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Disentangled Dynamic Graph Deep Generation
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Abstract
Deep generative models for graphs have exhibited promis-
ing performance in ever-increasing domains such as de-
sign of molecules (i.e, graph of atoms) and structure
prediction of proteins (i.e., graph of amino acids). Exist-
ing work typically focuses on static rather than dynamic
graphs, which are actually very important in the ap-
plications such as protein folding, molecule reactions,
and human mobility. Extending existing deep generative
models from static to dynamic graphs is a challenging
task, which requires to handle the factorization of static
and dynamic characteristics as well as mutual interac-
tions among node and edge patterns. Here, this paper
proposes a novel framework of factorized deep gener-
ative models to achieve interpretable dynamic graph
generation. Various generative models are proposed to
characterize conditional independence among node, edge,
static, and dynamic factors. Then, variational optimiza-
tion strategies as well as dynamic graph decoders are
proposed based on newly designed factorized variational
autoencoders and recurrent graph deconvolutions. Ex-
tensive experiments on multiple datasets demonstrate
the effectiveness of the proposed models.

1 Introduction
Graphs are ubiquitous data structures to capture connec-
tions (i.e., edges) among individual units (i.e., nodes),
such as social networks, proteins (network of amino
acids), and molecules (network of atoms). One central
problem in data mining and machine learning for graphs
is the gap between the discrete graph topological infor-
mation and continuous numerical vectors preferred by
mathematical models [1]. This directly leads to two ma-
jor directions on graph research: 1) graph representation
learning [2], which aims at encoding graph structural
information into (low-dimensional) vector space, and 2)
graph generation [1], which reversely aims at construct-
ing a graph-structured data from low-dimensional space
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containing the graph generation rules or distribution.
Graph generation is an important domain with long
history that attracts extensive models such as random
graphs [3], small world models [4], scale-free graphs [5],
and stochastic block models [6]. They typically rely on
the network generation principles predefined by human
heuristics and prior knowledge, which effectively abstract
the high-dimension problems down to manageable scale.
Such methods usually fit well towards the properties
that the predefined principles are tailored for, but usu-
ally cannot do well for the others [7]. Unfortunately, the
underlying principle of many critical real-world problems
is still unknown, such as generating new molecule un-
der desired biophysical properties and simulating brain
functional connectivity.

In recent years, the success of deep generative models
in image and text generation [8, 9] has been extended
to graph data applications such as molecule design [10]
and protein structure prediction [11]. They typically
leverage frameworks such as Variatioal Autoencoder
(VAE) [12] and Generative Adversarial Nets (GAN) [13],
which rely on highly expressive deep architectures to
map high-dimensional graph-structured data into latent
low-dimensional space, where the latent data points just
follow simple distributions. However, existing works
on deep generative models of graphs typically focus
on static graphs instead of dynamic graphs. Although
research on dynamic networks is a trending deep learning
topic, it mostly focuses on representation learning tasks,
including node/graph embedding [7, 14], node/graph
classification [15, 16], link prediction [17, 18]. However,
the domain of deep generative models for dynamic graph
generation has not been well explored [1, 2].

Extending the current deep generative models from
static graphs to dynamic graphs are very important
to many critical domains, such as modeling protein
folding process [10], human mobility networks [19],
and dynamic functional connectivity process in human
brains [20]. Despite its enormous importance, several
major challenges hinder this tasks from being easily
achieved by existing techniques, including: 1) Difficulty
in jointly modeling node dynamics and edge
dynamics. Nodes could involve continuous values in
their attributes while edges could involve graph topology
information that is discrete. Some node dynamic
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patterns and edge dynamic patterns could be coupled
with each other while the other of their patterns may be
independent. It is difficult to build a generic, expressive
models that can automatically learn and stratify all such
patterns from data. 2) Difficulty in characterizing
dynamic and static components. A dynamic graph
is typically a mixture of both time-evolving patterns
as well as stationary patterns. For example, during
protein folding, its backbone connection tends to be
stable as a chain structure while other connections such
as hydrogen bonding could vary over time. How deep
generative models can identify, disentangle, and model
static and dynamic patterns in dynamic graphs is an open
problem. 3) Lack of graph decoders for dynamic
node and edge joint generations. Deep generative
models require decoding latent representations back
to graph domain, which itself is a nascent, open, and
promising domain. How to further extend it to dynamic
graph decoding is deemed even more interesting and
challenging, which requires to further consider the
temporal dependency [2].

To address the above challenges, this paper proposes
a novel framework of Disentangled deep generative mod-
els for interpretable Dynamic Graph Generation (D2G2).
New generative models are proposed to characterize con-
ditional independence among node, edge, static, and
dynamic factors. Then, varational optimization strate-
gies are proposed based on newly designed factorized
variational autoencoders. Third, novel dynamic node-
edge co-decoders are proposed based on recurrent and
graph deconvolutions. The contributions of this paper
can be summarized as follows:

• A generic framework of deep generative models for
interpretable dynamic graph generation.

• New deep graph models that jointly characterize
node, edge, static, and dynamic factors.

• New dynamic graph factorized varational autoen-
coders for inferring the established graph models.

• New dynamic graph decoder architecture to jointly
decode time-evolving nodes and edges.

• Extensive experiments and case studies.

2 Related Work
Temporal graph generation. Research on temporal
graph generation has mainly focused on extending graph
theory into temporal graphs. A plethora of approaches,
including randomized reference models [21], stochastic
block models [6] and models based on temporal random
walk [22] to name a few, have been proposed with
applications in numerous domains. Such methods usually

fit well towards the properties that the predefined
principles are tailored for, but usually cannot do well for
the others [7].
Representation learning on dynamic graphs. Fast
increase attentions have been attracted in this research
direction to encode graph’s structural properties into
nodes, edges, or the whole graph embeddings. Rep-
resentative works include temporal sequence embed-
ding [23], graph sequence embedding [24] and more
recently continuous-time embedding [14]. A compre-
hensive recent literature survey covering this research
effort is provided in [2].
Deep generative models for the graphs. Deep
generative neural networks have achieved the state
of the art results for graph generation in various
domains, such as molecule design [10] and cyber-network
synthesis [25]. Most of the existing works in this thread
are based on variational autoencoders (VAE) [26] and
generative adversarial networks (GAN) [9]. For example,
GraphVAE [10] utilizes the VAE model to learn the
representation of graphs but also node features; while
GraphRNN [27] decomposes the graph generation into
a sequence of node and edge formations that can be
learned by autoregressive models. NetGAN [13] and
its extensions [1] are trained with the GAN algorithm
to generate synthetic random walks while discriminates
synthetic walks from real random walks sampled from a
real graph. The critical limitation of existing works is
that they majorly focus on static networks and cannot
disentangle the dynamic and static patterns for nodes
and edges.
Disentangled generative models. Disentangled rep-
resentation learning aims at learning distinguishable
underlying representations that responsible for differ-
ent variations in the data. Such representations have
been utilized to improve generalizability [28] and inter-
pretability [29]. A surge of models have been proposed
for extending the training objective to enhance disentan-
glement in various deep generative model architecture
such as varational autoencoders and generative adver-
sarial nets [30, 31]. However, most existing works inves-
tigate in the field of image representation learning and
the disentanglement of the latent factors behind a graph
has not been well explored. Our approach fills this gap
and further addresses dynamic graph generation.

3 Disentangled Dynamic Graph Deep
Generation (D2G2)

3.1 Notations and Problem Formulation For-
mally, for different time intervals 0, 1, · · · , T , a dynamic
graph G := {G0, G1, · · · , GT } is described by its topolog-
ical and attributed information, where for each time step
t ∈ T we have the graph snapshot Gt = (Et, Ft) where
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(a) Generator (b) Factorized Encoder c) Full Encoder(
Figure 1: Graphical illustration of the proposed models. (a) The Bayesian network of the proposed probabilistic
distribution of dynamic graphs. (b) The approximate inference model of the posterior of the proposed model,
with conditional independence assumption among latent variables across different time points. (c) The alternative
approximate inference model of the posterior of the proposed model, with dependence among time-variant and
invariant variables and dependence across different time points.

the adjacency matrix is denoted as Et ∈ {0, 1}n×n and
node feature vector is represented as Ft ∈ Rn×c. Here
n is the maximum number of nodes and each node has
c features. If there is a connection between nodes i
and j then the element [Et]i,j = 1; otherwise, we have
[Et]i,j = 0. Note that we sometimes use the notations
E = {Et}Tt=0 and F = {Ft}Tt=0 for simplicity. In this
paper, we focus on factorized deep generative models for
dynamic graphs that can learn the distribution p(G|Θ)
of dynamic graphs G generated from latent semantic
variables Θ = {f, z, z′, z′′} that characterize the genera-
tive process for time-invariant graph patterns (by f) and
time-variant graph patterns, which can be further factor-
ized into edge-exclusive patterns (by z), node-exclusive
patterns (by z′), and node-edge joint patterns (by z′′).

3.2 Factorized Bayesian Models of Dynamic
Graphs To achieve the above goal, we formulate the
proposed generative model as a Bayesian network, as
shown in Figure 1(a). Here as mentioned above, a
dynamic graph GT is a sequence of snapshots of edge-
node pairs {(E1, F1), (E2, F2), · · · , (ET , FT )}, which are
collectively controlled by a time-independent latent
variable f to absorb the time-invariant patterns related
to the intrinsic nature of the graphs that do not change
over time. To characterize the time-variant patterns,
additional latent variables z, z′, and z′′ are introduced.
Here z is to model the dynamics only related to edges.
For example, in dynamic functional connectivity of a
human brain, the co-activation patterns among different
brain regions can change quickly over time. z′ is to model
the dynamics merely pertain to nodes. For example, in
traffic network where nodes are road segments and edges
are their connections, only the node attributes such
as traffic flow changes but their connections (i.e., road
network) are unchanged. In addition, there are also

dynamics that simultaneously involve both nodes and
edges such as the process of homophily and influence
in social networks. Here we leverage the variable z′′ to
account for it. In the following, we use the subscript t
to denote any variable specific to the time t. In all, the
generative process can be introduced as follows:

p(E,F |z, z′, z′′, f) = p(E|z, z′′, f)p(F |z′, z′′, f)(3.1)

=
∏

t
p(Et|zt, z′′t , f) · p(Ft|z′t, z′′t , f)

3.3 Variational Model Inference Since the true
posterior p(z, z′, z′′, f |E,F ) of the proposed generative
model is intractable to infer, we proposed to solve
it based on variational inference where the posterior
needs to be approximated by another distribution
q(z, z′, z′′, f |E,F ). So the goal is to minimize the
Kullback–Leibler (KL) divergence between the true and
approximate posteriors. Here, we will first introduce the
approximate posteriors and then introduce the objective
functions for model inference based on them.
Inference models. We propose two different inference
models based on two different assumptions on the
conditional independence among variables, namely a
factorized inference model and a full inference model.
Factorized inference model. As shown in Figure 1(b),
the inference model can be formulated as a factoriza-
tion for the latent variables with mutual conditional
independence, as below:

q(z, z′, z′′, f |E,F ) = q(z|E)q(z′|F )q(z′′|E,F )q(f |E,F )

where we assume the conditional independence among
all the variables z, z′, z′′ and F .

Here we further decompose the model along the tem-
poral dimension, by assuming the temporally conditional
independence among the variable across different time
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points, by the following equations:

q(z|E) =
∏

t
q(zt|Et), q(z′|F ) =

∏
t
q(z′t|Ft),(3.2)

q(z′′|E,F ) =
∏

t
q(z′′t |Et, Ft)

where the latent variables for different time points are
conditionally independent from each other given the
observations for the corresponding time points.
Full inference model. We could also weaken our assump-
tion of conditional independence among time-variant
and time-invariant variables, by an alternative inference
model shown in Figure 1(c). Specifically, we have:

q(z, z′, z′′, f |E,F )(3.3)
=q(z|E, f) · q(z′|F, f) · q(z′′|E,F, f) · q(f |E,F )

where we can see by assuming z, z′ and z′′ to depend on
f , we allow that the time-variant patterns of graphs are
dependent on intrinsic static properties of the graphs.

We further decompose the model along the temporal
dimension, by allowing temporal dependence among the
variables of different time points as follows:

q(z|E) =
∏

t
q(zt|z<t, Et), q(z′|F ) =

∏
t
q(z′t|z′<t, Ft),

q(z′′|E,F ) =
∏

t
q(z′′t |z′′<t, Et, Ft)(3.4)

where the latent variables for different time points are
dependent on their previous time points as well as the
observations for the corresponding time points.
Objective functions Given the above-defined inference
models, the inference of the posterior of the proposed
generative models in Equation (3.1) requires to minimize
the KL(q(z, z′, z′′, f |E,F )||p(z, z′, z′′, f |E,F )), where
KL(·) denotes KL divergence. It is equivalent to
maximizing the following evidence lower bound (ELBO)
of our model:
max
θ,φ

EΘ∼qφ(Θ|E,F )

[
log(pθ(E,F |Θ))

]
−KL(qφ(Θ|E,F )||p(Θ))

where Θ = {z, z′, z′′, f} is the set of all the variables
while θ and φ explicitly denote the parameters of
the distributions corresponding to our generator and
inference model, respectively. The prior distribution
p(Θ) = p(z, z′, z′′, f) = p(z)p(z′)p(z′′)p(f), where
each variable follows an isotropic Gaussian distribution.
Recall that we have proposed two inference models which
are the two possible options for instantiating qφ(Θ|E,F ),
namely factorized inference model and full inference
model. When employing different inference model we
have the corresponding objective function. First, for
factorized inference model, we have:

max
θ,φ

EΘ∼qφ(Θ|E,F )

[
log(pθ(E|z, z′′, f)pθ(F |z′, z′′, f))

]
−∑

t

[
KL(qφ(zt|Et)||p(zt)) + KL(qφ(z′t|Ft)||p(z′t))+

KL(qφ(z′′t |Et, Ft)||p(z′′t )) + KL(qφ(f |Et, Ft)||p(f))
]

Alternatively, for the full inference model, we have:

max
θ,φ

EΘ∼qφ(Θ|E,F )

[
log(pθ(E|z, z′′, f)pθ(F |z, z′′, f))

]
−∑

t

[
KL(qφ(zt|z<t,Et,f)||p(zt))+KL(qφ(z′t|z′<t,Ft,f)||p(z′t))

+KL(qφ(z′′t |z′′<t, Et, Ft, f)||p(z′′t )) + KL(qφ(f |Et, Ft)||p(f))
]

3.4 Model Architecture The model inference ob-
jectives proposed in the previous section are equivalent
to learning the parameters θ and φ for the distributions
of generator and inference models. However, due to the
extremely complicated distribution patterns for graph
structured data, it is prohibitively difficult to predefine
any prescribed simple distribution and hence a highly
expressive model that can flexibly learn the (unknown)
distribution is preferred. Inspired by the recent suc-
cess in learning complicated distributions for complex
data such as images and texts, we leverage graph deep
learning models to fit the underlying distributions of
generator and inference models, parameterized by neural
network parameters θ and φ, respectively.
Architecture of the generator: First, for edge
generation, we use a dense layer with the inputs including
z, z′′ and f . Then, we utilize a graph deconvolutional
network [25] to generate a matrix of edge probabilities
on each time snapshot. For node generation, we use
another dense layer which takes the input that is the
concatenation of z′, z′′, and f , and output each node
features on each time snapshot.
Architecture of full inference model. First, we
utilize a Graph Convolutional Network [32] to produce
a representation vector at for each snapshot graph:
at = GCN(Et). Raw node attributes are also converted
to a feature vector through a dense layer bt = Dense(Ft)
first. To encode f , qφ(f |E,F ) is modeled with a
neural network function hφ(E,F ) 7→ f . In details, we
concatenate latent representation of topology at and
attribute representation bt and feed into a Bi-directional
LSTM BiLSTM as inputs. Then, both the last forward
output mT and the first backward output m̄T are
concatenated to a single vector. This vector is passed to
another dense layer to get f . The function hφ(E,F ) 7→ f
is decomposed as follow:

at = GCN(Et), bt = Dense(Ft)(3.5)
mt, m̄t = BiLSTM(at||bt), f = Dense(mT ||m̄T )

where || is the concatenation operation. With similar
way, we leverage another three Bi-directional LSTMs to
encode z, z′ and z′′. For the details of them, please refer
to our supplementary material.
Architecture of factorized inference model. The
encoding structure for f is the same as the above. The
only difference focuses on the encoding of zt, z′t, and z′′t .
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Different from the above full inference model, we simply
use three multi-layer perception models to generate them,
using the inputs Et, Ft, and jointly Et, Ft, respectively.
No bi-directional LSTM is needed here.

3.5 Complexity Analysis The computational effi-
ciency is an essential prerequisite for large-scale graph
generation. Most of the existing graph generation meth-
ods require O(n3), e.g., GraphVAE, or even O(n4), e.g.,
Li et al., time in general, thus limiting their applications
in generating small graphs. The overall time complexity
of the proposed D2G2 is O(cTn2) and is therefore capa-
ble of generating modest scale attributed graphs with
hundreds or thousands of nodes.

4 Experiments
In this section, the performance of our model is eval-
uated using several synthetic and real-world datasets
against the state-of-the-art, on various aspects including
quantitative, qualitative and efficiency analyses. The
experiments were performed on a 64-bit machine with
a 10-core processor (i9, 3.3GHz), 64GB memory with
GTX 1080Ti GPU.

4.1 Datasets We evaluate our proposed D2G2 on
both real and synthetic benchmark datasets with graph
sizes n ranging from 8 to 2500 and diverse characteristics.

Protein. The dynamic folding process of a protein
peptide is simulated with a sequence AGAAAAGA. For
graph learning, this can be considered as a graph of
8 nodes with node attributes (x, y, z) corresponding to
3D coordination of the Cα atom of each amino acid,
producing 300 temporal graphs with a sequence length
of 100.

Authentication. 97 users’ authentication
graphs [33]. Each user’s graphs are generated by au-
thentication activities on their accessible 27 computers
or servers, i.e., n = 27, in an enterprise computer net-
work during a 485h period. All times are normalized in
the range of [0, 1].

Metro. Metro graph data captured by farecard
records from the Washington D.C. metro system which
reflects million of users’ trips records from May 2016 to
July 2016. There are 91 stations as graph nodes and
each day is treated as a temporal graph sample.

Synthetic datasets. We also consider three
synthetic datasets with increasing complexity from scale-
free random graphs [34]. Existing works use it as static
graph, we append a continuous-time value to generated
edge in each constructing step to simulate it as dynamic
graphs, resulting 3 synthetic datasets with number of
nodes n = 100, 500, 2500, respectively.

4.2 Experimental Setup We compare our method
with several state-of-the-art deep graph generative
models based on a set of metrics measuring the similarity
between real and generated graphs in topology and node
features.

Table 1: Comparison of D2G2 to baseline models using MMD
metrics with the best performance marked in boldface.

Dataset Method
Metrics Betweenness

Central-
ity

Broadcast
Central-
ity

Burstiness
Central-
ity

Nodes’
Tem-
poral
Correla-
tion

Receive
Central-
ity

Temporal
Correla-
tion

Protein

GraphRNN 0.8160 0.0224 1.25e-04 0.9166 0.0126 0.0822
NetGAN 0.9305 0.2907 9.43e-05 1.6151 0.2244 0.3663
GraphVAE 0.8036 0.0295 8.20e-05 0.9220 0.0145 0.0821
DSBM 0.4169 0.5787 1.06e-05 1.5632 0.7479 0.4446
D2G2 0.3042 0.0099 6.75e-07 0.0017 0.0174 1.19e-04
D2G2_full 0.3042 0.0098 6.75e-07 0.0017 0.0173 1.19e-04

Auth.

GraphRNN 0.2281 0.0390 0.0160 0.2899 0.1128 5.35e-04
NetGAN 0.1418 0.6548 0.0184 0.4874 0.6714 0.0376
GraphVAE 0.2084 0.1040 0.0141 0.3216 0.0979 9.91e-04
DSBM 0.3255 0.0020 0.0035 0.2697 0.0053 0.0052
D2G2 0.0017 0.0379 2.86e-05 0.2339 0.0365 0.0549
D2G2_full 0.0017 0.0379 2.86e-05 0.2339 0.0365 0.0549

Metro

GraphRNN NaN 0.0526 1.28e-04 0.6854 5.93e-05 0.0023
NetGAN 1.0 4.52e-04 0.0146 1.9655 2.07e-04 0.5425
GraphVAE NaN 0.07405 6.00e-05 0.6742 0.0282 3.73e-04
DSBM NaN 4.43e-07 6.54e-06 0.3088 4.60e-07 0.0030
D2G2 0.0878 1.59e-06 1.46e-06 0.1189 3.50e-06 0.0018
D2G2_full 0.0879 1.59e-06 1.46e-06 0.1189 3.50e-06 0.0018

100

GraphRNN 0.9567 0.1658 0.3790 0.0011 0.3023 1.81e-06
NetGAN 0.6497 0.7058 0.0092 0.0014 0.2878 7.31e-06
GraphVAE 0.9567 0.2167 0.4138 0.0011 0.3539 1.81e-06
DSBM 0.0020 0.4016 0.0526 0.0183 0.1317 1.33e-04
D2G2 0.0204 0.1874 1.98e-05 9.12e-05 0.2357 1.69e-06
D2G2_full 0.0203 0.1873 1.98e-05 9.12e-05 0.2358 1.69e-06

500
GraphRNN 0.7912 0.1556 0.1621 0.0049 0.4241 1.75e-07
NetGAN 0.7928 0.3253 0.0415 0.0049 0.0948 1.75e-07
GraphVAE 0.7928 0.0871 0.1921 0.0049 0.2858 1.75e-07
D2G2 0.0015 0.0124 4.19e-05 6.09e-04 0.1904 7.85e-07
D2G2_full 0.0015 0.0124 4.19e-05 6.09e-04 0.1904 7.85e-07

2500 GraphRNN 0.8802 1.0239 9.65e-07 0.0044 1.2410 1.00e-08
NetGAN 0.8801 0.1200 0.0169 0.0044 0.0965 1.00e-08
D2G2 0.0002 0.0056 7.25e-05 0.0005 0.1487 8.18e-05
D2G2_full 0.0002 0.0056 7.25e-05 0.0005 0.1487 8.18e-05

Table 2: Comparison of D2G2 to baseline models based on node
attribute generation with the best performance marked in boldface.

Dataset Method
Metrics MSE R2 PCC

Protein GraphVAE 0.0080 0.83 0.72
D2G2 0.0040 0.97 0.97

D2G2_full 0.0040 0.96 0.98

Auth. GraphVAE 0.0036 0.95 0.87
D2G2 0.0024 0.99 0.93

D2G2_full 0.0024 0.99 0.93

Metro GraphVAE 0.0006 0.92 0.82
D2G2 0.0004 0.95 0.86

D2G2_full 0.0003 0.95 0.87

100 GraphVAE 2.13 0.86 0.89
D2G2 1.97 0.76 0.91

D2G2_full 1.97 0.76 0.91

500 GraphVAE 45.90 0.45 0.39
D2G2 43.77 0.52 0.47

D2G2_full 42.77 0.51 0.47

2500 GraphVAE 15.56 0.75 0.78
D2G2 1.49 0.89 0.81

D2G2_full 1.48 0.89 0.81

Comparison Methods. 1) GraphVAE [10] is the
pioneering variational autoencoder based graph genera-
tion method; 2) NetGAN [13] trains the graph generative
model with the GAN algorithm; 3) GraphRNN [27] is
the recent generative model for graphs based on sequen-
tial node and edge generation; 4) Dynamic-Stochastic-
Blocks-Model (DSBM) [35], which extends the stochastic
blockmodel for static networks to the dynamic setting.
Among them, GraphVAE is the only existing method
that achieves graph disentanglement, i.e., learning the
topology of graphs but also node features. 5) Disen-
tangled Dynamic Graph Deep Generation (D2G2), our
proposed models (factorized and full) in this paper whose
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(a) Ground truth (b) D2G2 (c) dsbm

(d) graphrnn (e) graphvae (f) netgan

Figure 2: Visualization of graphs from Protein dataset and generated by all methods. The color of nodes represents
the normalized value of a node attribute.

parameter setting is elaborated in the supplementary
material.

Evaluation metrics. Various maximum mean dis-
crepancy (MMD) metrics [36], including betweenness cen-
trality, broadcast centrality, burstiness centrality, node
temporal correlation, receive centrality and temporal
correlation are utilized to evaluate the performance of
our models and other baselines in terms of topology
simulation. The lower these MMD values the merrier a
generative model. Additional measures including mean
squared error (MSE), coefficiency of determination score
(R2) and Pearson correlation coefficient (PCC) are also
evaluated for node attribute evaluation to shed full light
on the similarity between the real target and generated
graphs.

4.3 Generating Attributed Temporal Graphs
We present both quantitative and qualitative experiment
results that demonstrate the effectiveness and efficiency
of D2G2 in generating attributed temporal graphs.

Evaluation with graph statistics. A set of
topology related MMD metrics and node attribute
evaluations are tested on different models and the results
are summarized in Tables 1 and 2, respectively.

As one can see, D2G2 based models consistently
achieve superior performance on most of metrics across
all datasets in both node and attribute generation, and
are the only methods to handle both properly. On the
other hand, although some baseline models perform
well on certain specific datasets, they cannot do well
for other types of input graphs. In addition, while
methods such as DSBM does not scale well and can

only generate smaller graphs, D2G2 enjoys the merit of
handling graphs with increasing complexity. In terms of
node attributes, GraphVAE is the only method capable
of handling node attribute prediction, the proposed
D2G2 outperforms GraphVAE significantly and can
be as high as 88% on related statistics while scaling
to thousand level graphs where GraphVAE fails. The
superior performance in both graph topology and node
attributes generation of D2G2 verifies the necessity of
its theoretically disentangling design, which captures
the underlying graph dynamics very well. Note that in
the conducted experiments, factorized and full encoder
networks produce almost identical results, presumably
because respective factors are truly independent. We
therefore only report results on factorized network in
the following discussions.

Temporal graph visualization. We visualize the
graphs generated by D2G2 and various baselines to
qualitatively evaluate their dynamic graph generation
capabilities. In the visualization, nodes of the temporal
graphs span all temporal snapshots, while arcs are edges
reflecting connectivities among the nodes of the temporal
snapshots. Node attributes are represented by the colors
(white ones denote those who are incapable of learning
node features) of nodes. We use the protein dataset as
the running example and more qualitative evaluations
are available in the supplementary material. Figure 2
shows the graphs generated for the protein dataset by all
the methods. It clear that D2G2 is superior in capturing
the underlying characteristics of graphs and is closest to
the ground truth in Figure 2(a), in terms of both edges
and nodes. GraphVAE is the second best one whose
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(a) Generated graphs when varying f with z, z′ and z′′ fixed.

(b) Generated graphs when varying z with f , z′ and z′′ fixed.

(c) Generated graphs when varying z′ with f , z and z′′ fixed.

(d) Generated graphs when varying z′′ with f , z and z′ fixed.

Figure 3: Visualization of Protein graphs generation controlled by respective disentangling factors.

edge weight generation are worse than D2G2.
Evaluation of the generated disentangled pat-

terns. We further qualitatively evaluate whether our
D2G2 indeed disentangles dynamic and static patterns
in nodes and edges, by randomly sampling one of f , z,
z′ and z′′ while keeping the other three fixed. This can
control the respective factors of static patterns, edge
dynamics, node dynamics as well as edge-node joint
dynamics, respectively. We have observed numerous
interesting patterns among different datasets and here
list some of them as shown in Figure 3, while more are
in the supplementary material.

The results demonstrate that the learned representa-

tion is indeed factorized and can control the correspond-
ing patterns related to them. For example, as shown
in Figure 3(a), when we fix z, z′ and z′′ while vary f ,
the whole dynamic graph changes evenly across different
time snapshots, which verifies that f indeed controls the
invariant patterns of the dynamic graphs. Differently,
when we instead vary z by fixing z′, z′′, and f , the topol-
ogy in different time snapshots for each graph varies,
which demonstrate that z indeed effectively controls the
non-stationary patterns in each dynamic graph; we can
also see z′ is capable of finding time variant factor con-
trolling attribute as the colors (i.e., the corresponding
node attributes values they reflect) vary instead of the
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(a) Ground truth (b) z, z′ and z′′ (without f) (c) f and combined z, z′ and z′′

Figure 4: Visualization of graphs from Protein dataset and generated by all ablated methods.

topology; when z′′ is the only varying factor, node and
edges change across different graphs in Figure 3(d) as
composed to either edges change in Figure 3(b) or node
changes in Figure 3(c).

Ablation Studies. We also perform two ablations
to confirm the necessity of the proposed factorization
design. Without time-independent latent representa-
tion, the graphs generated in Figure 4(b) capture the
underlying node characteristics but not topology. This
might be because although the latent variables increase
by respective dimension of ablated f , the dimension is
still too small to fully capture its topology (yet intrinsic)
characteristics. On the other hand, without separated
topology and node latent variables, Figure 4(c) reveals
that the generated topology looks close to ground truth
but the node characteristics do not. This illustrates
the necessity of separating topology and node represen-
tations. As otherwise the model might focus on the
learning of more complex topology representation and
ignore node representation, or vice versa.

Scalability. We also illustrate and analyze the
scalability in the number of nodes of our D2G2 method
against comparison methods, as shown in Figure 5,
where the y-axis is the logarithm (base 10) of the
runtime in seconds. As can be seen, our method
achieves competitive scalability in general, which is
similar to GraphRNN and better than GraphVAE and
DSGM. NetGAN is known for advantageous scalability
yet lower interpretability due to the utilization of random
walks. GraphVAE and DSGM cannot run with affordable
memory and time for graphs larger than 1000 nodes in
our experiments.
5 Conclusions
Generative models for real-world graphs have attracted
significant attentions since it is an attractive way to
learn high-level graph representations. However, most
of existing graph generative models do not explicitly
consider the dynamically evolving topology and attribute
information. To fill the gap, this paper proposes a novel
deep generative model, known as D2G2, for attributed
temporal graphs. We consider the attributed temporal

Figure 5: Scalability comparison of all the methods.

graph generation as a disentanglement problem and
present a model consisting of two derived penalties for
disentanglements between topology and attribute as well
as between time-dependent and time-varying factors.
The experimental evaluation results show the flexibility
and versatility of D2G2 in generating dynamic graphs.
One immediate future direction is to extend these results
in conjunction with our previous works [37, 38] for
unbiased scene graph generation.
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