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ABSTRACT 

A SOCIAL VULNERABILITY STUDY OF THE URBAN HEAT ISLAND 

EFFECT IN BALTIMORE AND ST. LOUIS 

Julia L. Heslin 

Extreme heat events (EHEs) are increasing in frequency, intensity, and duration with 
modern climate change. An urban heat island (UHI) is a phenomenon where built 
environments such as cities experience elevated temperatures compared to surrounding 
rural areas. The UHI effect exacerbates the consequences of EHEs, leaving those in cities 
generally more exposed to higher temperatures. The intra-urban variability within cities, 
both in terms of the physical environment and demographic characteristics, can potentially 
leave some populations more vulnerable to EHEs. This research focuses on intra-urban 
vulnerability to EHEs in two cities, Baltimore and St. Louis. The study uses remote sensing 
and GIS methods to measure the UHI effect, correlates temperature with demographic 
variables by block group, creates a score measuring populations’ sensitivity to EHEs, and 
assesses vulnerability through a heat vulnerability index. Results indicate relationships 
between exposure and sensitivity and how they relate to the vulnerability within the cities. 
Overall, there is no ubiquitous pattern of vulnerability that can be found in both cities. The 
results could be utilized by planners or policymakers to target vulnerable areas and 
implement mitigation and adaptive strategies to cope with the effects of EHEs unique to 
each city. 
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INTRODUCTION 

Background 

 The definition of vulnerability and its components vary	 across and within 

disciplines. A well-accepted vulnerability framework is defined in a report published by 

the Intergovernmental Panel on Climate Change (IPCC). In the report, the authors state 

that vulnerability serves as “a function of exposure, sensitivity, and adaptive capacity” 

(Cardona et al. 2014, 71). This definition is adapted from Wilhelmi and Hayden’s (2010) 

extreme heat vulnerability framework (Figure 1). 

 Within Wilhelmi and Hayden’s (2010) framework, exposure is composed of 

elements relating to the physical and environmental factors that contribute to a hazard, like 

climate variability, distribution of heat, and urban land use. Sensitivity encompasses the 

demographic and health inequities when it comes to responding to a hazard, like age, 

socioeconomic factors, and neighborhood stability. Finally, adaptive capacity extends 

beyond the quantitative data of exposure and sensitivity. Qualitative data at the household 

level to understand people’s knowledge, attitudes, and practices (KAP), household 

resources (like air conditioning access), social capital, and access to community resources 

(such as early warning systems) are important when considering vulnerability to climate-

related hazards like extreme heat events (EHEs). 

 EHEs are the leading cause of extreme weather-related fatalities in the United 

States (US) (CDC and EPA 2016). EHEs, along with other extreme weather events, are 

increasing in frequency, intensity, and duration (Perkins et al. 2012; Rahmstorf and 

Coumou 2012), likely the result of the changing climate (Luber and McGeehin 2008). It is 

predicted that EHEs have and will continue to increase in frequency, intensity, and duration 
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in the second half of the 21st century (Meehl and Tebaldi 2004; IPCC 2007, Perkins et al. 

2012). 

 Populations residing in urban areas are at higher risk for these EHEs due to the 

urban heat island (UHI) effect (CDC and EPA, 2016). UHIs, and surface urban heat islands 

(SUHIs) are phenomena where the ambient air temperature and land surface temperature 

(LST), respectively, in urban areas are higher than surrounding rural areas (Oke 1995). 

There are several factors contributing to temperature differences between rural and urban 

landscapes – the most important being land cover change. Currently, more than half of the 

US population live in cities (Uejio et al. 2011). As the urban population continues to grow, 

so does the importance of studying the UHI effect. 

 Demographic characteristics vary across and within urban areas. Variables 

pertaining to socioeconomic status, race or ethnicity, age, disability status, and household 

characteristics, amongst others, contribute to a population’s sensitivity to environmental 

hazards like extreme heat (Cutter et al. 2003, Johnson et al. 2012, Yoon 2012). Studies 

have shown that these sensitive populations can be disproportionately affected by the UHI 

effect, and are thus more vulnerable to EHEs (Harlan et al. 2007, Johnson et al. 2009; 

Buyantuyev and Wu 2010, Uejio et al. 2011, Harlan et al. 2013). 

Just as there are varying definitions vulnerability, so are the methods that measure 

it (Bao et al. 2015), including mathematical models or indices to integrate the components 

that contributes to an area’s vulnerability. While authors have explored the vulnerability to 

natural hazards (Borden et al. 2007) and EHEs (Stone et al. 2010) across cities in the US, 

there is limited research comparing variations of vulnerability within multiple cities. 
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Two good candidates for comparing the intra-urban variability of extreme heat 

vulnerability are Baltimore and St. Louis. These cities are comparable when considering 

physical geographic characteristics, as both are within the same climate region and 

latitudinal range, and have major water bodies located just to the east of them. Previous 

studies have also indicated that both Baltimore (Brazel et al. 2000) and St. Louis (Vukovich 

et al. 1976) are UHIs. Highlighting the areas of high exposure and sensitivity within these 

cities will indicate how similar or different these two cities experience EHEs and indicate 

potentially vulnerable block groups. This illustrates how the UHI effect varies across cities 

depending upon the patterns of exposure and sensitivity 

Statement of purpose 

 This paper will draw upon Wilhelmi and Hayden’s (2010) framework by 

associating LST with socioeconomic, population, and household characteristics to measure 

the exposure, sensitivity, and potential extreme heat vulnerability within Baltimore and St. 

Louis. In this study, exposure is measured by LST (which is exacerbated with the 

occurrence of EHEs) with sensitivity measured by a group of demographic variables 

(which influences how populations are adversely affected by EHEs). There are four main 

objectives to this research, outlined below: 

● Remotely sense the UHI for Baltimore and St. Louis by deriving LST for both cities;	

● Run bivariate correlation tests comparing LST with sensitivity variables;	

● Develop a sensitivity score by compiling the sensitivity variables in an additive model;	

● Visualize and quantify areas of vulnerability through an index encompassing exposure 

(LST) and sensitivity scores for each city.	
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The results from the analysis indicate the areas where mitigation strategies could 

potentially be implemented to reduce the effects of the UHI, thus diminishing the exposure 

to EHEs. 

	  



5 
	

LITERATURE REVIEW 

Introduction 

 This research builds upon several elements of extreme heat vulnerability that have 

been addressed by previous studies. The first element that will be addressed is vulnerability 

and its various contributing factors. These factors are outlined in Wilhelmi and Hayden’s 

(2010) extreme heat vulnerability framework. Following vulnerability is a review of EHEs 

and their impact on morbidity and mortality with an emphasis on city populations. Next is 

a review of UHIs, the factors driving urban climate, and the intra-urban variability of 

temperature that exists within cities. Finally, the study areas, Baltimore and St. Louis, are 

highlighted. The study areas discussion focuses on the demographic characteristics of 

Baltimore and St. Louis and previous extreme heat vulnerability studies centered around 

each of the cities. 

Vulnerability 

There are a number of frameworks and methods that have been applied within 

vulnerability studies relating to climate change. The IPCC presents a few different 

conceptual frameworks in its report (Cardona et al. 2014, 71). In relation to climate change 

adaptation, vulnerability is the confluence of exposure, sensitivity, and adaptive capacity 

(Cardona et al. 2014, 71) – a framework adapted from Wilhelmi and Hayden (2010), as 

seen in Figure 1. Other studies follow similar, if not the same, framework (Taubenbock et 

al. 2008; Romero-Lankao and Qin 2011). 

 Exposure. According to the IPCC, exposure “refers to the inventory of 

elements in an area in which hazard events may occur” (Cardona et al. 2014). In other 

words, if there are not any people located in an area where an extreme weather event has 
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occurred, then no exposure occurred. Exposure to climate-related hazards is a function of 

geography (CARE n.d.). For instance, an individual or a population living in an urban area, 

particularly those living in less vegetated and crowded parts of cities (as demonstrated in 

Huang et al. 2011), have a higher exposure to EHEs compared to suburban or rural 

populations. Exposure on its own does not constitute vulnerability. While vulnerability to 

an extreme weather event is contingent upon whether or not an individual or a population 

is exposed to it, other factors also contribute to that individual or population’s vulnerability. 

 Sensitivity. Another factor that contributes to vulnerability is sensitivity. Along 

with exposure, the IPCC defines sensitivity as “the physical predisposition of human 

beings, infrastructure, and environment to be affected by a dangerous phenomenon due to 

lack of resistance” (Cardona et al. 2014, 72). Variables pertaining to socioeconomic status, 

race or ethnicity, age, sex, and household characteristics, amongst others contribute 

towards a population’s sensitivity to environmental hazards like extreme heat (Cutter et al. 

2003). These demographic characteristics can vary across urban areas. Studies have shown 

that these sensitive populations can be disproportionately affected by the UHI effect, thus 

potentially more vulnerable to EHEs (Harlan et al. 2007, Johnson et al. 2009; Buyantuyev 

and Wu 2010, Uejio et al. 2011, Harlan et al. 2013). 

External drivers. Wilhelmi and Hayden (2010) explain that there are external 

factors which drive extreme heat vulnerability. These drivers can include climate change, 

urbanization, population change, and large-scale social or environmental disturbances 

(Figure 1). Urbanization, for instance, can influence the urban land use and UHI effect, 

affecting exposure to extreme heat. Wilhelmi and Hayden (2010) also explain that 
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socioeconomic perturbations, like economic recession, could affect the sensitivity of a 

population by decreasing neighborhood stability and socioeconomic advantage. 

 Adaptive capacity. Adaptive capacity is defined as “the ability of a system to 

adjust to climate change to moderate potential damages, to take advantage of opportunities, 

or to cope with the consequences” (IPCC 2001). Generally, highly sensitive populations 

also find themselves lacking the adaptive capacity to deal with the effects of EHEs and 

other hazards. Increasing adaptive capacity resources should be a priority of cities in order 

to adapt to the effects of the changing climate since sensitivity and exposure factors cannot 

or are nearly impossible to be modified. 

 Adaptation/response. Wilhelmi and Hayden (2010) explain that the different 

components that make up extreme heat vulnerability require various adaptation and 

responses in order to reduce that vulnerability. The authors suggest that their extreme heat 

vulnerability framework will target the specific indicators’ importance contributing to heat-

related mortality and morbidity.  

Extreme heat events 

	 EHEs, or heat waves, are prolonged periods of time of unusually hot weather 

conditions that have the potential to cause harm to human health (CDC n.d.). EHEs are the 

leading cause of hazard-related deaths in the United States (US) (EPA and CDC 2016). 

1,130 deaths as a result of extreme heat were recorded from 2006-2015 in the US, 

surpassing tornadoes, floods, and other extreme weather events (Figure 2). Similar trends 

can be found in previous decades (CDC and EPA 2016). 

Recent studies have explored mortality rates associated with EHEs, especially the 

Chicago heat wave of 1995 (Semenza et al. 1996; Whitman et al. 1997) and the European 
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heat wave of 2003 (Johnson et al. 2005; Fouillet et al. 2006; Robine et al. 2008). During 

these heat waves, spikes in mortality rates increased as a result of heat-related deaths. As 

scholars and scientists agree that these EHEs are expected to increase in frequency, 

intensity, and duration (Meehl and Tebaldi 2004; Luber and McGeehin 2008; Perkins et al. 

2012; Rahmstorf and Coumou 2012), the corresponding number of heat-related deaths can 

potentially increase as well. The effects of EHEs vary depending on spatiotemporal 

characteristics – particularly across the urban-rural divide. That is why it is important to 

study the implications of EHEs in urban areas due to the urban heat island (UHI) effect. 

Urban heat islands 

	 The UHI effect is characterized by elevated temperatures in urban areas compared 

to the surrounding rural areas (EPA 2017). While Oke (1997) found that the mean air 

temperature of a city with a population of at least one million people can be around 1-3°C 

warmer than the surrounding rural areas, some cities can experience temperatures up to 10-

15°C higher than nearby suburban and rural areas during the summer months (EPA 2008; 

Baltimore Office of Sustainability 2017). 

 This phenomenon was first described in 1799 by Noah Webster and his 

observations of New York City’s climate (Cerveny 2009) and corroborated by Luke 

Howard nearly 20 years later in his study of London’s climate (Howard 1833). Oke (1978) 

explained that the “inadvertent climate modifications associated” with urban areas can 

include the transformation of “radiative, thermal, moisture, and aerodynamic 

characteristics” (240). 

 Some of the main factors contributing to these inadvertent climate modifications 

include urban land cover change and anthropogenic heat (Imhoff et al. 2010; Zhou et al. 
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2014). Impervious surfaces including buildings, roads, and other heat-absorbing 

infrastructure contribute to these elevated air temperatures and LSTs (EPA 2008). The 

prevalence of impervious surfaces over vegetation decreases latent heat and increases 

sensible heat, thus contributing to increased temperatures in urban areas (Imhoff et al. 

2010). 

Intra-urban variability 

 Variations in temperature can also manifest within urban areas as they do across 

the urban-rural divide. When compared to the history of urban climatology, intra-urban 

variability of UHIs has only recently been studied. The intra-urban temperature variability, 

much like the urban-rural temperature divide, is governed by land cover composition (e.g. 

the juxtaposition of vegetated and built up areas) (Jenerette et al. 2016). While one study 

found that the intra-urban temperature differences were as large as or larger than the urban-

rural differences (Buyantuyev and Wu 2010), another concluded that there was little intra-

urban temperature variability (Scott et al. 2016). Differences between these results depend 

upon a number of factors including land cover variation and methods for gathering 

temperature measurements. 

Related sensitivity indicators have also recently been incorporated into the research 

on the intra-urban variability of the UHI effect, indicating specific areas within cities that 

are more vulnerable to EHEs. Scholars integrated a range of variables into these studies, 

including biological factors (Reid et al. 2012; Bernhard et al. 2015), pre-existing health 

conditions (Stafoggia et al. 2006), water use (Guhathakurta and Gober 2007), vacant land 

(Pearsall 2017), air conditioning (Smoyer 1998; Reid et al. 2012), and several 

socioeconomic indicators (Basu and Samet 2002; Uejio et al. 2011; Huang et al. 2011; 
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Jenerette et al. 2016). It is important to consider these vulnerability indicators within the 

context climate change so cities can implement appropriate mitigation and adaptive 

strategies in response to and anticipation of EHEs. 

Study areas 

 Baltimore, MD and St. Louis, MO are both mid-latitude cities found within the 

humid subtropical climate region, according to the Köppen classification system. They are 

both within the same latitudinal location with major water bodies located just to their east. 

Both cities have a history of racial segregation, particularly when it came to housing in the 

early 20th century (Baltimore City Planning Commission 2009; Cultural Resources Office 

of St. Louis 2018). The racial divide emanates largely between the white and black 

populations. Overall, black residents of both cities tend to live in substandard housing 

tenements (Baltimore City Planning Commission 2009; Cultural Resources Office of St. 

Louis 2018). This dichotomy can still be seen to this day. Descriptive statistics for 

Baltimore and St. Louis showcasing the demographic variables chosen for this analysis can 

be found in Table 1. 

 From the information presented in Table 1, Baltimore has a population about twice 

and an area about 40 square kilometers (or about 15 square miles) larger than the size of 

St. Louis. This also accounts for a higher population density in Baltimore over St. Louis. 

It is interesting to note the many demographic similarities that exist between the two cities. 

For instance, Baltimore and St. Louis have comparable populations in terms of age (under 

five years old and over 65 years old), housing characteristics (group quarters and renter-

occupied units), educational attainment (no high school diploma), language spoken 
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(limited English-speaking households), disability status (adults with a disability) and 

employment status (unemployed). 

 However, other demographic variables slightly differ between the cities. While 

some race and ethnicity variables are relatively similar for both cities (such as Asian, 

Hispanic, and other races), the white and black populations for Baltimore and St. Louis 

vary. Both cities have a higher black than white population; but the ratio of black to white 

population is much higher in Baltimore than in St. Louis. Additionally, Baltimore has a 

higher proportion of female headed households, housing units without a vehicle available, 

and higher average per capita income. On the other hand, St. Louis has a higher proportion 

of people living alone and number of families below poverty. It is important to note these 

differences in the demographic composition of the cities since they affect the overall heat 

vulnerability landscape as these components account for a city’s sensitivity. 

 The following paragraphs briefly introduce studies centered around the UHI effect 

in Baltimore and St. Louis, but a comprehensive meta-analysis of articles specifically 

relating to extreme heat and hazards vulnerability across different study areas can be found 

in Table 2. 

 Baltimore. Many studies have looked at the Baltimore region in relation to the 

drivers of the UHI effect. Imhoff et al. (2010) explored the relationship between impervious 

surface area (ISA) and LST across different biomes, using Baltimore as one of many cities 

considered. The authors found that ISA was the primary driver for temperature increase 

across all biomes. Zhou et al. (2014) evaluated the magnitude of this relationship 

specifically in the Gwynns Falls watershed (located in part of Baltimore City and County). 

These authors confirmed that an increase in imperviousness will increase LST and 
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increased vegetation will decrease LST. Scott et al. (2016) recently explored the intra-

urban variability of the UHI effect in Baltimore (with emphasis on Eastern Baltimore). 

While variability in this portion of the city was small, surface properties like vegetated or 

green spaces in areas dominated by impervious surface were found to be important in 

determining spatial variability. 

 Further research explores the relationship between social characteristics and the 

UHI effect in Baltimore. Huang et al. (2011) also studied the Gwynns Falls watershed UHI, 

but instead assessed the relationship between LST and socioeconomic variables (see Table 

2). Basu and Samet (2002) conducted an exposure assessment amongst elderly populations 

in Baltimore (see Table 2).  

 St. Louis. There appears to be little research regarding the UHI in St. Louis. 

Early studies have examined and confirmed that St. Louis is a UHI (Vukovich et al. 1976; 

Shreffler 1978). There have been, however, a few studies on excess deaths from extreme 

heat in St. Louis. Clarke (1972) discussed the relationship between heat-related mortality 

and urban structure in St. Louis. He noted that almost half of deaths during the heat wave 

of 1966 were caused by excessive heat. A later study by Smoyer (1998) built upon this 

argument by comparing mortality rates between the 1980 and 1995 heat waves in the city. 

She examined how changing population characteristics (specifically elderly populations) 

influenced the mortality rates in St. Louis. While she found that population decreased 

between these two heat wave events, the overall proportion of these highly sensitive groups 

(elderly population) increased slightly. 

 A good deal of research regarding the St. Louis UHI focused on various 

meteorological changes like wind (Draxler 1986), thunderstorm (Rozoff et al. 2003), and 
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precipitation changes (Dettwiller and Changnon 1976) due to the urban environment. 

Despite the depth of the St. Louis UHI literature, there is limited research regarding 

vulnerability to the UHI effect in St. Louis. 

 Comparison of cities. There is some research pertaining to the UHI effect and 

extreme heat comparing two or more cities. While Matson et al. (1978) used satellite 

imagery to detect the UHI effect in Baltimore and St. Louis, there were no considerations 

for intra-urban variability and vulnerability. Brazel et al. (2000) conducted a comparative 

study of the UHI effect in Baltimore and Phoenix. While the study found population density 

to be positively associated with temperature, the authors did not consider specific 

sensitivity metrics. Uejio et al. (2011) considered both Phoenix and Philadelphia in their 

vulnerability analysis. However, their study utilized different exposure variables (heat 

distress in Phoenix and heat mortality in Philadelphia) to determine vulnerability within 

the two cities (see Table 2). This study of Baltimore and St. Louis integrates elements from 

previous studies to create a new methodological framework that can be applied to other 

cities.	  
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DATA 

Data sources 

 Remotely sensed satellite imagery for both study areas was derived from USGS 

EarthExplorer, an online tool used to search and download remotely sensed images. 

Landsat 8 data were selected for this study. Imagery from this satellite was selected because 

of widespread use in comparable studies (Huang et al. 2011; Johnson et al. 2012; Harlan 

et al. 2013), relatively fine resolution, and the inclusion of thermal infrared sensor (TIRS) 

data. Metadata for selected imagery are found in Table 3. 

 American Community Survey (ACS) data were derived from the US Census 

Bureau. The ACS is a recurring survey providing annual population estimates in between 

the release of the decadal Census survey. Some scholars have begun to incorporate ACS 

data in their social vulnerability studies in lieu of outdated Census information (Aubrecht 

and Özceylan 2013; Mitchell and Chakraborty 2014; Pearsall 2017; Nayak et al. 2017). 

Geodatabases of 2011-2015 5-year estimates by block group, which included detailed 

tables and corresponding feature classes, were downloaded for Maryland and Missouri. 

Criteria for data selection 

 Satellite imagery was selected contingent upon various conditions. Imagery was 

from summer months was selected as vegetation is most prominent and abundant during 

this time of year, an important precondition when conducting image analyses. Imagery with 

less than 10% cloud cover was also selected to ensure that the study areas are free of clouds. 

 Socioeconomic variables were chosen primarily based on Cutter et al.’s (2003) 

social vulnerability metrics and concepts as well as previous UHI and heat vulnerability 

studies (Reid et al. 2009; Huang et al. 2011; Mitchell and Chakraborty 2011; Uejio et al. 
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2011; Pearsall 2017). Table 2 outlines the sensitivity metrics and corresponding variables 

taken from the ACS. Both datasets were taken from 2015 to ensure temporal consistency. 

Data preparation 

 Landsat imagery was imported in TerrSet, an integrated GIS and remote sensing 

software developed by Clark Labs (Clark University) for monitoring and modeling for 

sustainable development. The imagery data for both cities were imported by converting the 

multispectral bands to dark-object subtraction reflectance, leaving the thermal bands in 

their raw digital numbers, necessary for the calculation of land surface temperature in later 

analyses. 

 ACS data were prepared in ArcGIS. City block groups were selected and exported 

feature classes for Baltimore and St. Louis. Selected sensitivity variables from the detailed 

tables were joined from the detailed tables to their respective city feature classes by their 

unique GEOID fields. Some variables required ancillary calculations to derive the 

appropriate variable raw values, and all required to be converted to percentages. Table 3 

lists each of the variables, a description of each, and how they were derived. 
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METHODS 

Objective 1: Deriving LST for Baltimore and St. Louis 

The normalized difference vegetation index (NDVI) while a measurement of 

greenness, is also a major indicator of urban climate (Yuan and Bauer 2007). NDVI is also 

necessary to calculate as it is used to derive emissivity. Emissivity is a surface’s ability to 

radiate thermal energy. One can expect that land surface emissivity, unlike that of a water 

body, varies with land cover (Yu et al. 2014). The emissivity is derived using the thermal 

band from the Landsat imagery and NDVI, which is needed when calculating LST. 

NDVI and emissivity were calculated in TerrSet using a macro model to automate 

the tasks. The following is the script from the .IML macro file that calculates NDVI and 

emissivity for the study areas: 

vegindex x 2*xndvi*[band4]*[band5] 
display x a*xndvi*ndvi*y 
reclass x i*xndvi*xtemp1*2*0.995*-1.000*-0.185*0*-0.185*1.000*-9999*2 
display x a*xtemp1*quant*y 
reclass x i*xndvi*xtemp2*2*0*-1.000*-0.185*0.970*-0.185*0.157*0*0.157*1.000*-9999*2 
display x a*xtemp2*quant*y 
reclass x i*xndvi*xtemp3*2*0*-1.000*0.727*0.990*0.727*1.000*-9999*2 
display x a*xtemp3*quant*y 
reclass x i*xndvi*xtemp4*2*0*-1.000*0.157*0*0.727*1.000*-9999*2 
display x a*xtemp4*quant*y 
reclass x i*xtemp4*xtemp5*2*0*0*0.00001*1*0.00001*1.000*-9999*1 
display x a*xtemp5*quant*y 
transform x xtemp4*xtemp6a*2 
display x a*x11temp6a*quant*y 
scalar x xtemp6a*xtemp6b*3*0.047 
display x a*xtemp6b*quant*y 
scalar x xtemp6b*xtemp6c*1*1.0094 
display x a*xtemp6c*quant*y 
overlay x 3*xtemp5*xtemp6c*xtemp7 
display x a*xtemp7*quant*y 
overlay x 7*xtemp1*xtemp2*xetemp1 
display x a*xetemp1*quant*y 
overlay x 7*xtemp3*xetemp1*xetemp2 
display x a*xtemp7*quant*y 
overlay x 7*xtemp7*xetemp2*x11emissivity 
display x a*xemissivity*quant*y 
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The derived emissivity raster was used to calculate the LST using TerrSet’s thermal 

function. The thermal function provides default settings for both Landsat 4 and 5 satellite 

data; however, TerrSet does not provide default values for Landsat 8 imagery. The offset, 

gain, K1, and K2 metrics need to be input manually as well. Table 4 outlines the values 

taken from the Landsat 8 metadata file needed to perform the thermal function. 

Once LST was derived for each of the scenes, the rasters were exported from 

TerrSet as an Esri binary float format, ensuring compatibility with the ArcGIS platform. 

Appropriate project parameters also needed to be assigned for each raster before adding 

the data to ArcGIS. The raster datasets were then extracted by the corresponding city 

boundary. 

The zonal statistics as table tool in ArcMap was used to calculate the mean LST for 

the block groups of the cities. The tables were then joined to their respective city feature 

class in order to symbolize and classify these data. Mean LST by block group were 

visualized on both continuous and classified scales. Five classes of LST (representing 

temperatures from very low to very hot) were classified based on the quantile classification 

method, resulting in relatively equal amounts of block groups per class. 

Objective 2: Bivariate correlation tests 

 In SPSS, mean LST and all sensitivity variables were assessed for normality using 

the Shaprio-Wilk test. This test was chosen due to the relatively small amount of block 

groups (n) for each of the cities. The Shaprio-Wilk test for both cities indicated that overall, 

the data were not normally distributed. Therefore, mean LST and percentages of all 

sensitivity variables were correlated with each other in a two-tailed Spearman’s rho 

correlation test. SPSS flagged significance levels at 90, 95, and 99% for each correlation 
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value. Correlograms for the each of these correlation matrices were created in R to visualize 

the direction, magnitude, and significance level of the bivariate relationships. 

Objective 3: Developing a sensitivity score 

 The sensitivity variables were normalized on a zero to one scale. The following 

equation was used to derive the normalize values (Inostroza et al. 2016): 

! − !#$%
!#&' − !#$%

 

 Two of the variables – percent of white population and per capita income – are 

important to consider, but are negatively associated with levels of sensitivity (in other 

words, higher percentages of white population and wealthier areas are less sensitive to 

climate-related hazards). These variables, therefore, needed to be inversely normalized so 

that the higher values reflected higher levels sensitivity. The following equation 

accomplished this: 

1	–	 ! − !#$%
!#&' − !#$%

 

 A sensitivity score was created that combines all normalized sensitivity variables 

through an additive model. An additive model was chosen as previous studies have utilized 

this method in the development of vulnerability indices (Cutter et al. 2003; Harlan et al. 

2013). Very few studies have implemented a multiplicative model to some capacity in 

vulnerability research (e.g., Rey et al. 2009), but the application of multiplicative models 

when composing a sensitivity score is very limited. Other spatial statistics methods for 

composing a vulnerability index include a principle components analysis (PCA) (Reid et 

al. 2009; Harlan et al. 2013; Johnson et al. 2012; Wolf and McGregor 2013; Inostroza et 
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al. 2016) and regression analyses (Johnson et al. 2009; Uejio et al. 2011; Loughnan et al. 

2012; Declet-Barreto et al. 2016). However, an additive model considers all variables 

without assumptions whereas some variables would potentially be excluded in a PCA or 

regression model. 

Objective 4: Visualizing and quantifying vulnerability 

Visualizations of vulnerability were created through maps of the exposure and 

sensitivity scores by classifying the normalized values into quintiles to derive very low, 

low, medium, high, and very high risk. Bivariate choropleth maps were also created to 

visualize the potential vulnerability (exposure and sensitivity) within the cities. Methods 

for bivariate map creation were adapted from Stevens (2015). Specific block groups were 

highlighted to indicate areas of low exposure and high sensitivity, high exposure and low 

sensitivity, and high exposure and high sensitivity – the most vulnerable of these 

categories.	  
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RESULTS 

LST for Baltimore and St. Louis 

 Visualizations of LST can be found in Figures 3-6. Higher LSTs tend to be found 

towards the center of the cities, clustering near their respective water bodies, and generally 

gets cooler approaching the city boundaries. For instance, the warmest block group in 

Baltimore with a mean LST of 40.2°C is located in the Patterson Park neighborhood. 

Interestingly enough, the warmest block group in Baltimore is located very close to an 

anomalously cool block group in the center of the city, Patterson Park (33.4°C). The reason 

for Patterson Park’s relatively lower temperature is due to the vegetation that promotes 

cool conditions. The coolest block group is located in Franklintown, bordering the city 

boundary on the west side, with a mean LST of 28.5°C. However, there is an anomalously 

warm block group that borders Baltimore’s western boundary. As the neighborhood name 

implies, a block group within Reisterstown Station has a metro station stop located within 

it, with a temperature of 37.2°C. 

Though there is a clear clustering of high temperatures in central St. Louis, 

temperature distribution tends to be quite variable across the block groups. However, there 

are some block groups that deviate from the overall pattern. For instance, the block group 

in the Forest Park neighborhood, though surrounded by high temperature block groups to 

the south and east, was recorded at 33.6°C. As with Patterson Park in Baltimore, the green 

space creates cooler temperatures. Conversely, two block groups in the northern part of the 

city within a neighborhood identified as Mark Twain I-70 Industrial are anomalously warm 

(40.3°C and 40.9°C) because of the impervious surface cover within those block groups. 
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It is interesting to note the spatial patterns of LST around water bodies within these 

cities. While one may hypothesize that the harbor and the Mississippi river would mitigate 

the effects of the UHI in both cities, the development that is concentrated near these water 

bodies contribute to the increased LST in those block groups. All of these maps, thus, 

indicate the intra-urban variability that exists within UHIs. 

Bivariate correlation tests 

 Results from correlation analyses can be found in Tables 7-10. The Shapiro-Wilk 

tests for normality for both Baltimore (Table 7) indicated that these data were not normally 

distributed. Based on these results, a two-tailed Spearman’s rho was the appropriate 

bivariate correlation analysis to run on Baltimore (Table 8). Similar results for the Shapiro-

Wilk and Spearman’s rho analyses for St. Louis (Tables 9 and 10). These results are also 

visualized for Baltimore (Figure 7) and St. Louis (Figure 8) as correlograms. The shade 

indicates the strength or magnitude of the correlation coefficient while the hue indicates 

the direction of the relationship. Significance levels are flagged at 95 (*), 99 (**) and 99.5% 

(***) for each correlation. 

 There is a similar significant relationship between mean LST and the sensitivity 

variables for both Baltimore and St. Louis. These significant variables include percent of 

population with no high school diploma, percent of families below poverty, per capita 

income, percent renter-occupied housing units, and percent of households without access 

to a vehicle. All of these variables are positively correlated with mean LST except for per 

capita income, which is negatively correlated, and per capita income for St. Louis, which 

was very weakly positively correlated with LST. These significant relationships are 

stronger in Baltimore than they are in St. Louis. 
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Sensitivity score 

 Small multiple maps were created of each sensitivity variable, separated into 

quintiles, to indicate the various levels of sensitivity (Figures 9 and 10). There is a clear 

divide between black and white populations in both Baltimore and St. Louis. Other 

variables like female-headed households, populations without a high school diploma, and 

families below poverty align relatively closely with the distribution of black populations 

in both cities. Additionally, per capita income and white population followed a similar 

pattern for both cities. All sensitivity variables were compiled into the sensitivity score and 

visualized in Figures 11 and 12. The distributions of LST did not correspond to patterns of 

overall sensitivity. However, the north central area of Baltimore clearly exhibited a low 

exposure/low sensitivity pattern, while the northern part of St. Louis showed a low 

exposure/high sensitivity area. 

Visualizing and quantifying vulnerability 

 Assessing vulnerability requires the combination of both exposure and sensitivity. 

Exposure maps were created (Figures 13 and 14) before overlaying it with sensitivity. The 

results of the vulnerability maps are found in Figures 15 and 16. The classes can be broken 

down into high exposure/high sensitivity (purple), high exposure/low sensitivity (teal), and 

low exposure/high sensitivity (pink). Tables 11 and 12 indicate the top five block groups 

from each of these classes with the associated mean LST and sensitivity variables. 

Areas of high exposure/high sensitivity have populations that are most vulnerable 

to extreme heat and EHEs than all other groups. In Baltimore, these block groups are 

somewhat dispersed and surrounds the very center of the city. In St. Louis, there are three 

different clusters of these highly vulnerable block groups (in this case, clustering does not 
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refer to the statistical clustering of block groups, but rather the visual pattern they convey) 

around the northwest, eastern central, and south central portions of the city. 

High exposure/low sensitivity block groups may not currently be vulnerable, but 

could indicate areas of concern if the demographic make-up of these block groups were to 

change. The spatial pattern of high exposure/low sensitivity block groups within Baltimore 

tend to be more homogeneous than of high exposure/high sensitivity. The high 

exposure/low sensitivity block groups are found around the Canton neighborhood. In St. 

Louis, these block groups are not visibly clustered around a particular area, but generally 

found in the central and south portions of the city. 

Low exposure/high sensitivity may also not be of concern currently, but may 

become vulnerable if these are become more densely populated or built-up, increasing the 

magnitude of the UHI for these block groups. These blocks are very separated within 

Baltimore, but are found dispersed outside of the city’s center. In St. Louis, these block 

groups are also generally dispersed, mostly located in the northern portion of the city.  
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DISCUSSION 

Summary of results 

 These results build upon the results found in previous studies. Like other 

researchers have noted, the analyses of exposure (LST) indicate the intra-urban variability 

of temperature that exists within UHIs (e.g. Harlan et al. 2007; Huang et al. 2011; Wolf 

and McGregor 2013). Baltimore and St. Louis also exhibit intra-urban variability of 

sensitivity metrics as well, visualized in the small multiple maps (Figures 9 and 10). In 

some cases, certain variables are shown to have similar patterns with each other (e.g. black 

population and families below poverty). However, these positive associations between 

sensitivity variables are not always the same across all block groups. Without the inclusion 

of an additive model in the analysis, the combinations of all sensitivity variables would not 

have been included (see Aubrecht and Özceylan 2013). 

 From the results of the top five high exposure/high sensitivity block groups for each 

city, there seem to be certain sensitivity variables that govern vulnerability. In Baltimore, 

housing and occupant characteristics like female headed households, people living alone, 

renter-occupied units, and units without a vehicle present all seem to contribute to high 

levels of vulnerability. Families below the poverty line and black populations also played 

an important role in determining vulnerability for highly exposed and highly sensitive 

block groups – so much so that one block group in the top five had the highest percentage 

of families below poverty while another had the highest percentage of black population. 

 There are some similarities amongst the top five most vulnerable block groups in 

St. Louis in terms of the sensitivity variables contributing to vulnerability. Families below 

poverty, units without a vehicle, and especially renter-occupied units are important 
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variables in determining vulnerability for St. Louis. Race and ethnicity did not play a 

particularly significant role in determining vulnerability for St. Louis as it did with 

Baltimore. Age, whether very young or elderly populations, did not contribute too much 

towards vulnerability in either of the cities. With this information, it can be concluded that 

vulnerability for these two cities stems from the nature of the household or housing unit as 

opposed to the demographic and biophysical characteristics of the occupants.  

 As noted, income seemed to be an important factor in determining vulnerability as 

it has in previous studies. Families below poverty greatly influenced vulnerability to 

extreme heat in both cities, which aligns with the results from Harlan et al.’s (2007) study 

on the UHI in Phoenix. In it, the authors found that median household income was 

negatively associated with LST, indicating that richer communities tended to experience 

lower temperatures. The same can be said about Huang et al.’s (2011) study, which noted 

a negative relationship between LST and median household income and positive 

relationship between LST and poverty status. 

 Though adaptive capacity was not measured in this analysis, the results from the 

sensitivity analysis can suggest how vulnerable block groups might cope with extreme heat. 

For instance, income metrics could influence a person’s access to air conditioning as it 

would cost money for to maintain the cooling system (especially in older houses). Rinner 

et al. (2010) considered the age of the housing units as a proxy for air conditioning 

information. Additionally, access to cooling centers may be curbed due to limited or no 

vehicle access. In a scenario where an individual would have to take public transit to a 

cooling center would only increase his/her exposure to extreme heat having, as she/he 

would need to travel outside. However, these are only assumptions and would need to be 
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confirmed in further research endeavors by gathering the necessary data instead of relying 

on proxy data. 

 Within the context of Wilhelmi and Hayden’s (2010) framework, specific elements 

within the extreme heat vulnerability framework were highlighted in this analysis. 

Urbanization and urban development served as an external driver of vulnerability for both 

Baltimore and St. Louis. While this research discussed the potential for exposure to EHEs 

as well as the UHI effect, exposure was measured by LST considering the intra-urban 

distribution of heat. Sensitivity metrics were measured based on age and various 

socioeconomic factors. Though adaptive capacity was not measured, household and 

community resources could be impacted by the socioeconomic landscape of the cities. The 

results from the analysis would allow planners and policymakers to make the appropriate 

decisions in terms of adaptation and response practices to either mitigate or prevent further 

heat related morbidity and mortality impacts from extreme heat.  

Comparison of results 

 These results offer some different conclusions when compared to previous, 

comparable studies. For instance, in Huang et al.’s (2011) study of heat vulnerability in the 

Gwynns Falls watershed, the magnitude and direction of some variables differ from the 

results of this study. While the results followed the same general pattern, most correlation 

coefficients in Huang et al.’s (2011) study were higher in magnitude compared to those in 

this study. This can be explained by the study areas delineated for each study. While Huang 

et al. (2011) looked into the inequitable heat distribution across an entire watershed (which 

encompassed both urban and rural areas), this research focused on the variability within 

the city itself. 
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In another study focused on Baltimore, Basu and Samet (2002) focused specifically 

on the exposure of elevated LSTs amongst elderly populations within the city. While the 

study quantified the variability of demographic characteristics amongst these elderly 

populations, there was no method to indicate the spatial variation of these populations 

within the city. This study considered elderly populations amongst many other sensitivity 

variables to understand the distribution of sensitivity within Baltimore. Despite these 

comparisons amongst studies within Baltimore, no studies have looked at sensitivity to 

EHEs or compiled a vulnerability index for St. Louis. This research offers the first glimpse 

into the sensitivity and vulnerability of St. Louis to EHEs. 

Limitations of the study 

 While this study expanded upon previous extreme heat vulnerability studies 

relating to heat stress and the UHI effect, there are some components of this study that 

could be addressed in future research. One of the most obvious was the lack of an adaptive 

capacity component that would indicate the cities’ overall vulnerability as opposed to just 

potential vulnerability. Reid et al. (2009), for instance, have considered the factors like air 

conditioning access to indicate adaptive capacity resources in their study. These data were 

not available at the same resolution and time frame to do an appropriate comparative 

analysis at the block group level. The incorporation of multilevel statistical analyses 

encompassing more variables available at various scales could be implemented in future 

studies. This study did not also consider the possibility of how the UHI within these two 

cities changed over time, as some previous UHI studies have noted. If given more time, 

these limitations could be addressed. 
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Further research 

 Future studies should consider comparing intra-urban vulnerability to the UHI 

effect across different cities to understand how patterns of exposure, sensitivity, and 

vulnerability vary. Baltimore and St. Louis showed similar spatial relationships in terms of 

the distribution of heat and the divide amongst sensitive populations. For instance, higher 

LSTs in both cities were clustered near the center of each city. Additionally, the racial and 

economic divide within both cities was indicated by the clustering of block groups in 

certain sensitivity variable maps. Scholars should consider implementing surveys to 

acquire information on adaptive capacity resources that are not currently available, for 

these cities and others. This information will contribute to the understanding of how certain 

block groups can cope with and manage the effects of climate-related hazards such as 

EHEs. Further, scholars may also consider data on heat-related hospital admittances or heat 

mortality and how those relate to sensitivity, as other studies have considered (see Uejio et 

al. 2011 and Navak et al. 2017). 

For planners and policymakers 

	 This study could serve as a resource for the planners and policymakers of these 

cities. Perhaps this study offers these decision makers new variables to consider when 

preparing for and responding to EHEs. The areas identified as highly vulnerable could be 

targeted to implement mitigation strategies in order to diminish the effects of the UHI. 

Methods like cool and green roofs, vegetation, community pools, and cooling centers are 

just a few ways that cities can help reduce the effects of EHEs. With vacant buildings being 

an issue for both cities due to their shrinking populations, transforming or repurposing 

those areas to mitigate the UHI effect would be a good starting point. The concept of urban 
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community gardens would not only be a way of cooling areas, but it could also potentially 

bring economic revenue and provide good food to food insecure areas.	  
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CONCLUSIONS 

This study focused on the potential vulnerability to EHEs within two cities found 

to be UHIs – Baltimore and St. Louis. In this study, remotely sensing the UHI by deriving 

LST for each city by block group was achieved. The mean LST values by block group were 

correlated with indicators of sensitivity to EHEs. A sensitivity score was developed in an 

additive model, combining all sensitivity variables. Finally, areas of vulnerability were 

visualized and quantified through an EHE vulnerability index. 

Correlation results indicated statistically significant relationships between mean 

LST and the following in both cities: percent of population with no high school diploma, 

percent of families below poverty, per capita income, percent renter-occupied housing 

units, and percent of households without access to a vehicle. All sensitivity variables along 

with exposure (or mean LST) were combined to reveal the high exposure/high sensitivity 

block groups. While these block groups are generally located just around the urban center 

of Baltimore, there is no real pattern of the distribution of these block groups in St. Louis. 

This research built upon the already well-established field of UHIs and 

vulnerability by integrating methods and considerations that were not encompassed in one 

study alone. As EHEs become more pervasive, and as urban populations grow, the 

ramifications of these climate-related hazards will affect more and more people. These 

hazards are an important topic concerning the relationship and dichotomy of nature and 

society. Though it is taught that Mother Nature does not discriminate, discrimination has 

become institutionalized in society. Not only do we need to make efforts to mitigate and 

adapt to the changing climate; but we must also make strides to change societal standards 

that relegate certain populations as highly sensitive. Until then, we all put ourselves at risk.
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Table 1. Descriptive statistics, Baltimore and St. Louis 

  Baltimore St. Louis 
Total population 622,454 317,850 

Area (km2) 210.606849 171.10734 

Population density (persons/km2) 2955.525915 1857.605875 

Social variables (%)     

Under 5 years old 6.67 6.70 

Over 65 years old 12.06 11.22 

White 30.31 45.75 

Black/African-American 62.84 47.68 

Asian 2.57 2.84 

Other race 6.55 6.35 

Hispanic 4.58 3.73 

Female-headed households 22.36 17.88 

Living alone 39.23 44.39 

Group quarters 3.94 3.47 

Renter-occupied units 43.18 44.59 

No vehicle available 24.31 17.24 

No high school diploma 15.71 15.89 

Limited English-speaking households 2.15 2.23 

Families below poverty 18.96 21.70 

Per capita income (average $) 24986 23158 

Adults with a disability 18.10 18.09 

Unemployed 8.08 8.02 



42 
	

Table 2. Meta-analysis of relevant extreme heat vulnerability case studies 

Author, 
year 

Study 
area Data Methods Results 

Aubrecht 
and 

Özceylan 
2013 

National 
Capital 
region 
(Washington, 
DC and 
surrounding 
metropolitan 
area) 

Global Historical Climatology Network (GHCN) 
(heat wave frequency and duration), National Land 
Cover Database (land cover patterns), American 
Community Survey (ACS) census block estimates 
(sensitivity variables) 
 
Social variables: 
Ratio of elderly people 65 years of age and older; 
Ratio of elderly householders that live alone; 
Ratio of poverty status of individuals in the past 12 
months; 
Ratio of households that do not speak English well 
or at all; 
Ratio of individuals 25 years and older with less 
than a high school education 

Heat stress index 
(HSI) of heat wave 
day counts; heat 
stress vulnerability 
index (HSVI) with 
normalized 
vulnerability 
indicators 
(unweighted 
quantitative 
aggregation); heat 
stress risk index 
(HSRI) created by 
multiplying two 
previous indices 

Less heat wave days 
in north, northwest 
portion of region 
compared to south, 
southeast; urbanized 
blocks generally 
more sensitive than 
others; HSRI 
indicates that 
Washington, DC 
accounts for majority 
of highly vulnerable 
blocks 

Basu and 
Samet 
2002 

Baltimore, 
MD 

Participant data from a group of 42 elderly (65 
years and older) individuals (body and ambient 
temperature, heart rate, activity level, demographic 
information, survey questions) 

Individual linear 
regressions between 
body temperature, 
heart rate, activity 
level, and ambient 
temperature 

Positive association 
between body 
temperature and 
ambient temperature, 
yet no relationship 
between heart 
rate/activity level and 
body or ambient 
temperature; 
while demographic 
information was 
collected, it was not 
analyzed against 
ambient temperature 

Cutter et 
al. 2003 

United States County-level census data (social data) 
 
Social variables: 
Median age; 
Per capita income; 
Median dollar value of owner-occupied housing; 
Median rent; 
Number of physicians per 100,000 population; 
Vote cast for president (percent voting for leading 
party [Democrat]); 
Birth rate; 
Net international migration; 
Land in farms as a percent of total land; 
Percent African-American; 
Percent Native American; 
Percent Asian; 
Percent Hispanic; 
Percent of population under five years old; 
Percent of population over 65 years old; 
Percent of civilian labor force unemployed; 
Average number of people per household; 
Percent of households earning more than $75,000; 
Percent living in poverty; 
Percent renter-occupied housing units; 
Percent rural farm population; 
General local government debt revenue; 
Percent of population 25 years or older with no high 
school diploma; 
Number of housing units per square mile; 
Number of housing permits per new residential 
construction per square mile; 
Number of manufacturing establishments per square 
mile; 
Earnings in all industries per square mile; 

Factor analysis of 
social variables; 
additive model 
combining all factors 
creating a social 
vulnerability index 
(SoVI) 

Most vulnerable 
counties appear in the 
southern half of the 
nation (regions with 
greater ethnic 
inequality and rapid 
population growth); 
weak, negative 
relationship between 
frequency of 
presidential disaster 
declarations and 
higher SoVI scores 
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Number of commercial establishments per square 
mile; 
Value of all property and farm products sold per 
square mile; 
Percent of the population participating in the labor 
force; 
Percent employed in primary extractive industries 
(farming, fishing, mining, and forestry); 
Percent employed in transportation, 
communications, and other public utilities; 
Percent employed in service occupations; 
Per capita residents in nursing homes; 
Per capita number of community hospitals; 
Percent population change; 
Percent females; 
Percent female-headed households, no spouse 
present; 
Per capita Social Security recipients 

Harlan et 
al. 2007 

Phoenix, AZ Landsat 7 ETM+ (vegetation abundance and LST), 
digital elevation model (slope and elevation), 
census tract data (population characteristics), 
interview data from households (housing quality 
and upkeep) 
 
Social variables: 
Population density; 
Median income; 
Percent Hispanic; 
Year house was built 

Creation of human 
thermal comfort 
index (HTCI); 
Pearson correlation 
analysis; bivariate 
linear regression 
analysis between 
social stratification 
and local 
temperatures 

Correlations between 
social variables and 
temperature were 
higher than some 
environmental 
variables; regression 
results showed for 
every 0.5°F decrease 
in temperature, there 
was a $10,000 
increase in median 
income (affluent 
people “buy” more 
favorable 
microclimates) 

Huang et 
al. 2011 

Gwynns 
Falls 
Watershed 
(Baltimore 
City and 
County, MD) 

Landsat 7 ETM+ (LST), census block groups 
(sensitivity data) 
 
Social variables: 
Percentage of households in a block group which 
have an income below the poverty line; 
Annual household median income; 
Percentage of people in a block group who received 
a bachelor’s degree; 
Percentage of people in a block group who received 
less than nine-years of education; 
Percentage of people in a block group who are 
White; 
Percentage of people in a block group who are older 
than 65; 
Percentage of households in a block group which 
have only one person; 
Total crime index of a block group 

Pearson correlation 
between LST and 
social variables; 
mapping LST and 
social variables to 
indicate vulnerable 
“hot spots” 

Higher LST 
correlated with low 
income and 
education, large 
proportion of ethnic 
minorities, elderly, 
impoverished, and 
high crime risk; 
most vulnerable “hot 
spots” found within 
city’s boundary 

Inostroza 
et al. 2016 

Santiago, 
Chile 

Landsat TM/ETM+ (built up surfaces, vegetation, 
LST), Instituto Nacional de Estadistica de Chile 
census tracts (sensitivity and adaptive capacity 
data), Mapcruzin (adaptive capacity data) 
 
Social variables: 
Inhabitants per hectare above 60 years old; 
Inhabitants per hectare below 5 years old; 
Inhabitants per hectare handicapped; 
Inhabitants per hectare single; 
Inhabitants per hectare with lower education; 
Inhabitants per hectare without a permanent 
employment 

Principle 
components analysis 
(PCA); Pearson 
correlation analysis; 
summatory model 
combining exposure, 
sensitivity, and 
adaptive capacity 
variables using 
weighted variance 
from principle 
components; Anselin 
Local I Moran 
cluster analysis  

Clear pattern of 
exposure based on 
LST distribution; 
various spatial 
patterns of exposure, 
sensitivity, and 
adaptive capacity; in 
general, higher 
exposure and lower 
adaptive capacity 
result in high HVI 
clusters 

Nayak et 
al. 2017 

New York 
State 
(excluding 
New York 
City) 

National Land Cover Database (environmental 
data), heat stress emergency department visits from 
NYS Dept. of Health; American Community 
Survey census tracts (social data) 
 

Spearman’s 
correlation between 
social variables; 
PCA; 

Most variables were 
positively correlated 
with each other; 
four components: 
social/language, 
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Social variables: 
Percentage population that is Hispanic; 
Percentage population that is foreign born; 
Percentage population who speak English less than 
‘very well’; 
Percentage population with income below poverty 
level; 
Percentage population that is Black; 
Percentage population over 65 years of age; 
Percentage population over 65 years of age and 
living alone; 
Percentage population (18-64 years) that has a 
disability; 
Percentage population (18-64 years) that are 
unemployed; 
Percentage of houses built before 1980; 
Density of housing units per square mile 

creation of heat 
vulnerability index 
(HVI) based on 
principle 
components; 
comparison of heat 
stress cases with HVI 
score 

socio-economic, 
environmental/urbani
city, social 
isolation/elderly; 
most vulnerable areas 
located in urban and 
metropolitan census 
tracts; 
increasing prevalence 
of heat related 
illnesses with 
increase in HVI 
scores 
 

Pearsall 
2017 

Philadelphia, 
PA 

Landsat 8 (LST and vegetation), National Land 
Cover Database (impervious surfaces), City of 
Philadelphia land use (vacant lots), ACS census 
block group data (demographic data) 
 
Social variables: 
Families living in poverty; 
Median household income; 
Percentage non-white; 
Percentage in labor force 

OLS and 
geographically 
weighted regression 
and hot spot analyses 
to compare 
relationship between 
LST, vacant land, 
vegetation, and 
impervious surface; 
difference between 
means test to 
compare social 
indicators with hot 
spots 

Social vulnerability 
spatially varies across 
the city; statistically 
significant difference 
for all social 
indicators; one-third 
of families in one 
hotspot live in 
poverty; median 
household income 
was $12,000 less in a 
hotspot, and a 
smaller percentage of 
people were in the 
labor force; higher 
percent of non-white 
population in 
hotspots compared to 
city’s average 

Rinner et 
al. 2010 

Toronto, 
Canada 

Natural Resources Canada imagery (LST); 
Canadian census and Community Social Data 
Strategy (sensitivity data) 
 
Social variables: 
Pre-existing/chronic illness; 
Cognitive impairment; 
Elderly residents; 
Infants and young children; 
Low-income households; 
Rental households; 
Socially isolated people; 
Homeless; 
Low education level; 
Not English speaking; 
Recent immigrants; 
Racialized groups 

Ordered weighted 
averaging (OWA) 
multi-criteria 
analysis; hot spot 
analysis using local 
indicators of spatial 
association (LISA) 
method (proportion 
of heat-related 911 
calls by Toronto 
neighborhoods); 
focus on mapping 
variables and overall 
vulnerability 

OWA analysis 
provided optimistic, 
neutral, and 
pessimistic strategy 
maps for decision 
makers (based on 
decision-makers 
attitude towards 
risk); clusters of low 
vulnerability towards 
the city center; 
emphasis on visual 
interpretation of 
results from maps 

Uejio et al. 
2011  

Philadelphia, 
PA and 
Phoenix, AZ 

Heat distress calls (Phoenix), heat mortality 
(Philadelphia), ASTER data (LST and vegetation), 
National Land Cover Database (impervious 
surface), Census block groups (sensitivity data) 
 
Social variables: 
Percentage of residents below the poverty line; 
Percentage of households renting; 
Population age 65 or older; 
Percentage of population age 65 or older; 
Percentage of people living alone; 
Percentage of people with disabilities; 
Percentage of linguistically isolated households; 
Percentage of households with seven or more 
residents; 
Percentage of residents in race categories (Black, 
Hispanic, American Indian, and Asian American); 

Generalized linear 
and mixed models 
(GLMM) and 
reported odds ratios 
and incidence ratios 

In Philadelphia, heat 
exposure was not 
related to mortality, 
rather percent black 
population, year 
house was built, 
vacant households, 
and total population; 
In Phoenix, 
exposure/built 
environment, 
socioeconomic 
factors, and 
neighborhood 
stability were all 
important in 
explaining heat 
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Percentage of residents changed households past 5 
years; 
Percentage of vacant households; 
Year house built (median) 
Housing value (median) – US Dollars 

distress calls, 
especially Black, 
Hispanic, and 
linguistically and 
socially isolated 
residents, and vacant 
households 

Wolf and 
McGregor 

2013 

London, 
United 
Kingdom 

MODIS (LST); census district data (sensitivity and 
heat exposure variables) 
 
Social variables: 
Population above 65 years old; 
Population with long-term limiting illness; 
Population with self-reported health status of “not 
good”; 
Receiving any kind of social benefit; 
Single pensioner households; 
Ethnic group other than “White British”; 
Population living in any kind of communal 
establishment 

Assessment of risk 
factors and choosing 
appropriate proxy 
data; PCA; weighted 
variables based on 
principle components 
and sum together to 
created heat 
vulnerability index 
(HVI); Hot Spot 
Analysis Getis Ord 
Gi* 

HVI shows spatial 
heterogeneity for 
London; hot spot 
analysis shows 
highly vulnerable 
areas are in north 
London 
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Table 3. Satellite imagery metadata 

Study area Baltimore, MD St. Louis, MO 

Date acquired 08-17-2015 07-31-2015 

Path, row 15, 33 24, 33 

UTM zone 18N 15N 

 

 

 

Table 4. Sensitivity metrics and variables* 

Metrics Variables (%) 

Age Under 5 years old 

Over 65 years old 

Race and ethnicity White 

Black/African-American 

Asian 

Other race 

Hispanic 

Housing/occupant characteristics Female headed households 

Living alone 

Group quarters 

Renter-occupied units 

No vehicle available 

Education No high school diploma 

Language spoken Limited English-speaking households 

Socioeconomic status Below poverty line 

Per capita income ($) 

Disability status Adults with a disability 

Employment status Unemployed 

 
*metrics derived from Cutter et al. (2003) 
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Table 5. Sensitivity variables and associated letter code 

Letter Variable (%) 

A Under 5 years old 

B Over 65 years old 

C White 

D Black/African-American 

E Asian 

F Other race 

G Hispanic 

H Group quarters 

I Female headed households 

J Living alone 

K No high school diploma 

L Limited English-speaking households 

M Families below poverty 

N Per capita income ($) 

O Adults with a disability 

P Unemployed 

Q Renter-occupied units 

R No vehicle available 

Table 6. Thermal function parameters for Landsat 8 imagery 

Variable .MTL file code Value 

Offset RADIANCE_ADD_BAND_10 0.1 

Gain RADIANCE_MULT_BAND_10 0.0003420 

K1 K1_CONSTANT_BAND_10 774.8853 

K2 K2_CONSTANT_BAND_10 1321.0789 
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Table 7. Shapiro-Wilk test for normality, Baltimore 

Variable Statistic df Sig. 
Mean LST .986 648 .000 

A .906 648 .000 
B .830 648 .000 
C .389 648 .000 
D .699 648 .000 
E .542 648 .000 
F .289 648 .000 
G .954 648 .000 
H .970 648 .000 
I .931 648 .000 
J .317 648 .000 
K .893 648 .000 
L .317 648 .000 

M .893 648 .000 
N .844 648 .000 
O .933 648 .000 
P .929 648 .000 
Q .978 648 .000 
R .941 648 .000 



Table 8. Spearman’s rho correlation matrix, Baltimore 

Mean 
LST A B C D E F G H I J K L M N O P Q R 

Mean 
LST 

1.000 .005 -.240** -.068 .055 -.001 -.049 .083* -.059 .089* .110** .330** .094* .251** -.250** .108** .135** .269** .368**

A .005 1.000 -.187** -.013 .041 -.077 .095* .047 -.041 .234** -.122** .093* .090* .263** -.160** -.073 .157** .123** .065 

B -.240** -.187** 1.000 -.157** .219** -.163** -.149** -.179** .039 -.079* .215** .088* -.112** -.126** .115** .350** -.037 -.187** .013 

C -.068 -.013 -.157** 1.000 -.936** .525** .360** .480** .121** -.637** .083* -.352** .271** -.363** .595** -.394** -.412** -.026 -.403**

D .055 .041 .219** -.936** 1.000 -.584** -.482** -.507** -.082* .665** -.062 .376** -.319** .387** -.551** .414** .454** .003 .392**

E -.001 -.077 -.163** .525** -.584** 1.000 .271** .303** .055 -.474** .167** -.285** .314** -.268** .414** -.368** -.284** .156** -.160**

F -.049 .095* -.149** .360** -.482** .271** 1.000 .459** .101** -.198** -.012 -.099* .251** -.109** .192** -.136** -.125** .105** -.103**

G .083* .047 -.179** .480** -.507** .303** .459** 1.000 .109** -.251** -.018 -.048 .405** -.108** .222** -.210** -.156** .114** -.106**

H -.059 -.041 .039 .121** -.082* .055 .101** .109** 1.000 -.074 .071 -.021 .049 -.022 .031 -.006 -.106** .026 .022 

I .089* .234** -.079* -.637** .665** -.474** -.198** -.251** -.074 1.000 -.398** .397** -.188** .535** -.582** .269** .488** .016 .333**

J .110** -.122** .215** .083* -.062 .167** -.012 -.018 .071 -.398** 1.000 -.021 .100* -.101** .116** .084* -.162** .374** .261**

K .330** .093* .088* -.352** .376** -.285** -.099* -.048 -.021 .397** -.021 1.000 -.005 .465** -.590** .529** .386** .249** .537**

L .094* .090* -.112** .271** -.319** .314** .251** .405** .049 -.188** .100* -.005 1.000 -.093* .076 -.157** -.140** .205** .058 

M .251** .263** -.126** -.363** .387** -.268** -.109** -.108** -.022 .535** -.101** .465** -.093* 1.000 -.595** .365** .426** .250** .448**

N -.250** -.160** .115** .595** -.551** .414** .192** .222** .031 -.582** .116** -.590** .076 -.595** 1.000 -.465** -.421** -.213** -.563**

O .108** -.073 .350** -.394** .414** -.368** -.136** -.210** -.006 .269** .084* .529** -.157** .365** -.465** 1.000 .245** .116** .447**

P .135** .157** -.037 -.412** .454** -.284** -.125** -.156** -.106** .488** -.162** .386** -.140** .426** -.421** .245** 1.000 .068 .303**

Q .269** .123** -.187** -.026 .003 .156** .105** .114** .026 .016 .374** .249** .205** .250** -.213** .116** .068 1.000 .614**

R .368** .065 .013 -.403** .392** -.160** -.103** -.106** .022 .333** .261** .537** .058 .448** -.563** .447** .303** .614** 1.000 
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Table 9. Shapiro-Wilk test for normality, St. Louis	

Variable Statistic df Sig. 
Mean LST .993 360 .082 

A .936 360 .000 
B .932 360 .000 
C .886 360 .000 
D .865 360 .000 
E .597 360 .000 
F .698 360 .000 
G .635 360 .000 
H .326 360 .000 
I .933 360 .000 
J .995 360 .366 
K .956 360 .000 
L .573 360 .000 

M .915 360 .000 
N .919 360 .000 
O .969 360 .000 
P .919 360 .000 
Q .993 360 .086 
R .954 360 .000 



Table 10. Spearman’s rho correlation matrix, St. Louis 
Mean 
LST A B C D E F G H I J K L M N O P Q R 

Mean 
LST 1.000 .008 -.203** .161** -.158** .244** .179** .160** .126* -.143** .177** -.035 .170** .037 .087 -.157** -.077 .308** .091 

A .008 1.000 -.284** -.008 .024 -.046 .128* .137** -.080 .274** -.303** .162** .187** .238** -.192** .042 .164** .063 .094 

B -.203** -.284** 1.000 -.075 .097 -.135* -.116* -.199** .061 -.040 .198** .095 -.194** -.135* .078 .373** -.007 -.260** .103 

C .161** -.008 -.075 1.000 -.967** .340** .281** .398** .032 -.664** .058 -.537** .193** -.588** .688** -.425** -.585** -.086 -.574** 

D -.158** .024 .097 -.967** 1.000 -.404** -.367** -.421** -.017 .685** -.047 .539** -.215** .595** -.663** .443** .591** .093 .592** 

E .244** -.046 -.135* .340** -.404** 1.000 .297** .247** .132* -.386** .154** -.255** .366** -.276** .361** -.310** -.252** .147** -.190** 

F .179** .128* -.116* .281** -.367** .297** 1.000 .428** .043 -.220** .048 -.030 .250** -.126* .169** -.062 -.185** .154** -.124* 

G .160** .137** -.199** .398** -.421** .247** .428** 1.000 .054 -.244** -.055 -.046 .426** -.181** .188** -.153** -.191** .125* -.168** 

H .126* -.080 .061 .032 -.017 .132* .043 .054 1.000 -.054 .167** .123* .059 .038 -.091 .042 -.038 .157** .140** 

I -.143** .274** -.040 -.664** .685** -.386** -.220** -.244** -.054 1.000 -.409** .545** -.111* .621** -.703** .412** .558** .053 .478** 

J .177** -.303** .198** .058 -.047 .154** .048 -.055 .167** -.409** 1.000 -.048 -.022 -.134* .189** .004 -.190** .290** .144** 

K -.035 .162** .095 -.537** .539** -.255** -.030 -.046 .123* .545** -.048 1.000 .051 .595** -.695** .587** .454** .103 .552** 

L .170** .187** -.194** .193** -.215** .366** .250** .426** .059 -.111* -.022 .051 1.000 -.018 -.002 -.073 -.071 .197** .043 

M .037 .238** -.135* -.588** .595** -.276** -.126* -.181** .038 .621** -.134* .595** -.018 1.000 -.725** .400** .516** .241** .550** 

N .087 -.192** .078 .688** -.663** .361** .169** .188** -.091 -.703** .189** -.695** -.002 -.725** 1.000 -.514** -.552** -.115* -.581** 

O -.157** .042 .373** -.425** .443** -.310** -.062 -.153** .042 .412** .004 .587** -.073 .400** -.514** 1.000 .313** -.052 .484** 

P -.077 .164** -.007 -.585** .591** -.252** -.185** -.191** -.038 .558** -.190** .454** -.071 .516** -.552** .313** 1.000 .075 .375** 

Q .308** .063 -.260** -.086 .093 .147** .154** .125* .157** .053 .290** .103 .197** .241** -.115* -.052 .075 1.000 .417** 

R .091 .094 .103 -.574** .592** -.190** -.124* -.168** .140** .478** .144** .552** .043 .550** -.581** .484** .375** .417** 1.000 
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Table 11. Relationships between exposure and sensitivity amongst block groups, Baltimore 
Baltimore Exposure Sensitivity Variables 

Block Group ID Mean LST A B C D E F G H I J K L M N O P Q R 

High exposure/high sensitivity 

15000US245100602001 39.93007 0.16 0.065 0.13 0.515 0 0.657 0.485 0 0.222 0.58 0.101 0.383 0.324 27167 0.082 0.268 0.343 0.195 

15000US245102805002 38.758892 0.04 0.019 0.206 0.779 0 0.031 0 0.405 0.581 0.419 0.369 0 0.651 10747 0.317 0.096 1 0.784 

15000US245100702003 40.11352 0.044 0.046 0.01 0.91 0 0.079 0.09 0 0.452 0.324 0.338 0.036 0.325 11793 0.224 0.106 0.599 0.629 

15000US245102805004 37.249404 0.058 0.312 0 1 0 0 0 0 0.227 0.616 0.44 0 0.864 7196 0.516 0.152 0.843 0.725 

15000US245102610002 39.696664 0.178 0 0.463 0.527 0 0.02 0.247 0.004 0.512 0.254 0.454 0.34 0.65 7830 0.14 0.112 0.726 0.405 

Low exposure/high sensitivity 

15000US245101510003 32.472351 0.165 0.051 0.118 0.772 0.024 0.155 0 0 0.407 0.384 0.105 0 0.698 10930 0.29 0.096 0.632 0.35 

15000US245102710024 32.435322 0.147 0.061 0.015 0.971 0 0.028 0 0 0.545 0.336 0.163 0 0.261 13603 0.258 0.216 0.512 0.299 

15000US245102803013 28.960111 0.148 0.123 0.099 0.803 0.021 0.152 0.043 0 0.245 0.59 0.115 0 0.19 19671 0.328 0.008 0.826 0.396 

15000US245101607004 31.564054 0.041 0.172 0 0.97 0 0.059 0.017 0 0.272 0.541 0.205 0 0.353 12053 0.222 0.063 0.47 0.515 

15000US245102604031 31.526443 0.089 0.065 0.003 0.972 0 0.042 0 0 0.309 0.5 0.153 0 0.265 19625 0.148 0.142 0.732 0.355 

High exposure/low sensitivity 

15000US245102609001 39.35884 0.122 0.144 0.897 0.034 0 0.099 0.035 0.011 0.017 0.598 0.201 0.033 0.056 34609 0.164 0.069 0.331 0.265 

15000US245102609002 39.289158 0.116 0.1 0.862 0.093 0 0.081 0.215 0 0.129 0.217 0.061 0.026 0 39812 0.097 0.025 0.311 0.051 

15000US245102609003 39.233953 0.053 0.093 0.897 0.029 0.049 0.049 0.009 0 0.012 0.504 0.094 0 0 61663 0.113 0.029 0.516 0.058 

15000US245102610004 39.188156 0.088 0.078 0.692 0.258 0 0.099 0.251 0 0.132 0.373 0.289 0 0 26516 0.151 0.016 0.13 0.018 

15000US245100101001 38.964107 0.048 0.128 0.901 0 0.085 0.027 0.102 0 0.014 0.331 0.04 0.014 0.042 57266 0.052 0.011 0.33 0.026 
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Table 12. Relationships between exposure and sensitivity amongst block groups, St. Louis 
St. Louis Exposure Sensitivity Variables 

Block Group ID Mean LST A B C D E F G H I J K L M N O P Q R 

High exposure/high sensitivity 

15000US295101184001 40.769102 0 0.046 0.61 0.268 0.086 0.067 0.029 0.693 0 0.898 0.341 0.014 0.571 6225 0.592 0.029 0.71 0.509 

15000US295101164004 39.760091 0.163 0.068 0.216 0.666 0.027 0.165 0.265 0 0.472 0.391 0.51 0.062 0.377 8172 0.288 0.168 0.676 0.271 

15000US295101163022 40.543943 0.018 0.042 0.342 0.293 0.328 0.037 0.18 0 0.074 0.634 0.454 0.276 0.31 18052 0.246 0.036 0.665 0.248 

15000US295101161004 40.07824 0.09 0.085 0.385 0.268 0.062 0.57 0.217 0 0.175 0.611 0.225 0.221 0.486 18214 0.09 0.156 0.612 0.309 

15000US295101212001 40.420471 0.226 0.039 0.042 0.943 0 0.023 0 0 0.591 0.346 0.211 0 0.567 8968 0.132 0.172 0.766 0.304 

Low exposure/high sensitivity 

15000US295101156004 36.043595 0.069 0.125 0.58 0.274 0.056 0.18 0.356 0 0.271 0.537 0.267 0.121 0.352 8838 0.449 0.083 0.608 0.287 

15000US295101097001 36.292187 0.128 0.06 0.007 0.993 0 0 0.014 0 0.355 0.433 0.461 0 0.642 11029 0.143 0.16 0.544 0.339 

15000US295101054001 36.218538 0.11 0.153 0.123 0.774 0 0.172 0.114 0 0.379 0.418 0.241 0.061 0.348 13357 0.322 0.075 0.584 0.349 

15000US295101066002 36.282858 0.111 0.067 0 0.985 0 0.015 0 0 0.326 0.353 0.242 0 0.561 10617 0.243 0.153 0.601 0.39 

15000US295101063004 35.840332 0.141 0.164 0 0.937 0 0.104 0.008 0 0.458 0.347 0.229 0 0.351 10408 0.452 0.179 0.383 0.077 

High exposure/low sensitivity 

15000US295101255003 43.41531 0.016 0 0.794 0.158 0.021 0.026 0.026 0 0 0.663 0 0 0 59938 0 0 0.531 0.033 

15000US295101255001 41.304887 0.075 0.015 0.769 0.164 0.06 0.015 0.012 0.066 0.044 0.668 0.087 0.012 0.12 56882 0.05 0.02 0.401 0.025 

15000US295101135004 40.705233 0 0.179 0.966 0 0.013 0.04 0 0 0.078 0.556 0.064 0.03 0 37944 0.122 0.023 0.292 0.101 

15000US295101051981 40.328101 0.043 0.048 0.656 0.22 0.099 0.051 0.036 0.002 0 0.261 0 0 0 30664 0.008 0.024 0.562 0.018 

15000US295101162006 39.955515 0.098 0.006 0.846 0.023 0.1 0.051 0.012 0.021 0 0.401 0.004 0.047 0 32601 0.038 0.043 0.476 0 
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Figures 

Figure 1. Extreme heat vulnerability analysis framework (Source: Wilhelmi and Hayden 
2010). 

Figure 2. Fatalities by hazard in the United States, 2006-2015 (Source: EPA and CDC 
2016). 
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Figure 3. LST with block group boundaries, Baltimore 
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Figure 4. Mean LST class by block group, Baltimore 
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Figure 5. LST with block group boundaries, St. Louis 
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Figure 6. Mean LST class by block group, St. Louis 
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Figure 7. Correlogram of Spearman’s rho results, Baltimore. Significance flagged at 95 
(*), 99 (**) and 99.5% (***) 
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Figure 8. Correlogram of Spearman’s rho results, St. Louis. Significance flagged at 95 
(*), 99 (**) and 99.5% (***)



Figure 9. Small multiple maps of sensitivity variables, Baltimore
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Figure 10. Small multiple maps of sensitivity variables, St. Louis
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Figure 11. Sensitivity choropleth map, Baltimore
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Figure 12. Sensitivity choropleth map, St. Louis
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Figure 13. Exposure choropleth map, Baltimore 
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Figure 14. Exposure choropleth map, St. Louis
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Figure 15. Bivariate choropleth map comparing exposure and sensitivity, Baltimore 
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Figure 16. Bivariate choropleth map comparing exposure and sensitivity, St. Louis 
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