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Sediment transport in rivers plays multiple key roles within every watershed. Fine 

sediments transported by rivers carry with them vital nutrients that are essential to 

riverine and estuarine life, when not in excess. Floodplain storage of these same fine 

sediments is of interest to parties attempting to mitigate downstream sediment and 

nutrient pollution. However, historic methodological and technological limitations 

have limited fine-scale studies of floodplain storage. This exploratory study, utilizing 

modern multi-temporal high-resolution topography and advanced geospatial analysis 

tools, sought to overcome these limitations and comprehensively assess floodplain 

sediment dynamics and the conditions governing them. Our findings suggest that in 

addition to geometric measures, flow conditions across a floodplain during the falling 

limb are strong predictors of floodplain-scale sedimentology. Further results suggest 

modern high-resolution topography is capable of adequately modeling fine-scale 



  

sediment dynamics from single storms, accurately characterizing low-relief 

landforms, and providing detailed terrains for hydraulic models. 
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Chapter 1: Introduction 

 

Section 1: Overview 

 Sediment transport is a key function of nearly every river in every watershed on the 

planet. Coarse sediments (>63µm in diameter) transported by rivers absorb kinetic 

energy imparted by flowing waters, preserving channel shape and creating ecologically 

important bed features when later deposited (Carling, 1987; Knighton, 2014). 

Similarly, fine sediments (<63μm in diameter) transported by rivers carry with them 

vital nutrients such as phosphorus, nitrogen, and organic carbon that are essential to 

riverine, estuarine, and oceanic life (Howarth et al., 1991; Mueller, 1996; Fabricius, 

2005). Anthropogenic activities throughout a watershed, however, may affect a river’s 

ability to transport sediments.  

 

Sediment transport is a key function of nearly every river in every watershed on the 

planet. Coarse sediments (>63µm in diameter) transported by rivers absorb kinetic 

energy imparted by flowing waters, preserving channel shape and creating ecologically 

important bed features when later deposited (Carling, 1987; Knighton, 2014). 

Similarly, fine sediments (<63μm in diameter) transported by rivers carry with them 

vital nutrients such as phosphorus, nitrogen, and organic carbon that are essential to 

riverine, estuarine, and oceanic life (Howarth et al., 1991; Mueller, 1996; Fabricius, 
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2005). Anthropogenic activities throughout a watershed, however, may affect a river’s 

ability to transport sediments.  

Anthropogenic activities influence both the amount of sediment produced in a 

watershed and how well sediments are retained on floodplains, another ecologically 

important function of rivers. Anthropogenic activities can promote excessive sediment 

runoff, which can have deleterious ecological effects on downstream water bodies (e.g. 

estuaries and coastal shelf ecosystems) upon delivery (Layzer, 2002; Gellis et. al., 

2009). Further contemporary sediment storage research (e.g., Noe & Hupp, 2005) 

suggests that anthropogenic land use patterns may limit the hydrologic connectivity 

between river channels and floodplains. This shift in hydrologic connectivity has the 

potential to minimize sediment retention on floodplains, along with nutrients attached 

to fine sediment. Additional research suggests that mean lag times for sediments 

retained by floodplains during storm events range from decades to millennium (Pizzuto 

et al., 2014). Given such long lag times and the importance of both sediment transport 

and retention, further research into understanding physical processes that govern 

floodplain sediment storage patterns may allow managers to focus sediment retention 

management efforts more effectively. This study seeks to add to this line of research 

by attempting to address a fundamental research question: 

 

How do interpretations of (or based on) contemporary high-resolution 

topographic data inform conceptualizations of floodplain sediment patterns? 
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To answer this question, this study will compare characterizations and quantifications 

of floodplain conditions presumed to affect sediment spatial patterns with the aid of 

contemporary high-resolution topographic data. Predictive models will be developed 

to assess the relative importance of various conditions in explaining spatial patterns of 

floodplain sediment characteristics, namely sediment texture. It is the intent of this 

study to update our current understanding of floodplain topography’s interactions with 

flow as it pertains to floodplain sediment dynamics and retention. 

 

Section 2: Characterizing Sediment Deposition, Floodplain Topography, and 

Hydraulic Processes 

 

Floodplain sediments are not deposited evenly or at random, but as a function of 

floodwaters across the floodplain. Sediments in transit are deposited when floodwaters 

lack sufficient transport capacity, a function of predominantly shear stresses acting on 

a given particle and that particle’s size. When shear stresses associated with 

floodwaters drop below a given threshold, the particle in question settles out of 

suspension (Knighton, 2014). As stresses exerted by floodwaters vary across a 

floodplain spatially and temporally, sediment deposits of varying particle size and 

depth are likewise deposited heterogeneously (Leopold et al., 1964; Gergel et al., 2002; 

Hupp et al., 2009). Over time, repeated sediment accretion can form topographic 

features commonly found on floodplains, such as levees. 
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Floodwaters and their associated sediment deposits create, destroy, and sculpt new 

micro-1 and macro-topographic2 features over both the short-term and long-term. 

Altered topographic patterns influence future depositional patterns by altering the 

complex spatiotemporal patterns of stresses exerted by floodwaters (Wolman & Miller, 

1960; Asselman & Middelkoop, 1995; Song et al., 2014). Furthermore, complex 

patterns of flow stresses (and the consequent mosaic of sediment deposits) play a major 

role in determining riparian plant community structures. Like floodplain topography, 

floodplain vegetation’s spatial organization, composition, and density influence future 

flooding events as a vegetative roughness condition (Harris,1987; Sparks & Spink, 

1998; Steiger and Gurnell, 2003; Unger & Muzika, 2008). Because of feedback loops 

that span multiple temporal scales, floodplain sediment dynamics are considered 

complex. 

 

Given the potential complexity of floodplain sediment dynamics, it is important to 

consider how existing methods characterize [1] sediment deposition and erosion, [2] 

topographic conditions that modify flow processes, and [3] flow processes that govern 

sediment deposition. The following introduction will review how existing floodplain 

sediment research measures, models, and quantifies these variables. 

 

                                                 
1 Topographic features <10m2 in area. 
2 Topographic features >10m2 in area. 
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Subsection 1: Floodplain Sediment Deposition and Erosion 

 

Gellis et al. (2009) categorized various methodologies currently in use for measuring 

floodplain sediment deposition into three broad categories: [1] field approaches, i.e. 

in situ methods such as bank pins and feldspar clay pads; [2] surrogate approaches, 

which utilize indirect measurements of related  variables such as geochemical tracer 

concentration to infer sediment flux rates; and [3] modeling approaches, which utilize 

(but are not limited to) empirically-derived data and/or general physical equations to 

estimate watershed-scale spatial fluxes of sediments. This review will focus on field 

and surrogate approaches, as modeling approaches typically feature empirical data 

collected by field and/or surrogate approaches and are primarily focused on much 

larger scales than this study’s intent.  

 

Field approaches directly measure sediment deposition or erosion rates at a site over 

time. Conventionally, bank pins and feldspar clay pads are deployed en masse along 

floodplain transects aligned perpendicular to a channel; pins and pads are then closely 

monitored for years to approximate local sediment dynamics. For example, Noe & 

Hupp (2009) characterized sediment accretion rates and associated nitrogen, carbon, 

and phosphorus concentrations for seven freshwater, non-tidal floodplains in the 

Chesapeake Bay watershed by deploying several floodplain transects spaced fifty to a 

hundred meters apart. Each transect featured four to six monitoring locations where a 

pad collected deposited sediments on average from 1996 to 2003. Accretion rates and 

associated nutrient concentrations collected over this period were then extrapolated for 
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the remaining floodplain area of each sampled river to estimate total sediment flux and 

storage conditions.  

 

Surrogate approaches indirectly measure floodplain sediment dynamics by measuring 

variables related to sediment deposition or erosion. In many cases surrogate approaches 

are utilized (a) when a historical record of data is lacking, and/or (b) where an 

appropriate spatial resolution of sediment dynamics is too costly, dangerous, and/or 

impractical to field measure. Examples of surrogate approaches include 

dendrogeomorphology (Hupp & Morris, 1990), radioactive tracers (Pennock & De 

Jong, 1987), and monitoring changes in LiDAR-derived topography (Thompson & 

Croke, 2013). Ritchie and McHenry in their 1990 meta-analysis, for example, 

expounded on methodologies using a radioactive tracer (Cesium-137) from nuclear 

weapons testing to measure soil erosion and accumulation rates over the past (at the 

time of their review) twenty years. Studies cited by Ritchie and McHenry measured 

137Cs concentrations within vertical soil profiles at depositional sites across various 

floodplains. Knowing when measurable radioactive isotope concentrations would have 

appeared in the soil profile3, researchers were able to determine the average floodplain 

sediment deposition rate across several decades by measuring the depth of the deepest 

soil horizon containing 137Cs concentrations.  

 

While in some cases highly accurate at specific points along a transect, most field and 

surrogate methods for measuring patterns of sediment accumulation/erosion bring with 

                                                 
3
Approximately 1954 (Kleiss, 1993) 
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them inherent assumptions about the spatial homogeneity of metrics measured. To 

elaborate, field and surrogate methodologies generally make two assumptions when 

sampling along transects:  

 

a) It is assumed that sediment accumulation or erosion rates measured at points 

along a transect are representative of rates between points along a transect. 

b) It is assumed that that sediment accumulation or erosion rates measured along 

transects are representative of rates between transects (i.e., longitudinally).  

  

These assumptions become potentially unrealistic when coupled with the fact that for 

many studies, points along cross-sections are regularly spaced tens of meters apart and 

the distances between cross-sections further still. This was the case in Noe and Hupp 

(2009), where approximately seventy-two marker horizons were extrapolated to 

determine floodplain sediment accumulation rates across seven watersheds.  

 

Many field and surrogate approaches also rely on data that must be regularly measured 

over the course of at least half a decade, then averaged to determine an annual rate (e.g. 

Noe & Hupp, 2009). However, many variables that determine sediment depositional 

rates vary seasonally (vegetative roughness conditions) or annually (total annual 

discharge); as such, the temporal assumption that sediment deposition and erosion rates 

remain static across years or decades is equally tenuous.  
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With recent advancements in geospatial technologies, high resolution topographic 

models, and powerful computers capable of processing such models, research into 

patterns of floodplain sediment accumulation may be able to overcome these 

shortcomings (Bishop et al., 2012). For example, high-resolution aerial LiDAR surveys 

appear to effectively mitigate assumptions regarding spatial homogeneity between 

elevation points. LiDAR systems collect tens to hundreds of millions of elevation 

points across a given surveyed terrain. A dense “point cloud” is then created in 3D 

space from said points, with horizontal resolutions as dense as multiple points/m2. After 

conducting multiple LiDAR surveys over multi-year period, a DEM (Digital Elevation 

Model) of Difference may be generated; in contrast to point-based cross-sectional 

surveys, effectively an areal measurement of topographic change.  

 

A recent example is showcased in Thompson & Croke’s 2013 paper on the 

hydrogeomorphic effects of a major flood in Lockyer Valley, southeast Queensland. 

Utilizing multi-temporal one-meter cell resolution LiDAR surveys, Thompson & 

Croke generated a DEM of Difference to estimate a sediment budget for both confined 

and unconfined valley reaches affected by the flood. When combined with their 

landform classification assessment and hydraulic flow model of the flood, Thompson 

& Croke’s work represents a comprehensive assessment of both direct and indirect 

measurements of sediment accumulation and the underlying conditions governing 

them. 
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Subsection 2: Macro- and Micro-Topography 

 

Given the risks inherent to collecting flow measurements such as velocity, depth, and 

bed shear stress during a flooding event, historically many researchers relied on what 

was theorized to be surrogates for floodplain hydraulic conditions. This generally took 

the form of qualitative assessments of local topographic features (Bishop et al., 2012). 

Mapping macro- and micro-topographic landforms, their effects on flow routing, and 

their consequent role in determining hydrogeomorphic conditions and riparian 

vegetative composition have been discussed at length (Hupp, 1982; Unger & Muzika, 

2008; Gergel et al., 2002; Bishop et al., 2012; Song et al., 2014; Song et al., 2017).  To 

summarize, floodplain topography is a direct result of flow processes acting on a 

floodplain during a flooding event, depositing or eroding sediments stored as 

topography; over time new topography is created or sculpted, thus influencing future 

flow routing during floods (and future depositional/erosional patterns). Ergo, a firm 

quantitative understanding of interactions between flow processes and the spatial 

arrangement of floodplain topography is highly desired. 

 

While originally reliant on qualitative interpretations of landscape photography or 

quantitative but spatially-limited manual field surveys (e.g. Marston et al., 1995) for 

mapping flow-altering landforms, recent technological advances have allowed for more 

advanced geospatial analyses. Buoyed by modern high-resolution topographic models 

and computers capable of performing advanced calculations on large detailed datasets, 
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recent research towards generating more quantitative topography classifiers has 

spawned several avenues of approach (Bishop et al., 2012).  

 

A major goal in modern geospatial analysis research is developing an automated 

methodology for quantifying and/or classifying characteristics of a terrain. This 

methodology must be (a) replicable through time, (b) replicable across various spatial 

scales, reliefs, and orientations, and (c) require minimal user input. With a methodology 

that satisfies these three conditions, researchers have the potential to quantitatively link 

floodplain topographic spatial patterns directly to flow processes. For example, 

Yokoyama et al. (2002) have developed entirely new measures of topography such as 

“openness” in pursuit of this goal.  

 

Openness, as defined by Yokoyama et al., was termed “an angular measure of the 

relation between surface relief and horizontal distance”; essentially, a measure of 

topography based off a terrain’s line of sight. A point’s “openness” values are 

indicative of the dominance or enclosure of a location relative to another on a 

topographic plane. Two forms of openness were presented by Yokoyama et al., 

“positive” and “negative” openness. Positive openness was calculated as the mean 

zenith angle calculated along all cardinal headings that was unobstructed by the terrain 

itself in a self-adapting neighborhood window; this metric was positively correlated 

with presence of concave landforms, such as valley features. Negative openness was 

calculated identically to positive openness, but utilizing the mean nadir angle of the 

terrain’s surface; in contrast, negative openness was positively correlated with the 
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presence of convex landforms, such as ridges. Others, such as Jasiewicz and Stepinski 

(2013), took Yokoyama et al.’s openness metric further, seeking to utilize computer-

aided pattern recognition and openness to identify geomorphologic phonotypes.  

 

Subsection 3: Flood Hydraulics 

 

As stated earlier, historically many researchers relied on geospatial analyses of 

topography as surrogates for floodplain hydraulic conditions during flooding. 

Technological advancements, however, have allowed researchers to transition from 

approximating flood conditions from hydrologically-sculpted landforms to directly 

modeling flow hydraulics during high-flow events. Initially constrained due to 

computational or methodological limitations, many historical studies were restricted to 

smaller study areas, less-representative terrain models, or computationally simpler 

hydraulic models. These included one-dimensional flow modeling, where flow was 

routed through surveyed channel cross-sections (Woltemade & Potter, 1994), and 

steady-flow models, where input discharge remained constant (Gergel et al., 2002). 

More computationally-advanced modeling efforts, such as two-dimensional (flow was 

routed over a mesh/grid-based surface) or unsteady-flow (discharge changed over the 

course of the model) models, were spatially  limited (e.g., Miller, 1994; Snead & 

Maidment, 2000). This is not to state that the results of studies utilizing earlier 

hydraulic modeling programs were incorrect or unrealistic, rather that computational 

limitations restricted the range of scenarios that could be realistically modeled (and 

thus studied). 
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Computational limitations of older hydraulic flow models brought with them inherent 

assumptions about how flow behaved across reach-scale areas. Many older hydraulic 

flow models relied on terrain models derived from channel cross-sectional surveys 

(e.g., Woltemade & Potter, 1994; Carson, 2006). As such, the same assumptions made 

earlier regarding studying sediment dynamics with channel cross-sections apply here: 

(a) that the area between points along a transect is topographically homogenous, and 

(b) that the area between transects is topographically homogenous. When coupled with 

the fact that for some studies elevation points along and between cross-sectional 

surveys are spaced out tens to hundreds of meters apart (e.g., Carson, 2006), the 

assumption of topographic homogeneity is potentially invalid. This may not be an issue 

for larger, watershed scale studies. But for studies interested in fine-scale flow patterns 

across floodplains as they related to sediment retention, hydraulic models should 

account for topographic heterogeneity at finer scales than older topographic modeling 

efforts such as cross-sections can capture.  

 

With the aid of high-resolution floodplain topography, advanced modeling programs, 

and powerful computers for processing such models, there is high potential to directly 

link modeled flow conditions on the floodplain to spatial sediment patterns. Carson 

demonstrated the validity of this approach in his 2006 study, where he linked historic 

alluvial deposits along a mountainous Utah stream to modeled flow conditions on 

modeled prehistoric topography. While Carson (2006) was restricted to 1D hydraulic 

modeling due to the nature of their study, other contemporary studies have regularly 
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demonstrated the ability of modern hydraulic modeling programs to utilize high-

resolution topography. For example, Ernst et al. (2010) successfully created a 2D 

steady-state hydraulic model utilizing high-resolution terrain data (one-meter by one-

meter cell resolution) to develop flood risk assessments at an individual-building scale. 

Future studies focused on flow conditions presumed to govern floodplain sediment 

pattern should consider utilizing both high-resolution floodplain topography datasets 

and advanced hydraulic modeling programs. 

 

Section 3: Problem Statement and Approach 

 

Understanding sediment storage spatial patterns is a critical research need for 

floodplains. Previous research (Noe & Hupp, 2009) suggested sediment storage 

associated with Coastal Plain floodplains draining Piedmont rivers is critical for 

understanding sediment inputs into the Chesapeake Bay. Consequently, such Coastal 

Plain floodplains were also found to store large quantities of nutrients (Noe & Hupp, 

2005). As such nutrients are most commonly correlated with fine-grained sediments 

such as silts and clays, sediment texture is regularly used to study sediment storage and 

its associated nutrient composition. However, estimates such as Noe & Hupp’s may be 

limited by their reliance on relatively imprecise techniques. Other studies focused on 

topography resulting from patterns of sediment deposition, such as Scown et al. (2015), 

struggled to characterize topography in an automated, interpretable manner across 

spatial scales. Still others, such as Carson (2006), were computationally and 

methodologically limited to simplistic terrain representations when modeling hydraulic 
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processes related to sediment dynamics. Furthermore, while some studies integrated 

parts of the approaches discussed (Marriott, 1992; Carson, 2006), to this study’s 

knowledge no study has attempted to compare these various approaches in one 

comprehensive study. Former research into sediment dynamics was limited not just 

methodologically, but technologically to coarse approximations of sediment dynamics 

and its governing processes. 

 

Modern researchers, however, now have access to high-resolution multi-temporal 

LiDAR surveys of Coastal Plain floodplains and computers capable of analyzing said 

topography. 2D, unsteady-flow hydraulic modeling, when paired with analyses of high-

resolution floodplain topography and their underlying sedimentology, has the potential 

to systemically update our current conceptualizations of sediment dynamics on Coastal 

Plain floodplains. This study seeks to address a fundamental research question: 

 

How do interpretations of (or based on) contemporary high-resolution 

topographic data inform conceptualizations of floodplain sediment patterns? 

 

As an illustrative example, this study will seek to answer the above question by 

applying high-resolution topography to characterize floodplain conditions using a 

range of approaches employed in characterizing floodplain sediment deposition. 

Specifically, this study will aim to satisfy these three research objectives by 

completing the following tasks: 
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1. Characterize and quantify [A] sediment accretion patterns, [B] 

topographic conditions, [C] flow conditions representative of a major 

storm event on a Coastal Plain floodplain, and [D] spatial patterns of 

sediment texture.  

2. Compare the results of the characterizations and quantifications of 

floodplain conditions at the study site to each other, as well as to the 

existing literature’s conceptualization of conditions to be expected at the 

site. 

3. Assess the relative importance of sediment accretion rates, topographic 

landforms, and hydrodynamic conditions in explaining patterns of 

floodplain sediment texture at the study site.  

 

Section 4: Study Site 

 

The Patapsco River runs for 39 miles before emptying into the Baltimore Harbor. It 

drains an approximately 312 mi2 watershed located in Central Maryland and is a humid 

subtropical climate that receives on average approximately 41 inches of precipitation 

annually (MD Dept. of the Environment, 2018; US Climate Data, 2018). Precipitation 

occurs year-round. According to National Land Cover Dataset (Homer et al., 2015), 

the watershed is 32.49% developed, 34.88% forested, 27.01% agricultural, and 5.62% 

other. The Patapsco is a relatively narrow, minor river for most of its length, featuring 

infrequent and narrow alluvial floodplains (Hack, 1982; Terrain 360, 2018). The river’s 



 

16 

 

last ~8 miles feature regular, relatively wide (~1/3 mile in width) floodplains 

constrained by urban and suburban development. Silt loams of the Codorus, Hatboro, 

and Elsinboro series are associated with floodplains along the lower Patapsco and range 

from poorly- to well-drained (Soil Survey Staff, National Resources Conservation 

Service, 2018). 

 

The Patapsco crosses between the Piedmont and Coastal Plain physiographic provinces 

between Elkridge, MD and Ellicott City, MD. Colloquially referred to as “The Fall 

Zone”, this border features a sharp decrease in the river’s longitudinal gradient as it 

transitions from the topographically variable Piedmont to the relatively flat Coastal 

Plain (Hack, 1982). Recent Mid-Atlantic studies of the Coastal Plain province have 

documented relatively large sediment retention rates occurring on local floodplains, 

“represent[ing] the interception of large amounts of material that otherwise could have 

been exported downstream [to the Chesapeake Bay]” (Noe & Hupp, 2009). Further 

studies have documented historical patterns of fluvial aggradation in the form of legacy 

sediment deposits (Hupp et al., 2013).  

 

While historically its sharp longitudinal gradient made the Patapsco River Valley 

valuable for generating hydropower, this area remains nationally recognized as recently 

as summer 2018 for its extreme vulnerability to major flood events (Sharp, 2001; 

Halverson, 2018). Following recent major storms (Tropical Storm Lee in 2011, and the 

Ellicott City floods of 2016 & 2018), field observations of the study site exhibit a wide 

range of hydrogeomorphic and topographic conditions. This is theorized to be a direct 
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result of a major widening of the river valley and a sharp reduction in longitudinal 

profile as the river exits the Fall Zone (Hack, 1982; Figure 1.1). Due to the 

hydrogeomorphic and topographic conditions documented above, the Patapsco River 

Valley’s transition out of the Fall Zone into the Coastal Plain is an ideal study site for 

illustrating the impacts described by Noe and Hupp.  

 

Given the Patapsco’s role as a political boundary between Howard and Baltimore 

counties, incidentally two overlapping aerial LiDAR surveys were collected of the 

study site; one in March 2011 by Howard County (pre-Tropical Storm Lee) and one in 

May 2015 by Baltimore County (post-Tropical Storm Lee), at 2-meter and 1-meter cell 

resolutions respectively.  

 

This study will specifically focus on two sections of the lower Patapsco floodplain 

downstream of US I-95 and upstream of US I-195, approximately one mile downstream 

of the USGS Elkridge stream gage station. In addition to aforementioned valley-scale 

effects, a large covered culvert bisects the study area into two sections (hereafter 

referred to as the upstream and downstream sections). Further local effects include for 

the downstream floodplain section a detention pond, a former oil pipeline dirt road, and 

a first-order tributary bisecting the floodplain. For the upstream floodplain section, a 

large power-line cut spans the floodplain. A small drainage tributary is also found on 

the south-easternmost tip of the upstream floodplain section (Figure 1.2).  
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Figure 1.1: 

Hillshade of the 

Lower Patapsco 

River floodplain, 

with study area 

highlighted in 

beige. (inset): 

spatial location of 

study area 

relative to 

Maryland. 
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Figure 1.2: Study area depicted, 

with areas of presumed local 

effects highlighted. The Lower 

Patapsco flows from northwest 

to southeast at this scale. The 

western floodplain section (grid 

cells A2, B2, A3, & B3) was 

designated the upstream section, 

and the eastern floodplain (grid 

cells C3-C5, D3-D5, E4, E5, F4, 

& F5) was designated the 

“downstream” section. 
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Image 1.1: [Facing upstream] The Route 1 culvert that bisects the study area into two 

sections is split into two arches. Sediment regularly collects underneath the arches, to 

be later flushed out by high velocity flow during storm events. Credit for images: Zach 

Clifton 

 

Following Tropical Storm Lee and both Ellicott City floods (2016 and 2018), 

predominantly-sand depositional waveforms from flooding were visible on both study 

floodplain sections (Image 1.3). These waveforms were found in areas adjacent to the 

main channel’s banks, along with large debris from previous storm events and Tropical 

Storm Lee. Texture-by-feel observations of surficial soil characteristics suggested that 

the area encompasses a transition between primarily coarse (>63µm) to primarily fine 

(<63µm) sediments. Further observations document a wide vegetative range of varying 

“hydraulic roughness”, from dense Phragmites in regularly flooded backswamps, to 

open irregularly-flooded meadows, to mature floodplain forests. Taken 

comprehensively, these observations suggest a wide range of depositional, topographic, 

and hydrogeomorphic regimes are found on the Lower Patapsco floodplain. 
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Image 1.2: Example of the sand waveforms found on the Lower Patapsco River floodplain after a major flood event. 

Image Credit: Zach Clifton 
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Image 1.3, 1.4, 1.5, 1.6, & 1.7, from 

top left to bottom right: 

examples of the wide variety of 

vegetation density and composition 

found at the study area.  

Credit for Images: Zach Clifton 
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Chapter 2: Methods 

 

This chapter (and the subsequent Results chapter) are organized as follows. The 

methods outlined in Section 1 are intended to satisfy research objective 1A by 

quantifying sediment accretion rates for the study floodplain. The methods outlined in 

Section 2 are intended to satisfy research objective 1B by characterizing floodplain 

landforms for the study floodplain. The methods outlined in Section 3 are intended to 

satisfy research objective 1C by modeling flow conditions across the study floodplain. 

The methods outlined in Section 4 are intended to satisfy research objective 1D by 

characterizing spatial patterns of floodplain sediment texture for the study floodplain. 

The results of Section 1-4 will be later compared, satisfying research objective 2. 

Finally, Section 5 outlines the predictive models developed to assess the relative 

importance of each condition quantified/characterized by Sections 1-3 towards 

explaining spatial patterns of sediment texture on the study floodplain. 

 

Section 1: Quantifying and Mapping Post-Flooding Sediment Accretion  

 

Sediment accretion resulting from Tropical Storm Lee was quantified and mapped for 

the study floodplain by differencing multi-temporal aerial LiDAR-derived topography 

surveyed before and after Tropical Storm Lee. Classified aerial LiDAR point clouds 

and metadata for the Lower Patapsco were downloaded from MD’s iMAP website 

servers (MD iMAP, 2016). LiDAR classification and post-processing were undertaken 

prior to this study by commercial vendors for each county. LiDAR-derived bare-earth 
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DEMs were generated within ArcMap for each survey year’s dataset; cell resolution 

was determined based on iMAP-provided metadata. A two-meter cell resolution was 

established based on a reported point spacing of 1.4 meters for the 2011 Howard 

County dataset. Likewise, a one-meter cell resolution was established based on a 

reported point spacing of 0.7 meters for the 2015 Baltimore County dataset. DEMs 

from 2011 and 2015 were subtracted from each other in ArcMap (2015 -2011) to 

generate a two-meter cell resolution DEM of Difference (DoD) for the study area.  

 

Two quantifications of a minimum level of detection threshold (minLOD, i.e. the 

smallest detectable elevation change distinguishable from random point cloud noise) 

for the DEM of Difference. Defined as the “regional” minLOD and the “localized” 

minLOD, they were intended to bookend change detection thresholds between a very 

conservative estimate (i.e., regional minLOD) and an optimistic but likely-unrealistic 

estimate (i.e.,  localized minLOD). Two additional change detection thresholds between 

these bookends were also utilized to compare intermediary estimates of topographic 

change. 

 

The regional minLOD utilized the county-wide vertical accuracy RMSEs (Root Mean 

Square Errors) provided by LiDAR metadata to quantify surface representation 

uncertainty in the DoD. The 2011 survey reported a vertical RMSE of 18.5cm, whereas 

a RMSE of 6.79cm was reported for the 2015 survey. RMSEs were interpreted to 

quantify the surface representation uncertainty of each dataset, utilizing the same 
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methodology4 as Wheaton et al. (2010) and Thompson & Croke (2013). RMSEs were 

also assumed to be the same for both positive and negative uncertainty in representing 

terrain.  The regional minLOD was obtained by squaring, summing, then calculating the 

square root of both RMSEs. Propagated uncertainty was then approximated assuming 

infinite degrees of freedom, leading to a 95% confidence interval of approximately 

±0.386m.  

 

To quantify surface representation uncertainty with the localized minLOD, presumed 

areas of negligible elevation change between 2011 and 2015 were identified. For this 

study, roads such as I-195 and I-95 were selected. A total of 270 points were randomly 

generated within areas of negligible change. Difference in elevation between the two 

LiDAR surveys was recorded at each point, and the standard deviation, RMSE, and the 

average difference in elevation were calculated. Mean elevational change 

was -0.0273m, consistent with an interpretation of zero directional bias. The calculated 

RMSE (0.0128m), multiplied by the critical student’s t value at a 95% significance 

level (for 269 degrees of freedom, t=1.969), resulted in a localized confidence interval 

of 0.0252m. 

  

                                                 
4
 Adapted from Taylor’s (1997) modified error estimation equation; this methodology is also referred 

to as probabilistic thresholding by a user-defined threshold in the literature. 
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Table 2.1: Various metadata associated with the aerial LiDAR datasets utilized.  

 2011 2015  

County surveyed Howard County Baltimore County 

Date(s) Collected 03/27/2011 - 03/28/2011 05/06/2014 - 05/07/14 

Date Published 06/08/2011 April 2015 

Nominal Point Spacing 1.4 pts/m2 0.7 pts/ m2 

Cell Resolution 2 meters 1 meter 

LiDAR instrument used 

for collection 

Leica ALS50 Reigle 680i 

 

 

Section 2: Characterizing Floodplain Landforms  

 

Floodplain topographic patterns such as ridges, flats, and depressions for the study 

floodplain were classified utilizing the same methodology as Stepinski & Jasiewicz 

(2011) and Jasiewicz & Stepinski (2013), where topography was classified into 

geomorphologic phonotypes (colloquially termed “geomorphons”). As defined by 

Jasiewicz and Stepinski, a geomorphon is a “specific spatial arrangement of elevation 

values in a selected region of a DEM [Digital Elevation Model].”. Analogous to 
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“textons” as defined by Julesz (1981), a geomorphon in essence is a “fundamental 

micro-structure of a landscape” (Jasiewicz and Stepinski, 2013).  

 

Geomorphons are orientation-independent and limited to a set of only 498 different 

arrangements because of their basis on local arrangements of elevational values. As 

values of neighboring DEM cells are classified according to whether (relative to the 

central cell) they represent an increase in elevation, a decrease in elevation, or 

experience no change in elevation, geomorphons are also relief-independent. 

Geomorphon classifications include common landforms such as ridges, valleys, 

hollows, or spurs, and are calculated via “a neighborhood with size and shape that self-

adapts to the local topography” (Jasiewicz and Stepinski, 2013) comparable to 

Yokoyama et al.’s self-adaptive neighborhood window. Instead of utilizing measures 

of surface geometry as other studies have done (e.g. Scown et al., 2015), geomorphons 

are analogous to interpretive landform mapping done by experienced landform 

geographers. By utilizing technologically-aided pattern recognition and openness, 

however, an element of technological objectivity is introduced, while maintaining the 

adaptive ability previously displayed by human geographers to recognize important 

flow-altering landforms. 

 

Prior to characterizing landforms, however, minor topographic modifications were 

needed. Given the documented “noisiness” of aerial LiDAR when modeling 

topography in riparian vegetated areas (e.g. Hutton & Brazier, 2012), a filtered version 

of the one-meter cell resolution 2015 DEM was proposed. This filtered version was 
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generated by inputting the 2015 DEM into the ArcGIS function Filter with “low pass” 

selected. Through this function a filtered DEM was generated by calculating the mean 

elevation within a three-meter by three-meter moving neighborhood window for each 

cell. The Filtered terrain was imported into GRASS GIS, and the GRASS extension r. 

geomorphon was then run with the following parameters: outer search radius of thirty 

meters, inner search radius of zero meters, a 1 degree flatness threshold, and a zero 

meter flatness distance. These parameters were deemed acceptable based on field 

observations of floodplain topography on the study area and an interest in documenting 

both macro- and micro-topography. R.geomorphon results for the unfiltered version of 

the 2015 terrain may be found in the Appendices section (5.4). 

 

Section 3: Modeling Representative Flow Conditions on the Floodplain 

 

To model hydrodynamic flow conditions representative of a major storm event on the 

lower Patapsco floodplain, a 2D unsteady-flow hydraulic model of floodplain hydro-

dynamic conditions was generated with HEC-RAS version 5.0 (USACE [1], 2016). 

The Hydrologic Engineering Center’s River Analysis System, more commonly referred 

to as HEC-RAS, was and remains one of the most oft-applied programs for modeling 

flow hydraulics. Others such as MIKE11, iRIC, RMA2, and TUFLOW have also seen 

regular use (Miller 1994; Woltemade & Potter, 1994; Snead & Maidment, 2000; 

Thompson & Croke, 2013; Shokory et al., 2016), however HEC-RAS’s compatibility 

with high-resolution topographic data, incorporation of the “GDAL” geospatial library, 

user accessibility, and cost made it the optimal choice for this study. 
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To generate a 2D unsteady-flow model, HEC-RAS solves for flow momentum vectors 

across a user-defined computational subgrid with either full Saint Venant equations 

(i.e. shallow water equations derived from Navier-Stokes equations) or a simplified 

version termed the Diffusive Wave Approximation of the Shallow Water (DSW) 

equations. By assuming the horizontal length scale is much larger than the vertical 

length scale (i.e. shallow flow), the DSW equations assume that pressure is effectively 

hydrostatic, and that gravity and friction associated with underlying topography are the 

dominant terms in the momentum equations. This allows the vertical velocity, vertical 

derivative, unsteady, advection, Coriolis, and viscous terms when solving the Navier-

Stokes equations to be disregarded, reducing computational times in the process 

(USACE [2], 2016). Exploratory analyses utilizing the Saint Venant equations and the 

DSW equations revealed no identifiable differences in model outputs between the two 

equation series, so DSW equations were used.  

 

To further reduce computational times, HEC-RAS utilizes the subgrid bathymetric 

approach whereby a user-defined subgrid coarser in resolution than the underlying 

topography contains fine-scale information about said underlying topography. This 

information can then be factored out as a series of parameters representing multiple 

local slope-volume integrals representative of the underlying topography. This allows 

HEC-RAS to preserve information about higher-resolution topographic details while 

solving for flow momentum conservation for flow entering, flowing through, and 

exiting coarser subgrid cells (USACE [2], 2016). Given a one-meter cell resolution 
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bare earth DEM generated from Baltimore County’s 2015 LiDAR survey, a 4.27m by 

4.27m subgrid was chosen to streamline processing times while still preserving fine-

scale topographic information. 

 

While the DEM was generated following the same procedure detailed in section 1 of 

this chapter, some DEM modifications were made to better represent real-world 

topographic and bathymetric conditions. Channel bathymetry for the Patapsco main 

channel was altered to reflect approximate channel depth using eleven Maryland 

Geological Survey channel cross-sections collected in May of 2016. Cross-sectional 

channel profiles were interpolated longitudinally using GeoRAS, an ArcGIS toolbox 

for geospatial data manipulation in HEC-RAS. Additionally, two open-faced parallel 

channels, surrounded by artificially elevated terrain, were created to mimic the 

constraining effects on flow theorized to occur at the Rt. 1 culvert. Finally, to mitigate 

any possibility of the downstream boundary erroneously influencing flood dynamics, 

floodplain topography within 1 mile downstream of the study area was included ( 

Figure 2.1).  

 

Tropical Storm Lee discharge data collected by the USGS Elkridge stream gage were 

downloaded from Sept. 5th, 2011 to Sept. 11th and imported into HEC-RAS as the 

inflow hydrograph boundary condition. Given the short distance and a lack of major 

tributary inputs between the gage site and the study area this was deemed acceptable 

(Figure 2.1). Average in-channel slope along ten longitudinal profiles were extracted 

from 2015 LiDAR data along the upstream study site boundary, and input as the “EG 
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Slope for Distributing Flow Along BC Line” parameter. A short “warm-up” period (~1 

day) of roughly steady-flow conditions was included in the discharge dataset to ensure 

that the channel was equilibrated to steady-state flow before flooding occurred. 

Downstream boundary conditions were designated by the “normal depth” setting, 

calculated by averaging in-channel slope along ten longitudinal profiles extracted from 

2015 LiDAR data. From this a friction slope of 0.02 was input. Given the high 

resolution of LiDAR dataset used and computational limitations with such, a 

computational mesh grid with 10m cells was deemed justified. 

 

Tropical Storm Lee occurred in 2011, four years before the 2015 Baltimore County 

LiDAR survey was flown, thus an argument can be made that this model is 

chronologically illogical. However, the intent of this study is not to model hydraulic 

flow processes on the lower Patapsco floodplain specific to that caused by Tropical 

Storm Lee; instead, the intent is to model hydrodynamic flow processes representative 

of possible flow conditions on the floodplain. Therefore, chronology doesn’t need to 

be preserved for this model if both topographic and hydrodynamic conditions are 

representative of possible conditions on the floodplain. A similar argument can be made 

that Tropical Storm Lee is an extreme storm event for the area with an annual 

exceedance probability of approximately <4% (Suro et al., 2015). However, given [1] 

the irregularity of overbanking events on the lower Patapsco floodplain due to highly 

incised channels, [2] the number of recent extreme storm events with similar 

hydrographs that also caused overbank flooding on the Lower Patapsco floodplain, and 

[3] the possibility of fluvial disequilibrium in the Chesapeake Bay watershed due to 
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changing land use patterns since European colonial settlement and climate change 

(Matonse & Frei, 2013; Kochel et al., 2016), Tropical Storm Lee was deemed an 

acceptable hydrologic event for this study.  

 

Based on a qualitative survey of vegetation composition and density across the study 

area, an approximated dataset of spatial Manning’s N roughness values was input into 

HEC-RAS to estimate floodplain vegetative roughness. Manning’s roughness 

coefficient values for the dataset were derived from Phillips & Tadayon’s report on 

Manning’s roughness coefficient values for channels and floodplains (2006). A map of 

assigned Manning’s N values can be found in Figure 2.2. 
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Figure 2.1: Extent 

Map (in blue) of 

floodplain terrain 

input into the 2D 

HEC-RAS model. Also 

shown is the USGS 

Elkridge stream gage 

(as a blue 

triangle),~1mile 

upstream of the study 

area. 
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Figure 2.2: Map of the spatial 

distribution of Manning’s N 

roughness coefficient values 

of the study area. Values were 

approximated based on field 

observations of vegetation 

conditions at various 

locations across the study 

area.



 

35 

 

Following model processing, six conceptual periods in an archetypal hydrograph (i.e., 

not a specific storm’s hydrograph, but a generalized storm hydrograph) were defined. 

These periods were based on the hypothesized importance of major phase-shifts in flow 

velocity magnitudes, inundation extents, and/or flow routing over an archetypal storm’s 

course. Given the relationship defined in the literature regarding flow processes as they 

pertain to floodplain sediment patterns (Leopold et al., 1964; Marriott, 1992; Gergel et 

al., 2002; Carson, 2006; Hupp et al., 2009), conceptual periods selected for each 

represent an alternative hypothesis about which periods are important for explaining 

floodplain sediment spatial patterns. Conceptual periods were defined as such: 

 

● Initial Overbanking: When in-channel flow overtops the levees immediately 

adjacent to the main channel. 

● Initial Backfilling: When in-channel flow is impeded by valley constraints, 

including artificial constraints such as culverts, and backfills onto the 

floodplain. 

● Splaying: When in-channel flow overtopping a channel levee spills out onto the 

interior floodplain, but prior to peak inundation. 

● Peak Flow: When most of the floodplain is inundated and mean velocities are 

near or at their fastest. 

● (Earlier) Drainage Period: Given the relatively longer falling limb of the 

archetypal hydrograph, two sub-periods during the drainage period were 

selected to model changing flow conditions.  

● (Later) Drainage Period: See above annotation. 
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Rasters representing modeled flow velocity and bed shear stress5 during each 

conceptual period were extracted from HEC-RAS and imported into ArcGIS. The exact 

timing within the hydraulic model to extract flow metric rasters representing a given 

conceptual period was visually determined based on inundation extent and flow 

velocities. A noticeable difference in timings of flow patterns and inundation extents 

was identified between the two study sections; this suggested a significantly different 

hydrologic regime between the two sections in timing of the conceptual periods. As 

such, exact timings of conceptual periods differed between study floodplain sections. 

In total 10 different exact timings of conceptual periods were selected to examine.6  

 

 

 

 

 

 

 

 

 

                                                 
5 Shear stress is calculated by HEC-RAS as τ=͔γ*R*S, where τ= shear stress calculated for each subgrid 

face, then interpolated between faces, γ= the specific weight of water, R = hydraulic radius, and S = 

slope. 
6 One exact timing was shared for both sites (Initial Overbanking), and the downstream section saw no 

backfilling so an exact timing was not selected. For the exact times selected, see Table 5.1 in the 

Appendices section. 
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Section 4: Quantifying Sediment Characteristics for the Study Floodplain  

 

Sediment texture, i.e. the relative proportion of particles of varying sizes by weight, 

can be used to understand spatial patterns of floodplain sediment storage, and 

associated nutrient storage. Thus, to assess floodplain sediment characteristics for the 

lower Patapsco, sediment texture was measured across the study area. Spatial patterns 

of sediment accretion and flow conditions, determined from the topographic 

differencing analysis and hydraulic modeling results, in addition to field observations, 

were utilized to select and stratify soil core sampling sites. Multiple parameters from 

these analyses were used to guide placement. Emphasis on site selection was placed on 

(a) capturing a wide range of sites and (b) covering a variety of factors, including: 

distinct spatiotemporal shifts in flow velocities (direction and/or magnitude); 

depositional patterns; distance from where flow models predicted significant 

overbanking events; distance from the main channel; and field observations of local 

topographic features and vegetation composition. Eight sampling sites within the study 

area were selected. A total of nine sediment core samples were collected across three 

replicates at each site for a total of 72 sediment core samples (Figure 2.3).  

 

At each of three representative locations for each site, three sediment cores were 

collected in a radial pattern at random distances between zero and thirty meters. A 

sample was collected at 0°, 120°, and 240° according to a handheld compass.  Samples 

were collected vertically of the first 6 inches of soil with 1” by 6” steel tubes; each 
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sample location was marked by a handheld GPS unit7 and a spray paint 

identifier/orange construction flag. Sample tubes were sealed with rubber end caps, and 

labelled with a site number, scan number, sample number (1,2, or 3, where 1=0°, 

2=120°, and 3=240°), and the distance from the central measuring point to the sample 

in meters.  

 

 

                                                 
7
 A Garmin 60CSx. 
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Figure 2.3: Sediment core sampling plan; cores were later analyzed for particle size distribution. 
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After collection, soil core samples were brought back to UMBC for logging and particle 

size analysis via the Bouyoucos hydrometer method (Bouyoucos, 1951; Poppe et al., 

2000; Schwartz & Smith, 2016). This method was selected due to prior experience, 

available lab resources, and ease of implementation. The hydrometer method relies 

primarily on Stokes’ Law: 

𝐹𝑑 = 6𝜋𝜂𝑟𝑣 

Where Fd = the frictional force exerted on a given particle moving through a fluid, η = 

the dynamic viscosity of the fluid, r = the radius of a given particle, and v is the flow 

velocity relative to a given particle. Assuming spherical, smooth particles of a uniform 

density flowing laminarly through a fluid of a constant density and viscosity, Stokes’ 

Law is used here to determine sedimentation rates of particles varying in size. While 

this method can be used to distinguish more than three soil particle size classes 

proportions, only the major three (sand, silt, and clay) were selected for this study.  

 

The hydrometer method relies on mechanical and/or chemical means to disassemble 

soil aggregates into discrete particles before particle size analysis.  Particle size 

distribution was assessed with a slightly modified version of the hydrometer method 

(graciously provided by Dr. Stu Schwartz at UMBC’s Center for Urban Environmental 

Research and Education) involving both mechanical and chemical means for aggregate 

separation. Soil samples were oven dried, then lightly ground with both ceramic and 
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rubber-tipped pestles to break up predominantly clay-based aggregates without 

breaking up larger particles (such as gravel or brick fragments).  

 

Approximately 200 mL of deionized water and 100 mL of 5% sodium 

hexametaphosphate solution (a chemical deflocculating agent) and were then added to 

the sample. The sample solution was agitated with an industrial mixing machine to 

ensure complete deflocculation of soil particles. The solution was then transferred to a 

1L volumetric glass cylinder, where the remaining volume was filled to 1L with 

deionized water. A control cylinder was also created, consisting of 100mL of the 5% 

sodium hexametaphosphate solution and 900 mL of deionized water. The specific 

gravity of the control cylinder was then measured with an ASTM-152H hydrometer 

and recorded, as was both the control and test cylinders’ temperatures. 

 

The test cylinder was closed with a rubber stopper and inverted several times (≥20) to 

ensure that all particles were in suspension. A stopwatch was started, and the cylinder 

was quickly placed vertically on a flat surface. After removing the rubber stopper, 2-3 

drops of amyl alcohol were added to disperse bubbles and a hydrometer was 

immediately inserted into the solution. Specific gravity readings of the solution were 

measured and recorded at fifteen seconds, thirty seconds, forty seconds, one minute, 

two minutes, one hour, two hours, any time between 4 hours and 6 hours, and any time 

between 23 and 26 hours. Measurement times were selected to develop a regression 

curve of which soil size classes were settling out of suspension, allowing for later 

calculation of particle size class proportions within the soil core sample. Temperature 
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of both the test and control cylinders were also recorded for each time interval, 

excluding any time intervals within the first 2 minutes. The control cylinder’s specific 

gravity is also recorded for these same time intervals.  

 

After 24 hours the experiment results were used to calculate specific proportions of 

three particle size classes, controlling for temperature. To visualize the soil textural 

data graphically, a ternary plot of particle size results for all samples was generated 

with “ggtern”, (Hamilton, 2017) a graphical package within R. Soil textural data was 

also visualized spatially with a Kriging interpolation for each particle size class 

analyzed for. 
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Images 2.1-2.4 (from top left to bottom right)  

Image 2.1: Soil sample collection at study area, facilitated by a hand shovel (left). 

Image 2.2: After oven drying, soil samples were ground before particle size analysis. 

Image 2.3: Various soil samples mid-particle size analysis.  

Image 2.4: Close-up of a 1L volumetric cylinder mid-particle size analysis; particle 

size stratification at the cylinder base reflects the varying deposition rates expected 

with various particle sizes. 
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Section 5: Assessing the Relative Importance of Hydrogeomorphic, Topographic, and 

Geometric Conditions in Explaining Spatial Patterns of Floodplain Sediment Texture 

 

To demonstrate high-resolution topography’s utility in relating floodplain conditions 

presumed to govern floodplain sediment characteristics at a single study site8, a 

multivariate analysis was conducted. The intention of this multivariate analysis was to 

quantitatively represent a series of hydrogeomorphic, topographic, and geometric 

conditions on the floodplain, and to assess their relative ability to explain spatial 

patterns in floodplain sediment texture. In that pursuit, a classification and regression 

tree (CART) analysis was determined to be the most appropriate mode of statistical 

analysis. 

 

CART analyses, specifically regression trees, have several benefits when compared to 

alternative multivariate statistical analyses. When working with datasets where several 

variables act in complex, nonlinear fashions (e.g., sediment dynamics), global 

statistical models like multivariate linear or polynomial regressions can be difficult to 

construct and later interpret. Regression tree analysis results, however, are relatively 

easy to explain graphically (Gareth et al., 2017). Furthermore, many variables 

understood to be associated with spatial patterns of floodplain sediments are believed 

to covary. For example, it is commonly understood that stream power varies with 

longitudinal distance downstream (Sparks & Spink, 1998; Barker et al., 2009), 

affecting sediment erosion and deposition patterns; this violates the assumptions of 

                                                 
8 the third research objective outlined in section 3 of the introductory chapter 
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many multivariate statistical analyses, such as principle component analysis. Still 

others only allow for either categorical or numerical data, or struggle with large 

datasets. CART analyses, on the other hand, are capable of handling large datasets of 

both numerical and categorical data and are robust against collinearity. To do so, a 

regression tree analysis recursively partitions the full dataset into smaller, more 

manageable regions.   

 

Each zone of partitioning is referred to as a “nodal split”, where a single explanatory 

variable (e.g., flow velocity at peak flow) divides the full dataset into two sub-datasets 

(e.g., group A > 2ft/s & group B ≤ 2ft/s). The dataset (or sub-dataset) being split are 

referred to as “parent nodes”, and the two split sub-datasets are referred to as “child 

nodes”. The explanatory variable selected for each nodal split is the variable that most 

reduces the sum of internal variance of the two individual child nodes relative to the 

internal variance of the parent node (i.e. which nodal split divides the parent node in 

such a way that two distinct child nodes emerge with minimal overlap?) (Loh, 2011; 

Neuman & Cohen, 2014). Eventually, the internal variance of the parent node is too 

small to be reduced by nodal splitting; this process repeats across all child nodes, 

visualized graphically as a hierarchical regression “tree”.  

 

A regression tree analysis requires two sets of variables: an explanatory variable set, 

and a response variable set. For this study, the explanatory variable set consisted of 

hydrogeomorphic, topographic, and geometric variables representing 

hydrogeomorphic, topographic, and geometric conditions found on the floodplain 
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presumed to influence floodplain sediment characteristics. A full list of the variables 

included in the explanatory variable list can be found in Table 2.2. Data associated with 

each of these variables were extracted from the results of the topographic differencing 

analysis, hydraulic model, and landform characterization analysis at the same pixel 

from which soil samples were collected. Two geometric variables, termed “distance 

from the main channel” and “longitudinal distance downstream”, were also included 

given their previous use in the literature when explaining spatial patterns of sediment 

texture (Osterkamp & Hupp, 1985; Asselman & Middelkoop, 1995; Barker et al., 

2009). Distance from the main channel was defined as the Euclidean distance from the 

Patapsco’s main channel and calculated with ArcGIS’s Euclidean Distance function. 

Longitudinal distance downstream was defined as the Euclidean distance from an 

arbitrary point in the Patapsco’s main channel immediately upstream of the study area 

and calculated with ArcGIS’s Euclidean Distance function. Finally, the response 

variable set was composed of sediment texture proportions being predicted for (% sand, 

% silt, or % clay).  
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Table 2.2: Full list of explanatory variables representing hydrogeomorphic, 

topographic, and geometric conditions found on the floodplain presumed to influence 

floodplain sediment characteristics, including units.  

Input (Explanatory) Variables Variable Units Condition Represented 

Change in elevation between 

2011 and 2015 

Meters Sediment accretion rates 

Flow Velocity during the Initial 

Backfilling Period 

Ft/sec Flow conditions during the 

Initial Backfilling Period 

Flow Velocity during the Initial 

Overbanking Period 

Ft/sec Flow conditions during the 

Initial Overbanking Period 

Flow Velocity during the 

Splaying Period 

Ft/sec Flow conditions during the 

Splaying Period 

Flow Velocity during the Peak 

Flow Period 

Ft/sec Flow conditions during the 

Peak Flow Period 

Flow Velocity during the Earlier 

Drainage Period 

Ft/sec Flow conditions during the 

Earlier Drainage Period 

Flow Velocity during the Later 

Drainage Period 

Ft/sec Flow conditions during the 

Later Drainage Period 

Shear Stress during the Initial 

Backfilling Period 

lb/ft2 Flow conditions during the 

Initial Backfilling Period 

Shear Stress during the Initial 

Overbanking Period 

lb/ft2 Flow conditions during the 

Initial Overbanking Period 

Shear Stress during the Splaying 

Period 

lb/ft2 Flow conditions during the 

Splaying Period 

Shear Stress during the Peak 

Flow Period 

lb/ft2 Flow conditions during the 

Peak Flow Period 

Shear Stress during the Earlier 

Drainage Period 

lb/ft2 Flow conditions during the 

Earlier Drainage Period 

Shear Stress during the Later 

Drainage Period 

lb/ft2 Flow conditions during the 

Later Drainage Period 

Landform classification from 

unfiltered floodplain terrain 

N/A  

Local topographic conditions 

on the floodplain Landform classification from 

unfiltered floodplain terrain9 

N/A 

Distance from the Patapsco’s 

main channel 

Meters  

Geometric conditions on the 

floodplain 

Longitudinal distance 

downstream 

Meters 

                                                 
9 Both unfiltered and filtered r.geomorphon outputs were included in regression analyses as a 

precautionary measure, in the event that there were predictive differences between characterizations. 
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This study generated several regression trees via the R package rpart to further assess 

the relative ability of hydrogeomorphic, topographic, and geometric conditions on the 

floodplain towards explaining floodplain sediment texture patterns. Several regression 

tree designs were utilized, each excluding certain explanatory variables from the full 

explanatory variable set detailed in Table 2.2. This was designed to distinguish 

relatively important variables that influence soil texture on broader, entire-floodplain 

scales from variables that might be more important at finer, sub-floodplain scales. A 

series of exploratory questions intended to guide regression tree design and satisfy 

research objective 3 from the Introduction chapter were proposed: 

 

1. Provided all explanatory variables are included in the analysis, what 

variables are selected for during regression tree generation? Are the same 

variables used for regression tree generation across all particle size classes, 

or do they vary?  

2. Given the relationship established in the literature relating longitudinal 

distance downstream and distance from the main channel to floodplain 

sediment texture (Hupp, 1982; Osterkamp & Hupp, 1984; Hupp & 

Osterkamp, 1985; Barker et al., 2009), to what degree can sediment texture 

spatial patterns be explained when excluding distance-related explanatory 

variables? With only distance-related explanatory variables?  

3. Given the relationship established in the literature relating hydrodynamic 

conditions (i.e. variables related to flow) to floodplain sediment texture 

(Leopold et al., 1964; Asselman & Middelkoop, 1995; Gergel et al., 2002; 
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Hupp et al., 2009; Song et al., 2014), to what degree can sediment texture 

spatial patterns be explained when excluding flow-related explanatory 

variables? With only flow-related explanatory variables? 

4. Given the relationship established within the literature relating landforms 

to floodplain sediment texture (Hupp & Osterkamp, 1985; Gurnell et al., 

2012), to what degree can sediment texture spatial patterns be explained 

when excluding landform-related explanatory variables? 

 

Following an exploratory analysis of univariate relationships between each explanatory 

variable and sediment texture class proportions10, twelve regression tree designs were 

finally utilized, each excluding a different set of explanatory variables. A detailed list 

of these regression tree designs along with the series of variables included for each 

design can be found in Table 2.3. As each sediment texture class (sand, silt, and clay) 

required a separate regression tree, twelve times three equals thirty-six regression trees 

in total were generated.  

 

Multivariate regression tree analysis results were later compared to those generated by 

a “random forest algorithm”. Utilizing machine learning, a random forest algorithm 

generates hundreds of different regression trees from observations randomly sampled 

from a larger dataset of observations. The algorithm then averages the number of times 

individual explanatory variables were selected for over hundreds of generated trees; 

                                                 
10 Further information on this exploratory analysis, including a table defining the type of univariate 

relationship established with each numerical explanatory variable and the strength of said relationship, 

can be found in the Appendices as Table 5.2.   
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this allows for (a) an assessment of the relative importance of each variable, and (b) a 

measure of overfitting. Finally, to non-parametrically assess possible correlations 

among explanatory variables used for the multivariate regression tree analysis, a matrix 

of Spearman’s rho rank correlation coefficients was generated (found in the 

Appendices chapter, Figure 5.1). 

 

 

Table 2.3 (next page): All regression tree designs utilized in the regression tree 

analysis, as well as the explanatory variable set used for regression tree generation 

for that design. The color scheme design is intended to explain which regression tree 

designs are related to addressing a given exploratory question. These are as follow: 

Red = exploratory question #1; Yellow = exploratory question #2; Green = 

exploratory question #3; Blue= exploratory question #4; Orange = univariate 

regression trees intended to elucidate further information regarding strong univariate 

relationships identified in the exploratory univariate analysis between each 

exploratory variable and sediment texture class proportions. 
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Table 2.3:  

Regression Tree Design Explanatory Variables Included for Analysis 

ALL VARIABLES Sediment accretion rates; flow conditions (both velocity 

and shear stress) for all 6 conceptual periods; unfiltered and 

filtered landform classifications; distance from the main 

channel; longitudinal distance downstream. 

NO DISTANCE-

RELATED VARIABLES 

Sediment accretion rates; flow conditions (both velocity 

and shear stress) for all 6 conceptual periods; unfiltered and 

filtered landform classifications. 

ONLY DISTANCE-

RELATED VARIABLES 

Distance from the main channel; longitudinal distance 

downstream. 

NO FLOW-RELATED 

VARIABLES 

Sediment accretion rates; unfiltered and filtered landform 

classifications; distance from the main channel; 

longitudinal distance downstream. 

ONLY FLOW-RELATED 

VARIABLES 

Flow conditions (both velocity and shear stress) for all 6 

conceptual periods. 

NO LANDFORMS Sediment accretion rates; flow conditions (both velocity 

and shear stress) for all 6 conceptual periods; distance from 

the main channel; longitudinal distance downstream. 

ONLY SPLAYING 

VELOCITY 

Flow velocity during the splaying conceptual period. 

ONLY (Earlier) 

DRAINAGE VELOCITY 

Flow velocity during the earlier drainage conceptual 

period. 

ONLY (Later) 

DRAINAGE VELOCITY 

Flow velocity during the later drainage conceptual period. 

ONLY DISTANCE 

DOWNSTREAM 

Longitudinal distance downstream. 

ONLY CHANGE IN 

ELEVATION 

Sediment accretion rates. 

ONLY DISTANCE FROM 

CHANNEL 

Distance from the main channel. 
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Chapter 3: Results 

 

Section 1: Quantifying and Mapping Post-Flooding Sediment Accretion  

 

Major differences were identified in the extent and degree of detected sediment 

accretion and erosion from Tropical Storm Lee between regional and localized 

minLODs. The regional minLOD DEM of Difference (DoD) was dominated by areas 

where no reliable sediment accretion or erosion was detected (Figure 3.1, following 

pages). As the minimum level of detection threshold (minLOD) was increased, however, 

more areas of reliable sediment accretion or erosion were detected (Figures 3.2 and 3.3, 

following pages). This culminated in the localized minLOD DoD, where areas of reliable 

sediment accretion or erosion were found nearly everywhere (Figure 3.4, next page). 

Across all DEMs of Difference, major sediment deposits (>0.38m in depth) were 

detected nearby levees adjacent to the Patapsco’s main stem; at lower minLOD 

thresholds, minor deposits were generally also found adjacent to the Patapsco’s main 

stem, as well as further inland. 
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Figure 3.1: Spatial 

estimates of sediment 

accretion rates from 

Tropical Storm Lee, 

as determined from 

the 2015-2011 DoD 

classified from global 

reference points 

across county extent 

(the regional minLOD 

described in section 1 

of the Methods 

chapter).minLOD was 

equal to 0.38m. 
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Figure 3.2: Spatial 

estimates of sediment 

accretion rates from 

Tropical Storm Lee, as 

determined from the 

2015-2011 DoD (one of 

two intermediary 

thresholds between the 

localized and regional 

minLODs described in 

section 1 of the Methods 

chapter). minLOD was 

equal to 0.2m.  
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Figure 3.3: Spatial 

estimates of sediment 

accretion rates from 

Tropical Storm Lee, as 

determined from the 

2015-2011 DoD (one of 

two intermediary 

thresholds between the 

localized and regional 

minLODs described in 

section 1 of the 

Methods chapter). 

minLOD was equal to 

0.1m.  
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Figure 3.4: Spatial 

estimates of sediment 

accretion rates from 

Tropical Storm Lee, as 

determined from the 

2015-2011 DEM of 

Difference (DoD) 

classified from reference 

points within local extent 

(the localized minLOD 

described in section 1 of 

the Methods 

chapter).minLOD was 

equal to 0.025m.  
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Most sediment deposition detected under the regional minLOD (Figure 3.4) was located 

adjacent to channel banks, primarily along tributaries intersecting the study area (e.g., 

grid cells C2, E4, E5) and along the Patapsco’s main channel. Further deposits under 

the regional minLOD were detected immediately downstream of the Rt.1 culvert (grid 

cell C4), where large sand deposits had been observed during field visits after Tropical 

Storm Lee. Similarly, large deposits were detected in the DoD along the southern edge 

of the detention pond (grid cells D4 and D5). While all sediment deposition detected 

under the regional minLOD was major (>0.38m in depth), areas of detected deposition 

were relatively rare.  

 

In contrast, the decreased minLOD threshold under the localized minLOD allowed for 

both major deposits detected under the regional minLOD to be detected, as well as 

subtler deposits (Figure 3.1). Many of these same subtler deposits were also detected 

by the two intermediary minLOD DoDs(Figures 3.2 & 3.3; minLODs = 0.1m & 0.2m, 

respectively), whose minLODs fell between the localized and regional minLODs (0.025m 

& 0.38m, respectively). Most of the upstream section showed widespread minor 

deposits (0.025-0.38 m in depth), with sparse major deposits (>0.38 m in depth) 

clustered around levees along the main stem (e.g., grid cells B1 & C1). Small, 

noncontiguous areas of no detected deposition or erosion (-0.025m – 0.025m) were 

concentrated in the upstream section’s floodplain interior (grid cell B2). The 

distribution of these patches appeared to be stochastic at fine scales (<50m2). 
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Under the localized minLOD (Figure 3.1), two distinct patterns emerged relative to the 

bisecting tributary in the downstream section (found in grid cells E4 & E5). West of 

the tributary, major deposits (>0.38m in depth) were identified adjacent to the main 

channel’s banks (grid cell C4) and clustered south of the detention pond (grid cells D4 

&D5). Minor deposits (2.5-38cm) were virtually uniform west of the tributary, apart 

from small patches of minor erosion immediately adjacent to the Patapsco. East of the 

tributary (grid cells E4, E5, E6, F5, & F6), however, depositional zones were less 

uniform. Areas of minor deposition were concentrated closer to the main channel (grid 

cells E6 & F6), however very few major deposits (>38cm) were found near the channel. 

Within the floodplain interior west of the tributary (grid cells E4 & E5), areas of minor 

deposition, minor erosion, and areas of no reliably detected change appeared to be 

stochastically arranged. This mirrored the organizational pattern observed in the 

interior of the upstream floodplain section (grid cell B2). 

 

Paradoxically, major change (>38cm of deposition or erosion) was detected within 

floodplain interiors11 for all DEMs of Difference (grid cells B2, E4, & E5), regardless 

of minLOD. However, upon examination of LiDAR point clouds and subsequent DEMs 

it was apparent that artifacts in the point cloud itself led to an unreliable estimate of 

floodplain topography. As topographic change was utilized as a surrogate for sediment 

accretion or erosion occurring on the floodplain for this study, this was an issue. This 

effect was hypothesized to be caused by standing water on the floodplain, as identified 

in field inspections such as that depicted in Image 1.4. Given the stated difficulty in the 

                                                 
11 Identified as “LiDAR artifacts (results removed)” in figures 3.1 through 3.4. 
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literature regarding mitigating LiDAR-scattering on water surfaces (Hilldale & Raff, 

2008), these subsections were removed from consideration for this study and all 

subsequent analyses. 

 

Section 2: Characterizing Floodplain Landforms 

 

Distinct macro- and micro-topographic landforms were identified in the geomorphon-

characterized terrain at both floodplain sections. A chain of convex macro-topographic 

features (“summits”, “ridges”, and “shoulders”) was identified adjacent to the 

Patapsco’s main channel, as well as tributaries intersecting the two floodplain sections 

(Figure 3.5, following page). Visually these convex macro-topographic features appear 

to correspond generally with many areas that featured major sediment deposition from 

Tropical Storm Lee, as identified in the previous section (Figures 3.1-3.4).  
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Figure 3.5: 

Landform 

Characterization 

results from 

filtered terrain. 
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Additionally, a network of concave topographic features (“hollows”, “footslopes”, 

“valleys”, and “depressions”) was immediately apparent within the interior of the 

upstream section (Figure 3.5, grid cell B2). This network connected broad-scale convex 

topographic features along the northern floodplain edge (grid cells B1 & C1) to the 

backswamp (grid cell B2) and small tributary of the southwestern portion (grid cell 

C2). The downstream section also featured a distinct network of concave topographic 

features resembling those observed in the upstream floodplain section’s interior. These 

networks of concave topographic features were most prevalent east of the bisecting 

tributary (grid cells E4, E5, E6, F5, & F6), and to a lesser degree west of the bisecting 

tributary, immediately downstream of the Route 1 culvert (grid cell C4). Finally, 

convex macro-topography was identified alongside the bisecting tributary (found in 

grid cells E4 & E5), the pipeline road (found in grid cells E4 & E5), and a rectangular 

ridge feature to the east of the detention pond (found in grid cell D5). This last feature 

is presumed to be a previously unidentified former building foundation. Further 

concave macro-topographic features were identified intersecting with convex features 

making up the dirt road and building foundation.  

 

Section 3 Modeling Representative Flow Conditions on the Floodplain 

 

General Note: This section is divided into four sub-sections based on the conceptual 

periods discussed in section 3 of the methods chapter. This was to allow for 

interpretative analysis of the flow model’s “narrative” a la Nicholas & Walling (1998) 

and is organized to minimize the amount of relevant information left out. 
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Interpretations of overbanking and splaying conceptual periods, as well as the two 

drainage periods, were combined for sake of clarity. Refer to Figures 3.6-3.11 for all 

modeled flood extents and flow velocity diagrams for each conceptual period.  

 

Subsection 1: Backfilling Conceptual Period 

 

According to the hydraulic flow model, initial points of entry by floodwaters for both 

upstream and downstream sections occurred immediately adjacent to tributaries 

intersecting each floodplain (Figure 3.6, grid cells C2 & E5). Modeled flow directions 

indicated that floodwaters traveled up the tributaries to where tributary banks could be 

overtopped, then spread out in all directions. Shortly after these backfilling events (<15 

simulated minutes), flow directly from the main channel was observed to overbank 

levees adjacent to the Patapsco’s main channel through a series of localized 

overbanking events. These events were first observed immediately downstream of the 

Rt. 1 culvert and south of the detention pond on the downstream section (grid cells C3 

& D5), with similar events in the upstream section occurring along the north bank 

shortly afterward (grid cells B1).  
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Figure 3.6: Simulated 

flow velocities during 

the backfilling 

conceptual period. 

Initial backfilling occurs 

primarily through 

flooding events centered 

around drainage 

tributaries (cells C2 & 

E5). Minor overbanking 

events are also observed 

immediately 

downstream of the Rt. 1 

culvert and due south of 

the detention pond (cells C3 & D5, however these are extremely localized and not indicative of a larger trend yet. 
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Subsection 2: Overbanking and Splaying Conceptual Periods 

 

As localized overbanking events described in the first subsection were observed to 

spread into the floodplain interior (Figure 3.7, grid cells E4 & E5), further overbanking 

events occurred along almost all the main channel’s levees (Figure 3.8, e.g. B1 & D5). 

Floodwaters during this conceptual period generally travelled southeast but with local 

variations.  

 

In addition to observed variations in flow directionality at this period, there were 

noticeable local variations in flow velocity. Visual inspection of velocities in HEC-

RAS documented local variations in velocity of at least two orders of magnitude. Upon 

observation of underlying topography for areas of high velocities, the majority were 

centered on “transitional areas” where flow on the floodplain was being routed through 

concave features bordered by relatively higher convex features12. Areas where this 

phenomenon was observed in the model included the eastern edges and select interior 

areas of the upstream section (Figure 3.8, grid cell B1). This phenomenon was also 

observed in the downstream section around the detention pond’s southern banks (grid 

cell D5), and in the concave features bisecting the building foundation’s footprint and 

the dirt road’s (footprint = grid cell D5; dirt road = grid cells E4 & E5).  

 

                                                 
12 Between half a foot to four feet in elevational difference from the bottommost point of the concave 

feature to the highest point on the convex feature perpendicular to flow direction.  
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Figure 3.7: Simulated flow 

velocities during the overbanking 

conceptual period. Overtopping of 

levee features starts occurring 

during this period, as evidenced 

by simulated flows entering the 

floodplain at various points. This 

may be observed along the 

northern banks of the upstream 

section (cell B1), as well as where 

previous minor overbanking 

occurred in the previous 

conceptual period (cells C3 & 

D5). As observed later in the simulation, overbanking events occur where floodwaters at peak flow primarily enter the floodplain. 
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Figure 3.8: Simulated flow 

velocities during the splaying 

conceptual period. Floodwaters 

begin spreading further into the 

floodplain beyond the previously 

documented simulated extents. 

Note the influence of micro- and 

macro-topography on flow 

routing, particularly apparent on 

the northern banks of the 

upstream floodplain (cell B2) 

and east of the downstream 

section’s bisecting tributary (cell 

E4 & E5). A rapid decrease in velocity as floodwaters travel away from the main channel is observable, exceptions being flow 

concentrations as a response to topography. 
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Subsection 3: Peak Flow Conceptual Period 

 

Approximately three hours after the first floodwaters entered the floodplain, peak flow 

extent and velocity were observed in the hydraulic model.  Unlike earlier conceptual 

periods, variation in local flow velocity and directionality have since disappeared; local 

variations were replaced by a southeasterly directional trend with minor variations. 

Minor directional variations appear to be a result of broad-scale topographic features. 

In contrast to the importance of microtopography guiding flows during earlier 

conceptual periods (e.g., Figure 3.8 grid cells B1 & D5), these larger features rarely 

shift flow direction more than fifteen degrees off their general southeasterly heading.  

 

The range of flow velocities observed on the floodplain at peak flow increased 

compared to earlier periods. Velocities immediately next to the main channel were 

modeled as high as eight ft/s, particularly so immediately downstream of the Rt. 1 

culvert (Figure 3.9, grid cell C3). Velocities near the outermost edges of the flood’s 

simulated extent were virtually zero ft/s (grid cells B2, C3, & E3). 

 

Relatively higher velocities continued to be reported within the convex features 

described earlier during the splaying period (grid cells B1, D5, E4, & E5). Higher 

velocities were also identified higher up along the ridges lining these convex features, 

suggesting that at higher water depths the concentrating effect of local micro-

topography was muted. This phenomenon was also observed to occur in new areas, 

notably across the upstream section’s interior (Figure 3.9, grid cell B2) and among the 



 

68 

 

drainage channels associated with some of the more southern levees of the downstream 

section (grid cell E6).  

 

Finally, a general increase in flow velocity on the downstream section as floodwaters 

approached and rounded the I-195 embankment was noted (grid cell F5). This appeared 

to be the result of a gradual flow constriction across the downstream section as the 

embankment constricted the extent to which floodwaters could spread perpendicular to 

the main channel.  
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Figure 3.9: Simulated velocities 

during the peak flow conceptual 

period. While micro-topography 

no longer has a distinct role in 

influencing flow routing, macro-

topographic features still 

influence the distribution of 

relatively higher velocities and 

flow concentrations. “Streaks” of 

relatively higher velocities are 

apparent in the upstream section’s 

interior (e.g. cell B2).  The highest 

simulated flow velocities reported 

were found immediately downstream of the Rt. 1 culvert (cell C3); the lowest were found in the southwestern portion of the upstream 

section (cells A2 & B2), where floodwaters appear to be virtually stagnant. 
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Subsection 4: Earlier and Later Drainage Conceptual Periods 

 

Floodwaters began to drain away a full day after initially entering the floodplain; 

notably the upstream section began to drain a few hours prior to the downstream 

section. Furthermore, the downstream section took much longer to drain than the 

upstream section, likely a result of its larger area and a less distinct topographic 

gradient. As both sections drained, flow directionality was observed to become more 

random at fine scales, suggesting the noted influence that microtopography had on fine-

scale flow dynamics had returned. 
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Figures 3.10:  Simulated flow 

velocities during the earlier drainage 

conceptual period. The description of 

observed phenomena for this figure is 

also applicable to Figure 3.11 

(following page). Micro-topography 

again plays a major role in 

determining drainage routes 

alongside macro-topographic 

features. This is apparent in both 

earlier and later drainage periods in 

the upstream section, particularly 

along the northern edge (cell B1). 

This same phenomenon is observed in the downstream section, where local topographic constraints on flow are visible immediately 

south of the dirt road (cell E6) and within the building foundation’s footprint (cell D5). 
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Figure 3.11: 

Simulated flow 

velocities during 

the later drainage 

conceptual period.  

For full description 

of observed 

phenomena, see 

Figure 3.10 

description.
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Section 4: Quantifying Sediment Characteristics for the Study Floodplain 

 

The sediment sampling campaign and subsequent particle size analysis identified 

distinct spatial trends in sediment texture across both floodplain sections. Spatially 

interpolated sediment texture results depicted a general fining gradient as one travelled 

inland for both floodplain sections. Coarse sand particles were found in their highest 

proportions closest to the Patapsco’s main channel and shrank in proportion as one 

moved away from the channel (figure 3.12, on following page). A similar but reversed 

trend was observed for finer particle proportions, such as silts and clays.  

 

 Likewise, a similar fining gradient was observed as one travelled downstream, i.e. 

coarse sand particles were found in higher proportions upstream relative to 

downstream. However, unlike the previously described gradient, this gradient was most 

pronounced for the downstream floodplain section. Again, a similar but reversed trend 

was observed for finer particle proportions, such as silts and clays (figure 3.12, 

specifically the plots depicting sediment size class proportions along the transect). 
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Figure 3.12: Graphical 

representation of the 

sediment texture gradients 

shared across the three 

particle size classes. The 

floodplain gradient 

depicted in the three plots 

lies across the 

downstream section as a 

black arrow-transect and 

runs from the Rt. 1 culvert 

(cell D4) to the I-195 

embankment (cell E5) 
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The gradients observed in the spatially interpolated results were later corroborated by 

ternary plot results (Figure 3.13, below). Inter-site particle size distribution trends were 

very pronounced in the ternary plot of samples. The overall gradient observed in the 

ternary plot for both sections centered on a distinct sand to silt transition, especially 

given the lack of major variation in clay concentrations between sites. Notably there 

was a minor increase in clay concentrations as silt concentrations increase, alongside a 

decrease in clay concentrations as sand concentrations increase. Sampling sites closest 

to the main channel (e.g., site 3) generally featured higher sand concentrations within 

the ternary plot; Site 8 is an exemption to this trend. Despite its proximity to the 

channel, its particle size distribution compares to that of Sites 5 and 6. 

 

Figure 3.13: Ternary diagram of floodplain sediment texture across sites. 
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Of the overall gradients observed, the silt and sand sediment texture gradients for the 

upstream section were the most extreme, ranging from approximately 3%-55% and 

89%-26% respectively as one traveled inland (figures 3.15 & 3.16, respectively). 

Mimicking the upstream section, silt and sand gradients were again the most extreme 

gradients downstream, reporting ranges of 1%-70% and 91%-7% respectively along 

comparable spatial orientations. In contrast, the clay gradients for the upstream and 

downstream sections were much narrower, ranging from 2%-20% and ~0%-22% 

respectively (figure 3.14). 
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Figure 3.14: 

Interpolation results 

of particle size 

distribution for 

percent clay. 

 

 

 

 

 

 

 

 

 



 

78 

 

Figure 3.15: 

Interpolation results of 

particle size distribution 

for percent silt. 
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Figure 3.16: 

Interpolation results of 

particle size distribution 

for percent sand. 



 

80 

 

Section 5: Assessing the Relative Importance of Hydrogeomorphic, Topographic, and 

Geometric Conditions in Explaining Spatial Patterns of Floodplain Sediment Texture 

 

To read a regression tree: The primary node of a regression tree is the first branching 

path; for the regression tree explaining the spatial variation in the clay proportion of a 

sediment sample in Figure 3.17, for example, this would be distance from the 

Patapsco’s main channel. Nodes are then named as they descend from this primary 

nodal split, the following two nodes on the next level are referred to as “secondary 

nodes”, the next level down “tertiary nodes”, etc. The row of colored values at the 

bottom of the regression tree are the proportional values of a given sediment size class 

expected with the above conditions defined at each nodal level. For example, to return 

to the clay regression tree, the darkest orange circle at the bottom reads 20. This means 

that for a sediment sample collected from a location satisfying the defined conditions:  

• distance from the Patapsco’s main channel ≥ 129m [the primary node] 

•  velocity during the later drainage period ≥ 0.005ft/s [the secondary node] 

• AND velocity during the overbanking period ≥ 0.65ft/s [the tertiary node] 

We would expect that sample to be ~20% clay. 
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Subsection 1: Guiding Question #1- All Explanatory Variables 

Provided all explanatory variables are included in the analysis, what variables are 

selected for during regression tree generation? Are the same variables used for 

regression tree generation across all particle size classes, or do they vary? 

 

When all explanatory variables were included during regression tree analysis, 59% to 

69% of all variation in sediment texture spatial patterns was explained (Figure 3.17, 

following page). Distance from the main channel and velocity during the earlier 

drainage period were the predominant explanatory variables at the primary node. Other 

explanatory variables selected for at secondary and tertiary nodes included longitudinal 

distance downstream, as well as velocity and shear stress during the splaying period. 

Regression trees generated utilizing this all-inclusive explanatory variable set 

explained the most variation. As regression trees generated utilizing the explanatory 

variable set that omitted landforms was nearly identical to this set, the fourth guiding 

question concerning landforms’ role in explaining sediment variation was considered 

effectively answered by this regression tree set. 

 

Of regression trees generated utilizing the all-inclusive explanatory variable set, sand 

distribution was marginally more explainable than silt distribution (69.21% vs 

68.73%). Sand distribution was consistently the most predictable particle size class 

across all regression trees, however at times silt distribution was virtually as predictable 

or slightly more. Clay distribution was consistently the least predictable across nearly 

all regression trees. 
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Particle Size Class Regression Tree 

Clay 

R2=0.5895 

 

Silt 

R2=0.6873 

 

Sand 

R2=0.6921 

 

Figure 3.17: Regression trees generated from the all-inclusive explanatory variable 

regression tree design set. For explanations on what variable each abbreviation 

references, refer to Table 3.1 (following page). 
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Table 3.1: Full list of explanatory variables, their abbreviations, and conditions 

represented. 

Input (Explanatory) Variables Variable 

Abbreviation 

Condition Represented 

Change in elevation between 

2011 and 2015 

elev Sediment accretion rates 

Flow Velocity during the Initial 

Backfilling Period 

velo_ub Flow conditions during the 

Initial Backfilling Period 

Flow Velocity during the Initial 

Overbanking Period 

velo_uodo Flow conditions during the 

Initial Overbanking Period 

Flow Velocity during the 

Splaying Period 

velo_us Flow conditions during the 

Splaying Period 

Flow Velocity during the Peak 

Flow Period 

velo_u100 Flow conditions during the 

Peak Flow Period 

Flow Velocity during the Earlier 

Drainage Period 

velo_ud1 Flow conditions during the 

Earlier Drainage Period 

Flow Velocity during the Later 

Drainage Period 

velo_ud Flow conditions during the 

Later Drainage Period 

Shear Stress during the Initial 

Backfilling Period 

SS_ub Flow conditions during the 

Initial Backfilling Period 

Shear Stress during the Initial 

Overbanking Period 

SS_uodo Flow conditions during the 

Initial Overbanking Period 

Shear Stress during the Splaying 

Period 

SS_us Flow conditions during the 

Splaying Period 

Shear Stress during the Peak 

Flow Period 

SS_u100 Flow conditions during the 

Peak Flow Period 

Shear Stress during the Earlier 

Drainage Period 

SS_ud1 Flow conditions during the 

Earlier Drainage Period 

Shear Stress during the Later 

Drainage Period 

SS_ud Flow conditions during the 

Later Drainage Period 

Landform classification from 

unfiltered floodplain terrain 

lf_2015_OG  

Local topographic conditions 

on the floodplain Landform classification from 

unfiltered floodplain terrain 

lf_filter_2015 

Distance from the Patapsco’s 

main channel 

dist_chan  

Geometric conditions on the 

floodplain 

Longitudinal distance 

downstream 

dist_dwnstrm 
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Similar results were found when compared to those produced by the randomforest 

algorithm. Distance from the main channel and velocity during the earlier drainage 

period were consistently reported as the most significant variables in variable 

importance plots (Figure 3.18 below shows the variable importance plot for explaining 

sand variation; variable importance plots for clay and silt variation can be found in the 

appendices as Figures 5.2 & 5.3). However, flow conditions during the splaying period 

were less utilized when compared to their relative importance at secondary and tertiary 

nodes produced during the multivariate regression tree analysis. Instead, flow 

conditions during peak flow and the later drainage period were relatively more 

important. A decrease in percent variation explained was noted across all sediment 

texture classes (47%-57% as opposed to 59%-69%); sand was again consistently the 

most predictable particle size class and clay the least.  

 

Figure 3.18: 

Sand variable 

importance plot 

generated from 

a randomforest 

regression tree 

algorithm. 
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Subsection 2: Guiding Question #2 – Distance-related Explanatory Variables 

 

Given the relationship established in the literature relating longitudinal distance 

downstream and distance from the main channel to floodplain sediment texture, to 

what degree can sediment texture spatial patterns be explained when excluding 

distance-related explanatory variables? With only distance-related explanatory 

variables? 

 

When all explanatory variables except distance-related variables were included, 

regression tree analysis explained 55%-65% of all particle size distribution variation 

(Figure 3.19, following page). Regression trees of sand particle size explained the most 

variation (65%), while the clay particle size trees explained the least (55%). Flow-

related explanatory variables dominated across all nodes. Velocity during the earlier 

drainage period was featured as the primary node across all particle size classes for this 

series of regression trees. Notably, the primary nodal split partitioning the full dataset 

utilized the same value for velocity across all particle size classes (0.7ft/s). Velocity 

during peak flow and velocity during the later drainage period were selected for at the 

secondary node. Unlike the primary node, values used at the secondary nodal split to 

partition the dataset were not the same across all particle size classes.  

 

 

 



 

86 

 

Particle Size Class Regression Tree 

Clay 

R2=0.5531 

 

Silt 

R2=0.6332 

 

Sand 

R2=0.6534 

 

 

Figure 3.19: Regression trees generated from the explanatory variable set that 

excluded distance-related variables. For explanations on what variable each 

abbreviation references, refer to Table 3.1. 
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The decrease in variation explained between all-inclusive regression trees and those 

generated when excluding distance-related explanatory variables was on average 5%. 

As such, it appeared that distance-related explanatory variables weren’t necessary for 

explaining sediment texture spatial patterns. However, this is not to state that distance-

related explanatory variables were unimportant or vestigial; merely that other 

explanatory variables were equally capable of explaining similar amounts of variation. 

When only distance-related explanatory variables were included in the explanatory 

variable set (Table 3.2, at the end of the Results chapter), regression tree analysis 

explained 54%-64% of all variation. The decrease in variation explained between all-

inclusive regression trees and regression trees that included only distance-related 

variables was on average ~5%. As such, regression trees generated solely from 

distance-related variables still explained a large degree of variation in sediment texture 

spatial patterns. 
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Subsection 3: Guiding Question #3 – Flow-related Explanatory Variables 

 

Given the relationship established in the literature relating hydrodynamic conditions 

(i.e. variables related to flow) to floodplain soil texture, to what degree can sediment 

texture spatial patterns be explained when excluding flow-related explanatory 

variables? With only flow-related explanatory variables? 

 

When all explanatory variables except flow-related variables were included, 60% to 

62% of all variation in particle size distribution was explained by regression tree 

analysis (Figure 3.20, following page). Distance from the main channel was selected 

for at the primary node of all regression trees, however distance-related and landform-

related explanatory variables were evenly split across all remaining nodes. Notably, the 

primary nodal split partitioned the dataset with the same value across all particle size 

classes (129 meters). Regression trees of this series predicting clay and sand 

distribution were virtually tied for explaining the most variation. 
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Particle Size Class Regression Tree 

Clay 

R2=0.61875 

 

Silt 

R2=0.6026 

 

Sand 

R2=0.6131 

 

 

Figure 3.20: Regression trees generated from the explanatory variable set that 

excluded flow-related variables. For explanations on what variable each abbreviation 

references, refer to Table 3.1.



 

90 

 

Like the relative importance of distance-related explanatory variables, flow-related 

variables were not necessary for generating a good predictive assessment of particle 

size distribution. The difference in variation explained between all-inclusive regression 

trees and regression trees that omitted flow-related variables was on average 10%. 

Again, this is not to state that flow-related explanatory variables were unimportant or 

vestigial; merely that other explanatory variables were equally capable of explaining 

similar amounts of variation. When solely including flow-related explanatory variables 

(Table 3.2, at the end of the Results chapter), 56% to 64% of all variation in particle 

size distribution was explained; this was an average decrease of 5% when compared to 

regression trees generated from the all-inclusive explanatory variable set. When only 

flow-related explanatory variables were included, notably no flow-related variables for 

either backfilling or overbanking periods were selected for at any nodes. 
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Subsection 4: Comparing Univariate and Multivariate Regression Tree Analyses 

 

Several flow-related variables were identified as strong predictors during exploratory 

univariate linear and logarithmic regressions (see Table 5.2 for more information), and 

were regularly selected for at primary nodes during the above multivariate analyses. 

However, many of these same flow-related variables failed to explain similarly large 

amounts of variation in univariate regression trees (Table 3.2, at the end of the Results 

chapter). For example, a logarithmic regression relating velocity during the splaying 

period to sediment texture classes explained on average 87% of variation in sediment 

texture spatial distribution at the study site (Table 5.2 in the Appendices chapter). In 

contrast, a univariate regression tree utilizing velocity during the splaying period as its 

sole explanatory variable explained only on average 16% of variation (Table 3.2). Not 

all flow-related variables that explained large amounts of variation during the 

exploratory regression analyses exhibited extreme differences; however, almost all 

explained less variation when singled out for univariate regression tree analysis. 

 

 In contrast, non-flow-related variables13 that explained large amounts of variation 

during exploratory univariate linear and logarithmic regressions (see Table 5.2 for more 

information) generally explained more variation in their respective univariate 

regression tree. For example, a linear regression of longitudinal distance downstream 

explained on average ~24% of variation (Table 5.2); in contrast, a univariate regression 

                                                 
13 distance-related variables and elevational change 
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tree utilizing longitudinal distance downstream as its sole explanatory variable 

explained on average ~60% of variation (Table 33.2, following page).  
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Table 3.2: Percent variation explained for each regression tree.  

Regression Tree Design Clay Silt Sand Explanation of Regression Tree Design 

ALL METRICS 58.95% 68.73% 69.21% Sediment accretion rates; flow conditions (both velocity and shear stress) for all 6 

conceptual periods; unfiltered and filtered landform classifications; distance from the 

main channel; longitudinal distance downstream. 

NO DISTANCE METRICS 55.31% 63.32% 65.34% Sediment accretion rates; flow conditions (both velocity and shear stress) for all 6 

conceptual periods; unfiltered and filtered landform classifications. 

ONLY DISTANCE METRICS 53.84% 63.76% 64.16% Distance from the main channel; longitudinal distance downstream. 

NO FLOW METRICS 61.88% 60.26% 61.31% Sediment accretion rates; unfiltered and filtered landform classifications; distance from 

the main channel; longitudinal distance downstream. 

ONLY FLOW METRICS 55.40% 62.36% 64.41% Flow conditions (both velocity and shear stress) for all 6 conceptual periods. 

ONLY SPLAYING VELOCITY 19.72% 13.09% 15.47% Sediment accretion rates; flow conditions (both velocity and shear stress) for all 6 

conceptual periods; distance from the main channel; longitudinal distance downstream. 

ONLY (EARLIER) DRAINAGE 

VELOCITY 

44.44% 51.28% 51.38% Flow velocity during the splaying conceptual period. 

ONLY (LATER) DRAINAGE 

VELOCITY 

30.24% 42.42% 42.45% Flow velocity during the earlier drainage conceptual period. 

ONLY DISTANCE DOWNSTREAM 51.13% 65.27% 65.49% Flow velocity during the later drainage conceptual period. 

ONLY CHANGE IN ELEVATION 34.69% 37.49% 37.26% Longitudinal distance downstream. 

ONLY DISTANCE FROM CHANNEL 46.31% 52.01% 54.31% Sediment accretion rates. 

NO LANDFORMS 56.44% 68.73% 69.21% Distance from the main channel. 
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Chapter 4: Discussion 

Section 1: Quantifying and Mapping Post-Flooding Sediment Accretion 

 

Critical information about the spatial arrangement and magnitude of sediment 

deposits following a major storm event was revealed by aerial LiDAR topographic 

differencing. Large deposits (>0.38 in depth) were reliably detected according to 

regional estimates of surface representation uncertainty. Regional estimates identified 

deposits that trended predominantly sand-based according to field texture-by-feel 

observations and later particle size analysis. Such deposits were identified primarily 

near areas of presumed high magnitude flow events (i.e., channel-adjacent), later 

confirmed by the hydraulic model. Similarly, large deposits of comparable 

composition were detected by regional uncertainty estimates in areas featuring 

distinct, highly-recognizable broad-scale (100>m2) topography (e.g. levees).  

 

In contrast, localized estimates detected both predominantly sand and predominantly 

silt deposits according to field observations and particle size analysis results. In 

addition to large-magnitude deposits detected by regional estimates, localized 

estimates detected low-magnitude deposits (<0.38m) in the floodplain interior. Low-

magnitude deposits detected by localized estimates were found in areas of presumed 

low-magnitude flood activity and subtler topography, later confirmed by the 

hydraulic model and landform characterization analysis. These low-relief, gentler-
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flow areas contrasted with areas of pronounced topography and high-magnitude 

modeled flows near large-magnitude deposits detected by the regional estimate.  

 

The above qualitative assessments suggest a relationship between particle size and 

elevational change, along with further potential relationships to topographic and 

hydrogeomorphic conditions. This is reinforced by the multivariate regression tree 

analysis results, and mirrors results reported by Marriott (1992) and especially Steiger 

& Gurnell (2002). Marriott observed a distinct gradient in sediment texture as 

distance from the channel increases; similar results were observed by Steiger & 

Gurnell, with an additional (albeit weak) relationship identified linking larger 

deposits to coarser sediments.  

 

Steiger & Gurnell’s 2002 study reported R2 values of 0.320 when developing a linear 

regression between sediment texture and mean dry weight deposition (effectively 

sediment accumulation from a single-storm event). This study reported similar R2 

values ranging from 0.2 to 0.48 during exploratory logarithmic regression analyses 

(Table 5.2), and nearly identical R2 values to Steiger and Gurnell’s when sediment 

accretion was used univariately to predict sediment texture via a regression tree 

analysis (Figure 4.1, following page). This is despite that Steiger & Gurnell’s study 

was located nearly four thousand miles away in south-central France, and that the 

drainage area of their study’s river was an order of magnitude greater than the 

Patapsco’s.  
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Particle Size Class Regression Tree 

Sand 

R2=0.34691 

 

 

Figure 4.1: Univariate regression tree predicting sand proportions in sediment 

samples, generated from the explanatory variable set of only sediment accretion rates. 

Trees predicting clay and silt proportions explained approximately 37% and 35% of 

spatial variation for their respective sediment size classes. 

 

As documented in Figure 4.1 this relationship was not strong, and better sole 

predictors of floodplain sediment texture distribution exist (such as flow hydraulics or 

geometric measures). This assessment was further reinforced by variable importance 

plots for each sediment texture size class, where several explanatory variables 

(including those used by Steiger and Gurnell in 2002) are shown to be selected for 

over sediment accretion patterns (Figure 4.2, following page).  
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Figure 4.2: Sand variable importance plot generated from a randomforest regression 

tree algorithm. 

 

Of note is that nearly the same results as Steiger and Gurnell (2002) were obtained 

without controlling for just deposition associated with a single-flooding event; deposit 

depths detected by topographic differencing for Tropical Storm Lee ranged from 0m 

to >1m but sediment cores were collected to a depth of 6” (0.15m). It is possible that 

some sample cores, particularly those in high-magnitude depositional areas, sampled 

solely from deposits associated with Tropical Storm Lee. For others in low-magnitude 

depositional areas, several years-to-decades of storm deposits may have been 

included in the sample taken. This suggests that floodplain sediment texture sampled 

this way, barring extreme events, can be a function of long-term hydrogeomorphic 

and/or geometric conditions just as much as single-storm events. 
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Finally, localized estimates of surface representation uncertainty provided valuable 

supplemental information.  Low-magnitude depositional patterns14 depicted by 

localized estimates mimicked low-magnitude deposits theorized to occur on 

floodplain interiors during floods by ecologists and hydro-geomorphologists (Walls et 

al., 2005; Unger & Muzika, 2008; Minnesota Department of Natural Resources, 

2016). As such, deposits that previously would have gone undetected in comparable 

literature’s methodologies (Wheaton et al., 2010; Milan, 2012; Thompson & Croke, 

2013; Bangen et al., 2014) could now arguably be estimated. The localized 

methodology used for this study is uncorroborated by the literature, and likely 

unrealistic given that it sampled unvegetated roads instead of vegetated areas 

presumed to not change in elevation. Further research is needed to assess its validity.  

 

However, similar depositional patterns to those observed with the localized 

methodology were observed within the two intermediary DEMs of Difference 

(minLOD= 0.1m & 0.2m; Figures 3.2 & 3.3) that fell between the localized and 

regional minLODs. This suggests that depositional patterns documented by the 

localized methodology may in fact exist, and with higher-accuracy LiDAR surveys 

low-magnitude deposits may be indisputably identified. Researchers should consider 

supplementary estimates of surface representation uncertainty when estimating low-

magnitude topographic change for study areas considerably smaller than county-wide 

LiDAR datasets. 

                                                 
14 Defined here as deposits less than 10cm in depth per event. 
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Section 2: Characterizing Floodplain Landforms 

 

This study’s characterization of floodplain topography hinted at the role landforms 

play in directing flow. Broad-scale (>100m2) drainage networks formed of 

pronounced concave macro-topographic features were regularly identified along 

plausible flow routes expected to exist during flooding (Figure 3.5, grid cell B2). 

These results were corroborated by flow routes observed in the hydraulic model. 

Likewise, convex macro-topography (e.g. levees) were regularly identified adjacent 

to the Patapsco main channel; these aligned with field observations of levee features 

thought to influence overbanking events during storms (e.g., Gergel et al., 2002).  

 

Landforms were effectively negligible when explaining spatial patterns of sediment 

texture, as shown by multivariate regression tree analyses. The all-inclusive 

regression tree only selected landforms for a single, tertiary node. This nodal split 

was also logically nonsensical, featuring the group “hollows, slopes, and spurs” on 

one branch and “ridges, summits, and valleys” on the other (Figure 3.17). When 

landforms were removed from the full explanatory variables set, only the regression 

tree predicting clay sediment texture proportions was affected; it saw a marginal 2% 

decrease in percent variation explained (Table 3.2). To summarize, qualitative 

interpretations of landform characterization bolstered evidence of hypothesized flow 

routes later observed in the hydraulic model; flow routes suggested by the literature 

(Hupp & Osterkamp, 1985; Gergel et al., 2002; Song et al., 2014) to be important for 

predicting floodplain particle size distribution. In contrast, quantitative assessments 
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of landform characterization via multivariate regression analysis showed little to no 

evidence of a relationship between landforms and sediment texture. This suggests that 

the utility of landforms as classified here is context-dependent in a way not 

represented by the regression tree models used. Alternatively, these results suggest 

that landforms, as characterized by aerial LiDAR, are most useful when utilized 

qualitatively to analyze floodplain topography. 

 

Landforms, as discussed in the introduction, historically have been surrogates for 

qualitatively assessing theorized flow conditions (Bishop et al., 2012). When included 

in predictive models that also featured simulated flow conditions as explanatory 

variables, the more direct approximator (flow conditions) may have been logically 

selected over the less direct (landforms). As Hupp & Osterkamp (1985) stated, “…it 

is the hydrogeomorphic processes operating differently on the landforms that actually 

affect plant patterns [as stated earlier a result of a sediment deposit’s texture, nutrient 

content, and deposit depth], not the landforms themselves.15”. As their localized 

effect on hydraulic conditions varies spatiotemporally during a flood event as 

observed within the hydraulic model, this seems likely. This study suggests further 

research is needed at fine scales (<10m2) to identify relationships between floodplain 

particle size distribution and landform characterization.  

 

                                                 
15 Boldness added for emphasis 
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Section 3: Modeling Representative Flow Conditions on the Floodplain 

 

By utilizing a high-resolution floodplain topography, more detailed information on 

spatiotemporal variation in flow routing throughout a storm was provided relative to 

similar studies using lower-resolution terrain (Woltemade & Potter, 1994; Gergel et 

al., 2002; Shelly et al., 2015). Qualitative evidence from the hydraulic model strongly 

suggested that both macro- and micro-topography play major roles in directing 

floodwaters at all periods of flooding; further evidence from the model suggested the 

relative importance of macro- and micro-topography in influencing flow patterns 

changes throughout a storm’s hydrograph. 

 

During the rising limb both macro- and micro-topography played significant roles in 

the flood model. Macro-topography, especially broad convex topography near the 

main channel (i.e. levees), governed where simulated floodwaters first entered the 

floodplain during backfilling, overbanking, and splaying periods. Micro-topography 

consequently controlled what fine-scale directions floodwaters took upon entering the 

floodplain interior and decreasing in velocity. As the storm progressed into peak flow 

conditions, micro-topography’s influence on flow directionality waned. Instead, 

macro-topography was observed directing flow down the same concave networks 

(now recognized as ephemeral drainage networks) identified in the landform 

characterization analysis.  
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During the falling limb micro-topography’s influence on flow directionality increased 

again. Micro-topography governed much of the fine-scale (<10m2) flow direction 

changes of slowly draining waters. Both micro- and macro-topography restricted 

where modeled floodwaters pooled during drainage periods as well, e.g. the standing 

water confined between the bisecting tributary and the pipeline road on the 

downstream section (Figure 3.11, grid cells E4 & E5). Macro-topography also 

constrained where floodwaters could drain off the floodplain, lengthening flow travel 

times in many cases. Qualitatively, floodplain topography’s role in influencing flow 

directionality (and consequently flow length) at both fine and broad scales was clearly 

observed in the hydraulic model.  

 

The quantitative relationship between flow conditions and sediment texture was also 

clearly established by this study. Flow velocity and shear stress at various periods 

moderately-to-strongly correlated with floodplain sediment texture spatial patterns 

during multivariate regression tree analysis. The all-inclusive regression tree series 

regularly selected for flow conditions during drainage periods and explained large 

amounts of sediment texture spatial variation. When regression trees were generated 

from an explanatory variable set of just flow-related variables, similar degrees of 

predictivity were observed.  
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Particle Size Class Regression Tree 

Sand 

R2=0.6921 

 

 

Figure 4.6: Regression tree predicting sand proportions in sediment samples, 

generated from the all-inclusive explanatory variable regression tree design set. For 

explanations on what variable each abbreviation references, refer to Table 3.1. Trees 

predicting clay and silt proportions explained approximately 59% and 69% of spatial 

variation for their respective sediment size classes. 

 

Flow conditions during the drainage periods were selected for in regression trees at 

higher frequencies than others; similarly, flow conditions during these same periods 

regularly explained moderate to substantial amounts of variation when used to predict 

sediment texture patterns univariately. As such, I hypothesize that flow conditions 

during drainage periods were considered relatively more important than other periods 

of flooding for two likely-overlapping reasons. The first is that floodwaters are found 

in some areas of the floodplain but not others. This may lead to a “split” in the dataset 

that regression tree algorithms identify as a prime candidate for a nodal split (i.e. a 

regression tree “logic gate”). The second is that these periods may be geomorphically 
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important flood stages; drainage time periods may directly correlate with depositional 

processes, particularly for finer particles such as silts or clays.  

 

Floodwaters during drainage periods are either slowly moving or virtually stagnant. 

Floodwaters need to be effectively stagnant for at least a 4-6-hour period for silts to 

settle out of suspension, and longer for clays (Marriott, 1992; Asselman & 

Middelkoop, 1995). Areas with longer drainage flow routes, or water ponded in 

topographic depressions such as those identified by the landform characterization, 

should in theory see increased silt and clay proportions. Both flow conditions were 

observed in the floodplain interior during the later flooding stages (Figure 3.10 & 

3.11). Patterns confirming this theory were observed in the ternary plot and 

interpolation results, and correlate with spatial patterns identified in the literature 

(Marriott, 1992; Asselman & Middelkoop, 1995).  

 

The hydraulic flow model was not without its faults. The land cover dataset that was 

used to approximate Manning’s N values across the floodplain was a coarse 

approximation of actual roughness conditions. Given the much-criticized sensitivity 

of HEC-RAS’s resistance equation in the literature (Pappenberger et al., 2005; Parhi 

et al., 2012; Parhi, 2013; Song et al., 2017), this dataset may have been insufficiently 

detailed. Future studies of similar natures should strive to incorporate a more 

advanced, higher-resolution land cover dataset before considering hydraulic 

modeling. 



 

105 

 

Section 4: Assessing the Relative Importance of Hydrogeomorphic, Topographic, and 

Geometric Conditions in Explaining Spatial Patterns of Floodplain Sediment Texture 

 

The spatial arrangement and magnitude of sediment deposition from a single flooding 

event, identified from LiDAR topographic differencing, proved to be a poor predictor 

of floodplain particle size distribution. Similarly, landform characterization accounted 

for little in terms of explaining particle size distribution. In contrast, flow-related 

explanatory variables during both drainage periods, particularly velocity, exhibited 

moderate-to-strong predictive capabilities of floodplain sediment texture patterns. 

This was observed in the multivariate regression tree analyses, variable importance 

plots, and correlation matrix (Figure 5.1). Similar results were observed for distance-

related explanatory variables, specifically distance from the Patapsco’s main channel.  

 

Distance-related and flow-related explanatory variables were regularly utilized nearly 

interchangeably in primary and secondary regression tree nodes. It may be possible 

that they function as the primary and secondary drivers of sediment texture spatial 

patterns at single-floodplain scales. This correlates with existing literature relating 

distance from the main channel to sediment texture spatial patterns (Marriot 1992; 

Asselman & Middelkoop, 1995) and literature relating flow hydraulics to sediment 

texture spatial patterns (Nicholas & Walling, 1997; Nicholas & Walling, 1998). 

 

Marriott (1992) identified nearly identical spatial patterns of sediment texture to this 

study’s (Figure 4.7 & 4.8). Marriott also related such spatial patterns directly to 
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distance from the main channel via James’ (1985) numerical model of sediment 

deposition. James’ model, while intended to “simulate the transfer of suspended 

sediment from a channel to an adjacent floodplain under steady, uniform flow 

conditions”, still predicted Marriott’s spatial distribution of sediment texture at her 

study site. James’ model predicted a sharp drop-off in sand proportion as one travels 

inland with Marriott’s data, a trend mirrored in this study’s regression analyses and 

spatial interpolations of sediment texture. This was confirmed by both the spatial 

interpolations of sediment texture, landform patterns, and the regression tree design 

set that excluded flow-related explanatory variables. When flow-related variables 

were excluded from said design the primary node across all sediment size classes was 

distance from the main channel, suggesting a strong reduction in internal group 

variance relative to the full dataset’s internal variance.   

 

Similarly, Nicholas & Walling’s 1998 study documented similar relationships 

regarding distance from the main channel and sediment texture, but relative to flow 

hydraulic conditions modeled on the floodplain. While not modeling a storm 

hydrograph specifically as they utilized a steady-state hydraulic model, Nicholas and 

Walling nonetheless identified similar relationships between flow conditions and 

sediment texture as this study’s. As flow exits the channel margins it slows down 

significantly, depositing coarser sediments, and areas where floodwaters are stored 

for long periods of time before draining feature finer sediments. Again, this was 

confirmed by the regression tree design set that excluded distance-related variables; 

when distance-related variables were excluded, the primary node across all sediment 
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size classes was flow velocity during the earlier drainage period, suggesting a strong 

reduction in internal group variance relative to the full dataset’s internal variance. 

 

To describe relatively simple hydrogeomorphic conditions on a floodplain with 

relation to particle size distributions, either flow or distance metrics will suffice as 

shown in previous studies within the literature (James, 1982; Harris, 1987; Marriott 

1992; Asselman & Middelkoop, 1995; Nicholas & Walling, 1998; Barker et al, 2009). 

To describe more complex conditions, this study strongly suggests researchers 

consider both flow- and distance-related explanatory variables when constructing 

their analyses. 
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Figure 4.7 (left): Ternary diagram generated by Marriott (1992). Marriott observed a distinct fining gradient as one travels inland, 

comparable to this study’s.  

Figure 4.8 (right): Ternary plot of floodplain sediment texture across sites for this study. When compared to the spatial arrangement 

of sites in the site map (Figure 2.3) and the multivariate regression tree analysis results (Figure3.17) a trend nearly identical to 

Marriott’s was observed. 
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Chapter 5:  Conclusions and Synthesis 
 

High-resolution aerial LiDAR permitted this study to do a wide variety of 

topographic and hydrogeomorphic analyses and allowed high-accuracy predictions 

about sedimentological conditions on the floodplain in question. The purpose of this 

thesis was to explore what multi-temporal high-resolution aerial LiDAR offers 

researchers interested in predicting floodplain-scale sediment patterns; in that it 

succeeded. This study identified areas of significant sediment accretion as small as 

2.5cm following a major storm event. This study discerned fine- and broad-scale 

floodplain landforms from LiDAR in a replicable, scale-, orientation-, and relief-

independent manner. This study simulated high-resolution flow conditions during a 

major storm across the study floodplain. Finally, when paired with a targeted 

sampling of underlying sedimentology across a range of hydrogeomorphic and 

topographic conditions, this study successfully generated useful predictions of 

sediment texture patterns across the study floodplain.  

 

This study’s findings imply that flow conditions, namely velocity, across the 

floodplain during the falling limb (when flows are draining from the floodplain) are 

stronger predictors of floodplain sediment texture patterns. These findings are 

consistent with that of previous similar studies (e.g., Nicholas & Walling, 1998) but 

utilizing a more-representative, high-resolution topographic surface and a more 

advanced hydraulic model. Further findings imply that distance from the main 

channel is also a strong predictor of floodplain sediment texture patterns, again 
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confirming the findings of previous similar studies (Marriott, 1992; Steiger & 

Gurnell, 2002). Finally, our findings indicate that to comprehensively model complex 

hydrogeomorphic interactions when predicting floodplain sediment texture, it is 

necessary to account for both hydrodynamic flow conditions and geometric measures.  

 

Concurrent with this study, newer technologies that map topography at even higher 

resolutions than aerial LiDAR have begun to receive attention and in some cases 

adoption by federal agencies and the private sector. Many of these technologies, such 

as terrestrial LiDAR and Structure from Motion (SfM) photogrammetry, offer 

resolutions an order of magnitude finer than the best aerial LiDAR offers (Mancini et 

al., 2013; Bangen et al., 2014; Lucieer et al., 2014). In many cases, they also lack 

many of the issues with vertical accuracy presented by the older aerial LiDAR 

datasets utilized in this study. Future research should consider the adoption or 

integration of newer technologies to mitigate some of the technical issues this 

research faced. The results of this investigation confirm the findings of several 

historical studies of floodplain sediment dynamics by utilizing a wide variety of study 

approaches, augmented by high-resolution aerial LiDAR. In so doing, this study has 

advanced the collective understanding of floodplain sediment dynamics within the 

context of short-term and long-term interactions among floodplain topography, storm 

events, and underlying sedimentology. However, it is limited in its scope to 

describing conditions specific to the lower Patapsco floodplain; future research 

should consider its applicability to other floodplains undergoing different 

hydrogeomorphic conditions.   



 

111 

 

 

Appendices 
 

Table 5.1: HEC-RAS model times where flow-related variables were exported for use 

in regression analyses. 

Stage of Flood Upstream Floodplain Time 

Selected For 

Downstream Floodplain Time 

Selected For 

Overbanking 12:08, Sept. 7th 2011 12:08, Sept. 7th 2011 

Backfilling 12:00, Sept. 7th 2011 N/A (no backfilling identified) 

Splaying 12:12, Sept. 7th 2011 12:16, Sept. 7th 2011 

Peak Flow 14:40, Sept. 7th 2011 15:56, Sept. 7th 2011 

(Earlier) Drainage 

Period 

13:28, Sept. 8th 2011 15:32, Sept. 8th 2011 

(Later) Drainage 

Period 

16:36, Sept. 8th 2011 18:12, Sept. 8th 2011 
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Table 5.2: Tabulation of the percent variation of floodplain sediment texture spatial 

variation explained by each numeric explanatory variable univariate relationship 

assessed. Linear or logarithmic regressions relating each explanatory variable to 

sediment texture were tested, and the strongest regression type is listed in the rightmost 

column. Note: the backfilling conceptual period was not assessed due to a lack of 

flooding for the vast majority of sites sampled for sediment texture, thus is marked 

“N/A”. 

% Variation 

Explained (R2) Sand Silt Clay 

regression type (left 

to right) 

 

Hydrologic Conditions: 

Velocity     

Backfilling N/A N/A N/A N/A 

Overbanking 75.2% 14.1% 39.9% log/linear/log 

Splaying 88.0% 83.0% 91.0% logarithmic 

Peak Flow 3.8% 0.7% 26% linear 

(Earlier) Drainage Period 39.3% 50.1% 28.0% linear 

(Later) Drainage Period 60.1% 60.1% 43.0% logarithmic 

 

Hydrologic Conditions: 

Shear Stress     

Backfilling N/A N/A N/A N/A 

Overbanking 7.0% 7.0% 0.8% linear 

Splaying 65.8% 62.1% 68.0% linear 

Peak Flow 16.0% 9.0% 49.0% linear 

(Earlier) Drainage Period 0.9% 1.6% 4.7% linear 

(Later) Drainage Period 3.7% 6.0% 7.0% linear 

 

Geometric Conditions     

Distance from Channel 31.2% 26.3% 47.1% logarithmic 

Distance Downstream 31.4% 36.6% 6.0% linear 

 

Sediment Accretion     

Change in Elevation 31.2% 48.9% 25.2% logarithmic 
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Figure 5.1: Matrix of Spearman’s rho rank correlation coefficient values for all 

explanatory variables. For explanations on what variable each abbreviation 

references, refer to Table 3.1.
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Figure 5.2: Silt variable importance plot generated from a randomforest regression 

tree algorithm.  
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Figure 5.3: Clay variable importance plot generated from a randomforest regression 

tree algorithm.  
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Figure 5.4: Landform Characterization results from unfiltered terrain.
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