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Abstract

Here we present new, yet final, mid-infrared (mid-IR) data for supernovae (SNe) based on measurements with the
Spitzer Space Telescope. Comparing our recent 3.6 and 4.5 μm photometry with previously published mid-IR and
further multiwavelength data sets, we were able to draw some conclusions about the origin and heating mechanism
of the dust in these SNe or in their environments, as well as about possible connection with circumstellar matter
(CSM) originating from pre-explosion mass-loss events in the progenitor stars. We also present new results
regarding both certain SN classes and single objects. We highlight the mid-IR homogeneity of SNe Ia-CSM, which
may be a hint of their common progenitor type and of their basically uniform circumstellar environments.
Regarding single objects, it is worth highlighting the late-time interacting Type Ib SNe 2003gk and 2004dk, for
which we present the first-ever mid-IR data, which seem to be consistent with clues of ongoing CSM interaction
detected in other wavelength ranges. Our current study suggests that long-term mid-IR follow-up observations play
a key role in a better understanding of both pre- and post-explosion processes in SNe and their environments.
While Spitzer is not available anymore, the expected unique data from the James Webb Space Telescope, as well as
long-term near-IR follow-up observations of dusty SNe, can bring us closer to the hidden details of this topic.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Infrared astronomy (786); Infrared telescopes (794);
Circumstellar matter (241); Circumstellar dust (236)

1. Introduction

Supernovae (SNe) are the final explosions of either evolved
massive stars or white dwarfs (WDs) located in binary systems.
These events are important astrophysical laboratories for
studying not just the details of the cataclysmic endings of
stars, but also the preceding stellar evolution processes and the
effect of SNe on their surrounding environments. Either early-
time (so-called “flash”) spectroscopy, or long-term (multi-
channel) follow-up observations of the SN ejecta and their
interaction with the surrounding circumstellar medium (CSM)
can provide important details about the pre-explosion mass-loss
history of the progenitors and the physics of shock waves.
Beyond that, late-time observations can allow us to reveal the
signs of special astrophysical processes that may take place
during the interaction (e.g., ionization and recombination of the
gas, or heating/formation of dust grains).

Both the timescale and degree of ejecta–CSM interaction
vary among explosions and, specifically, among SN type and
subclass. Type IIn SNe were the original class of SNe
exhibiting clear signatures of interaction between the ejecta
and dense, nearby CSM (e.g., relatively narrow optical

emission lines denoted by “n” in SNe IIn, as well as strong
X-ray and radio emission) within days of the explosion
(Schlegel 1990). While the origin of SNe IIn is generally
explained with core-collapse (CC) explosions of massive stars
into previously expelled H-rich environments, similar phenom-
ena can happen in the presence of a dense He-rich CSM (called
SNe Ibn). Additionally, progressively more “normal” CC or
thermonuclear SNe (i.e., exploding WDs) are found to
eventually start producing detectable signs of interaction
(occurring in CSM shells at larger distances from the explosion
site); see, e.g., Vinkó et al. (2017), as well as the recent reviews
of Chevalier & Fransson (2017) and Smith (2017).
Existing ground-based transient surveys ensure the optical

monitoring of hundreds of SNe every year; however, these
observations focus mostly on the “early” (3 yr) phases of
the objects. Late-time observations (either optical or at other
wavelengths) are mostly occasional because they require
large-aperture or space telescopes. Mid-infrared (mid-IR)
observations at late times, in particular, offer several
advantages over optical SN observations: increased sensitiv-
ity to the ejecta as they expand and cool, less impact from
interstellar extinction, and coverage of atomic and molecular
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emission lines generated by shocked, cooling gas (see, e.g.,
Reach et al. 2006). Perhaps most important, mid-IR
observations are also sensitive to warm dust in the SN
environment.

The origin and heating mechanism of the dust, however, are
not always obvious, because the dust may be newly formed or
pre-existing in the CSM. Newly condensed dust may form
either in the ejecta or in a cool dense shell (CDS) between the
shocked CSM and shocked ejecta where material cools (see,
e.g., Pozzo et al. 2004; Mattila et al. 2008). Pre-existing dust
may be radiatively heated by the peak SN luminosity or by the
radiation from the shock breakout (e.g., Dwek & Arendt 2008),
or by energetic photons generated during late-time CSM
interaction, thereby forming an IR echo (see, e.g., Bode &
Evans 1980; Dwek 1983; Graham & Meikle 1986;
Sugerman 2003; Kotak et al. 2009). In this case, the dust is a
useful probe of the CSM characteristics and the pre-SN mass
loss from either the progenitor or companion star (see, e.g.,
Gall et al. 2011, for a review).

In the last 1.5 decades, the Spitzer Space Telescope
(hereafter Spitzer)—especially its InfraRed Array Camera
(IRAC) detector (Fazio et al. 2004)—was the primary source
of mid-IR SN observations. Between 2003 and 2009, during
the cryogenic (or Cold Mission) phase, only a moderate
number (<50) of nearby SNe were targeted by Spitzer. After
2009, by this time with post-cryo (Warm Mission) Spitzer
(with the availability of the two shortest-wavelength IRAC
channels at 3.6 and 4.5 μm), two large surveys contributed to
this surge: a program aimed to observe a large sample of Type
IIn SNe (∼70 observed SN sites, 13 detected targets; see Fox
et al. 2011, 2013), and Spitzer Infrared Intensive Transients
Survey (SPIRITS), a systematic mid-IR study of nearby
(20Mpc) galaxies. SPIRITS has resulted in the detection of
∼50 SNe of various types (Tinyanont et al. 2016; Kasliwal
et al. 2017; Jencson et al. 2019), including obscured SNe
missed by previous optical surveys (Jencson et al. 2017,
2018, 2019), as well as some other transients showing unusual
IR behavior (Kasliwal et al. 2017). Beyond these studies and a
number of single-object papers, further broader studies were also
presented regarding the mid-IR behavior of SNe II-P (Szalai &
Vinkó 2013) and SNe Ia (Johansson et al. 2017).

Most recently, some of us (Szalai et al. 2019a) published a
comprehensive analysis of the largest mid-IR data set of SNe
ever studied (Spitzer data for ∼1100 SN sites including 120
positive detections). This sample—including all previously
published data on most SNe discovered up to 2015, as well as
many further objects that appeared on nontargeted Spitzer
images—allowed an in-depth analysis to constrain the origin
and heating mechanism of the dust in each SN type, and to
perform preliminary statistics on their long-term mid-IR
evolution. One of the main findings of this study was that
subtypes of CC SNe tend to fill their own regions of phase
space (IR luminosity, dust temperature, dust mass), while in
thermonuclear SNe, there is a huge gap in late-time mid-IR
properties of the few strongly interacting SNe and the only
slightly detected or undetected objects. Furthermore, SNe IIn
and other strongly interacting SNe remain bright for several
years after explosion in the mid-IR, probably due to radiation
from a large amount (10−3Me) of pre-existing, radiatively
heated dust grains.

Up to its decommissioning in 2020 January, Spitzer
continued observations of SN sites in the framework of the

SPIRITS project (see the latest summary of its results in
Jencson et al. 2019), or by following nearby, high-priority
targets such as the dust-forming Type II-P SN 2017eaw
(Tinyanont et al. 2019a; Szalai et al. 2019b). A targeted SN
survey by our group, LASTCHANCE, was also carried out
between 2018 August and 2020 January, aiming to collect
further mid-IR photometric data points on a number of SNe in
order to examine the long-term evolution of different types of
stellar explosions.
In this paper, we present the results of our survey, focusing

primarily on interacting SNe, which constitute the vast majority
of the targets we observed. In Section 2, we describe the steps
of the data collection and photometry of Spitzer/IRAC data.
We present our results in Section 3, and discuss our
conclusions in Section 4.

2. Observations and Data Analysis

2.1. Targets of Our Study

During our Spitzer/LASTCHANCE program (PID 14098;
PI O. D. Fox), we observed 31 targets that met one of the
following criteria: (i) high-profile, well-understood interacting
and/or dust-forming SNe that were previously detected by
Spitzer/IRAC and required another epoch to monitor their mid-
IR evolution (based on Szalai et al. 2019a, and references
therein), or (ii) young (1 yr) and relatively nearby (70Mpc)
SNe with known dense CSM (from optical spectra) or with the
potential for dust formation in their ejecta (Type II-P SNe).
Our observations were designed to attain a signal-to-noise

ratio (S/N) of 100 for a medium background according to
the Spitzer/IRAC Sensitivity Performance Estimation Tool
(SENS-PET). We aimed for this S/N so that any photometric
uncertainties would be dominated by systematic effects
associated with the background (host-galaxy) subtraction rather
than insufficient integration time. This S/N also provides a
buffer for detecting SNe that may have faded more quickly than
predicted. Our observations used the medium-scale cycling
dither pattern to provide good redundancy and capability for
self-calibration.
Basic data on the SNe and their hosts—collected via the

Open Supernova Catalog15 (Guillochon et al. 2017), Simbad
database16 (Wenger et al. 2000), and NASA/IPAC Extra-
galactic Database17—are shown in Table 1. All of our
LASTCHANCE targets were observed at one epoch—except
SNe 2004dk and 2018fhw (two epochs) and 2017hcc (three
epochs)—in both the 3.6 and 4.5 μm channels. We also
checked the Spitzer Heritage Archive (SHA)18 for pre-
explosion Spitzer/IRAC images of the SN sites, to be used
as templates (see next section).

2.2. Object Identification and Photometry

We collected and analyzed IRAC post-basic calibrated data
(PBCD). The scale of these images is 0 6 pixel−1. Photometric
analysis was carried out using the phot task of IRAF.19 For

15 https://sne.space
16 http://simbad.u-strasbg.fr/simbad/
17 http://ned.ipac.caltech.edu/
18 http://sha.ipac.caltech.edu.
19 IRAF is distributed by the National Optical Astronomy Observatories,
which are operated by the Association of Universities for Research in
Astronomy, Inc., under cooperative agreement with the National Science
Foundation (NSF).
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isolated sources, we implemented aperture photometry on the
PBCD frames using the phot task as a first step. We generally
used an aperture radius of 2″ and a background annulus from 2″
to 6″ (2−2–6 configuration), and applied aperture corrections
of 1.213, 1.234, 1.379, and 1.584 for the four IRAC channels
(3.6, 4.5, 5.8, and 8.0 μm, respectively) as given in the IRAC
Data Handbook; however, for a few bright sources extending to
more pixels, we used the 3−3−7 configuration (aperture
corrections: 1.124, 1.127, 1.143, and 1.234, respectively).

Identifying a point source within a host galaxy, where
compact H II regions and star clusters may also appear as
pointlike sources in the images, can be difficult, especially if the
target is faint or is superposed on a complex background.
Therefore, when available, we also performed aperture photo-
metry on template images (i.e., pre-explosion images, or very
late-time images in which no point source appears at the position
of the SN) and subtracted these on-site flux values from the SN
fluxes. We call this technique “template-based background
subtraction,” or simply “background subtraction” hereafter.

Not all targets have templates. In these cases, the local
background was estimated by measuring the nearby flux with
apertures placed adjacent to the SN site in locations that
qualitatively appear similar to the background underlying the
SN (as was applied, e.g., by Fox et al. 2011). More complex
modeling of the local background is beyond the scope of this
paper.
In both background-subtracted and unsubtracted cases, we

defined the source as a positive detection if (i) it showed epoch-
to-epoch flux changes, and (ii) its flux was above the local
background by at least 5 μJy and 15 μJy at 3.6 and 4.5 μm,
respectively (according to point-source sensitivities in Table
2.10 of the IRAC Instrument Handbook20).
Following these steps, we find that 19 of 31 targets are

detected (one object, SN 1995N, only at 4.5 μm). In three other
cases (SNe 2011ft, 2017gas, and 2018fhw), there is a point

Table 1
Basic Data on the Studied SNe

Object SN Type Discovery Host α (J2000) δ (J2000) d E(B − V )a References
(MJD) Galaxy (Mpc) (mag)

SN 1995N IIn 49842 MCG-02-38-17 14:49:28.31 −10:10:14.0 24.0 ± 4.0 0.10 1
SN 2001em Ib/c 52172 UGC 11794 21:42:23.60 +12:29:50.3 71.6 ± 0.7 0.10 2, 3
SN 2003gk Ib 52821 NGC 7460 23:01:42.99 +02:16:08.7 41.2 ± 6.0 0.08 4
SN 2004dk Ib 53218 NGC 6118 16:21:48.93 −02:16:17.3 24.0 ± 2.0 0.14 5
SN 2005ip IIn 53679 NGC 2906 09:32:06.42 +8:26:44.4 30.0 ± 7.2 0.04 6
SN 2006jd IIn 54020 UGC 4179 08:02:07.43 +00:48:31.5 77.0 ± 5.0 0.05 7
SN 2009ip IIn/imp. 56193 NGC 7259 22:23:08.30 −28:56:52.0 20.5 ± 2.0 0.02 7
SN 2010jl IIn 55503 UGC 5189A 09:42:53.33 +09:29:41.8 48.9 ± 3.4 0.02 8
SN 2010mc IIn 55428 anon. 17:21:30.68 +48:07:47.4 159.0b 0.02 9, 10
SN 2011ft Ib 55803 UGC 11021 17:52:42.98 +29:04:10.6 101.0 ± 3.0 0.06 11, 12
PTF11iqb IIn 55765 NGC 151 00:34:04.84 −09:42:17.9 42.3 ± 11.5 0.03 13
PTF11kx Ia-CSM 55579 anon. 08:09:12.87 +46:18:48.8 200.0b 0.04 14
SN 2012aw II-P 56002 NGC 3351 10:43:53.73 +11:40:17.6 8.8 ± 1.1 0.02 15
SN 2012ca Ia-CSM 56042 ESO 336-09 18:41:07.25 −41:47:38.4 80.0 ± 6.0b 0.07 16, 17
SN 2013L IIn 56314 ESO 216-G39 11:45:29.55 −50:35:53.1 75.0 ± 5.0b 0.11 18
SN 2013cj IIn 56421 UGC 10685 17:04:52.95 +12:55:10.4 135.0 ± 10.0b 0.09 19
SN 2013ej II-P/L 56497 NGC 628 01:36:48.16 +15:45:31.0 9.5 ± 0.6 0.06 20
SN Hunt248 IIn/imp. 56798 NGC 5806 14:59:59.47 +01:54:26.6 20.0 ± 3.0b 0.04 21
ASSASN-14dc IIn 56832 PGC 2035709 02:18:37.82 +33:37:01.7 183.0 ± 20.0b 0.06 22
SN 2015da IIn 57031 NGC 5337 13:52:24.11 +39:41:28.6 30.0 ± 10.0b 0.02 23
AT2016jbu IIn/imp. 57723 NGC 2442 07:36:25.96 −69:32:55.3 21.0 ± 1.5 0.2 24, 25
SN 2017aym II-P 57766 NGC 5690 14:37:41.78 +02:17:08.4 18.6 ± 3.0 0.04 3, 26
SN 2017eaw II-P 57887 NGC 6946 20:34:44.24 +60:11:36.0 6.9 ± 0.6 0.4 27
SN 2017ejx II-P 57903 NGC 2993 09:45:48.61 −14:22:05.7 30.5 ± 5.0b 0.05 28, 29
SN 2017gas IIn 57975 anon. 20:17:11.32 +58:12:08.0 42.0 ± 5.0b 0.33 30
SN 2017hcc IIn 58028 anon. 00:03:50.58 −11:28:28.8 72.0 ± 6.0b 0.03 31
SN 2017ivu II-P 58098 NGC 5962 15:36:32.70 +16:36:19.4 30.7 ± 4.0 0.05 3, 32
SN 2017jfs IIn/LRN 58113 NGC 4470 12:29:37.79 +07:49:35.2 33.0 ± 5.0 0.02 33, 34
SN 2018gj II 58132 NGC 6217 16:32:02.30 +78:12:40.9 24.0 ± 3.0 0.04b 35
SN 2018zd IIn 58179 NGC 2146 06:18:03.18 +78:22:00.9 15.2 ± 4.0 0.08 36, 37
SN 2018acj II-P 58185 UGC 8733 13:48:40.63 +43:25:04.7 32.1 ± 5.0 0.02 3, 38
SN 2018fhw Ia-CSM(?) 58351 anon. 04:18:06.20 −63:36:56.4 74.2 ± 4.0 0.03 39

Notes. References: 1Van Dyk (2013); 2Papenkova et al. (2001); 3Sorce et al. (2014); 4Theureau et al. (2007); 5Springob et al. (2009); 6Fox et al. (2010); 7Fox et al.
(2011); 8Fox et al. (2013); 9Howell & Murray (2012); 10Ofek (2012); 11Balanutsa & Lipunov (2011); 12Prieto (2011); 13Parrent et al. (2011); 14Graham et al. (2017);
15Siviero et al. (2012); 16Drescher et al. (2012); 17Inserra et al. (2012); 18Tinyanont et al. (2016); 19Jin et al. (2013); 20Mauerhan et al. (2017); 21Mauerhan et al.
(2015); 22Holoien et al. (2014); 23Zhang & Wang (2015); 24Cartier et al. (2017); 25Fraser et al. (2017); 26Taddia et al. (2017); 27Szalai et al. (2019b); 28Brimacombe
et al. (2017); 29Kostrzewa-Rutkowska et al. (2017); 30Balam (2017); 31Dong et al. (2017); 32Itagaki (2017); 33Berton et al. (2018); 34Pastorello et al. (2019a);
35Kilpatrick et al. (2018); 36Zhang et al. (2018); 37Gao & Solomon (2004); 38Lin et al. (2018); 39Vallely et al. (2019).
a Galactic extinction.
b Distance calculated from redshift.

20 https://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/
iracinstrumenthandbook/
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source close to the coordinates of the SN; however, given the
lack of template images, they cannot be confirmed. SN 2017gas
is very close to the core, while SN 2011ft is a distant object that
cannot be distinguished from its host (note that this latter site
was also captured ∼6 yr earlier with Spitzer, but only at
3.6 μm, and there are no significant flux changes compared to
this previously published value; see Szalai et al. 2019a). We
discuss the case of SN 2018fhw later.

In the cases of the remaining nine targets, no point sources
are detected at the position of the SN. Instead, some of these
nondetections provided us with template images, which
allowed us to carry out background subtraction on earlier
archive data on these particular targets. In the cases of
PTF11kx, SNHunt248, ASASSN-14dc, SN 2009ip, and SN
2012ca, background subtractions do not change the previously
published flux values (see Szalai et al. 2019a, and references
therein) beyond photometric uncertainties. Instead, the change
in measured flux is more significant in the case of SN 2001em
(221± 41 and 294± 36 μJy at 3.6 and 4.5 μm, respectively,
versus 303± 41 and 349± 37 μJy given in Szalai et al. 2019a)
located in a distant, nearly edge-on galaxy. We included
updated fluxes and correponding absolute magnitudes of
SN 2001em in Table 2.

Moreover, during the review of archival Spitzer data, we
identified a variable mid-IR source at the position of the Type
Ib SN 2003gk. While there are no published Spitzer data for
this object (we missed it during our overview in Szalai et al.
2019a), we added it to our sample and analyzed it in the same
way as the other targets (discussed in more detail below). In the
case of the Type II-P SN 2017eaw, we also present here the
previously unpublished photometry of late-time archival data.

In summary, we studied 32 objects during this program: 13
SNe IIn (11 positive detections, 1 unconfirmed detection, 1
nondetection), 7 SNe II-P (4 positive detections, 3 nondetec-
tions), 1 unclassified SN II (positive detection), 4 SNe Ib/c (2
positive detections, 1 unconfirmed detection, 1 nondetection),
3 SNe Ia-CSM (1 unconfirmed detection, 2 nondetections), and
4 intermediate-luminosity transients (2 positive detections, 2
nondetections). These detection rates—taking into account
epochs and distances—are basically in agreement with the
expectations based on earlier results (Tinyanont et al. 2016;
Szalai et al. 2019a); see details later. For 12 of our targets, no
Spitzer data have been published before (Type IIn PTF11iqb,
ASASSN-14dc, SN 2015da, and SN 2017hcc; Type II-P SNe
2017aym, 2017ivu, 2018gj, 2018acj; SNe Ib 2003gk and
2004dk; and intermediate-luminosity transients AT2016jbu and
SN 2017jfs).

In Figure 1, we present examples of new positive detections
(SNe 2004dk, 2017hcc, and 2017jfs). Mid-IR fluxes and cases
of nondetections are listed in Table 2. We also identify SNe
where background subtraction was not possible. We note that
in all these cases, the measured fluxes should be interpreted as
upper limits given the complex underlying backgrounds. Flux
uncertainties are generally based on photon statistics provided
by phot; however, where background-subtraction photometry
was carried out, an increase in the noise level by 2 is also
taken into account.

3. Results

Szalai et al. (2019a) first published the comprehensive mid-
IR light curves (LCs) of SNe based on their complete data sets
available at that time. In this work, we present new Spitzer data

points for several SNe. Furthermore, we compare the long-term
mid-IR evolution of different types of interacting SNe. We also
present our findings on connections between mid-IR behavior
and level of circumstellar interaction observed in other
wavelength regions.

3.1. Long-term Mid-IR LCs

In Figure 2, we present 4.5 μm LCs of all SNe in our current
sample and of some further well-known interacting SNe, along
with their corresponding Spitzer archival data previously
published by Szalai et al. (2019a, and references therein).
The newest data originate primarily in this work, although

some additional data from Jencson et al. (2019) and Tinyanont
et al. (2019b) are also included (see details in Sections 3.1.3
and 3.1.5). We also present the 4.5 μm LCs of our SNe in
Figure 3 for four subgroups: SNe IIn, SNe Ia-CSM, SNe Ib/Ic,
and intermediate-luminosity transients.

3.1.1. Type IIn SNe

In Figure 3, existing mid-IR LCs of all SNe IIn are
presented; LASTCHANCE targets and some further well-
sampled objects are highlighted. SNe IIn form a bright but
somewhat heterogeneous group in the mid-IR. Some extremely
luminous objects reach a maximum brightness of ∼−22 mag at
4.5 μm, such as SN 2010jl (Andrews et al. 2011a; Fransson
et al. 2014; Szalai et al. 2019a), SN 2006jd (Fox et al. 2010;
Stritzinger et al. 2012; Szalai et al. 2019a), SN 2007rt (Fox
et al. 2011, 2013; Szalai et al. 2019a), and SN 2013cj (Szalai
et al. 2019a). Other SNe IIn are much fainter in the mid-IR (i.e.,
SN PTF11iqb). Some objects even fall into the brightness gap
that seems to exist between the previously mentioned objects
(i.e., SN 2010mc).
Most SNe IIn are still bright in our most recent Spitzer

observations, in some cases ∼4500–5000 days (12–13 yr!)
after explosion. The one SN IIn exception to this is ASASSN-
14dc, which is not detectable at ∼1600 days (but it is a very
distant object, d≈ 180 Mpc). We note that SN 1995N is still
barely detectable in the 4.5 μm image obtained during our
LASTCHANCE survey at an age of ∼8600 days (making it the
latest-observed SN IIn in the mid-IR).
The decline rates of the mid-IR LCs of SNe IIn vary from

∼0.4 mag (1000 days)−1 up to ∼3.0 mag (1000 days)−1; see
Table 3. If we compare these values with the mid-IR LC
evolution of the objects (Figures 2 and 3), we can see that the
brightest ones (SNe 2007rt, 2010jl, and 2013cj) exhibit a
faster decline after ∼1000 days. In the case of SN 2010jl,
comprehensive multiwavelength studies and detailed analyses
of ongoing dust formation exist (e.g., Andrews et al. 2011a;
Gall et al. 2014; Fransson et al. 2014; Sarangi et al. 2018;
Bevan et al. 2020); unfortunately, there are no similar data sets
in the cases of SN 2007rt and SN 2013cj. Another group of
SNe IIn (SNe 2005ip, 2006jd, and 2013L) seem to be a bit
fainter during the first ∼2000 days (note, however, that in the
first two cases there are no mid-IR data before ∼950 days and
∼1150 days, respectively), but decline more slowly thereafter.
In these SNe, the most probable scenario is a large, pre-existing
dust shell that is continuously heated by energetic photons
generated by ongoing CSM interaction (see, e.g., Fox et al.
2010, 2011, 2020; Stritzinger et al. 2012; Andrews et al. 2017;
Taddia et al. 2020). Based on this picture, the decline rates of
these SNe may hint that the level of CSM interaction
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Table 2
Previously Unreported Mid-IR (Spitzer) Detections and Nondetections (Fluxes and Vega Magnitudes) of Interacting SNe

Object Type Date Epocha Fν,[3.6] Fν,[4.5]
Absolute Mag.

(MJD) (days) (μJy) (μJy) 3.6 μm 4.5 μm

SN 1995N IIn 58,419 8577 <5 13(5) −12.5< −14.06(0.62)
SN 2001emb Ib/c 53,307 1135 221(41) 294(36) −19.02(0.20) −19.81(0.13)

58,541 6369 <82 <55 −17.9< −18.0<
SN 2003gkc Ib 55,939 3118 L 2438(83) L −20.45(0.31)

56,160 3339 L 2062(75) L −20.27(0.31)
56,536 3715 L 1510(65) L −19.93(0.32)
56,699 3878 L 1336(61) L −19.79(0.32)
56,912 4091 L 1123(56) L −19.61(0.32)
57,819 4998 L 651(43) L −19.02(0.33)
58,031 5210 L 592(42) L −18.91(0.33)
58,204 5383 L 556(39) L −18.84(0.33)

SN 2004dk Ib 55,115 1897 85(16) 93(16) −15.62(0.28) −16.19(0.26)
58,457 5239 141(20) 201(24) −16.17(0.24) −17.03(0.22)
58,852 5634 130(20) 183(23) −16.08(0.24) −16.93(0.22)

SN 2005ip IIn 58,346 4667 677(51) 713(47) −18.34(0.52) −18.88(0.52)
SN 2006jd IIn 58,345 4325 82(15) 106(17) −18.11(0.24) −18.86(0.22)
SN 2009ip IIn/imp. 58,529 2336 <3 <5 −11.6< −12.7<
SN 2010jl IIn 58,372 2869 300(42) 611(47) −18.52(0.21) −19.78(0.17)
SN 2010mc IIn 58,411 2983 33(9) 37(10) −18.72(0.34) −19.31(0.32)
PTF11iqb IIn 57,089 1324 120(20) 143(21) −17.21(0.61) −17.89(0.61)

58,405 2640 64(15) 51(13) −16.54(0.64) −16.76(0.65)
PTF11kx Ia-CSM 58,516 2866 <5 <15 −17.1< −18.8<
SN 2012aw II-P 58,366 2364 <5 <15 − 10.4 < − 12.0 <
SN 2013L IIn 58,405 2091 289(28) 506(37) −19.42(0.18) −20.50(0.16)
SN 2012ca Ia-CSM 58,490 2448 <5 <15 −15.2< −16.8<
SN 2013cj IIn 58,457 2036 119(18) 214(24) −19.73(0.23) −20.84(0.20)
SN 2013ej II-P/L 58,427 1930 <5 <15 − 10.5 < − 12.2 <
SNHunt248 IIn/imp. 58,419 1621 <5 <15 − 12.1 < − 13.8 <
ASSASN-14dcd IIn 57,323 491 176(37) 217(35) −20.81(0.33) −21.51(0.29)

58,466 1634 <320 <220 −20.7< −20.7<
SN 2015da IIn 58,404 1373 1603(69) 2155(79) −19.28(0.72) −20.08(0.72)
AT2016jbu IIn/imp. 58,352 629 67(16) 90(18) −15.07(0.31) −15.87(0.27)
SN 2017aym II-P 58,415 649 265(79) 303(59) −16.29(0.47) −16.91(0.41)
SN 2017eaw II-P 58,404 517 124(18) 314(30) −13.07(0.25) −14.76(0.21)

58,488e 601 78(15) 149(20) −12.83(0.25) −14.00(0.22)
58,515f 628 79(15) 128(20) −12.85(0.28) −13.83(0.22)
58,529e 642 75(16) 132(19) −12.79(0.28) −13.87(0.24)
58,567e 680 58(14) 83(18) −12.51(0.28) −13.37(0.24)
58,607e 720 88(16) 121(19) −12.96(0.27) −13.78(0.25)
58,795e 908 49(12) 57(13) −12.34(0.32) −12.97(0.31)

SN 2017ejx II-P/L 58,373 470 <5 <15 − 13.1 < − 14.7 <
SN 2017hcc IIn 58,420 392 1818(70) 1813(71) −21.32(0.18) −21.79(0.18)

58,593 565 1533(64) 1703(69) −21.13(0.18) −21.72(0.18)
58,795 767 1097(55) 1354(62) −20.77(0.18) −21.47(0.18)

SN 2017ivu II-P 58,416 318 41(15) 68(20) −15.35(0.37) −16.38(0.31)
SN 2017jfs IIn/LRN 58,402 289 100(44) 63(31) −16.48(0.58) −16.46(0.63)
SN 2018gj II 58,484 352 17(7) 83(15) −13.91(0.50) −16.06(0.33)
SN 2018zd IIn 58,507 328 40(13) 73(15) −13.80(0.68) −14.93(0.62)
SN 2018acj II-P 58,391 206 15(6) 27(8) −14.41(0.57) −15.50(0.48)

Notes. We show here all new measurements from our LASTCHANCE program, together with unpublished archive data on SNe 2003gk and 2017eaw. Data shown in
italics denote cases where template-based background subtraction cannot be applied—given the lack of either pre-explosion or late-time images (in all these cases,
measured fluxes can be considered only as upper limits).
a Days since discovery.
b Corrected fluxes/magnitudes determined after background subtraction based on recently obtained Spitzer images in which the target is not detectable; data paper
contains the original fluxes: Szalai et al. (2019a).
c Target detection (SN 2003gk) in archive images: PIDs 90007 and 13012 (PI J. D. Kirkpatrick).
d Positive detections in archive images after background subtraction based on recently obtained Spitzer images in which the target is not detectable: ASASSN-14dc—
PID 11053 (PI O. Fox).
e Archive data (PID 14089, PI M. Kasliwal).
f Archive data (PID 13239, PI K. Krafton).
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continuously decreases in the last years (except in the case of
SN 2010mc, which seems to be in a very long “plateau” phase
even at ∼3000 days).

SN 2017hcc stands out among our LASTCHANCE sample
because of its unusually high degree of polarization (Mauerhan
et al. 2017; Kumar et al. 2019) and the post-shock dust
formation assumed from the analysis of its strongly blueshifted
line profiles (Smith & Andrews 2020). The SN was observed at
three epochs (392, 565, and 767 days) by Spitzer. While at the
earliest epoch, SN 2017hcc resembles SN 2010jl in the mid-IR,

its fluxes do not increase after that but start to slowly decrease,
similar to the LC of (for example) SN 2005ip.

3.1.2. Type Ia-CSM SNe

SNe Ia-CSM are comparably luminous to SNe IIn. This
subclass is thought to arise from thermonuclear explosions
surrounded by dense, H-rich shells of ambient CSM (producing
SN IIn-like emission features in their late-time spectra; see,
e.g., Silverman et al. 2013; Fox et al. 2015; Inserra et al. 2016).

Figure 1. Examples of new positive detections in Spitzer/IRAC 4.5 μm images. Top: SN 2004dk (Type Ib, post-explosion images after (left) and before (right) mid-
IR rebrightening). Middle: SN 2017hcc (Type IIn, post-explosion image (left) and archival Two Micron All Sky Survey Ks-band image (right)). Bottom: SN 2017jfs
(luminous red nova, post-explosion (left) and pre-explosion (right) Spitzer images).
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Few SNe Ia-CSM have been observed by Spitzer; Figures 2
and 4 show all of them. Analysis of this small sample suggests
that this subclass, particularly in the mid-IR, is more
homogeneous than SNe IIn (Graham et al. 2017; Szalai et al.
2019a). Only SN 2012ca is observed around the mid-IR
“peak,” reaching an absolute magnitude of almost −22 at
4.5 μm around 600 days after explosion, but the other objects in
this subclass do seem to follow a qualitatively similar
evolution. Apart from SN 2013dn, we also do not detect any
of the SNe Ia-CSM between 1500 days and 3500 days after
explosion.

We also discuss two nondetections of SN 2018fhw
(ASASSN-18tb), the only new thermonuclear SN Ia in our
sample. This object has unique optical properties that show
some similarities but also striking differences to other SNe Ia-
CSM (Kollmeier et al. 2019; Vallely et al. 2019). We observed
the site of SN 2018fhw at two epochs (∼250 days and
∼450 days after explosion). While there is a pointlike source
in all of the images, its position does not exactly match that of
the SN (its center is ∼2″ from the position given by Vallely
et al. (2019), see Figure 5; moreover, it does not show flux
changes (within the uncertainties) between the two epochs in
any channels. Given the lack of pre-explosion template images,
we conclude for the moment that the source is not detected in
our data. If we do calculate the absolute magnitudes of the
detected mid-IR source, we obtain ∼−17 mag in both IRAC
channels, which is a much lower value than that of other
studied SNe Ia-CSM at these epochs.

3.1.3. Stripped-envelope SNe

Given their lack of significant CSM, stripped-envelope (SE)
SNe (i.e., SNe Ibc) usually have uneventful mid-IR histories,
producing a relatively quick fading and a disappearance after
several hundred days. Some SNe IIb are detected in the mid-IR
up to almost 1000 days, which may be the sign of some
(moderate) late-time CSM interaction; see Szalai et al. (2019a)

and references therein. Note that the Type IIb SN 1993J stands
out owing to its proximity (3.5Mpc) and uncomplicated local
background, detectable in IRAC imaging up to almost 8000 d
(Tinyanont et al. 2016).
There is now more than one known “normal” SE SN that has

been observed to transform into a strongly interacting, SN IIn-
like object at later times. The most well-studied event is the
nearby (d≈ 13 Mpc) Type Ib SN 2014C (Milisavljevic et al.
2015; Margutti et al. 2017). This object is also among the most
well-sampled SNe with Spitzer, since its host galaxy is NGC
7331, one of the target galaxies for the SPIRITS program
(Tinyanont et al. 2016, 2019b). SN 2014C was followed out to
∼2000 days (until the end of the Spitzer mission). During that
time, it showed a clear rebrightening at ∼250 days as the CSM
interaction began, and a very slow fading thereafter (it is still a
bright source in the latest images).
Another unique SN Ib/c that shows CSM interaction is

SN 2001em. It had only one previous epoch of Spitzer data in
2004. Increasing CSM interaction was detected at optical,
X-ray, and radio wavelengths at that point (see, e.g., Pooley &
Lewin 2004; Soderberg et al. 2004; Stockdale et al. 2004).
While the object appears as a very bright source in the original
imaging, our most recent nondetection provides a useful
template (at 3.6 μm and 4.5 μm) that results in improved and
updated mid-IR fluxes of SN 2001em at ∼1100 days (which
are ∼20%–25% lower than those published by Szalai et al.
2019a). Figure 3 shows that SN 2001em was even more
luminous in the mid-IR than SN 2014C, almost as bright as
most SNe IIn or SNe Ia-CSM.
While it was not possible to carry out the same process on

5.8 and 8.0 μm data, SN 2001em appears as a very bright point
source in those images, too. We concur that the previous
conclusion of Szalai et al. (2019a) still holds true, namely that
(i) a two-component mid-IR spectral energy distribution (SED)
in 2004 indicates the presence of multiple pre-explosion dust
shells, and (ii) a few times 1016 cm for the shell radius and a
total circumstellar dust mass of a few times 0.01Me, both of
which (assuming a dust-to-gas mass ratio of 0.01) are in
agreement with the results of Chugai & Chevalier (2006) and
Chandra et al. (2020).
We also highlight the initially “normal” Type Ib/c

SN 2004dk, which has started to show unexpected, strong
signs of CSM interaction in the form of enhanced Hα and
X-ray emission more than a decade after its explosion
(Mauerhan et al. 2018a; Pooley et al. 2019). (Note that in
their earlier study, Wellons et al. 2012, already found some
abrupt late-time radio variability indicating unusual circum-
stellar environment.) Although sampling is sparse, the mid-IR
properties of SN 2004dk are consistent with these findings,
showing a ∼1 mag increase between ∼2000 days and 5000
days, subsequently slowly fading by the third epoch. This is the
latest-time mid-IR brightening observed in our sample. Only
SN 1987A has shown an increase in mid-IR emission at a later
epoch, with continuously increasing mid-IR fluxes between
∼6000 days and 8500 days (Arendt et al. 2020, and references
therein).
Finally, we highlight SN 2003gk. Although we do not have

any recent observations, we include archival 4.5 μm Spitzer/
IRAC images uncovered during the writing of this paper.
SN 2003gk is well sampled at 3.6 μm in the range 3100–5400
days and shows a qualitatively similar evolution to that of the
long-term monitored SNe IIn 2005ip and 2006jd. There is only

Figure 2. Spitzer 4.5 μm evolution of various types of interacting SNe. Sources
of data are Szalai et al. (2019a) and references therein, Tinyanont et al. (2019a),
Jencson et al. (2019), and this work, as also highlighted in the text and in
Table 2. Filled symbols denote SNe whose absolute magnitudes were
determined with background subtraction (using either pre-explosion or very
late-time reference images), while empty symbols, crosses, and asterisks denote
objects where no background subtraction was possible.
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one publication on SN 2003gk in the literature (Bietenholz
et al. 2014), which suggests the presence of late-time CSM
interaction based on radio observations.

3.1.4. Type II-P SNe

Based on theoretical expectations (see, e.g., Kozasa et al.
2009; Gall et al. 2011), SNe II-P are likely the best candidates
for (ejecta) dust formation among SNe. Some of these objects
were targets of Spitzer observations in the early years of the

mission. These data typically trace dust formation ∼1–3 yr
after explosion and estimate the physical parameters of newly
formed dust (e.g., Meikle et al. 2007, 2011; Sugerman et al.
2006; Kotak et al. 2009; Andrews et al. 2010; Fabbri et al.
2011; Szalai et al. 2011, 2019a; Szalai & Vinkó 2013). The
results do not support either the theoretical prediction of
significant (?0.001Me) SN dust production or the large
observed dust masses in some young Galactic SN remnants and
in high-redshift galaxies. This discrepancy can be partly
resolved by the application of clumped dust models, or

Figure 3. 4.5 μm absolute magnitudes of all SNe IIn and interacting SNe Ib/c ever observed by Spitzer (data points are the same as in Figure 2, but graphs are
zoomed-in and timescales are linear), together with [3.6] – [4.5] μm color curves (all in Vega magnitudes). LASTCHANCE and some further well-sampled objects are
highlighted, while all other published detections (adopted from Szalai et al. 2019a) are marked with gray symbols. Existing nondetections (upper limits) are marked
with arrows. Note that no 3.6 μm measurements were obtained for the Type Ib SN 2003gk (bottom panel).
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significant grain growth in the interstellar matter (see Gall et al.
2011, for a detailed review). Another possibility is that a
significant amount of cold (<50 K) dust may be present in the
ejecta, as can be seen via far-IR and submillimeter observations
of the very nearby SN 1987A (Matsuura et al. 2011, 2015;
Indebetouw et al. 2014; Wesson et al. 2015).

During our LASTCHANCE program, we collected single
data points on some young SNe II-P during the assumed
formation period of ejecta dust (∼200–650 days): SNe
2017aym, 2017eaw, 2017ivu, and 2018acj. Moreover, we also
targeted the older SNe II-P 2012aw and 2013ej, both of which
turned out to be below the detection limit. Regarding
SN 2013ej (Mauerhan et al. 2017), a very late-time mid-IR
rebrightening can be seen between ∼700 and 1000 days, just as
in the SN II-P 2004et (Kotak et al. 2009; Fabbri et al. 2011),
presumably because of dust formation in the CDS behind the
reverse shock and not within the ejecta. Based on known
(Tinyanont et al. 2019a; Szalai et al. 2019b) and previously
unpublished Spitzer data on SN 2017eaw, it seems to produce a
ghost-like similarity to SN 2004et (found in the same host
galaxy!) in the mid-IR (even the small rebrightening is there at
∼700–750 days; see Figure 4). Unfortunately, Spitzerʼs mis-
sion ended just before the expected intense rebrightening seen
in the case of SN 2004et and SN 2013ej at ∼1000–1300 days
(the last Spitzer observation of SN 2017eaw was obtained in
2019 November). Nevertheless, connecting to the similarity of
these three objects and the main storyline of our current paper,
all of them show signs of late-time circumstellar interaction at
∼900 days observed via the emerging Hα emission-line
profiles (see Weil et al. 2020).

3.1.5. Intermediate-luminosity Interacting Transients

In Figures 2 and 4, we plot both previously published and new
mid-IR data points of intermediate-luminosity interacting tran-
sients. In the literature, this subclass is divided into two groups:
intermediate-luminosity red transients (ILRTs) and luminous red
novae (LRNe). ILRTs are typically described as explosions of
deeply dust-enshrouded stars (see, e.g., Prieto et al. 2008; Bond
et al. 2009; Kochanek 2011; Jencson et al. 2019). Included in our
sample are SNe 2008S (Szczygiełet al. 2012b), 2002bu
(Szczygiełet al. 2012a), and SPIRITS15ade (Jencson et al.
2019). LRNe are thought to be merging events of massive
binaries (see, e.g., Pastorello et al. 2019b, and references therein).
We included data for SN Hunt248 (Mauerhan et al. 2018b),
M101-2015OT-1 (Blagorodnova et al. 2017; Jencson et al. 2019),

SPIRITS14azy (Jencson et al. 2019), as well as the previously
unpublished data on SN 2017jfs.
These objects are less luminous in the mid-IR than normal

SNe and show a significant heterogeneity in their luminosity: at
∼300 days and ∼600–700 days, when there are data points for
most of these SNe, brightness values spread over nearly
a ∼3 mag range. Most well-sampled transients of that kind
fade quickly, but M101-OT2015-1 shows a plateau at
∼800–960 days. These differences likely arise from different
physical and/or geometric properties of the ambient dust
content.
We also include Spitzer data on the well-studied SN 2009ip.

Our most recent observation is a nondetection, allowing for
template-based background subtraction. Our new photometry is
within the original uncertainties (Fraser et al. 2015; Szalai et al.
2019a). It is worth noting that while SN 2009ip reached an
optical (R-band) peak brightness similar to that of normal
SNe IIn (∼−18 mag; see, e.g., Margutti et al. 2014) during its
outburst in 2012, it is an order of magnitudes fainter in the mid-
IR than either Type IIn or other “normal” interacting SNe.
Based on the detailed analyses of Margutti et al. (2014), Fraser
et al. (2015), and others, the quick optical fading of SN 2009ip
implies that it was a low-energy explosion, while results of
spectropolarimetric studies can be explained best with the
presence of an inclined disk-like CSM (Reilly et al. 2017).
These two effects together can explain the low, continuously
decreasing mid-IR luminosity.
Finally, we highlight the single data point for AT2016jbu,

which showed a spectral evolution similar to that of SN 2009ip
(Fraser et al. 2017; Brennan et al. 2021a, 2021b). Its mid-IR
brightness, however, is more similar to that of the ILRT-type
SN 2002bu than of SN 2009ip at the epoch of our Spitzer
observation. This case also suggests that the mid-IR properties
of intermediate-luminosity interacting transients and therefore
their local environment cannot be distinguished clearly by
spectral type alone.

3.2. Mid-IR Color Curves and Dust Temperatures

Figure 3 and 4 also show [3.6] – [4.5] μm color curves in
every case when data in both channels are available. Mid-IR
color evolution can be, with some limitations, a good indication
of temporal changes of dust temperature. In the first few
hundreds of days after explosion, when hot (T 1000 K)
components of gas and dust tend to dominate the ejecta and/or
its environment, the IRAC measurements probe the peak of the
dust blackbody emission and provide the best constraints on the
physical parameters. Such measurements have been illustrated
with several SNe II-P (see, e.g., Sugerman et al. 2006; Meikle
et al. 2007; Kotak et al. 2009; Andrews et al. 2010, 2011b;
Szalai et al. 2011; Szalai & Vinkó 2013) and several interacting
SNe (SN 2005ip—Fox et al. 2010, 2020; Stritzinger et al.
2012; SN 2006jd—Stritzinger et al. 2012; SN 2010jl—
Andrews et al. 2011a; Fransson et al. 2014; Sarangi et al.
2018; Bevan et al. 2020; SN 2013L—Andrews et al. 2017;
Taddia et al. 2020; SN 2014C—Tinyanont et al. 2019b;
SN 2015da—Tartaglia et al. 2020).
Since most of the data presented in this paper were obtained

during the Warm Spitzer mission, we are limited to the 3.6 and
4.5 μm data. Longer-wavelength data would be necessary to
probe (much) colder dust, which has been observed in
SN 1987A (Dwek et al. 2010; Matsuura et al. 2011;
Indebetouw et al. 2014) and in young Galactic SN remnants

Table 3
Decline Rates of Type IIn SNe

Object Range of Epochsa Δm3.6 Δm4.5

(d) (1000 days)−1 (1000 days)−1

SN 1995N 5067−8577 Lb 0.7
SN 2005ip 2796−4667 0.4 0.6
SN 2006jd 2433−4525 0.8 1.0
SN 2007rt 1304−2042 3.5 3.0
SN 2010jl 969−2869 2.0 1.7
SN 2013L 850−2091 0.7 0.4
SN 2013cj 747−2036 1.8 1.4

Notes.
a Used to calculate decline rates at the latest phases.
b SN 1995N was not detectable at 3.6 μm on day 8577.
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(see, e.g., Williams & Temim 2017, for a review). A limited
number of 5.8–24.0 μm measurements were obtained by
Spitzer during its cryogenic phase on a few extragalactic
SNe; from these data, the presence of cold dust can also be
inferred (even within a few years after explosion, see Szalai
et al. 2019a, for a review). Unfortunately, the assumed
(significant) cold dust reservoirs cannot be efficiently surveyed;
however, above ∼200 K, we will be able to get a much more
detailed picture of the dust content of SNe from the expected

data from the forthcoming James Webb Space Tele-
scope (JWST).
Even with just two data points, we can derive dust

temperatures and radii of the dust-containing regions via fitting
blackbodies (or simple dust models) to two-point SEDs (see,
e.g., Fox et al. 2011, 2013; Szalai et al. 2019a). First, it is
important to determine whether any line emission contributes to
the 3.6 and 4.5 μm measurements. As shown in some SNe II-P
(e.g., Kotak et al. 2005; Szalai et al. 2011; Szalai & Vinkó 2013),

Figure 4. 4.5 μm absolute magnitudes of all SNe Ia-CSM (top left), SNe II-P (top right), and intermediate-luminosity objects (bottom) ever observed by Spitzer. Note
that there are missing positive 3.6 μm detections for some of the objects. LASTCHANCE and some further well-sampled objects are highlighted, while all other
published detections (adopted from Szalai et al. 2019a) are marked with gray symbols. Existing nondetections (upper limits) are marked with arrows.
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additional flux from the 1–0 vibrational band of CO at 4.65 μm
may arise in the first ∼500 days, strongly affecting the 4.5 μm
LCs and leading to values of [3.6] – [4.5]≈ 1.5–3mag in this
period (see, e.g., SNe 2004et and 2017eaw in Figure 4).

The colors of SNe IIn have a relatively small scatter
(∼0.5–0.7 mag), indicating the long-time presence of hot dust
above ∼1000 K. This is in agreement with the results of
Fransson et al. (2014) and Sarangi et al. (2018) on SN 2010jl
and of Kokubo et al. (2019) on KISS15s. The color of
SN 2010jl turns continuously redder after ∼1000 days,
probably indicating the decreasing dust temperature, which is
also observed in SN 2007rt and SN 2013cj (at least up to their
last observed epochs). In contrast, the colors of SN 2005ip and
SN 2006jd indicate nearly constant (or, at least, slowly
changing) dust temperatures out to ∼4500 days, in agreement
with the results of Fox et al. (2010, 2013, 2020) and Stritzinger
et al. (2012). SN 2010mc seems to follow a similar trend to SN
2005ip.

SNe Ia-CSM and interacting SNe Ib/c basically show a
nearly constant or slowly changing mid-IR color evolution
within their observational ranges. This is in agreement with the
results of previous studies (e.g., Fox & Filippenko 2013;
Graham et al. 2017; Tinyanont et al. 2019b), in which the
authors revealed slow evolution of dust temperatures in some
of these SNe. The only exception is SN 2012ca, which shows a
more intense reddening (cooling) in the first few hundred days.

The colors of interacting intermediate-luminosity transients,
just like their LCs, exhibit large heterogeneity. The mid-IR
color evolution of most of these objects has been described in
detail by Jencson et al. (2019). Regarding our new targets,
AT2016jbu and SN 2017jfs have been observed at only one
epoch, while SN Hunt248—captured in total four times—
shows a nearly constant, relatively blue color between 136 and
360 days.

3.3. A Comprehensive Multiwavelength Overview of LCs of
Interacting SNe

Beyond the mid-IR, signs of ongoing circumstellar interac-
tion can be most efficiently detected and traced in the form of
radio, X-ray, or Hα emission. Fox et al. (2011) proposed a
scenario whereby pre-shocked dust shells are radiatively heated

by ongoing shock interaction at the inner radii, but the exact
relationship between the different wavelengths may not be
straightforward. Long-term multiwavelength monitoring, how-
ever, is quite limited; see recent reviews by Chevalier &
Fransson (2017) and Chandra (2018), as well as (for example)
Weiler et al. (2002), Dwarkadas & Gruszko (2012), and Vinkó
et al. (2017) regarding radio, X-ray, and Hα data, respectively.
Figures 6 and 7, and Table 4, show an overview of long-term

multiwavelength (radio, X-ray, Hα, near-IR, and mid-IR) LC
evolution of many SNe in our sample (as well as Figure 8,
zooming into the early-time evolution of SNe 2010jl and
2015da; see discussion below). While there are still only a few
objects with well-sampled multichannel data sets, some
conclusions can be drawn.
First, from the limited data available, near-IR and mid-IR

LCs appear to have qualitatively similar evolution, particularly
in the K band, which suggests that the dominant source of the
detected flux at these wavelengths is the same—thermal
continuum emission and not line emission. The availability of
instruments with access to wavelengths longer than ∼2 μm is
expected to be limited for high-cadence follow-up observations
of transient objects in the near-term post-Spitzer era. Long-term
near-IR (K-band) observations can be useful for monitoring the
late-time evolution of the hottest dust when long-wavelength
observations are unavailable. This could be particularly useful
during the upcoming era of the Nancy Grace Roman Space
Telescope (NGRST), which will be usable for similar follow-
up observations of SNe (its longest-wavelength filter, F184,
covers 1.68–2.00 μm, falling between the traditional H and K
bands). We note, however, that the fundamental vibrational
overtones of CO may contribute to not only 4.5 μm but also
K-band fluxes of certain SNe (see, e.g., Jencson et al.
2017, 2019).
Furthermore, the average brightness levels of the objects

seem to correlate with each other in every wavelength range
(except radio). Dwarkadas & Gruszko (2012) and Ross &
Dwarkadas (2017) published a compilation of X-ray LCs of
different types of SNe, and their comparative figures show
similarities to our mid-IR LC compilation (Figure 2) from the
viewpoint that (some) SNe IIn represent the brightest sources,
while observed luminosities of other SNe scatter over a wide

Figure 5. Optical (LCO V-band) and mid-IR (Spitzer 4.5 μm) images of SN 2018fhw. The blue cross (in the left panel) denotes the coordinates given by Vallely et al.
(2019), while the red cross shows the photometric center of the optical (LCO) image of the source.
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Figure 6. Comparative figures showing multiwavelength LCs of SNe IIn; sources of data are shown in Table 4. Regarding mid-IR data, circles/squares and triangles
denote Spitzer and NEOWISE data, respectively; filled and empty symbols denote values determined with or without background subtraction, respectively. Regarding
X-ray data, filled circles denote unabsorbed luminosities measured in the 0.3–8 keV regime, while empty circles denote values covering larger energy ranges.
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Figure 7. Comparative figures showing multiwavelength LCs of further late-time interacting SNe; sources of data are shown in Table 4. Regarding mid-IR data, filled
and empty symbols denote values determined with or without image subtraction, respectively. Regarding X-ray data, filled circles denote unabsorbed luminosities
measured in the 0.3–8 keV regime, while empty circles denote values covering larger energy ranges.
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range. In the near-IR and Hα, one can also see similar trends.
Nevertheless, it is important to note that, at this time, lack of
data imposes strong limitations on a more detailed comparative
analysis, especially in the cases of non-SN IIn interacting SNe.

A further purpose of our current study has been to find any
direct correlation between long-term X-ray/Hα and mid-IR LC
evolution, which has been poorly studied to date in the
literature. While comparative analyses of long-term X-ray,
radio, Hα, optical, and near-IR SN LCs were published in
several cases (see, e.g., Stritzinger et al. 2012; Fransson et al.
2014; Chandra et al. 2015), mid-IR LCs have not usually been
(directly) involved in these comparisons.

A famous exception is the very nearby SN 1987A, for which
the most complete long-term multiwavelength mid-IR/X-ray
data sets were published (Bouchet et al. 2006; Dwek et al.
2010; Arendt et al. 2016). Only in this case can both very well-
sampled mid-IR (from 3.6 to 24 μm) and X-ray evolution of an
SN be followed for several thousand days, unfolding the
ongoing interaction of the SN blast wave with a pre-existing
dusty equatorial ring. In the listed papers, the IR-to-X-ray flux
ratio (IRX) has been applied for investigating the process of
gas–grain collisions and cooling of the shocked gas. As a shock

sweeps though a medium with pre-existing dust, the IRX (at
these mid-IR wavelengths) would be expected to decline as
collisionally heated dust cools or is destroyed by sputtering. An
epoch of dust formation in a CDS could act to increase the
IRX, as could radiative processes (heating of the dust), in
which case there is no direct physical interpretation of the IRX.
However, we note that the level of mid-IR activity measured in
SN 1987A is far below the detection limit of Spitzer for the
more distant extragalactic SNe, maybe because the CSM forms
a ring rather than a shell in SN 1987A (however, even these
low fluxes could be available for JWST).
Another example is the Type IIn SN 2005ip, which has also

been monitored for quite a long time (∼1000–5000 days; Fox
et al. 2020). The mid-IR and (soft) X-ray (Katsuda et al. 2014;
Smith et al. 2017) LCs seem to follow similarly decreasing
trends, in agreement with the scenario that the primary source
of the observed mid-IR flux is warm dust radiatively heated by
energetic photons emerging from CSM interaction, and that the
shock may be finally reaching the outer extent of the dense
CSM shell. The multiwavelength evolution, including Hα,
shows a shape that resembles that of an unabsorbed X-ray LC
(see Smith et al. 2017, and also Figure 6). SN 2006jd, another

Table 4
Presence of Late-time Multiwavelength Data Sets for LASTCHANCE Targets and Other Interacting SNe

Object Mid-IR Near-IR Hα flux X-Ray Radio Refs.

IIn

SN 1995N Yes Yes L Yes Yes 1–9
SN 2005ip Yes Yes Yes Yes Yes 1, 10–16
SN 2006jd Yes Yes Yes Yes Yes 1, 13, 16, 17
SN 2010jl Yes Yes Yes Yes Yes 1, 16, 18–21
PTF11iqb Yes L Yes L L 1, 22, 23
SN 2013L Yes Yes Yes L L 1, 24, 25
SN 2015da Yes Yes Yes L L 1, 26
KISS15s Yes Yes Yes L L 27

IIn/impost.

SN 2009ip Yes Yes Yes L L 1, 16, 23, 28–30

Ib/c

SN 2001em Yes L L Yes Yes 1, 16, 31–36
SN 2003gk Yes L L L Yes 1, 37
SN 2004dk Yes L Yes L Yes 1, 23, 38–40
SN 2014C Yes Yes Yes Yes Yes 39, 41–44

Ia-CSM

SN 2012ca Yes Yes L Yes L 1, 16, 45–47
SN 2013dn Yes Yes L L L 16, 45

II-P

SN 2004et Yes Yes Yes L L 48–51
SN 2013ej Yes Yes Yes L L 16, 51–53
SN 2017eaw Yes Yes Yes L L 1, 51, 54, 55

Notes. References: 1This work; 2Fox et al. (2000); 3Fransson et al. (2002); 4Gerardy et al. (2002); 5Zampieri et al. (2005); 6Chandra et al. (2005); 7Chandra et al.
(2009); 8Pastorello et al. (2011); 9Van Dyk (2013); 10Fox et al. (2009); 11Fox et al. (2010); 12Fox et al. (2011); 13Stritzinger et al. (2012); 14Katsuda et al. (2014);
15Smith et al. (2017); 16Szalai et al. (2019a); 17Chandra et al. (2012); 18Andrews et al. (2011a); 19Fransson et al. (2014); 20Chandra et al. (2015); 21Katsuda et al.
(2016); 22Smith et al. (2015); 23Mauerhan et al. (2018a); 24Andrews et al. (2017); 25Taddia et al. (2020); 26Tartaglia et al. (2020); 27Kokubo et al. (2019); 28Graham
et al. (2014); 29Fraser et al. (2015); 30Graham et al. (2017); 31Pooley (2007); 32Stockdale et al. (2007); 33Kelley et al. (2007); 34Bietenholz & Bartel (2007); 35Schinzel
et al. (2009); 36Chandra et al. (2020); 37Bietenholz et al. (2014); 38Wellons et al. (2012); 39Vinkó et al. (2017); 40Pooley et al. (2019); 41Tinyanont et al. (2016);
42Margutti et al. (2017); 43Tinyanont et al. (2019b); 44Bietenholz et al. (2018); 45Fox et al. (2015); 46Inserra et al. (2016); 47Bochenek et al. (2018); 48Kotak et al.
(2009); 49Fabbri et al. (2011); 50Maguire et al. (2010); 51Weil et al. (2020); 52Mauerhan et al. (2017); 53Dhungana et al. (2016); 54Tinyanont et al. (2019a); 55Szalai
et al. (2019b).
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SN IIn, shows a quite similar behavior to that of SN 2005ip at
various wavelengths; however, there is a lack of data after
∼2000 days (except in the mid-IR).

Based on the results of the first extended Spitzer survey of
interacting SNe, Fox et al. (2013) also presented figures
summarizing parallel mid-IR, X-ray, and optical (R-band)

Figure 8. The same as in Figure 6, but using a linear timescale and zoomed-in to the first ∼1000 days of SN 2010jl (left) and SN 2015da (right).

Figure 9. Comparative evolution of X-ray and mid-IR fluxes of interacting SNe from our sample. Black circles indicate the X-ray fluxes interpolated to the epochs of
the mid-IR observations.
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evolution of several SNe IIn; however, most of those LCs
consist of only very few points.

In order to map similar correlations in our sample, we plotted
the parallel evolution of all six SNe where both mid-IR and
X-ray fluxes are available, and also calculated the IRX ratios
for these objects (see Figures 9 and 10). Unfortunately, the
amount and sampling of these data allow us to make only a
preliminary analysis. Based on that, it seems that in SNe
2004dk, 2005ip, and 2006jd (expected to have radiatively
heated pre-existing dust in their environments), all wavelengths
trace each other (as proposed by, e.g., Fox et al. 2011).

While in most cases, comparative analysis of mid-IR and
X-ray data was possible at epochs after ∼1000 days, it would
be very interesting to see similar analyses at earlier phases. The
only object with well-sampled mid-IR and X-ray data before
∼1000 days is the Type IIn SN 2010jl (see Figures 6 and
8–10). While SN 2010jl exhibits near-IR and mid-IR
rebrightening and a quite long plateau after ∼400 days, it is
preceded by an X-ray/Hα peak somewhere between 200 and
300 days. As previously noted (e.g., Fransson et al. 2014; Gall
et al. 2014; Sarangi et al. 2018; Bevan et al. 2020), an IR
excess before ∼400 days may be the consequence of heating of
pre-existing dust, while mid-IR flux at a later time may
originate either from new dust in the CDS and/or the ejecta or
from CSM dust. Sarangi et al. (2018) presented a comparative
analysis of mid-IR and X-ray LCs, and we complete that
comparison here with the addition of an Hα LC (adopted from
Fransson et al. 2014).

If we take into account general similarities between mid-IR
and near-IR and between X-ray and Hα (see above), we can
also find some further cases where early-time multiwavelength
evolution can be well traced. Two other SNe IIn, SN 2015da
(Tartaglia et al. 2020) and KISS15s (Kokubo et al. 2019), also
show mid-IR LC evolution similar to that of SN 2010jl in the
first ∼1000 days (up to the end of their data sets), probably
going through similar circumstellar and dust-formation

processes. In the case of SN 2015da, this is also strengthened
by the parallel evolution of Hα and mid-IR luminosities
(Figure 8 (right panel), adapted from Tartaglia et al. 2020).
In SNe IIn 2005ip and 2006jd, one can see long plateaus in

both the near-IR and X-ray/Hα ranges during the first several
hundred days, in accordance with their later-time LCs also
tracing each other (as described above).
There are also well-sampled near-IR/mid-IR and Hα LCs of

the Type II-P SNe 2004et and 2017eaw and of the Type II-P/L
SN 2013ej (see Figure 7). These LCs trace each other quite
well, during both their declining and their small rebrightening
phases (the latter ones can be seen at ∼800–1000 days). This
can be explained well by CDS dust formation described in
Section 3.1.4.
As a conclusion of this part, our preliminary studies show

that comparative analysis of long-term multiwavelength
(especially X-ray/Hα versus mid-IR) data sets is an essential
(and maybe the only really useful) tool to differentiate between
the existing dust forming and heating scenarios and thus to get
a complete picture of the physical processes going on in the
circumstellar environments of interacting SNe. We plan to
carry out a more detailed investigation of this topic, expecting
high-quality data in the near future (e.g., from approved JWST
and associated programs).

4. Conclusion

Here we have presented new Spitzer (3.6 and 4.5 μm)
photometry of 19 interacting SNe from various classes (18 of
them observed during our LASTCHANCE survey), together
with some nondetections. We also collected all previously
published data for studying the long-term mid-IR evolution of
these objects and for revealing the origin of this IR excess
(which can be observed for thousands of days in certain cases).
We can draw some conclusions regarding every studied type

of interacting SN. Assuming that the main source of mid-IR

Figure 10. IRX ratios for SNe presented in Figure 9.
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luminosity of SNe IIn is pre-existing dust, the mid-IR bright-
ness evolution of these objects further confirms the presence of
extended dense CSM in their close environments. At the same
time, in most cases, very late-time (2000 days) mid-IR fluxes
continuously decrease, indicating that CSM interaction ulti-
mately weakens, possibly at a predictable rate.

The detected, homogeneous mid-IR evolution may hint that
SNe Ia-CSM explode in very similar environments surrounded by
dense but less extended CSM than SNe IIn do. While further data
are necessary to reveal the true nature of SN Ia-CSM explosions,
the presented mid-IR LCs may hint that their progenitors form a
homogeneous class (contrary to SNe IIn), which also can support
their thermonuclear origin. Mid-IR data on the stripped-envelope
SNe in our sample support the idea that there can be detached
CSM shells around some of these objects. Delayed CSM
interaction may not begin for years, or even more than a decade,
after explosion. Mid-IR properties of intermediate-luminosity
interacting transients, just like their optical ones, are quite
heterogeneous. These results support the assumption that either
the progenitors, explosion mechanisms, or environmental circum-
stances of these objects may be quite different.

Comparison of long-term mid-IR LCs with those obtained in
other wavelength ranges (especially X-ray, Hα, and near-IR)
can be an efficient method to reveal otherwise hidden details of
the connection between CSM interaction and formation/
heating of ambient dust. Our analysis of multiwavelength data
sets of SNe, especially regarding mid-IR versus X-ray
luminosity evolution, supports previous results: some interact-
ing SNe (such as SNe 2004dk, 2005ip, and 2006jd) seem to
have large amounts of radiatively heated, slowly cooling pre-
existing dust in their environments, while others (such as SN
2010jl, but probably also SN 2015da or KISS15s) exhibit signs
of dust formation after explosion.

Our current study supports the idea that long-term mid-IR
follow-up observations can play a key role in a better
understanding of both pre- and post-explosion processes in
exploding stars and in their environments. While Spitzer, the
most effective tool that has been used for this purpose, is not
available anymore, we have good prospects for the near future.
Expected observations with JWST will have unique sensitivity
to cooler dust grains at wavelengths >4.5 μm and faint
emission from SNe even years after explosion that would have
gone undetected by Spitzer or any other mid-IR spacecraft. We
also showed that, in dusty SNe, near-IR (K-band) LC evolution
is quite similar to what we can see in the mid-IR. Thus, either
ground-based or (upcoming) near-IR space telescopes (e.g.,
NGRST) can be effectively used for monitoring warm SN dust
evolution, as well as in selecting appropriate targets for JWST
and for other top-class IR telescopes in the future.
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