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Abstract—Consumers evaluate and choose cloud-based services based on the Service Level Agreements (SLA). These agreements
list the service terms and metrics to be agreed upon by the service providers and the customers. Current cloud SLAs are text
documents that require significant manual effort to parse and determine if providers meet the SLAs. Moreover, due to the lack of
standardization, providers differ in the way they define the terms and metrics, making it more difficult to compare different provider
SLAs. We have developed a novel framework to significantly automate the process of extracting knowledge embedded in cloud SLAs
and representing it in a semantically rich knowledge graph helping the user to make a calculated decision in choosing a provider. Our
framework captures the key terms, measures, and deontic rules, in the form of obligations and permissions present in the cloud SLAs.
In this paper, we discuss our framework, technique, and challenges in automating the cloud services agreement. We also describe our
results and their validation against well-established standards.

Index Terms—Service Level Agreements, Semantic Cloud Services, Semantic Web, Deontic Logic, Actor determination, Natural
Language Processing, and Text Mining.

F

1 INTRODUCTION

Organizations are increasingly migrating to Cloud-based
services to take advantage of Cloud features like rapid
provisioning, scalability, ease of use, cost savings, high
availability, and platform independence. Cloud service is
typically accompanied by a service level agreement (SLA)
which defines the minimal guarantees that a provider offers
to its customers [1]. Components of a service could be
procured from multiple service providers; there could be
primary and secondary service providers, who will need to
agree on the service terms and conditions, thereby adding
to the complexity of the SLAs. The SLA specifies service
performance metrics like

• Availability timeframe of services,
• Scheduled maintenance times,
• Contingency or business continuity plans,
• Timeframes for notification and recovery following an

unplanned service disruption or a security incident,
• Problem resolution and escalation procedures, etc.
Cloud service agreements are currently text documents

and have to be manually parsed by the consumers to deter-
mine which service best suits their needs, this process is very
time consuming and prone to errors. This makes consumers
dependent on the cloud service provider‘s performance
reports to gauge the value of the cloud service. Moreover,
cloud contracts contain rules and policies that are not fully
encapsulated by existing performance metrics that cloud
providers track. There are no standard definitions for cloud
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metrics, different providers could have different definitions
for the same measure. One of the large federal agencies
found that their cloud service provider was tracking the
service availability measure as only system availability and
not user access. The provider insisted that their service was
available and meeting SLA requirements given that it was
‘up and running’ even if not every valid end user could
access it at the same time. As a result, the federal agency
had to update the service contract to redefine ‘service
availability’, the provider also had to modify the business
process to track availability and user access statistics. Such
situations can be overcome by using a semantic framework
like the one we have built to analyze the service contract.
A query to the SLA knowledge graph would help in a clear
understanding of key terms and also help to compare these
terms across different providers. The agency would then be
able to pick another provider with the required services or
ask for amends in the current contract.

As SLA standards are still in the nascent stage, differ-
ent cloud providers construct their own rules and policies
for the service offering and define them as clauses in the
cloud legal document. The complexity increases when the
documents are written by a third-party service provider.

The Research challenge in this problem is the lack of
standardization, due to the lack of standards for cloud
service performance, providers often construct their own
rules for performance measures and metrics. They define
them as ‘clauses’ in the cloud legal documents, such as
TOS, SLAs, or privacy policy documents, that are part of the
cloud contract. Reviewing all these cloud legal documents
to ensure the cloud service is meeting the organizational
requirements is a labor and time-intensive endeavor for
consumers. Also, is often an afterthought when a cloud
service fails to live up to its expectations. A critical step
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in automating cloud service selection and management is to
make the cloud SLAs machine-understandable so that selec-
tion tools can interpret the policy rules and metrics defined
in the service contracts. Another research challenge is co-
referencing/cross-referencing, many legal documents tend
to reference other documents or different sections within
the document. There is a need to develop techniques to
represent and reason over multiple legal documents that co-
reference/cross-reference another set of documents and/or
sections within the document.

There needs to be a common platform with a common
understanding through which information exchange and
querying can be done. In this work, we have built a novel
framework to enable users to pick the preferred cloud
service provider from a selection of providers.This is done
by building a base ontology with classes like cloudSLA,
Deontic statements etc using key term extraction and NIST
standards. Once the ontology is in place, various techniques
are used to populate this ontology; the measure of suitability
and completeness of a provider’s SLA is based on the
population count of this ontology. The relationships are
created using modal logic and dependency parsing. A com-
bination of text mining and semantic web technologies were
incorporated to extract various components of the SLA that
work independently to extract components of NIST, making
it a self-evaluating model adding to the novelty of the
approach. Techniques used to extract different components
are further shown in figure 2. Table extractions to obtain
remedies for non -compliance. Definition extractor to extract
standard definitions, deontic extraction to extract roles and
responsibilities and using modal and logic and dependency
parsing and similar context words extracted using skip
gram. Once the required components are extracted they are
auto-populated onto the knowledge graph which can then
be queried using a SPARQL query. We have also imple-
mented novel ways of evaluation by implementing a multi-
layered evaluation system starting with knowledge graph
population count evaluation to evaluate the completeness of
each provider. Followed by actor evaluation by verifying the
actors extracted with manual actor extraction Finally evalu-
ation of results extracted by SPARQL query These various
techniques and the engineering of their combination and the
implementation speaks for the novelty of this research.

In this paper, we initially discuss the background and
related work in this area. Then we present our approach
towards automating service level agreements and describe
the knowledge graph we have developed for the same. We
present the results of our analysis in the section Results and
Validation and end with conclusions and future work.

2 RELATED WORK

2.1 SLA Standards
Baset [1] describes an SLA as consisting of a service guar-
antee that specifies the metrics which a provider strives to
meet over a service guarantee time period. Failure to achieve
those metrics will result in a service credit to the customer.
Availability, incident response time and recovery, and fault
resolution time are examples of service guarantees. Service
guarantee granularity describes the resource scale on which
a provider specifies a service guarantee. For example, the

granularity can be on a per service, per data center, per
instance, or per transaction basis. SLA also specifies the ser-
vice guarantee exclusions. Service violation measurement
and reporting describe how and who measures and reports
the violation of service guarantee, respectively. In recent
years, international bodies have been working towards
defining standard definitions and terminologies for a Cloud
SLA. The International Organization for Standardization’s
ISO/IEC DIS 19086 standard [2], European Commission’s
“Cloud Service Level Agreement Standardization Guide-
lines” and NIST’s Special Publication 500-307 on Cloud
Computing Service Metrics Description [3], are some of
the publications that when finalized will help consumers
mandate a fixed SLA format from various cloud providers.
That will also help consumers compare and contrast the
various cloud services based on their terms of service/SLA
metrics. The committee responsible for the standardization
and documentation of Service Level Agreements is ISO/IEC
JTC 1, Information technology, Subcommittee SC 38, Cloud
computing, and distributed platforms. The overview, fun-
damental concepts, and definitions for cloud SLA is in
ISO/IEC 19086 which builds on the cloud computing con-
cepts defined in ISO/IEC 17788 and ISO/IEC 17789.ISO
(the International Organization for Standardization) and
IEC (the International Electrotechnical Commission) form
the specialized system for worldwide standardization [4].
There have been efforts made to build a Unified Service De-
scription Language (USDL) [5], Cloud Service Description
Model (CSDM) [6], and rSLA [7] to describe the features of
cloud services and share across web. However, these are not
based on the already existing standards and are building
different standards on their own. hlWe overcome this in our
framework by centering the whole experiment around NIST
standards [8] making the base schema for knowledge graph,
NIST specified. In this work we extract knowledge from var-
ious service providers and compare them against a common
NIST standard, giving it a very well defined structure. This
is done by first building the basic schema of the ontology
with classes and relationships using NIST standards and
then populating this ontology classes and relationships with
information extracted from the different providers. This is
done to build a standard, one for all solution for service level
agreement extraction and evaluation while making sure that
simplicity and ease of usage are maintained. We combine
the aspects of standardization and generalization of SLA by
creating a semantically rich system. According to ISO/IEC
19086 the cloud SLA should consist of the key characteristics
of a cloud computing service and should provide a common
understanding between cloud service consumers and cloud
service providers. A cloud SLA framework should consist
of Cloud Service Agreement (CSA), Cloud Service Level
Agreement (SLA), Cloud Service Level Objectives (SLO),
and Cloud Service Qualitative Objectives (SQO) [3].

Tasks in analyzing service level agreements:

1) Comprehending Cloud service agreements: Once a
cloud service consumer has chosen a cloud service after
analyzing the service characteristics and if its require-
ments are met, then this information is placed in the
cloud SLA. Cloud SLA has Cloud service objectives.
These objectives give a value to a cloud service char-
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acteristic that is understood to have a meaning and a
specific level of it needs to be met by the cloud service.
A metric does not give specific values but gives a few
rules on how to measure a particular characteristic of
cloud service.

2) Metrics Measurement: The document gives a model for
representing the metrics in a specific way so that mea-
surement tools can be devised. The measured value can
be compared to cloud service objective commitments
made in the cloud service agreements.

3) Verification of cloud SLA: As the measurements are
made with the same metrics that were used to define
the characteristics of a service in the cloud SLA, it
is possible to compare the measurement result to the
cloud service objective commitment. If the values do
not match then a remedy will be sought out.

2.2 Semantic Web

In cloud-based service environments, there is an exchange
of information, queries, and requests between the user
and the cloud service provider. This information exchange
could be for data or policies followed by the cloud service
providers. The handling of heterogeneous policies is usually
not present in a closed and/or centralized environment
but is an issue in the open cloud. The inter-operability
requirement is not just for the data itself, but even for
describing services, their service level agreements, quality-
related measures, and their policies for sharing data.

One way to solve this would be to use semantic web
techniques for modeling service related information. We
have used this to automate the selection of cloud service
provider [9] [10] [11]. The data is annotated with machine-
understandable meta-data, which could be queried and
used in the correct context in an automated manner. Se-
mantic web technology uses simple languages RDF [12] (Re-
source Description Language) and OWL [13] for describing
the objects and relations, define ontologies, and describing
the meta-data using these ontologies. Our framework uses
the novel approach of combining the semantic knowledge
extracted using the neural network skip gram model to get
semantically similar terms in different providers to populate
classes set up on NIST standards.

Another approach uses Web Services Definition Lan-
guage (WSDL) [14] which is a W3C standard for describing
network services as a set of endpoints operating on mes-
sages containing either document-oriented or procedure-
oriented information. However, WSDL does not allow a
means to express the policies that the service supports
or adheres to. Hence additional proposals like WS-Policy
and WSLA have been made to allow for the expression
of additional nonfunctional attributes. Turner et al. [15]
have proposed a service technology layer for the creation
and deployment of web services. They have compared the
existing protocols and technology available to implement
web services and have also noted gaps that need to be
researched.

Oldham et al. [16] have proposed semantically rich ex-
tensions to extend the WS-Agreement. Aiello et al. [17] have
proposed a formal definition of ‘Agreement’ based on WS-
Agreement. WS-Negotiation is proposed as an extension

of WS-Agreement to allow negotiation capabilities. WS-
Negotiation consists of three parts - negotiation message,
negotiation protocol, and negotiation decision. In this basic
model for WS-Negotiation, the emphasis is on how to ne-
gotiate and what to negotiate. It does not demonstrate how
a requester‘s enterprise policies can be used to automate
the negotiation process. Bui and Gachet [18] have described
a broker capable of offering negotiation and bargaining
support to facilitate the matching of web services. The
negotiation protocol and decision making mechanisms for
negotiation have not been described. Our proposed knowl-
edge graph is flexible enough to capture knowledge in terms
of existing and future SLA standards. This knowledge graph
allows for a clear comparison of different providers’ lan-
guage, usage of terms, the value of performance by simple
queries helping the customer make a strategic decision.

2.3 Text Extraction

Researchers have applied Natural Language Processing
(NLP) techniques to extract information from text docu-
ments. In Rusu et. al. [19] the authors suggest an approach to
extract subject-predicate-object triplets. They generate Parse
Trees from English sentences and extract triplets from the
parse trees. Etzioni et al. [20] developed the KNOWITALL
system to automate the process of extracting large collec-
tions of facts from the web in an unsupervised, domain-
independent, and scalable manner. Etzioni et al. [20] used
Pattern Learning to address this challenge.

Natural language technique uses Noun Phrase extraction
for information extraction to create triplets by consider-
ing ‘Noun Phrase’ which would be obtained from part-
of-speech taggers. Barker et al. [21] extract key-phrases
from documents and show that the noun phrase-based sys-
tem performs roughly as well as a state-of-the-art, corpus-
trained key-phrase extractor.In this paper, we have taken
this approach a few steps further by not only extracting
’Noun Phrase’ and subject-predicate-object triplets to create
classes and relationships but also to get deeper into the
structure of phrases. This helps to understand the depen-
dency of the terms in a phrase, determine the type of the
statements and who the actors are in those statements, and
also determines which party, the service provider, or the cus-
tomer gets directly affected by the phrases. This information
could strongly affect the service contract negotiation which
is explained later in the paper.

Documents consist not only of a huge number of un-
structured texts but also a vast amount of valuable struc-
tured data in the form of tables. Extracting knowledge from
structured tables is an ongoing research problem with multi-
ple solutions proposed to handle both general and domain-
specific tables. Mulwad et al. [22] proposed a framework
that assigns a class to table columns and links table cells to
entities and inferred relations between columns to proper-
ties. Bhagavatula et al. [23] created a system called TabEL
which works by extracting content using entity linking. We
use a modified version of it to improve our knowledge
extraction system. Researchers have explored the automated
techniques for extracting permissions and obligations from
legal documents using text mining and semantic techniques,
Kagal et al. [24] formed, proposed a semantic web-based
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policy framework to model conversation specifications and
policies using obligations and permissions. In this paper, we
have created a comprehensive framework for knowledge
extraction from SLAs by combining and improving the
techniques mentioned above. Along with which we have
created new techniques, piecing out the different compo-
nents of the SLA into the most granular machine-readable
format. We use ‘Noun Phrase’ and ‘subject-predicate-object’
for Key Term extraction and Definitions, We discovered the
usage of Table extraction for getting the Remedy for non-
compliance, we built neural networks for extracting the
Period of performance terms written in different forms. In
addition to extracting direct and indirect actors from clear
and ambiguous obligation and permission statements by
identifying the term dependency in phrases.

In our previous work, we have used topic modeling
to extract key terms with moderate results. We intend on
extending it to small text topic modeling as the traditional
methods do not yield great results because of the size of
the SLA. We have also described a preliminary knowledge
extraction system for cloud SLA documents. In this paper,
we extend our framework to include extraction of informa-
tion from tables and rules in the form of obligations and
permissions from cloud SLA documents. which is then au-
tomatically populated to the knowledge graph and queried
later for results.

3 KNOWLEDGE GRAPH FOR CLOUD SERVICE
LEVEL AGREEMENT

3.1 Introduction
The cloud legal documents fall into three broad categories.
Firstly, the Service Contract documents, which describes the
rules and clauses that specify service functionality, quality
and performance metrics. Secondly, the Privacy and Secu-
rity Data Document, that describes the data security and
privacy policies for the service and thirdly, the Regula-
tory Compliance documents that specifies the set of rules,
policies or standards formulated by regulatory agencies
or standards organizations. The main goal is to make the
SLA machine-readable. To achieve this, we collect the key
terms and relationships extracted using various techniques,
from the SLA, which is used to develop a semantically
rich knowledge graph. The knowledge graph is based on
knowledge representation language, OWL (Web knowledge
graph Language). The knowledge graph could be queried
using SPARQL to obtain the stored relationship. This base
of the knowledge graph was built by the combination of two
tasks, Key-term and relationship extraction from the text
and matching the obtained terms with NIST [3] suggested
standards. According to [8] the figure 1 shows that the cloud
service level agreements should contain, standards, defini-
tions, roles and responsibilities, period of performance, etc.
The knowledge graph we build would contain classes and
relationships as mentioned by NIST [8].

3.2 Classes
1) Class: CloudSLA: This is the main class containing sub-

classes like service name, service description, service
delivery, etc.

Fig. 1. NIST Guidelines for SLA [3]

2) Class:DeonticStatements :The class contains subclasses
“Permission”, and “Obligation”, . The SLA statements
that indicate permission are the DataProperty values of
the class Permission. The statements which are Obliga-
tion statements in the SLA are the DataProperty values
of the class Obligation and so on.

3) Class: ServiceStandards : The class ServiceStandards
has the standards as defined by the service provider.
These are the terms that are mentioned with or without
the title ‘Definitions’ in the SLA document. The data
property of this class has frequently used terms and
their definitions.

4) Class:TermsandAdjustments : This class has subclasses
like ‘ServiceCost’, ‘PeriodofPerformance’ and ‘Reme-
dyforNonCompliance’. The class ‘RemedyforNonCom-
pliance’ contains the values of credits assured to the
consumer by the service provider if the service provider
is unable to provide the promised service.

3.3 Relationship
Relationships in the knowledge graph are the relationships
between two classes which is called the ObjectProperty or
the relationship between a class or an instance of a class and
value of that class or instance called the DataProperty.

1) hasDeonticStatements: This DataProperty represents
the relationship between various Service Level Agree-
ments and their deontic statements.

2) hasObligationStatements: This relationship relates the
instances of class Obligation to their SLA obligation
statements.

3) hasPermissionStatements: This relationship relates the
instances of class Permission to their SLA permission
statements.

4) hasActors: This relationship relates the instances of
class Obligation and Permission to the actors in the
Obligation and Permission statements.

5) hasRemedyforNonCompliance: This relates the in-
stances of class RemedyforNonCompliance with the
values of credits returned in case of non-compliance.

6) hasServiceStandards: This relates the instances of class
ServiceStandards with the standardized terms as de-
fined by the SLA.

4 METHODOLOGY

Through this research, we aim to enable the consumer to se-
lect from multiple cloud services. The architectural elements
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and components of the framework are as shown in figure
2. We start by web scraping various cloud providers‘ SLA
documents. On top of this text mining and semantic web
techniques are applied. Once the text prepossessing is done,
different components of the framework work independently
to extract different components from the SLA as suggested
by NIST [8]. We have the Key Term Extractor component
to extract classes and relations which is then compared
with NIST standards, then we have the Table Extraction to
extract Remedies for non-compliance, the Skip Gram Model
to extract Period of Performance, Definition Extractor to
extract the standards, followed by Deontic Extractor to ex-
tract the Roles and Responsibilities. Once these are extracted
they are populated into the classes and sub classes in the
knowledge graph, which is then queried to answer various
user requirements helping them to select the best SLA.

4.1 Data-set Used for the Experiment
Data used is from publicly available Service Level Agree-
ment documents of popular cloud service providers like
VMware vCloud Air [25], Amazon Web Services(AWS) [26],
Microsoft Azure cloud [27], Google Cloud Platform [28] and
IBM Softlayer [29] was used to build and train the frame-
work. After the model was built it is tested for correctness
using on Rackspace [30], SAP [31], Alibaba [32] and Oracle
[33]. Most of these are compute SLA, however, the frame-
work works fairly well even on other SLA which follows the
NIST guidelines and has arranged the documents according
to the extractor in the framework.

4.2 Text Extraction
The text from the SLA documents are extracted using mul-
tiple techniques based on their application (here, the class
that they would get populated into). Below is the detailed
component-wise extraction technique.

4.2.1 Definition Extraction/ Standards Extraction
Legal documents define the terms and standards as es-
tablished that are repeatedly used in them. This is done
to achieve clarity without repetition. Some rules that are
followed are that the legal terms should not be defined if
used just once or if they conflict with the accepted meaning.
Also, they should be placed where they are most easily
found, preferably quoted before they are used. SLAs contain
definitions related to the provider’s operation, the frame-
work helps in extracting those terms making it easier for
decision making.

To extract these definitions we tokenize the document
into sentences, these sentences are parsed using the CMU
Link parser [34] and regular expression. Here the sentences
would be split into noun phrase X and verb phrase Y similar
to Noun-phrase in [35]. Y could even be a complex sentence
on its own. X and Y are connected by a few filler words
like ‘is’, ‘means’ etc. Pattern matching is used to match the
sentences with this required pattern. If a sentence matches
this pattern it gets picked up by the extractor, an example
sentence would be “A “Service Credit” is a dollar credit,
calculated as set forth above, that we may credit back to an eligible
account”. Here in this sentence ‘Service credit’ would be the X
in the sentence and ‘a dollar credit, calculated as set forth above,

that we may credit back to an eligible account’ would be the
Y. We then add this sentence to the RDF with the obtained
relation between them, which is that X is a key term that is
defined as Y. This forms the dataProperty value of the class
‘Standards’ as these are the standards set by the SLAs.

4.2.2 Extraction of Remedies for Non-Compliance
On various occasions, the cloud service providers fail to pro-
vide the promised service duration or uptime. A good SLA
should have the means to deal with this non-compliance.
The Service provider should have clear information on how
it would provide a remedy for this situation by giving back
credits or extra service or some other remedy useful to
the consumer. For example, AWS in their [26] as shown in
figure 3 specifies the credits that would be given back to the
consumer in case AWS fails to provide the promised service.
This high-quality information is usually within a table. This
is very convenient for humans to understand. Unfortu-
nately, its equally hard for it to be machine-understandable.
To deal with this we use the BeautifulSoup library in python.
BeautifulSoup is a python library for pulling data out of
HTML and XML files. It works with your favorite parser to
provide various ways of navigating, searching, and mod-
ifying the parse tree. We extract the table by extracting
contents under the table tag in HTML. After this parsing of
the table, we end up with a dictionary of elements which is
the contents of the table cells. To keep the framework more
generic we have used the approach of extracting remedies
for non-compliance only from tables. The remedies for non-
compliance class is not populated for a few SLAs in the
knowledge graph, that does not mean that they do not have
remedies of non-compliance, it only means that they do not
have in a clear table format which is followed by several
popular cloud provider SLA.

This extracted data is encoded as RDF statements. The
RDF statements are then added to the knowledge base.
These details are populated as the dataProperty of the class
‘RemedyforNonCompliance’, which is a subclass of class
‘TermsandAdjustments’. Once we get the dictionary with
data in it, the table headers are used to associate semantics
to different cell data. We strove to keep the system reusable
by not using any data or documents from a local copy but
instead use real-time hyperlinks to service providers. This
is done so that the same prototype could be reused even
when the providers change their SLA content as long as the
update is on the same link.

4.2.3 Extraction of Word Context / Skip-gram model
While dealing with a text document like the SLA, we often
come across different terms being used to refer to the same
concept across different service providers. It is relatively
easy for humans to understand that the term ‘availability’
used by AWS is the same as term ‘uptime’ used by GCP.
However, it is not that trivial for the machine to understand
this. To make the machine understand these words as sim-
ilar words, we build a 3 layer neural network, which uses
skip-gram model as shown in figure 4 to understand the
context of the words. The input to this model is one-hot
encoded-words from the SLA. The output layer gives the
probability of the label, here the neighboring words or the
context words. Cross entropy(loss-function) is applied to the
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Fig. 2. Complete Architecture of Framework to extract knowledge from cloud SLA

Fig. 3. Remedy for Non-Compliance Table in AWS [26]

output to get the one-hot encoding values of predicted con-
text words. The hidden layer in the neural network model
gives the n-dimensional word embedding of every word
(output of interest in this application). The error function
is minimized by gradient descent, in our application that
means reducing the error in predicting the context words
for a given input word. Once the model is trained we get the
word embeddings. These embeddings can be plotted on to a
graph. The distance between the embeddings for each input
word gives the similarity or the dissimilarity between those
words. When the embeddings are plotted on a 2d plot we
see that the values for the word ‘availability’ and ‘uptime’
are quite close to each other. Hence, the definition of these
words can be considered to belong to the same context.
The input vocabulary can be easily changed to adapt and
categorize new words coined for the concept. This kind of
knowledge will help the machine understand the different
terms for the same usage across various SLAs.

4.2.4 Extraction of Roles and Responsibilities from SLA

Extraction of Responsibilities:
Researchers have used deontic principles in the past to

analyze policy and legal documents. The work by Travis
D.Breaux [36] utilized semantic web and text mining ap-
proaches to extract obligations and permissions from pri-
vacy policies. We also used similar techniques to extract de-
ontic rules from cloud SLA documents. We explored the use

Fig. 4. Neural Network to Extract Word Context

Fig. 5. Grammar rule to extract responsibilities from SLA

of Modal Logic to extract rules or responsibilities present
in the cloud SLA documents. Deontic logic or modal logic
is a field of philosophical logic that deals with obligation,
permission, and related concepts.

1) Permissions/Rights: Permissions are expressions that
describe rights or authorizations for an entity/actor.

2) Dispensations: Dispensations describe optional or non-
mandatory statements.

3) Obligations: Obligations define the responsibilities that
an entity/actor must perform.
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4) Prohibitions: Prohibitions specify the conditions or ac-
tions which an entity is not permitted to perform

For example, the sentences containing the words “must”,
“should”, “will” impose obligations on the actor in the
sentence.

To extract these statements we followed the below steps:
1) The SLA documents’ text are first sentence tokenized
2) Every sentence is passed through a Stanford POS tag-

ger [37]. This Parts of Speech tagger tags every word
present in every sentence into a part of speech

3) Every word gets tagged an NN if it is a noun, MO if
it is a modal verb, a VB if it is a verb, CD for cardinal
digit, and so on.

4) We will make use of this tag to form a general grammar
rule to extract statements as shown in figure 5.

This gives us the permissions and obligations statements.
This method of analyzing will help the customers to under-
stand their rights and obligations towards the services that
they buy and use. It helps in understanding the document
by giving it a structure to look at.

The categorization of sentences from SLA into the above
categories resulted in the below findings

Example Sentence 1: Google will make a determination in
good faith based on its system logs, monitoring reports, configura-
tion records, and other available information. Type: Obligation

Such sentences are extracted from the SLA with the help
of the modal words and then populated under the respective
class in the cloud SLA knowledge graph, the statement in
this example would get populated as a DataProperty value
of the subclass Obligation under the class DeonticState-
ments.

Extraction of Roles :
Once the responsibilities are extracted, we extract the

actors or the roles of these responsibilities. It is necessary
to know who those permissions or obligations are on. Here
we have two options for actors, the service provider and
the customer. There are also statements which are more like
definitions and hence do not contain either of the actors.

If the actor in a sentence is the service provider like
for example, “Amazon will provide 99.8 % availability” then
the obligations are on the service provider. Thinking gram-
matically and looking at the structure of the sentence the
first approach is to extract the nouns, pronouns from the
statements, the one’s with tags ‘NNP’ and ‘PRP’ as the
actors in that statement. This would work perfectly in a
statement like the one shown in Example sentence 1, the
actor would be ‘Google’. However, if the statement has more
than one actor like the one in Example sentence 2 then
the above method of extracting nouns, pronouns as actors
would not work. Example Sentence 2: At our discretion, we
may issue the Service Credit to the credit card you used to pay
for the billing cycle in which the Unavailability occurred.

Actor: CUSTOMER
Actor: SERVICE PROVIDER
Both the pronouns (‘we’ and ‘you’) would be captured as

actors.Here the actors are service provider and customer. To
extract the direct actor in such statements,we need a deeper
structural knowledge of the statement and hence need more
information about their dependencies in the statement. To
achieve this we extract the dependencies of words on each in

Fig. 6. Actor extraction from dependency parsed statements

a statement using dependency parsing [38] on the extracted
deontic statements

“Dependency parsing is the task of extracting a depen-
dency parse of a sentence that represents its grammatical
structure and defines the relationships between “head”
words and words, which modify those heads [39].” Depen-
dency parsing can be used to extract sentences of both the
types, Example sentence 1 and Example sentence 2 using
the steps in Figure 6

Steps for dependency parsing for Type 1 statements
(Example Sentence 1):

1) The sentences with modal words are first determined.
2) From these sentences the ‘ROOT’ words like ‘ap-

ply’,‘comply’ etc,. are captured.
3) If the previous word is the ‘ROOT’ word and the

current word has dependency ‘dobj’ (direct object) [40],
extract the direct object (‘dobj’) .

4) Tag the current word as the ‘Actor’ in the statement.
Example Sentence: Your failure to provide the request will

disqualify you from receiving a Service Credit
Dependency parsing: poss(failure-2, Your-1)

nsubj(disqualify-8, failure-2) aux(provide-4, to-3) acl(failure-
2, provide-4) det(request-6, the-5) dobj(provide-4, request-6)
aux(disqualify-8, will-7) ROOT(disqualify-8, disqualify-
8) dobj(disqualify-8, you-9) prep(disqualify-8, from-
10) pcomp(from-10, receiving-11) det(Credit-14, a-12)
compound(Credit-14, Service-13) dobj(receiving-11, Credit-
14) punct(disqualify-8, .-15)

‘ROOT’ : ‘disqualify’
‘dobj’ : ‘you’
Actor: we (Service Provider)
Steps for dependency parsing for Type 2 statements

(Example Sentence 2):
1) The sentences with modal words are first determined.
2) From these sentences the ‘ROOT’ words like ‘ap-

ply’,‘comply’ etc,. are captured.
3) Check if the previous dependency is nominal subject

(nsubj) [41] and the current word dependency is ‘aux’,
(An aux (auxiliary) of a clause is a function word asso-
ciated with a verbal predicate that expresses categories
such as tense, mood, aspect, voice or evidentiality) [42]
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4) If yes, then extract the nominal subject (‘nsubj’) [41] of
the ‘ROOT’ word.

5) Tag the ‘nsubj’ as the ‘Actor’ in the statement (previous
word).

Example Sentence:
At our discretion, we may issue the Service Credit to the

credit card you used to pay for the billing cycle in which the
Unavailability occurred.

Dependency parsing: prep(issue-7, At-1) poss(discretion-3,
our-2) pobj(At-1, discretion-3) punct(issue-7, ,-4) nsubj(issue-
7, we-5) aux(issue-7, may-6) ROOT(issue-7, issue-
7) det(Credit-10, the-8) compound(Credit-10, Service-9)
dobj(issue-7, Credit-10) prep(issue-7, to-11) det(card-14,
the-12) compound(card-14, credit-13) pobj(to-11, card-14)
nsubj(used-16, you-15) relcl(card-14, used-16) aux(pay-
18, to-17) xcomp(used-16, pay-18) prep(pay-18, for-19)
det(cycle-22, the-20) compound(cycle-22, billing-21) pobj(for-
19, cycle-22) prep(occurred-27, in-23) pobj(in-23, which-24)
det(Unavailability-26, the-25) nsubj(occurred-27, Unavailability-
26) relcl(cycle-22, occurred-27) punct(issue-7, .-28)

‘ROOT’ : ‘issue’
‘aux’ : ‘may’
‘nsubj’ : ‘we’
Actor: we (Service Provider)
Once the deontic statements and the actors for each

statement are captured from every SLA under test. We
populate it onto the knowledge graph as a data property
‘hasactors’ of the class ‘Obligations’ and ‘Permissions’.

4.3 Knowledge Graph Auto-Population

A cloud SLA knowledge graph is built as shown in figure
7 with NIST standards as the base, once the schema is built,
the extracted text from the above methods is populated
onto this knowledge graph. This is done in the form of
triplets, subject, object and predicate. The various aspects of
the NIST standard become the main classes and subclasses
of the knowledge graph as mentioned earlier, for example,
Remedyfornoncompliance standard as mentioned by NIST
forms a class in the knowledge graph. Each service provider
is considered an instance of the above-built classes and
subclasses. The value or the actual sentences corresponding
to the NIST standard in each provider’s SLA becomes the
DataProperty value of a class/subclass and in turn of the
instance, where the DataProperty would define the rela-
tionship between the class and the values. Once the SLA
terms are identified we save them as an RDF graph which is
machine-understandable. After which the key components
can be queried from the knowledge graph using Apache
Jena Fuseki. It could now be used by the user to compare
various of SLAs, assisting in choosing the best one.

Adding these terms as classes and establishing the rela-
tionship between them in the graph could be done automat-
ically with the help of our script that uses the library ‘Owl-
ready’(python library for modifying) owl files. The main
classes in the knowledge graph are ‘CloudSLA’, ‘Deontic-
Statements’, ‘SLAStandards’, ’TermsandAdjustments’, with
subclasses. The service providers ‘AWS’, ‘GCP’, ‘Azure’,
‘VMware’ form the instances. Once the knowledge graph
was completely built it was tested with other SLAs like
‘IBMcloud’, ‘Alibaba Cloud’, ‘Oracle’, ‘Rackspace’ etc. for

checking the capturing capacity of the framework. The key
steps followed to populate the knowledge graph are :

• Fetch and pre-process the SLA of a service provider
• Extract the key terms from the SLA using various Text

Mining and Natural Language Processing techniques.
• Obtain the Noun Phrase and the Verb Phrase using the

Stanford parser.
• Write the triples extracted, onto a JSON file as key-value

pairs
• Then the JSON file is read and the key-value pairs

are populated onto the knowledge graph. The terms
now become the classes in the knowledge graph and
the relationship fills in as Object Property and Data
Property.

4.4 Query the knowledge graph

Once the knowledge graph is created we then query the
knowledge graph using SPARQL [43]. SPARQL is a se-
mantic query language with which we can query the data
stored in the knowledge graph in the RDF format. We used
the Apache Jena Framework [44] for running the SPARQL
queries. One with basic SPARQL query knowledge would
be able to extract the information from the knowledge
graph. The extracted information is displayed in the form
of text, graph or tables. The user can either select a cloud
service name to analyze the properties or type in a natural
language query. Using the result the user can compare
the permissions of various service providers side by side,
similarly, the obligations, definitions and non-compliance
remedies and make a calculated decision on choosing the
service provider, an example of which is shown in figure 9.

5 RESULTS AND VALIDATION

The evaluation is classified into two section Knowledge
Graph Evaluation and Actor Evaluation

5.1 knowledge graph Evaluation

The populated knowledge graph can be checked for correct-
ness using 2 methods as below.

5.1.1 Knowledge Graph Population Count
Every Population into the knowledge graph is recorded.
Each populated class increases the total count by one. We
have also captured the number of entries for each class
population for a particular SLA. The knowledge graph
population capacity has been captured for every instance
as shown in figure 8.

We see that the class RemedyforNonComplaince pop-
ulation value for VMware is 0, now that does not mean
that VMware does not have remedy for non-compliance, it
only means that the remedies are not present in the SLA
in the format that we are setting up in the framework.
VMware’s Remedy for non-compliance is scattered around
in the entire text and not placed in a table format like other
popular providers. Similarly count of definitions, obligation,
permission statements, actors, etc. are captured. This gives
us an estimate of the completeness of each provider‘s SLA
with respect to NIST standards.
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Fig. 7. SLA Knowledge Graph

Fig. 8. knowledge graph Population Count

5.1.2 SPARQL Query

The knowledge graph that is built can be queried to obtain
various results based on the user’s requirement. Below are
a few user test cases (the information a user might be inter-
ested in while purchasing a service), with their respective
SPARQL query and results.

1) Case 1: Provide the obligations statements with actors
that talk about ‘Service Credits’. Getting this kind of
specific information by a simple query significantly
benefits the user.

2) Case 2: Compare the credits refunded by Cloud
Providers if the availability is around 95% We notice
that the credits returned by Azure are a 100% whereas
by GCP are just 50% for the same monthly drop in
uptime. This comparison would be cumbersome if it
had to be done manually.

5.2 Actor evaluation

Actors extracted can be of three categories, Service Provider,
Customer, and Neither. The distribution of the different
categories of actors across the obligation and permission
statements for various SLA is as shown in figure 11. The
framework extracts correct actors using the earlier men-
tioned methodology, however, the framework also incor-
rectly extracted actors for a few statements. This could
be because of the complexity of the statement or that the
statement does not follow the extraction structure which is
the one followed by the majority of the popular providers.

Correct Extraction
Actor: Service Provider ”Actor: VMware Sentence :

VMware will review the request and issue a Service Credit when
VMware validates the SLA Event based on VMware’s data and
records ”

Actor: Customer ”Actor: you Sentence : Service Credits will
not entitle you to any refund or other payment from AWS ”



10

Fig. 9. Case 1: Provide the obligation statements with actors that talk about ‘Service Credits’.

Fig. 10. Case 2: Compare the credits refunded by Cloud Providers if the availability is around 95%

Fig. 11. Actors Distribution Plot

Neither: ”Actor: Sentence : Capitalized terms not defined in
this SLA will have the meanings specified in the Terms of Service”

Incorrect Extraction
”Actor: you Sentence : For these Services, any Service

Credit that you may be eligible for will be credited in the
form of service time (i.e., days) as opposed to service fees,
and any references to Applicable Monthly Service Fees is
deleted and replaced by Applicable Monthly Period. ”

No actor should be extracted for the above statement(the
output should be ‘Neither’). This incorrect extraction is
because of the structure of the statement that does not

comply with both Type 1 or Type 2 statements. Adding
this structure to the framework is possible, but has been
deliberately not done to avoid over-fitting the framework
for a small section of irregularity in the structure.

5.3 Survey to Check the Correctness of Actor Extrac-
tion
We evaluated the captured actors by randomly selecting
10 deontic statements. These statements were sent to 5
individuals to identify the actors in them if there are any.
The statements sent for evaluation were :
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Fig. 12. Evaluation of the framework but checking the correctness of
actors capturing

1) AWS will use commercially reasonable efforts to make the
Included Services each available for each AWS region with a
Monthly Uptime Percentage of at least 99.99%, in each case
during any monthly billing cycle (the Service Commitment).

2) In the event any Single EC2 Instance does not meet the
Hourly Commitment, you will not be charged for that in-
stance hour of Single EC2 Instance usage.

3) For all Virtual Machines that have two or more instances
deployed across two or more Availability Zones in the same
Azure region, we guarantee you will have Virtual Machine
Connectivity to at least one instance at least 99.99% of the
time.

4) If the Agreement authorizes the resale or supply of Google
Cloud Platform under a Google Cloud partner or reseller pro-
gram, then all references to Customer in this SLA mean Part-
ner or Reseller (as applicable), and any Financial Credit(s)
will only apply for impacted Partner or Reseller order(s)
under the Agreement.

5) If a dispute arises with respect to this SLA, Google will
make a determination in good faith based on its system
logs, monitoring reports, configuration records, and other
available information, which Google will make available for
auditing by Customer at Customers request.

6) At our discretion, we may issue the Service Credit to the
credit card you used to pay for the billing cycle in which the
Unavailability occurred.

7) A “Service Credit” is a dollar credit, calculated as set forth
above, that we may credit back to an eligible account

8) The self-service console, available at
https://vchs.vmware.com, cannot successfully authenticate a
simulated user for more than five (5) consecutive minutes.

9) You may not unilaterally offset your Applicable Monthly
Service Fees for any performance or availability issues.

10) Capitalized terms used but not defined in this SLA will have
the meaning assigned to them in the Agreement.

The results obtained are as shown in Figure 12
We notice that there is a mismatch in the majority poll

and the extracted actor for statement 4, and this is because
of the complexity of the statement. Though there is no
well defined actor in statement 4, (according to dependency
parsing rule), human beings could read, comprehend the
statement and decipher that the actor here is ‘Customer’
which the system is failing to do. This is expected behaviour
in the framework, more complex rules of extraction can
overcome this issue.

6 CONCLUSION AND FUTURE WORK

Currently, the cloud service SLA are text documents that
require manual effort to read through and choose the right
service, which is prone to error and bias. We have extracted
the text from these documents and built an automatic ex-
traction and comparison of cloud service level agreements
system. This is done with the help of semantic web tech-
nologies and text mining techniques involving the usage of
OWL and RDF graph to store the extracted components.
In this paper, we have described in detail the cloud SLA
knowledge graph that we have developed. We have also
described the prototype that we have developed to illustrate
how the SLA measures can be automatically extracted from
legal terms of service or customer agreement documents,
that are available in the public domain.

Using this framework we have extracted the modal state-
ments and their associated actors. With this information,
we then classify the modal statements as permissions and
obligations. Each permission/obligation is associated with
specific actors. The actors here are ‘Customers’, ‘Service
Providers’ or ’Neither’. Doing this, we have eased the pro-
cess of finding the most suitable service provider for every
customer. The customers now have the clarity of what their
rights are and what are they obliged to do.

In our future work, we intend to expand this work to
include other aspects of cloud SLA like compliance, and
other documents in cloud services like the scope of services,
liability insurance, etc. This can be done by adding a new
class to the base knowledge graph, which would involve
different NLP techniques based on the application. We also
intend on making the knowledge graph more involved
so that it can capture the complexity and ambiguity of
the sentences which were incorrectly classified and tagged
currently, which could be achieved by finding alternatives
and improvements to dependency parsing. In addition to
expanding the framework to other providers, which would
bring in newer formats of phrase and term usage. We also
have plans on automating text extraction across domains
rather than just cloud service providers making it a one
for all text processing framework. We plan on exploring
other small text modelling techniques for better capture
of important topics from the SLA as the traditional topic
modeling does-not give satisfactory results due to the small
size of the SLA.We will also expand the data-set for our
system to include all legal documents associated with cloud
services like terms of service, privacy policy, and service
level agreements. This would also include a streamlined
auto service selection process.
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