summarize, our results
have shown the optimal error rate for deep learning method in elliptic equation.

Due to the (nonlinear and nonlocal) nature of the equation, the Navier–Stokes
equations is much harder to study compared with the elliptic equation. The (well-
known) difficulties include a lack of an evolution equation for the pressure which
essentially acts like a Lagrangianmultiplier that enforces the divergence free condition
on the velocity [32]. Moreover, the fact that the functions represented by the DNN
do not satisfy the boundary condition poses an additional challenge to the theoretical
analysis. This is expected since traditional analysis of the inhomogeneous boundary
condition case for theNavier–Stokes equations (being a nonlinear equation) is involved
and employs corrector and/or extension functions [8, 10, 29].

In this study, unlike the elliptic case, the loss function for the Navier–Stokes
equations consists of five terms, corresponding to the boundary condition, the initial
condition, the divergence-free condition, the equation itself, and one is a penalty term
corresponding to the regularity gain. With the choice of this loss function, we show
that when applying the deep learning algorithm on the Navier–Stokes equations, with
a small loss function, the approximate solution and actual solution are close to each
other. The proof of this result is nontrivial. By the Hodge decomposition, the approx-
imate solution is decomposed into two parts, namely uN and vN , necessitated by the
fact that functions represented by the DNN are not necessarily zero on the boundary.
Using the properties of the bilinear map and Gronwall’s inequality, we first estimate
the difference between uN and actual solution in the L2 norm in a certain time interval.
Then, by again decomposing vN into two parts, we obtain a control of vN . Applying
the Leray projection on the Navier–Stokes equation and using the estimates on uN

and vN , we obtain the estimate on the difference between the approximate solution
and accurate solution. On the other hand, we prove that by using the deep learning, we
can find an approximate solution such that the loss function is small. Here, we study
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the loss function term by term. Lastly, we show that our scheme is approximately sta-
ble. Due to differing regularity properties of the terms involved, choosing appropriate
norms for various constituent parts of the loss function is somewhat delicate for the
Navier–Stokes case.

Theorems 4–6 are, in some sense, the analogs of Theorems 1–3 for the 2D Navier–
Stokes equations. More precisely, Theorem 4 states the precise error estimate between
a strong solution of the 2DNavier–Stokes equations and the approximate solution. The
reverse direction of Theorem 4 is shown in Theorem 5. Finally, Theorem 6 shows that
our scheme is approximately stable. We note moreover that the constants occurring in
the error estimates are explicit: they are either physical in nature (i.e. depend on the
Grashoff number (L2-norm) of the driving force or are domain dependent constants
(i.e., they are either constants appearing in Sobolev inequalities or are operator norms
of lifting, extension or trace operators)). Finally, we note that although our results are
proven in the context of the two-dimensional Navier–Stokes equations, our analysis
applies equally well to the three dimensional case, up to the interval of existence of a
strong solution, which in the two dimensional case, exists globally in time.

The rest of the paper is organized as follows. Section 2 provides the preliminaries
for both Neural Network settings and approximation properties which will be used
in this study. Section 3 is devoted to the statement of our main results. In Sect. 4,
we present the mathematical analysis of the neural network algorithm in the elliptic
system. This also serves as a template for our analysis of the Navier–Stokes equations.
In Sect. 5, we present our main results in two dimensional Navier–Stokes equations.
By using Hodge decomposition, we have shown that the approximate solution using
the neural network algorithm is close to the actual solution of the two dimensional
Navier–Stokes equations under certain conditions. Moreover, we have proved that our
scheme is approximately stable. The existence of the approximate solution is shown
by applying approximation properties of neural networks.

2 Preliminaries

2.1 Neural networks

In a DNN, we consider a mapping f : x �→ y, where x is the input variable and y
is the output variable. The mapping function f is obtained by (function) composition
of layer functions, comprising of an input layer, an output layer and multiple hidden
layers, connected in neural network. The details are as follows.

In a DNN, each layer is a function of the form σ(wx + b), x ∈ R
d , w =

(w1, . . . , wd), b ∈ R. Here, σ is called the activation function and is usually taken
to be either a sigmoid (σ(x) = ex

ex+1 ) , tanh or � ln, where � ln(ξ) := max(0, ξ).
In applications to PDE, where we require adequate regularity of solutions, a popular

choice is the tanh function where tanh(ξ) = eξ − e−ξ

eξ + e−ξ
.

Consider the collection of functions of the form

∑
α j f1 ◦ f2 ◦ f3 ◦ · · · ◦ fl j (x), (2.1)
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Error estimates for deep learning methods in fluid dynamics 757

where fi is a function of the form σ(wx+b) described above. In (2.1), max l j is called
the depth of the network. Henceforth, we will denote by FN the class of functions in
(2.1), where N represents the network complexity (e.g. N could be the sum of the
ranks of the weight matrices w and the number of layers in the DNN).

For the sake of completeness, we give a schematic representation of a neural net-
work. Here, we adapt the standard dense neural networks which can be expressed as
a series of compositions:

y2(x) = σ(W1x + b1),

y3(y2) = σ(W2y2 + b2),

·
·
·

ynl (ynl−1) = σ(Wnl−1ynl−1 + bnl−1),

ynl+1(ynl ) = σ(Wnl ynl + bnl ),

fθ = ynl+1(ynl (· · · (y2(x)))),

where θ ensembles all the weights and parameters.

θ = {
W1,W2, . . . ,Wnl , b1, . . . , bnl

}
. (2.2)

In practice, different neural network architectures are possible such as those involving
recurrent cells [16], convolutional layers [19], sparse convolutional neural networks
[17], pooling layers, residual connections [13].

In this study, we assume that our neural networks are equipped with uniformly
bounded weights and the final bias term bnl . We do not need any boundedness assump-
tion on the other bias terms bi .

2.2 Function approximation

Approximation properties of different DNNs has been studied extensively since the
work of Cybenko [4] and Hornik [15]; see [24, 37] and the references therein for
more recent work. An important question in the approximation process is how many
neural network layers are needed to guarantee the approximation accuracy? In [1],
the author showed that by using the sigmoidal activation funciton, at most O(ε−2)

neurons are needed to achieve the order of approximation ε. In [4], Cybenko proved
that continuous functions can be approximated with arbitrary precision by the DNNs
with one internal layer and an arbitrary continuous sigmoidal function providing that
no constraints are placed on the number of nodes or the size of the weights. Also, in
[14], Hornik et. al. provided the conditions ensuring that DNNs with a single hidden
layer and an appropriately smooth hidden layer activation function are capable of
arbitrarily accurate approximation to an arbitrary function and its derivatives.
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3 Main results

LetFN be aDNNwith complexity N , which is a finite dimensional function space on a
bounded domain. Throughout the paper, we use c to denote the absolute constants and
the domain dependent constants occurring in the Poincaré and Sobolev inequalities.
Below is a list of our main results.

3.1 Elliptic case

Consider a bounded domain Ω of R2 and the following partial differential equation

{
Lu = f ,

u|∂Ω = g,
(3.1)

where L : H2(Ω) → L2(Ω) is a second order uniformly bounded elliptic operator.
In this study, for simplicity, we consider only the case g = 0, although the general
case is similar.

Recall that (3.1) is well-posed and a unique solution exists satisfying

M := ‖u‖H2(Ω) ≤ c

(
‖ f ‖L2(Ω) + ‖g‖

H
3
2 (∂Ω)

)
. (3.2)

Consequently, the minimization problem

inf
u∈ appropriate Sobolev class

{
‖(Lu)(x) − f (x)‖2L2(Ω)

+ ‖u|∂Ω‖2L2(∂Ω)

}
(3.3)

has a unique solution, with the value of the infimum being 0, and the infimum is
attained at the solution u of (3.1). More generally, the same conclusion holds if we
consider a loss function of the type

L = α2‖Lu − f ‖2L2(Ω)
+ β2‖u|∂Ω‖2L2(∂Ω)

.

Thus, in order to approximate u using a DNN, one considers the loss function

L = α2‖LuN − f ‖2L2(Ω)
+ β2‖uN |∂Ω‖2L2(∂Ω)

, uN ∈ FN , (3.4)

under the restriction that ‖uN‖H2(Ω) ≤ M̃ (i.e. ‖uN‖H2(Ω) is bounded) for suitable
M̃ (e.g. M̃ = 2M where M is as in (3.2)), with α, β > 0. Since the chosen activation
function σ = tanh is smooth, in practice, this is achieved by restricting the (finite
dimensional) parameter set in the neural network to a compact subset.

In the neural network framework, the optimization is usually conducted in a discrete
setting as follows [27].More precisely, letFN be a finite dimensional function space on
a bounded domain Ω . Choose a collocation points {x j }mj=1 ⊂ Ω and {y j }nj=1 ⊂ ∂Ω.
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Find

inf
u∈FN ,‖uN ‖H2(Ω)

≤M̃

⎧
⎨

⎩α2
m∑

j=1

∣∣(Lu)(x j ) − f (x j )
∣∣2 + β2

n∑

j=1

∣∣u(y j ) − g(y j )
∣∣2

⎫
⎬

⎭ .

(3.5)
Note that (3.5) may be regarded as a Monte Carlo approximation of the corresponding
Lebesgue integrals. Consequently, for mathematical convenience, let us consider the
following optimization problem, namely, find

inf
u∈FN ,‖uN ‖H2(Ω)

≤M̃

{
‖(Lu)(x) − f (x)‖2L2(Ω)

+ ‖u|∂Ω − g‖2L2(∂Ω)

}
. (3.6)

The infimum can be attained provided that we restrict the parameters in FN in a
compact set. However in this case, the infimum may not be unique.

Remark 1 We can also use an unrestricted optimization in (3.5) or (3.6). However,
in this case, the condition on ‖uN‖H2(Ω) ≤ M̃ can be replaced by suitably adding a
penalty/regularization term in the loss function. This converts the restricted minimiza-
tion problem to an unrestricted one and is illustrated in the Navier–Stokes case. This
drawback is due to the fact in contrast to spectral or finite element methods, the bound-
ary conditions are not encoded in a DNN, but rather are enforced “approximately".

In all the boundary integrals above, the quantity u|∂Ω is interpreted as trace in case
u ∈ H1(Ω). However, since uN is smooth, its trace coincides with its restriction on
the boundary. Recall that the trace operator is defined as a bounded operator γ ∈
L(H1(Ω), L2(�)) such that γ u is the restriction of u to � for every function u ∈
H1(Ω) which is twice continuously differentiable in Ω .

First, we show that when the approximate solution and the actual solution are close
to each other, we can control the loss function. This (as also the analogous theorem for
the Navier–Stokes equations) is based on the following numerical analysis result from
[37], relating the accuracy of the approximation by a DNN (i.e. the class FN ) with its
complexity (quantified by N ) and the regularity of the function being approximated.

Suppose that σ ∈ C∞(R), σ (v)(0) �= 0 for ν = 0, 1, . . . , and K ⊂ R
d is any

compact set. If f ∈ Ck(K ), then a function φN represented by a DNN FN , with
complexity N ∈ N exists such that

‖Dα f − DαφN‖C(K ) = O

(
1

N (k−|α|)/d ω

(
Dβ f ,

1

N 1/d

))
(3.7)

holds for all multi-indexes α, β with |α| ≤ k, |β| = k, where

ω(g, δ) = sup
x,y∈K ,|x−y|≤δ

|g(x) − g(y)|.
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Theorem 1 Let u be the solution of (3.1) and α, β, ε > 0. Then there exists uN ∈ FN

with ‖u − uN‖H2(Ω) ≤ ε such that

α2‖LuN − f ‖2L2(Ω)
+ β2‖uN |∂Ω‖2L2(∂Ω)

≤ (CLα2 + CTrβ
2)ε2

and

‖uN‖H2(Ω) ≤ M̃,

where M̃ can be taken to be 2M = 2‖u‖H2(Ω), with M as in (3.2). Here CL is the
operator norm bound of L, and CTr is the constant from the trace operator.

On the other hand, we can show that by controlling the loss function, we can have a
good approximation to the solution u of (3.1) by using a DNN. The requisite error
estimate is given in the theorem below, where the notation used is as in Theorem 1.

Theorem 2 Let u be a solution of (3.1) and α, β, ε > 0. Assume that uN ∈ FN is
such that

α2‖LuN − f ‖2L2(Ω)
+ β2‖uN |∂Ω‖2L2(∂Ω)

≤ ε2, (3.8)

with ‖uN‖H2(Ω) ≤ M̃ . Then

‖u − uN‖H1(Ω) ≤
(
CL−1

α
+ CL−1CL‖lΩ‖M1/3

β2/3

)
ε2/3,

where, lΩ is the lifting operator.

We show in the theorem below how the error estimate in the H1-norm can be improved
further by altering the loss function.

Theorem 3 Let u be a solution of (3.1) and let uN ∈ FN be such that

α2‖LuN − f ‖2L2(Ω)
+ β2‖uN |∂Ω‖2H1/2(∂Ω)

≤ ε2, (3.9)

with ‖uN‖H2(Ω) ≤ M̃ . Then

‖u − uN‖H1(Ω) <

(
CL−1

α
+ CL−1CL‖lΩ‖

β

)
ε,

where CL−1 ,CL and lΩ are the operator norms of the respective operators.

3.2 Incompressible Navier–Stokes equations

The incompressible Navier–Stokes equations (NSE) are given by
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∂t u − �u + u · ∇u + ∇ p = f ,

∇ · u = 0,

u|∂Ω = 0,

u(x, 0) = u0(x), x ∈ Ω.

(3.10)

In (3.10), u denotes the velocity of the fluid and p the pressure. The nondimensional
Grashof number G is defined as G = 1

ν2λ1
supt→∞ ‖ f (t)‖L2 [9], where λ1 is the

smallest eigenvalue of the Stokes operator. In our case (3.10),we take thefluid viscosity
ν to be 1.

Similar to the elliptic case, we show that when applying the FN on the Navier–
Stokes equations, with a small loss function, the approximate solution and actual
solution are close to each other.

Theorem 4 Assume that u is a strong solution of the 2D NSE (3.10) and ũN ∈ FN

such that

‖ũN |∂Ω‖4L4([0,T ];H1/2(∂Ω))
+ ‖ũN (x, 0) − u0(x)‖2L2(Ω)

+ ‖∂t ũN − �ũN + ũN · ∇ũN + ∇ p̃N − f ‖2L2(Ω×[0,T ])
+ ‖∇ · ũN‖4L4([0,T ];L2(Ω))

+ λ‖ũN‖4L4([0,T ];H1(Ω))
≤ ε2. (3.11)

Then

‖u − ũN‖4L4([0,T ];L2(Ω))
≤ (ceF(G,u0)T + CTr )ε

2 + ceF(G,u0)T ε4

λ
, (3.12)

where F(G, u0) is a function of the Grashof number G and the initial data u0.

Remark 2 The quantity F(G, u0) can be bounded above by an adequate power of
M where M = supt≥0 ‖u‖H1 which is known to be finite for the two-dimensional
Navier–Stokes equations [5, 32].

The reverse direction of Theorem 4 has also been proved.

Theorem 5 Given any ε > 0, we can find ũN ∈ FN , such that

‖ũN |∂Ω‖4L4([0,T ];H1/2(∂Ω))
+ ‖ũN (x, 0) − u0(x)‖2L2(Ω)

+ ‖∂t ũN − �ũN + ũN · ∇ũN + ∇ p̃N − f ‖2L2(Ω×[0,T ])
+ ‖∇ · ũN‖4L4([0,T ];L2(Ω))

+ λ‖ũN‖4L4([0,T ];H1(Ω))
≤ F(G, u0)T ε2. (3.13)

Furthermore, we prove that our scheme is approximately stable.
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Theorem 6 Assume ũN1 ∈ FN1 is the approximate solution of

∂

∂t
u1 − �u1 + u1 · ∇u1 + ∇ p1 = f1,

∇ · u1 = 0,

u1|∂Ω = 0,

u1(x, 0) = u0,1(x).

(3.14)

Assume ũN2 ∈ FN2 is the approximate solution of

∂

∂t
u2 − �u2 + u2 · ∇u2 + ∇ p2 = f2,

∇ · u2 = 0,

u2|∂Ω = 0,

u2(x, 0) = u0,2(x).

(3.15)

Here, ũN1 and ũN2 satisfy (3.11) with corresponding f1 and f2. Then, we have

‖uN1 − uN2‖L4([0,T ];L2(Ω)) ≤ C1 + C2 + C3,

where C1 =
(
(ceF(G,u0,1)T + CTr )ε

2 + ceF(G,u0,1)T ε4

λ

)1/4
, C2 = (

(ceF(G,u0,2)T+
CTr )ε

2 + ceF(G,u0,2)T ε4

λ

)1/4
,C3 = c(‖u0,1−u0,2‖L2(Ω)+‖ f1− f2‖L4([0,T ];L2(Ω))).

4 Elliptic equations: proofs of main theorems

Proof of Theorem 1 We remark first that given any ε > 0, from (3.7), there exists a
DNN FN of complexity N and uN ∈ FN such that ‖u − uN‖H2(Ω) ≤ ε.

‖LuN − f ‖2L2(Ω)
= ‖LuN − Lu‖2L2(Ω)

≤ CL‖uN − u‖2H2(Ω)

≤ CLε2,

where CL is the operator norm bound of L. Therefore

α2‖LuN − f ‖2L2(Ω)
≤ CLα2ε2. (4.1)

We also have

‖uN |∂Ω‖2L2(∂Ω)
= ‖uN |∂Ω − u|∂Ω‖2L2(∂Ω)

≤ CTr‖uN − u‖2H2(Ω)

≤ CTrε
2,
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where CTr is the constant from the trace operator. Therefore

β2‖uN |∂Ω‖2L2(∂Ω)
≤ CTrβ

2ε2. (4.2)

Combining (4.1) and (4.2), we have

α2‖LuN − f ‖2L2(Ω)
+ β2‖uN |∂Ω‖2L2(∂Ω)

≤ (CLα2 + CTrβ
2)ε2.

Finally,

‖uN‖H2(Ω) ≤ ‖uN − u‖H2(Ω) + ‖u‖H2(Ω)

≤ ε + M < 2M =: M̃ .

Let us consider the converse of Theorem 1. Same as in the previous settings, u is
the unique solution of (3.1) and FN is a DNN. We have the following results.

Proof of Theorem 2 Since

‖u − uN‖L2(Ω) ≤ ‖u − uN‖H2(Ω)

≤ ‖u‖H2(Ω) + ‖uN‖H2(Ω)

≤ M + M̃ < cM,

we have

‖(u − uN )|∂Ω‖H1/2(∂Ω) ≤ c‖(u − uN )|∂Ω‖2/3
L2(∂Ω)

‖(u − uN )|∂Ω‖1/3
H3/2(∂Ω)

≤ c
ε2/3

β2/3 ‖u − uN‖1/3
H2(Ω)

≤ cM1/3 ε2/3

β2/3 . (4.3)

Denote LuN = fε and uN |∂Ω = Tr(uN ) = gε. From (3.8), we have ‖ f −
fε‖L2(Ω) ≤ ε

α
, from (4.3), we have ‖gε‖H1/2(∂Ω) < cM1/3 ε2/3

β2/3 .

Consider the lifting operator lΩ : H1/2(∂Ω) → H1(Ω), which is linear and
bounded such that TrlΩ = I . Here, Tr is the trace operator and I is the identity
operator. Let ũN = uN − lΩgε. Then

LũN = fε − LlΩgε,

ũN |∂Ω = 0.
(4.4)

Note that since L is a second order elliptic operator and lΩgε ∈ H1(Ω), we have
LlΩgε ∈ H−1(Ω). From Lax-Milgram [6], we have

‖u − ũN‖H1(Ω) ≤ CL−1‖( f − fε) + LlΩgε‖H−1(Ω). (4.5)
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Therefore, we have

‖u − uN‖H1(Ω)

= ‖u − (uN − lΩgε) − lΩgε‖H1(Ω)

≤ ‖u − ũN‖H1(Ω) + ‖lΩgε‖H1(Ω)

≤ CL−1‖( f − fε) + LlΩgε)‖H−1(Ω) + ‖lΩ‖‖gε‖H1/2(∂Ω). (4.6)

Since

‖ f − fε‖H−1(Ω) ≤ c‖ f − fε‖L2(Ω)

and

‖LlΩgε‖H−1(Ω) ≤ CL‖lΩgε‖H1(Ω) ≤ CL‖lΩ‖‖gε‖H1/2(∂Ω).

Thus

‖u − uN‖H1(Ω) ≤ CL−1‖ f − fε‖L2(Ω) + CL−1CL‖lΩ‖‖gε‖H1/2(∂Ω)

≤ CL−1
ε

α
+ CL−1CL‖lΩ‖M1/3 ε2/3

β2/3

≤
(
CL−1

α
+ CL−1CL‖lΩ‖M1/3

β2/3

)
ε2/3. (4.7)

We will show below that by considering the loss function to be

α2‖LuN − f ‖2L2(Ω)
+ β2‖uN |∂Ω‖2H1/2(∂Ω)

,

we have an improved result on ‖u − uN‖H1(Ω) which is stated in Theorem 3.

Proof of Theorem 3 Same as before, LuN = fε and uN |∂Ω = Tr(uN ) = gε. From

(3.9), we have ‖ f − fε‖L2(Ω) ≤ ε

α
, and ‖gε‖H1/2(∂Ω) ≤ ε

β
. Let ũN = uN − lΩgε.

LũN = fε − LlΩgε,

ũN |∂Ω = 0.
(4.8)

Similar to the Proof of Theorem 2, we have

‖u − uN‖H1(Ω) ≤ CL−1‖( f − fε) + LlΩgε)‖H−1(Ω) + ‖lΩ‖‖gε‖H1/2(∂Ω)

≤ CL−1‖ f − fε‖L2(Ω) + CL−1CL‖lΩ‖‖gε‖H1/2(∂Ω)

≤
(
CL−1

α
+ CL−1CL‖lΩ‖

β

)
ε.
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5 Navier–Stokes equations: proof of main theorems

5.1 Functional analytic framework

Let Ω be a bounded domain in R2 and

H :=
{
u ∈ L2(Ω)| ∇ · u = 0, γ (u) = 0

}
,

V :=
{
u ∈ H1

0 (Ω)| ∇ · u = 0
}

.

V ′ is the dual space of V .
Let P be the Leray Projection which is an orthogonal projection from L2 onto the

subset of L2 consisting of those functions whose weak derivatives are divergence-free
in the L2 sense. A is the Stokes operator, defined as A = −P�. B is the bilinear form
defined by B(u, u) = P [(u · ∇)u] .

Applying the projection P on (3.10), the functional form of the NSE can be written
as

du

dt
+ Au + B(u, u) = P f ,

u|∂Ω = 0,

u(x, 0) = u0(x). (5.1)

We recall the definition of strong solutions from [31]:

Let W =
{
u ∈ H1

loc(Ω) and ∇ · u = 0 in Ω
}
and u0 ∈ W , u is a strong solution

of NSE if it solves the variational formulation of (3.10) as in [5, 31], and

u ∈ L2(0, T ; D(A)) ∩ L∞(0, T ;W ),

for T > 0.

5.2 Hodge decomposition

The idea of Hodge decomposition is to decompose a vector u ∈ L2(Ω) uniquely into
a divergence-free part u1 and an irrotational part u2, which is orthogonal in L2(Ω) to
u1:

u = u1 + u2, ∇ · u1 = 0, and (u1, u2) = 0.

When we apply the Leray Projection P on u, we have

Pu = u1.

More precisely, we have the following proposition, the proof of which can be found
in [5].
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Proposition 1 Let Ω be open, bounded, connected with boundary of class C2. Then
L2(Ω) = H ⊕ H1 ⊕ H2, where H , H1, H2 are mutually orthogonal spaces and
moreover

H1 = {u ∈ L2(Ω)| u = ∇ p, p ∈ H1(Ω),�p = 0},

and

H2 = {u ∈ L2(Ω)| u = ∇ p, p ∈ H1
0 (Ω)}.

The decomposition above is obtained as follows. Let v ∈ L2(Ω). Then,

v = u + u1 + u2, u ∈ H , and u2 = ∇ p2, �p2 = ∇ · v ∈ H−1(Ω), p2 ∈ H1
0 (Ω).

Subsequently, u1 is obtained by solving the Neumann problem

u1 = ∇ p1, �p1 = 0,
∂ p1
∂nΩ

= γ (v − u2),

where nΩ is the unit normal vector on the boundary of Ω and γ denotes the normal
trace on the boundary (see [5, 32] for more details).

5.3 Proofs

Consider an approximate solution ũN ∈ FN , i.e. ũN satisfies (3.11) and denote
ũN |∂Ω = g̃, ∇ · ũN = h̃. Let f̃ := ∂t ũN − �ũN + ũN · ∇ũN + ∇ p̃N − f . Then

∂t ũN − �ũN + ũN · ∇ũN + ∇ p̃N = f + f̃ ,

∇ · ũN = h̃,

ũN |∂Ω = g̃. (5.2)

Applying the Hodge decomposition on ũN :

ũN = PũN + (I − P)ũN =: uN + vN , (5.3)

where uN = PũN , ∇ · uN = 0, uN |∂Ω = 0, and vN = (I − P)ũN .
Before we prove our main theorems, we first introduce two Lemmas.

Lemma 1 Consider uN satisfying

duN

dt
+ AuN + B(uN , uN ) = P f + ϕ,

uN |∂Ω = 0. (5.4)

where ∫ T

0
‖ϕ‖2V ′ dt ≤ O

(
ε + ε2√

λ

)
, (5.5)
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and let u be a strong solution of (5.1), with ‖uN (x, 0) − u0(x)‖2L2 ≤ ε2.

Then

sup
[0,T ]

‖u(x, t) − uN (x, t)‖2L2(Ω)
≤ ceF(G,u0)T

(
ε + ε2√

λ

)
,

where F(G, u0) is a function of the Grashof number G and the initial data u0.

Proof Considering w(t) = u(t) − uN (t), from (5.1) and (5.4), we have

dw

dt
+ Aw + B(u, u) − B(uN , uN ) = −ϕ,

w|∂Ω = 0. (5.6)

Since

B(u, u) − B(uN , uN ) = B(u, w) + B(w, uN ) = B(u, w) + B(w, u) − B(w,w),

we have
dw

dt
+ Aw + B(u, w) + B(w, u) − B(w,w) = −ϕ. (5.7)

Taking inner product of (5.7) with w, we obtain

1

2

d

dt
‖w‖2L2 + ‖A1/2w‖2L2 + (B(w, u), w) = −(ϕ,w).

Therefore

1

2

d

dt
‖w‖2L2 + ‖A1/2w‖2L2 ≤ |(B(w, u), w)| + |(ϕ,w)|.

Since

|(B(w, u), w)| ≤ c‖A1/2u‖L2‖w‖L2‖A1/2w‖L2

≤ c
‖A1/2u‖2

L2‖w‖2
L2

2
+ ‖A1/2w‖2

L2

2
,

and

|(ϕ,w)| ≤ ‖ϕ‖V ′ ‖A1/2w‖L2 ≤ ‖ϕ‖2V ′
2

+ ‖A1/2w‖2
L2

2
,

we have

1

2

d

dt
‖w‖2L2 − c

‖A1/2u‖2
L2‖w‖2

L2

2
≤ ‖ϕ‖2V ′

2
.
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Equivalently

d

dt
‖w‖2L2 − c‖A1/2u‖2L2‖w‖2L2 ≤ ‖ϕ‖2V ′ .

Applying Gronwall’s inequality, we have

‖w(t)‖2L2 ≤ e
∫ t
0 c‖A1/2u‖2

L2
ds‖w(0)‖2L2

+ e
∫ t
0 c‖A1/2u‖2

L2
ds

∫ t

0
e− ∫ s

0 c‖A1/2u‖2
L2

dτ‖ϕ‖2V ′ds.

Since
∫ t
0 c‖A1/2u‖2

L2ds ≤ F(G, u0)t where, F(G, u0) is a function of the Grashof
number G and the initial data u0 [5, 32], we have

e
∫ t
0 c‖A1/2u‖2

L2
ds ≤ eF(G,u0)t .

Moreover

e− ∫ s
0 c‖A1/2u‖2

L2
dτ ≤ 1,

and

‖w(0)‖2L2 = ‖uN (x, 0) − u0(x)‖2L2 ≤ ε2.

Therefore, we have

‖w(t)‖2L2 ≤ eF(G,u0)t‖w(0)‖2L2 + eF(G,u0)t)
∫ t

0
||ϕ||2V ′ds

≤ ceF(G,u0)t,
(

ε + ε2√
λ

)
.

Therefore

sup
[0,T ]

‖w(t)‖2L2 ≤ ceF(G,u0)T
(

ε + ε2√
λ

)
.

Lemma 2 Assume

‖ũN |∂Ω‖4L4([0,T ];H1/2(∂Ω))
+ ‖∇ · ũN‖4L4([0,T ];L2(Ω))

≤ ε2, (5.8)

and with the Hodge decomposition (5.3), we have

‖vN‖L4([0,T ];H1(Ω)) ≤ CTr
√

ε. (5.9)
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Proof Consider the Hodge decomposition

ũN = uN + vN = uN ⊕ v1 ⊕ v2

with
vN = v1 ⊕ v2,

where v1 = ∇ p1 and v2 = ∇ p2, p1 and p2 are the solutions of the following two
systems, respectively. ⎧

⎨

⎩

�p1 = 0,

∂ p1
∂n

= γ (ũN − v2),
(5.10)

and {
�p2 = ∇ · ũN ,

Tr(p2) = 0.
(5.11)

Here, γ is the trace operator and Tr(p2) means the value of p2 on the boundary.
According to Lions and Magenes [20], the above two systems have unique solutions
(up to an additive constant). First, we solve for p2 from (5.11). Accordingly, v2 can
be obtained. Then, we use v2 to solve for p1 from (5.10) and find v1 afterwards.

From (5.8) and (5.11), we have

‖v2‖L4([0,T ];H1(Ω)) ≤ ‖p2‖L4([0,T ];H2(Ω))

≤ c‖∇ · ũN‖L4([0,T ];L2(Ω))

≤ cε1/2.

From (5.8) and (5.10),

‖v1‖L4([0,T ];H1(Ω)) ≤ ‖p1‖L4([0,T ];H2(Ω))

≤ c‖γ (ũN − v2)‖L4([0,T ];H1/2(Ω))

≤ c‖ũN |∂Ω‖L4([0,T ];H1/2(∂Ω)) + c‖γ (v2)‖L4([0,T ];H1/2(Ω))

≤ cε1/2 + c‖Tr(v2) · nΩ‖L4([0,T ];H1/2(Ω))

≤ cε1/2 + CTr‖v2‖L4([0,T ];H1(Ω))

≤ CTr
√

ε. (5.12)

Therefore,

‖vN‖L4([0,T ];H1(Ω)) = ‖v1‖L4([0,T ];H1(Ω)) + ‖v2‖L4([0,T ];H1(Ω)) ≤ CTr
√

ε.

Note that (5.9) also implies

(∫ T

0
‖∇vN‖4L2(Ω)

dt

)1/4

≤ CTr
√

ε,

(∫ T

0
‖vN‖4L2(Ω)

dt

)1/4

≤ CTr
√

ε.

123



770 A. Biswas et al.

Proof of Theorem 4 Applying the Leray projection operator P on (5.2), one obtains,
under the assumption that P f = f ,

∂tPũN − P�ũN + PũN · ∇ũN = f + P f̃ .

Recall that P is the orthogonal projection. By Hodge decomposition

ũN = PũN + (I − P)ũN =: uN + vN .

Then

∂t uN + AuN + PuN · ∇uN + P(ũN · ∇ũN − uN · ∇uN ) = f + P f̃ + P�vN .

Here, A is the Stokes’ operator.

P (ũN · ∇ũN − uN · ∇uN ) = P ((ũN − uN ) · ∇ũN + uN · ∇(ũN − uN ))

= P (vN · ∇ũN + uN · ∇vN )

=: ψ.

(5.13)

Next, we will estimate
∫ T

0
‖ψ‖2V ′ dt .

Note that ‖ψ‖V ′ = sup
w∈V ,‖w‖V ≤1

〈ψ,w〉, where

〈ψ,w〉 =
∫

Ω

P(vN · ∇ũN + uN · ∇vN ) · w dx . (5.14)

We estimate (5.14) term by term. Since w is divergence free, we have

∫

Ω

P(vN · ∇ũN ) · w dx =
∫

Ω

(vN · ∇ũN ) · w dx

≤ ‖∇ũN‖L2(Ω)‖vN‖L4(Ω)‖w‖L4(Ω).

By Sobolev inequality, ‖w‖L4(Ω) ≤ c‖w‖V ≤ c and thus

‖P(vN · ∇ũN )‖V ′ ≤ c‖∇ũN‖L2(Ω)‖vN‖L4(Ω)

≤ c‖∇ũN‖L2(Ω)‖vN‖1/2
L2(Ω)

‖∇vN‖1/2
L2(Ω)

, (5.15)

where in the last line, we used the Ladyzhenskaya’s inequality [5].
Therefore

∫ T

0
‖P(vN · ∇ũN )‖2V ′ dt ≤ c

∫ T

0
‖∇ũN‖2L2(Ω)

‖vN‖L2(Ω)‖∇vN‖L2(Ω) dt

≤ c

(∫ T

0
‖∇ũN‖4L2(Ω)

dt

)1/2 (∫ T

0
‖vN‖4L2(Ω)

dt

)1/4 (∫ T

0
‖∇vN‖4L2(Ω)

dt

)1/4

.
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Since
λ‖ũN‖4L4([0,T ];H1(Ω))

≤ ε2,

we have ∫ T

0
‖∇ũN‖4L2(Ω)

dt ≤ ε2

λ
.

Therefore (∫ T

0
‖∇ũN‖4L2(Ω)

dt

)1/2

≤ ε√
λ

. (5.16)

Applying Lemma 2, we have

(∫ T

0
‖∇vN‖4L2(Ω)

dt

)1/4

≤ CTr
√

ε,

(∫ T

0
‖vN‖4L2(Ω)

dt

)1/4

≤ CTr
√

ε.

Therefore

∫ T

0
‖P(vN · ∇ũN )‖2V ′ dt ≤ CTrε

2

√
λ

. (5.17)

Next, we estimate the second term of (5.14):
∫

Ω

P(uN · ∇vN ) · w dx .

Similarly, we have

‖P(uN · ∇vN )‖V ′ ≤ ‖∇vN‖L2(Ω)‖uN‖L4(Ω) ≤ ‖∇vN‖L2(Ω)‖uN‖H1(Ω).

Therefore

∫ T

0
‖P(uN · ∇vN )‖2V ′ dt ≤

∫ T

0
‖∇vN‖2L2(Ω)

‖uN‖2H1(Ω)
dt

≤
(∫ T

0
‖∇vN‖4L2(Ω)

dt

)1/2 (∫ T

0
‖uN‖4H1(Ω)

dt

)1/2

.

Since

(∫ T

0
‖∇vN‖4L2(Ω)

dt

)1/2

≤ CTrε,

and (∫ T

0
‖uN‖4H1(Ω)

dt

)1/2

≤
(∫ T

0
‖ũN‖4H1(Ω)

dt

)1/2

≤ ε√
λ

.

Therefore

∫ T

0
‖P(uN · ∇vN )‖2V ′ dt ≤ CTrε

2

√
λ

. (5.18)
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Combining (5.17) and (5.18), we have

∫ T

0
‖ψ‖2V ′ dt ≤ CTrε

2

√
λ

. (5.19)

Moreover, since

‖P(�vN )‖V ′ ≤ ‖∇vN‖L2(Ω)‖w‖H1(Ω), (5.20)

we have

∫ T

0
‖P(�vN )‖2V ′ dt ≤

∫ T

0
‖∇vN‖2L2(Ω)

‖w‖2H1(Ω)
dt

≤
(∫ T

0
‖∇vN‖4L2(Ω)

dt

)1/2 (∫ T

0
‖w‖4H1(Ω)

dt

)1/2

≤ CTrε. (5.21)

Denoting ϕ := P f̃ + P(�vN ) − ψ , we have

duN

dt
+ AuN + B(uN , uN ) = P f + ϕ.

Since

∫ T

0
‖P(�vN )‖2V ′ dt ≤ CTrε,

∫ T

0
‖ψ‖2V ′ dt ≤ CTrε

2

√
λ

,

∫ T

0
‖P f̃ ‖2V ′ dt ≤

∫ T

0
‖P f̃ ‖2L2 dt ≤ ε2,

we obtain

∫ T

0
‖ϕ‖2V ′ dt ≤ CTr

(
ε + ε2√

λ

)
.

Since ‖uN (x, 0) − u0(x)‖2L2 ≤ ‖ũN (x, 0) − u0(x)‖2L2 ≤ ε2. Applying Lemma 1,
we have

sup
[0,T ]

‖u(t) − uN (t)‖2L2 ≤ ceF(G,u0)T
(

ε + ε2√
λ

)
.

Moreover, since

(∫ T

0
‖vN‖4L2(Ω)

dt

)1/4

≤ CTr
√

ε,
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we have

∫ T

0
‖u − ũN‖4L2(Ω)

dt ≤
∫ T

0
‖u − uN‖4L2(Ω)

dt +
∫ T

0
‖vN‖4L2(Ω)

dt

≤ ceF(G,u0)T
(

ε2 + ε4

λ

)
+ CTrε

2

= (ceF(G,u0)T + CTr )ε
2 + ceF(G,u0)T ε4

λ
.

Lemma 3 Given ε > 0, assume that (u, p) satisfies (3.10), then, there exists
(ũN , p̃N ) ∈ FN satisfying

sup
t∈[0,T ]

‖u − ũN‖L2(Ω) ≤ ε, ‖u − ũN‖H1,2(Ω×[0,T ]) ≤ ε,

(∫ T

0
‖u − ũN‖4W 1,4(Ω)

dt

)1/4

≤ ε, ‖p − p̃N‖L2([0,T ];H1(Ω)) ≤ ε. (5.22)

Proof From 3.7, as long as the solution (u, p) of the NSEs belongs to the spaces in
(5.22), we can find (ũN , p̃N ) ∈ FN as smooth as we want and close to (u, p), which
means (5.22) holds. From the classical results of the 2-D NSEs, we know that we can
find the solution (u, p) that belongs to the spaces in (5.22).

Proof of Theorem 5 From Lemma 3, given ε > 0, assume that u is a strong solution of
(3.10) and there is an N such that ũN ∈ FN satisfying

sup
t∈[0,T ]

‖u − ũN‖L2(Ω) ≤ ε, ‖u − ũN‖H1,2(Ω×[0,T ]) ≤ ε,

(∫ T

0
‖u − ũN‖4W 1,4(Ω)

dt

)1/4

≤ ε, ‖p − p̃N‖L2([0,T ];H1(Ω)) ≤ ε.

Now, we estimate the left hand side of (3.13) term by term:
Since sup

t∈[0,T ]
‖u − ũN‖L2(Ω) ≤ ε, we have

‖u(x, 0) − ũN (x, 0)‖2L2(Ω)
≤ ε2. (5.23)

Since ∇ · u = 0, we have

‖∇ · ũN‖4L4([0,T ];L2(Ω))
= ‖∇ · ũN − ∇ · u‖4L4([0,T ];L2(Ω))

≤ c‖ũN − u‖4L4([0,T ];H1(Ω))

≤ cε4. (5.24)

Observe that

λ‖ũN‖4L4([0,T ];H1(Ω))
≤ cλ‖ũN − u‖4L4([0,T ];H1(Ω))

+ cλ‖u‖4L4([0,T ];H1(Ω))
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≤ cλε4 + λF(G, u0)T .

where F(G, u0) is a suitable function of G and u0 (here we have used the fact that
supt≥0 ‖u‖H1 < ∞ and can be expressend as a suitable function of u0 and G [5, 32]).
Picking λ small enough, we have

λ‖ũN‖4L4([0,T ];H1(Ω))
≤ F(G, u0)T ε4. (5.25)

Consider

‖∂t ũN − �ũN + ũN · ∇ũN + ∇ p̃N − f ‖2L2(Ω×[0,T ])
= ‖∂t ũN − �ũN + ũN · ∇ũN + ∇ p̃N − (∂t u − �u + u · ∇u + ∇ p) ‖2L2(Ω×[0,T ])
≤ c‖∂t ũN − ∂t u‖2L2(Ω×[0,T ]) + c‖�u − �ũN‖2L2(Ω×[0,T ])

+ c‖ũN · ∇ũN − u · ∇u‖2L2(Ω×[0,T ]) + c‖∇ p̃N − ∇ p‖2L2(Ω×[0,T ]). (5.26)

We have

‖∂t ũN − ∂t u‖2L2(Ω×[0,T ]) ≤ ε2,

‖�u − �ũN‖2L2(Ω×[0,T ]) ≤ ε2,

and

‖∇ p̃N − ∇ p‖2L2(Ω×[0,T ]) ≤ ε2.

Moreover

‖ũN · ∇ũN − u · ∇u‖2L2(Ω×[0,T ])
= ‖ũN · ∇ũN − u · ∇ũN + u · ∇ũN − u · ∇u‖2L2(Ω×[0,T ])
= ‖(ũN − u) · ∇ũN + u · (∇ũN − ∇u)‖2L2(Ω×[0,T ])
≤ ‖ũN − u‖2L4(Ω×[0,T ])‖∇ũN‖2L4(Ω×[0,T ])

+ ‖u‖2L4(Ω×[0,T ])‖∇ũN − ∇u‖2L4(Ω×[0,T ]). (5.27)

We have

‖∇ũN‖L4(Ω×[0,T ]) ≤ ‖∇ũN − ∇u‖L4(Ω×[0,T ]) + ‖∇u‖L4(Ω×[0,T ])
≤ cε + F(G, u0)T � F(G, u0)T .

Moreover,

‖ũN − u‖L4(Ω×[0,T ]) ≤ cε, ‖u‖L4(Ω×[0,T ]) ≤ F(G, u0)T and

‖∇ũN − ∇u‖L4(Ω×[0,T ]) ≤ cε.
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Thus

‖ũN · ∇ũN − u · ∇u‖2L2(Ω×[0,T ]) ≤ F(G, u0)T ε2.

Therefore

‖∂t ũN − �ũN + ũN · ∇ũN + ∇ p̃N − f ‖2L2(Ω×[0,T ]) ≤ F(G, u0)T ε2. (5.28)

Moreover

‖ũN |∂Ω‖4L4([0,T ];H1/2(∂Ω))
= ‖ũN |∂Ω − u|∂Ω‖4L4([0,T ];H1/2(∂Ω))

≤ c‖ũN − u‖4L4([0,T ];H1(Ω))

≤ cε4. (5.29)

In summary, combining (5.23)–(5.29), we have

‖ũN |∂Ω‖4L4([0,T ];H1/2(∂Ω))
+ ‖ũN (x, 0) − u0(x)‖2L2(Ω)

+ ‖∂t ũN − �ũN + ũN · ∇ũN + ∇ p̃N − f ‖2L2(Ω×[0,T ])
+ ‖∇ · ũN‖4L4([0,T ];L2(Ω))

+ λ‖ũN‖4L4([0,T ];H1(Ω))
≤ F(G, u0)T ε2.

Proof of Theorem 6 Considering

‖ũN1 − ũN2‖L4([0,T ];L2(Ω))

= ‖ũN1 − u1 + u2 − ũN2 + u1 − u2‖L4([0,T ];L2(Ω))

≤ ‖ũN1 − u1‖L4([0,T ];L2(Ω)) + ‖u2 − ũN2‖L4([0,T ];L2(Ω))

+ ‖u1 − u2‖L4([0,T ];L2(Ω)).

From (3.12)

‖ũN1 − u1‖L4([0,T ];L2(Ω)) ≤
(

(ceF(G,u0,1)T + CTr )ε
2 + ceF(G,u0,1)T ε4

λ

)1/4

,

and

‖u2 − ũN2‖L4([0,T ];L2(Ω)) ≤
(

(ceF(G,u0,2)T + CTr )ε
2 + ceF(G,u0,2)T ε4

λ

)1/4

.

From the stability of solutions of NSE, we have ‖u1 − u2‖L4([0,T ];L2(Ω)) ≤ c(‖u0,1 −
u0,2‖L2(Ω) + ‖ f1 − f2‖L4([0,T ];L2(Ω))).

Therefore, we have

‖uN1 − uN2‖L4([0,T ];L2(Ω)) ≤ C1 + C2 + C3,
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where C1 =
(
(ceF(G,u0,1)T + CTr )ε

2 + ceF(G,u0,1)T ε4

λ

)1/4
, C2 = (

(ceF(G,u0,2)T+
CTr )ε

2 + ceF(G,u0,2)T ε4

λ

)1/4
,C3 = c(‖u0,1−u0,2‖L2(Ω)+‖ f1− f2‖L4([0,T ];L2(Ω))).

This implies that our scheme is approximately stable.
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