This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing <u>scholarworks-group@umbc.edu</u> and telling us what having access to this work means to you and why it's important to you. Thank you.

EGU21-262, updated on 21 May 2021 https://doi.org/10.5194/egusphere-egu21-262 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Anthropogenic Decline of African Dust inferred from Insights From the Holocene Records and Beyond: are dust purely natural?

Tianle Yuan^{1,2}, Hongbin Yu², Mian Chin², Lorraine Remer¹, David McGee³, and Amato Evan⁴ ¹JCET/ University of Maryland, Baltimore County ²NASA GSFC Earth Science Division ³EAPS MIT ⁴SIO UCSD

African dust exhibits strong variability on a range of time scales. Here we show that the interhemispheric contrast in Atlantic SST (ICAS) drives African dust variability at decadal to millennial timescales, and the strong anthropogenic increase of the ICAS in the future will decrease African dust loading to a level never seen during the Holocene. We provide a physical framework to understand the relationship between the ICAS and African dust activity: positive ICAS anomalies push the Intertropical Convergence Zone (ITCZ) northward and decrease surface wind speed over African dust source regions, which reduces dust emission and transport. It provides a unified framework for and is consistent with relationships in the literature. We find strong observational and proxy@record support for the ICAS@ITCZ@dust relationship during the past 160 and 17,000 years. Model@projected anthropogenic increase of the ICAS will reduce African dust by as much as 60%, which has broad consequences. We posit that dust cannot be thought of as a purely natural phenomenon.