
i

TOWSON UNIVERISITY
OFFICE OF GRADUATE STUDIES

THE EFFECT OF PACKET LOSS ON NETWORK INTRUSION DETECTION

by

Sidney Charles Smith

A thesis

Presented to the faculty of

Towson University

in partial fulfillment

of the requirements for the degree

Master of Science

Department of Computer Science

Towson University
Towson, Maryland 21252

May 2013

ii

iii

Acknowledgements

I would like to thank the following people for their contributions to this effort.

Dr. Lisa Marvel was an endless source of advice and good ideas. She is responsible for

suggesting the random and state algorithms. Mr. Carlos Mateo contributed by helping

me first designing and then obtaining the equipment to construct the experimental

environment. Mr. Travis Parker helped load the Packet Dropper runs into the X-Wray

Stats and Performance Explorer (SPEX). Mr. Kin Wong constructed the experimental

environment and conducted the experiments which used it. Although Mr. Justin Wray

constructed the X-Wray SPEX for a different experiment a couple of years ago, I want to

acknowledge his efforts from which I am continuing to benefit.

iv

Abstract

In this thesis we review the problem of packet loss as it pertains to Network

Intrusion Detection with the intent to build a model that can be used to predict the impact

of packet loss. We examine the potential places where packet loss may occur dividing

the problem into network, host, and sensor based packets loss. We review the literature

not only for other similar work, but for any work which might provide insight into this

issue. We posit theories about how that packet loss may present itself. We construct a

test environment and conduct experiments to induce packet loss in this environment. We

develop the Packet Dropper application that induces packet loss into a dataset based upon

eight different dropping algorithms selected to cover the theories previously posited. We

apply each of these eight algorithms with drop rates ranging from 0% to 100% in 5%

increments to the DARPA 98 Training, DARPA 98 Test, DARPA 99, CDX 2009, and

CCDC 2010 datasets analyzing the resulting abridged datasets with Snort to collect alert

information. The Alert Loss Rate (ALR) is plotted against the packet loss rate (PLR)

allowing us to make general inferences about the relationship between PLR and ALR. In

this paper we discovered that deterministic, bounded random, and random algorithms

closely match the dropping patterns found in the literature and that a capped algorithm

models the packet loss that we observed in our experiments. We present formulas that

provide reasonable upper and lower bounds for the impact of PLR on ALR allowing us to

predict this impact with some level of confidence.

v

Table of Contents

Acknowledgements ... iii

Abstract .. iv

Table of Tables.. vii

Table of Figures ...viii

Introduction ... 1

Problem Definition .. 1

Objectives ... 3

Research Questions ... 4

Outline .. 5

Literature Review .. 7

Methods and Materials .. 13

Understanding Packet Loss .. 13

Theory ... 13

Experiments... 14

Modeling Packet Loss ... 20

Requirements ... 20

Pcapcat .. 20

User Interface .. 21

The Deterministic Algorithm ... 23

The Bounded Random Algorithm .. 29

The Random Algorithm ... 31

The Sinusoidal Algorithm .. 33

A Sawtooth Algorithm ... 37

Pcapgraph .. 39

Pcapstats .. 40

A Capped Algorithm.. 41

A Two State Channel Model .. 43

Summary ... 46

Results .. 48

vi

Validity vs. PCAP Datafile Size .. 48

DARPA 1998 Training Dataset ... 48

DARPA 1998 Test Data .. 51

DARPA 1999 Data Set .. 53

Cyber Defense Exercise 2009 .. 55

Collegiate Cyber Defense Competition 2010 (CCDC 2010) 57

Summary ... 59

Discussion ... 60

References ... 63

Curriculum Vita .. 65

vii

Table of Tables

Table 1 Overall program objective.. 3
Table 2 Hardware Specifications ... 16
Table 3 Software Specifications .. 16
Table 4 Network Packet Loss Results .. 18

viii

Table of Figures

Figure 1 Packet Loss Diagram ... 2
Figure 2 Snort NIDS underlying kernel support architecture (Salah & Kahtani, 2009) 9
Figure 3 Alert Loss vs Packet Loss (Schaelicke & Freeland, 2005) 11
Figure 4 Packet Rate vs Time (Schaelicke & Freeland, 2005) .. 11
Figure 5 Experimental Environment .. 15
Figure 6 Packet Loss as Measured by Snort ... 19
Figure 7 UML Class Diagram for Configuration Objects ... 22
Figure 8 Dropper Class Diagram ... 25
Figure 9 Effect of 25% Packet Loss on Mb/Second with the Deterministic Algorithm ... 28
Figure 10 Effect of 25% Packet Loss on Packets/Second with the Deterministic
Algorithm .. 28
Figure 11 Effect of 25% Packet Loss on Mb/Second with the Bounded Random
Algorithm .. 30
Figure 12 Effect of 25% Packet Loss on Packets/Second with a Bounded random
Algorithm .. 31
Figure 13 Effect of 25% Packet Loss on Mb/Second with the Random Algorithm 32
Figure 14 Effect of 25% Packet Loss upon Packets/Second with a Random Algorithm .. 33
Figure 15 Amplitude Adjustment for the Sinusoidal Algorithm 35
Figure 16 Effect of 25% Packet Loss on Mb/Second with a Sinusoidal Algorithm 36
Figure 17 Effect of 25% Packet Loss on Packets/Second with a Sinusoidal Algorithm .. 37
Figure 18 Effect of 25% Packet Loss on Mb/Second with the Sawtooth Algorithm 38
Figure 19 Effect of 25% Packet Loss on Packets/Second with the Sawtooth Algorithm . 39
Figure 20 Effects of 25 % Packet Loss on Mb/Second with the Capped Algorithm 42
Figure 21 Effects of 25% Packet Loss with a Capped Algorithm on Packets/Second 42
Figure 22 Two State Channel Model ... 43
Figure 23 Effect of 25% Packet Loss on Mb/Second with the State Algorithm 45
Figure 24 Effect of 25% Packet Loss on Packets/Second with the State Algorithm 46
Figure 25 Effect of 25% Packet Loss on Mb/Second with Various Algorithms 47
Figure 26 Effect of 25% Packet Loss on Packets/Second with Various Algorithms........ 47
Figure 27 Impact of Deterministic Packet Loss on Alerts using the CDX 20090424.08
dataset ... 48
Figure 28 Impact of Packet Loss on the DARPA 1998 Training Data 50
Figure 29 Impact of Packet Loss on the DARPA 1998 Training Data 51
Figure 30 Impact of Packet Loss on the DARPA 1998 Test Data 52
Figure 31 Impact of Packet Loss on ALR in the DARPA 1998 Test Data 52
Figure 32 Impact of Packet Loss on Alerts in the DARPA 1999 Data 54
Figure 33 Impact of Packet Loss on ALR in the DARPA 1999 Data 54
Figure 34 Impact of Packet Loss on Alerts in the CDX 2009 Dataset 56
Figure 35 Impact of Packet Loss on ALR in the CDX 2009 Dataset 56

ix

Figure 36 Impact of Packet Loss on Alerts in the CCDC 2010 Dataset 58
Figure 37 Impact of Packet Loss on ALR in the CCDC Dataset 58
Figure 38 ALR vs. PLR for all Datasets and Algorithms .. 59

1

Introduction

Network Intrusion Detection (NID) depends upon the sensor being able to see the

network traffic between the adversary and the target. This is often done by placing the

sensor on a mirrored port in the network boundary which sends a copy of all the packets

flowing into and out of the network to the sensor. Packet loss occurs when some of these

packets fail to make it all the way to the sensor software for analysis. Intuitively, we

understand that a sensor cannot detect what it cannot see; therefore, this packet loss must

have a negative impact on the sensor’s ability to detect malicious activity. This

fundamental truth is well known, and much work has been done to reduce or eliminate

packet loss. Very little work has been done to understand, predict, and model packet loss

or the impact on network intrusion detection. The novel focus of this research is to build

a model that can be used to predict packet loss and the impact on intrusion detection.

Problem Definition

The Internet is a very dangerous place for packets. They can collide and be

destroyed. They can encounter a host, switch or a router with a full buffer and be

dropped. They could pass through faulty systems and be altered. Internet protocols such

as TCP are designed with the ability to compensate for these problems and retransmit

dropped or altered packets. The focus of this research is not packet loss in general, but

specifically any packet loss where packets from the adversary reach the target, but do not

reach the sensor from a NID point of view. We will divide this problem into three distinct

areas: network based packet loss, host based packet loss, and sensor based packet loss

which are illustrated in Figure 1.

2

Figure 1 Packet Loss Diagram

Network Packet Loss. Network based packet loss is defined as any circumstance

that would prevent packets which reach the target from reaching the network interface of

the sensor and is represented by bit bucket A in Figure 1. Since the network from the

switch to the sensor is significantly simpler than the network from switch to the target,

we assume that almost all of this packet loss occurs in the switch itself as packets are

delivered to the target network but fail to be mirrored.

Host Packet Loss. Host based packet loss is defined as any circumstance that

would prevent packets which reach the network interface of the sensor from being

presented to the analysis software and is represented by bit bucket B in Figure 1. A key

3

culprit here could be packets dropped because the buffers fill as new packets arrive faster

than the CPU is capable of processing them.

Sensor Packet Loss. Sensor based packet loss is defined as circumstance that

would prevent packets which are presented to the analysis software from being processed

and is represented by bit bucket C in Figure 1. A prime candidate is resource exhaustion

caused by the analysis software itself.

Objectives

Overall program objective:
Methodology and Analysis of Capture Packet Loss and Impact on Network

Intrusion Detection Systems (NIDS)
Sub-topic Key

Research
Hypothesis

Research
Question

Key Research
Result
Expected

Tangible
Value

Understanding
Packet Loss

There exists
patterns in
packet loss that
may be modeled
with some level
of fidelity

RQ1 A packet loss
model which may
be used to simulate
packet loss

This model may
be used to build
packet loss
resistant
systems

Modeling
Packet Loss

An application
may be written
that will
simulate packet
loss over an
existing dataset

RQ3 A simulator will be
developed that will
allow analysis to be
conducted without
requiring
experimentation
using a network
environment

This simulator
may be used to
inexpensively
test packet loss
resistant
algorithms

Effect of
Packet Loss

Packet Loss has
a Predictable
Impact upon
NIDS that may
be
mathematically
modeled.

RQ2, RQ4 A mathematical
model for
predicting the
effect of packet
loss on NIDS

This model may
be used to set
tolerances and
allow network
managers to
make risk based
decisions

Table 1 Overall program objective

4

Research Questions

During this research, we will answer the following research questions:

1. Is there sufficient regularity in packet loss to feasibility model it, or is

this phenomenon sufficiently irregular as to be effectively considered random? The only

work in this area seems to imply that packet loss is closely related to network traffic

volume (Schaelicke & Freeland, 2005). However, this work did not consider network

packet loss and appears not to have differentiated between host and sensor packet loss.

This applies directly to sub-topic, “Understanding Packet Loss” in Table 1. If there is not

sufficient regularity in packet loss, then we will be able to simulate packet loss as

correctly as possible with a simple random packet loss algorithm.

2. Is the impact of packet loss on NIDS performance sufficiently regular to

allow a formula to be developed which will accurately predict the effect? The only work

in this area seemed to imply a fairly linear relationship where as packet loss increased,

sensor alerts decreased; however, there seems to be very large standard deviation

(Schaelicke & Freeland, 2005). This applies directly to the sub-topic, “Effect of Packet

Loss” in Table 1. If the impact of packet loss on NIDS performance is completely

random, then it will be impossible to set tolerances which may be used for risk based

engineering decisions.

3. Would the same rate of packet loss induce the same loss of sensor alerts

regardless of the strategy used to induce the packet loss? For example would a random

packet loss induction of 5% cause the same loss in sensor alerts as 5% packet loss evenly

distributed through the dataset, or would a sine wave based 5% packet loss algorithm

cause the same loss in sensor alerts as a 5% packet loss based upon a Markov chain two

5

state channel model? This applies directly to the sub-topic, “Modeling Packet Loss” in

Table 1. Using the Packet Dropper, which we will develop in this research, we will be

able to compare the resulting loss in alerts at the same rate of packet loss over different

loss algorithm. If the alert loss is highly dependent upon the packet loss algorithm, this

implies that the correctness of the packet loss model is very important. Conversely, if the

alert loss is independent of the packet loss strategy, then the correctness of the packet loss

model is not very important.

4. Are the results independent of the composition of the network traffic?

The only available results were obtained using only one dataset (Schaelicke & Freeland,

2005). Would the same result be obtained if different datasets were used? If packet loss

were applied to capture the flag competition datasets that are exploit rich would be same

relationship hold? If we applied packet loss to a much older dataset, would we see the

same relationship implying that our results are likely to hold over time? This applies

directly to the sub-topic, “Effect of Packet Loss” in Table 1 because the composition of

network traffic varies significantly from site to site; if the results are highly dependent

upon the composition of the network traffic, then we will unable to generalize our results.

Outline

The remainder of this paper is organized into the following sections. The

“Literature Review” provides an overview of the existing literature as it pertains to

network, host and sensor base packet loss. The “Methods and Materials” discusses our

experimental work using the network test environment we created and the theoretical

work using the Packet Dropper application that we developed. The “Results” discusses

the findings from applying the Snort Network Intrusion Detection tool to datasets

6

abridged using the Packet Dropper. The “Discussion” section summarizes our findings

and outlines directions for future research.

7

Literature Review

Previous research in this area has focused on eliminating packet loss. We will

divide the literature review along the same lines that we have divided our research. One

must keep in mind however, that this categorization is of our own making and previous

research may not fit well into our categories. We observe that if we were able to model

the Internet traffic that is received by the sensor, this analysis would be straight forward;

however, modeling the Internet is a very difficult problem that has yet to be solved.

Paxson and Floyd sited heterogeneity and rapid change as key factors complicating

efforts to simulate the Internet (Paxson & Floyd, 1997). The heterogeneity and rapid

change of the Internet has only increased since Paxson and Floyd did their research.

Network Packet Loss. During their work on detecting malicious packet losses,

Mizrak et al. encountered the problem of distinguishing malicious packet loss which is

caused by a compromised router from benign packet loss which is simply part and parcel

of the way traffic flows through the Internet. They observed that “modern routers

routinely drop packets due to bursts in traffic that exceed their buffering capacities, and

the widely used Transmission Control Protocol (TCP) is designed to cause such loses as

part of its normal congestion control behavior” (Mizrak, Savage, & Marzullo, 2009).

Although generalized packet loss is not the focus of this research because it is assumed

that the target and sensor are seeing the same traffic, many sensors are connected to the

network through a mirrored port on a switch. Since mirroring is the lowest priority task

that switches perform, it is possible to create a situation where the malicious traffic would

reach the target but fail to reach the sensor (O'Neill, 2007). As illustrated in Figure 1 at

8

bit bucket A, the network path diverges at the mirrored port on the switch. The focus of

this research is those packets that reach the target but fail to reach the sensor.

Host Packet Loss. The movement of packets from the Network Interface Card

(NIC) through the kernel to user space where most sensor software is executed with

multiple points of failure as illustrated in Figure 2 which expands upon bit bucket B from

Figure 1. There are many things that may cause this as illustrated by the solutions

provided to correct the problem. Handling interrupts is significantly more costly than

processing more regular code because it cannot benefit from advances in processor

performance. Interrupt handling may constitute 15% of the total processing time.

Interrupt cost may be reduced 60% and the packet loss rate (PLR) by 46% by aggregating

32 interrupts (Schaelicke & Freeland, 2005). Packet loss was greatly reduced by

increasing the level-2 cache (Schaelicke & Freeland, 2005). The Multi-Parallel Intrusion

Detection Architecture was able to achieve impressive capture rates on a 10GbE network

by parallelizing both the kernel and user land detection processes by assigning each flow

to a single core (Vasiliadis, Polychronakis, & Ioannidis, 2011). Yueai and Junjie

employed multiple sensors with load balancing to address the problem of host based

packet loss (Yueai & Junjie, 2009). Chung, et al. discusses host based packet loss as

packets that cannot be copied from kernel to user space quickly enough to prevent loss.

They explore moving the IDS engine into kernel space as one solution to this problem

(Chung, Kim, Sohn, & Park, 2004).

9

Figure 2 Snort NIDS underlying kernel support architecture (Salah & Kahtani, 2009)

Sensor Packet Loss. The number of different suggested solutions speaks to the

various causes packets may not be processed by the analysis software. Some

improvements in the PLR were obtained by increasing the level optimization employed in

the compiler (Schaelicke & Freeland, 2005). Setting the netdev_budget, a Linux kernel

configuration parameter, in the New Application Programming Interface (NAPI) to a low

number like 2 has been shown to greatly decrease packet loss. This is primarily because

both pulling packets from the network and analyzing the packets are bound by available

CPU cycles and not buffer memory. By allocating the bulk of the CPU time to the sensor

application, more packets may be processed and the packets that are dropped are dropped

very early in the process where CPU cycles will not be wasted processing a packet which

will only be dropped later (Salah & Kahtani, 2009). Significant improvements in the

10

PLR could also be achieved by pruning the sensor rule set (Schaelicke & Freeland, 2005).

Multi-processing techniques have been employed to increase the throughput of the sensor

and reduce packet loss (Kim, Park, Park, Jung, Eom, & Chung, 2011). In addition to this

Song et al. point to the software crash as yet another cause of packet loss (Song, Yang,

Chen, Zhao, & Fan, 2010). Wei et al. consider the problem of packet loss in an IPv6

environment. As a solution they propose breaking the detection task into three units: the

Data Acquisition Unit, the Adapt Load Characteristic Analysis unit, and the

Collaborative Analysis and Control Center (Wei, Fang, Li, Liu, & Yang, 2008).

Combined Effect. In their paper, “Characterizing Sources and Remedies for

Packet Loss in Network Intrusion Detection Systems”, Schaelicke and Freeland observed

a near linear relationship between PLR and Alert Loss Rate (ALR). We very grossly

simplified the results shown in Figure 3 and using a graphical method we could describe

the relationship by the equation: 𝐴𝐿𝑅 = 𝑃𝐿𝑅 − 15. According to this model, if one is

seeing a 20% PLR one should expect a 5% ALR. Looking at Figure 4 we can see that

they observed packet loss which rose and fell almost identically to the traffic that they

captured. Since the focus of their paper was reducing packet loss, they made little effort

to validate or generalize their model. Their network traffic consisted of 13 seconds

captured on the Internet connection of a major university containing over 530,000

packets that contained 521 known attacks at a ratio of about 1000 packets per alert

(Schaelicke & Freeland, 2005). Although sufficient for their purposes, there is

insufficient robustness to extrapolate a general packet loss to alert loss relationship from

their results.

11

Figure 3 Alert Loss vs Packet Loss (Schaelicke & Freeland, 2005)

Figure 4 Packet Rate vs Time (Schaelicke & Freeland, 2005)

It is clear from all of the effort expended to reduce packet loss that it is generally

considered to be a serious problem which promises to only get more serious as network

bandwidth continues to outpace CPU clock speeds. Although much work has been done

to minimize packet loss, very little work has been done to characterize packet loss and

12

even less work has been done to quantify the impact of packet loss on intrusion detection.

The purpose of the effort is to understand, predict and model both packet loss itself and

the impact upon network intrusion detection.

13

Methods and Materials

Understanding Packet Loss

In order to understand packet loss we will begin by reviewing the key points

where packet loss might take place and based upon the information gained in the

literature review we will posit theories on how this packet loss may present itself. Then

we will design and conduct experiments to induce each type of packet loss in a laboratory

environment capturing the traffic for analysis.

Theory

Network Packet Loss. Revisiting Figure 1 bit bucket A, we see a network switch

with basically three network connections. The first connection is from the switch to the

frontier router which is connected to the Internet point of presence. The second

connection is from the switch to the firewall which is connected to the Intranet backbone.

The third connection is from the mirrored port on the switch to the NID sensor. Given

that the routing and firewall functions are significantly more complicated than the

switching function, one would not expect the switch to have difficulty keeping pace with

the two. However, there is a potential problem inherent in this design. Unlike network

hubs which are half duplex, network switches are full duplex. Although traffic may flow

from the firewall to the frontier router through the switch in both directions at the same

time, there is still only one traffic path between the switch and the sensor. When packets

pass each other at the switch, one must be buffered until the other has completed

transmission to the sensor. In the event of heavy traffic in both directions, one could

image this buffer filling and packets being lost. Since the nature of TCP’s congestion

control algorithm tends to make network traffic bursty, we theorize that we can model

14

this kind of packet loss using a two-state Markov chain similar to the one that has been

used since 1960 to simulate channel fading and packet loss in wireless channels (Gilbert,

1960).

Host Packet Loss. Revisiting Figure 1 bit bucket B, we see buffers in the kernel

used to hold packets that have been received by the NIC and have yet to be processed by

the CPU. One could easily envision a general purpose computer system being unable to

keep up with the firewall and the frontier router which are both dedicated network

devices tuned specifically to move network traffic. We theorize that we can simulate this

effect by implementing what we will call a capped algorithm. This capped algorithm will

implement a queue of packets. As we look at each packet we will drain the queue of any

packet that is some interval older than the current packet. Once this is complete, if the

number of packets per interval or bytes per interval is below some cap, we will add the

packet to the queue; otherwise we will drop the packet.

Sensor Packet Loss. Revisiting Figure 1 bit bucket C, we expect that the

resource consumption of the sensor application itself will contribute the greatest

component of packet loss at this level. We theorize that we can simulate this effect

through some cyclic function such as a sine wave or a saw tooth wave which would

model this pattern of resource utilization.

Experiments

We studied the phenomenon at the network, host, and sensor levels. We theorized

that the number of packets dropped as network traffic increases would be regular enough

that we will be able plot this relationship. Further, we theorized that we can use

regression techniques to discover a formula that we can use to simulate packet loss with

15

some level of fidelity. Each of these experiments will produce an abridged dataset which

we processed by an Open Source NIDS. These experiments are directly related to the

sub-topic, “Understanding Packet Loss” from Table 1, and address research question 1.

Experimental Environment
Figure 5 is a diagram of the network we constructed for conducting our

experiments. Table 2 provides the hardware specifications, and Table 3 provides the

software specification of this environment. The switch is configured as a layer 3 switch

with 2 VLANs and traffic routed between them. The VLANs separates the hosts into an

“external” network, VLAN 100, and an “internal” network, VLAN 200. This

configuration allows mirroring of all traffic from both VLANs to a collection port which

is similar to how the sensors are typically set up.

Figure 5 Experimental Environment

16

Name Manufacture Model CPU Memory Hard drive IP Address
Bilbo Dell PowerEdge

R610
Intel Xeon 16 core
X5450 @ 2.53
GHz

12 GB 4X 300 GB
10K SAS

192.168.2.10

Gator-
rs010

Dell PowerEdge
R210 II

Intel Xeon 4 core,
E31220 @ 3.10
GHz,

8 GB 192.168.2.100

Gollum Dell PowerEdge
R610

Intel Xeon 16
core, E5540 @
2.53 GHz

12 GB 4X 300GB
10K SAS

192.168.1.2

Smaug Dell PowerEdge
2950

Intel Xeon 8 core,
X5450 @ 3.00
GHz,

8 GB 1X 300 GB
10K SAS

192.168.1.12

rsswitch Cisco Catalyst
3560-X

Thorin Dell PowerEdge
2950

Intel Xeon 8 core,
X5450 @ 3.00
GHz,

8 GB 6X 145 GB
15K SAS

192.168.2.12

Table 2 Hardware Specifications

Name Source Version
Snort www.snort.org 2.9.4
Tcpdump www.tcpdump.org 4.3.0
Libpcap www.tcpdump.org 1.3.0
Tcpreplay tcpreplay.synfin.net 3.4.4
MGEN cs.itd.nrl.navy.mil 5.02
Table 3 Software Specifications

Experiment 1 Network Based Packet Loss.
First we configured Gollum to be the MGEN source and Bilbo to be the MGEN

sink and sent packets from Gollum to Bilbo while collecting everything on Gator-rs010.

We were not able, in this configuration, to send enough packets over the switch to cause

the mirror to fail. Next using Aaron Turner’s tcpreplay (Tcpreplay) we were able to

replay the hour of network traffic from the Cyber Defense eXercise (CDX) 2009 that we

will later use to show the impact of our packet loss algorithms. Tcpreplay provides the

ability to rerun the traffic at arbitrary speeds. Table 4 lists the speed multiplier that we

used and the packet loss we observed. We were able to replay that hour of the CDX 2009

data at speeds, over 1000 times the original speed, and were not able to produce packet

http://www.snort.org/
http://www.tcpdump.org/

17

loss at the switch. Finally we configured Bilbo and Smaug as MGEN sources and

Gollum and Thorin as MGEN sinks in an effort to introduce traffic in both directions.

We ran this configuration at bursts of 30 MB/Sec, and we were unable to cause the

switch to fail. We ran this configuration at bursts of 70 MB/Sec and saw 5% packet loss.

This means that our Gigabit switch failed to mirror 5% of the traffic when we pushed

1.12 Gigabits over the network. A reasonable conclusion is that, at least for the

equipment that we used in a configuration typical for network intrusion detection, mirror

failure is not a significant problem.

18

Experiment 2 Host Based Packet Loss.
In order to test host based packet loss we configured our sensor with tcpdump to

collect the network traffic. Using tcpreplay as we did above to exercise the switch we

collected the information in Table 4. We noticed that if we asked tcpdump to do any

analysis at all on the traffic, we started to see packet loss. From this we conclude that the

hardware and operating system of the components that we used were capable of handling

the traffic we were able to generate until userprocesses began to consume resources.

Run Multiplier Time (sec) TimeRatio PktsReceived PktLoss
1 200 17.73 0.985 1,340,209 0
2 250 14.22 0.988 1,340,212 0
3 300 11.93 0.994 1,340,212 0
4 600 6.43 1.072 1,340,212 0
5 1,000 4.53 1.258 1,340,212 0
6 1,200 4.19 1.397 1,340,245 0
7 1,400 3.94 1.532 1,340,212 0
Table 4 Network Packet Loss Results

Experiment 3 Sensor Based Packet Loss.
Sensor based packet loss may occur when the NID software takes so much time to

process the packets that they saturate the buffer and packets are dropped. In order to

characterize this we will install the Snort sensor on the system and observe the packet

loss. Replaying the hour from CDX 2009 at different rates we are able to show how

Snort loses the ability to capture packets as the data rate increases as graphed in Figure 6.

The left hand axis is the number of packets. The bottom axis is time adjusted to account

for speeding up the process; for example the capture run at 250 times the speed of the

original traffic is plotted as if it took the same amount of time as the original traffic, even

though it actually took considerably less time. This was done to better show the

relationship between the original and accelerated data streams. This graph shows that

19

Snort has a fixed limit to how many packets it can process. This graph looks very similar

to the graphs of the capped algorithm that we will see later in Figures 20 and 21.

Figure 6 Packet Loss as Measured by Snort

Snort is capable of capturing packets to a file, or analyzing packets against a rule

set looking for malicious network activity. These results were obtained running Snort in

capture mode because we are unable to graph packet loss when running in analysis mode.

Although, we expect packet loss to be greater when Snort is run in analysis mode;

however, at the time we are unable to measure this. To measure it one would need to

create a tool similar to tcpreplay that would replay a PCAP file at a multiple of its

original speed. It would check the system clock before it writes each packet and if the

Adjusted Time

Packets

20

time to write that packet is in the past, it would send that packet into a bit bucket instead

of sending it to snort. In this way we would have a record of which packets were lost for

further analysis.

Modeling Packet Loss

Requirements

The Packet Dropper was built in order to model packet loss. This software has

the following requirements:

1. The Packet Dropper must be able to read and write network traffic in a

format that is compatible with available datasets and network intrusion detection

software.

2. The Packet Dropper must be able to execute in a batch mode

compatible with the X-Wray Statistics and Performance Explorer (X-Wray SPEX). The

X-Wray SPEX was built for a previous study of the efficiency of NIDS.

3. The Packet Dropper must facilitate the addition of new algorithms for

dropping packets.

4. The Packet Dropper must support a sufficient number of diverse

dropping algorithms to ensure that research question 3 may be answered.

Pcapcat

In order to satisfy requirement number 1, we selected the PCAP format used by

tcpdump, a popular Open Source command-line packet analyzer (Welcome). The initial

version of the Packet Dropper simply reads packets from a file in PCAP format and

writes the packets out to a file in PCAP format. It is useful for our purposes to be able to

21

concatenate several files in PCAP format. Each file in PCAP format begins with some

global data; therefore, tools like cat will not work. We decided to expand this phase just

to implement a tool that would allow us to concatenate these files. We understand that

tools like tcpsplice and mergecap will do this job; however, we wanted the functionality

incorporated into the packet dropper, and the exercise provided a good first step.

Upon initial consideration this would seem to be a simple algorithm implemented

with the following pseudo code:

Open output file for writing;
For each input file {
 Open input file for reading;

While read a packet from the input file {
 Write a packet to the output file;

}
Close input file;

}
Close output file;

The problem is that information from the input file, specifically the cap length, is

necessary to properly open the output file; therefore the pseudo code looks more like this:

For each input file {
 Open the input file;
 If the output file is not opened {
 Open the output file with information from the
first input file;
 }
 While reading a packet from the input file is
successful {
 Write a packet to the output file;
 }
 Close input file;
}

 Close output file;

User Interface

Since the Packet Dropper will need to be executed in batch mode, a command line

user interface was selected. It was also considered useful to be able to configure the

22

Packet Dropper from a configuration file or through the environment. The Configuration

library was written to facilitate this. The Configuration object contains a data structure of

Configuration Items which provide specific information about how to configure each

item. See Figure 7 for the Configuration class diagram.

Figure 7 UML Class Diagram for Configuration Objects

Using the Configuration library first the Configuration object must be created and

configured then ConfigItem object are created, configured, and added to the

Configuration object. Once this is complete the user would invoke the loadConfig

method passing argc, and argv from the command line. Then call getConfig(“ci name”)

whenever the value of a configuration item is required. The biggest problem with this is

23

that we want the values specified on the command line to override values specified in the

environment or in a configuration file, and we want the values specified on the

environment to over ride values specified in the configuration file. So what happens if

we specify a configuration file on the command line? The Packet Dropper processes the

new file, and then processes the environment and the command line again.

The Deterministic Algorithm

First we implemented a very simple algorithm that evenly distributes packet loss

across the dataset. We did that as a control to help discover how dependent ALR is upon

the way the packets are dropped.

At this point we introduced the Dropper class. Dropper objects contain all of the

parameters necessary to implement a dropping algorithm plus the methods to manipulate

them. The Dropper class contains a virtual dropit() method which takes a pcap packet

header as an argument and returns true if the packet is to be dropped or false if the packet

is to be kept. Each dropping algorithm is implemented as subclass of the Dropper class

and implements the dropit() method. Looking ahead we notice that the deterministic and

the bounded random algorithms are both based upon dropping over an interval and that

the sinusoidal and sawtooth algorithms are both based upon a function; therefore, we will

implement the subclasses IntervalDropper and FunctionDropper to capture the similar

parts of those algorithms. See Figure 8 for the Dropper class diagram.

Originally this algorithm was called simply “even.” Very late in this process the

name was changed to deterministic because we felt that name more clearly describes the

algorithm; however, artifacts of the original name still remain especially in the Packet

Dropper application. For example the Class which implements the deterministic

24

algorithm is still called the EvenDropper, and in order to invoke the deterministic

algorithm one would use the option “–algorithm even” not “–algorithm

deterministic.”

25

Figure 8 Dropper Class Diagram

26

The interval based dropping algorithms do their work with two methods. The first

method, loadDistArray(), loads a distribution array of interval length with either zero if

the packet is to be kept and a one if the packet is to be dropped. The second method,

dropit(), keeps a running count of packets and returns the value in the distribution array

of the packet count modulo the interval. All of the interval class of dropping algorithms

share the same code for the dropit() method; therefore it is implemented in the

IntervalDropper class. Also the setInterval() method is overridden to create the

distArray. Each of the different algorithms then only have to implement the

loadDistArray() method. Below is the pseudo code for the dropit() method shared by all

of the IntervalDropper subclasses:

Dropit(header) {
 If (count % interval == 0) {
 loadDistArray();
 }
 retval = distarry[count % interval];
 count++;
 return retval;
}

The deterministic algorithm drops packets evenly through the stream at a given

rate expressed as a percentage. For example: If the drop rate is set at 1%, PacketDropper

will drop every 100th packet. If the drop rate is set at 2%, PacketDropper will drop every

50th packet. If the drop rate is set at 3%, PacketDropper will drop every 33rd packet.

Below is the pseudo code to implement the loadDistArray() method for the deterministic

algorithm:

loadDistArray() {
 Set all elements of the DistArray to zero;
 Compute how many packet to drop, todrop, by
multiplying the droprate times the interval;
 If the todrop is greater than zero {

27

 Compute the dropstep by dividing the interval by
todrop;
 For (i = dropstep -1; I < interval; I += dropstep
{
 Distarray[i] = 1;
 }
 }
}

To illustrate the effects of these different algorithms on network traffic, we have

graphed the Mb/second and packets/second of about five minutes of network traffic from

CDX 2009. These five minutes were selected because the traffic was consistent enough

for the peaks and valleys not to obscure the results. Looking at Figure 9 (Mb/second) and

Figure 10 (packets/second) we can see that the deterministic dropping algorithm produces

a line almost identical to the original line a little lower on the graph which is exactly the

behavior that we would expect. This is very similar to what Schaelicke & Freeland

observed (see Figure 4).

28

Figure 9 Effect of 25% Packet Loss on Mb/Second with the Deterministic Algorithm

Figure 10 Effect of 25% Packet Loss on Packets/Second with the Deterministic Algorithm

0

100

200

300

400

500

600

700

800

 1
0:

45
:0

0
 1

0:
45

:1
9

 1
0:

45
:3

8
 1

0:
45

:5
7

 1
0:

46
:1

6
 1

0:
46

:3
5

 1
0:

46
:5

4
 1

0:
47

:1
3

 1
0:

47
:3

2
 1

0:
47

:5
1

 1
0:

48
:1

0
 1

0:
48

:2
9

 1
0:

48
:4

8
 1

0:
49

:0
7

 1
0:

49
:2

6
 1

0:
49

:4
5

 1
0:

50
:0

4
 1

0:
50

:2
3

 1
0:

50
:4

2

M
b
/
s
e
c
o
n
d

Time

Effect of 25% Packet Loss on Mb/Second with the
Deterministic Algorithm

 normal megabits

 even megabits

0

200

400

600

800

1000

1200

1400

1600

 1
0:

45
:0

0
 1

0:
45

:1
9

 1
0:

45
:3

8
 1

0:
45

:5
7

 1
0:

46
:1

6
 1

0:
46

:3
5

 1
0:

46
:5

4
 1

0:
47

:1
3

 1
0:

47
:3

2
 1

0:
47

:5
1

 1
0:

48
:1

0
 1

0:
48

:2
9

 1
0:

48
:4

8
 1

0:
49

:0
7

 1
0:

49
:2

6
 1

0:
49

:4
5

 1
0:

50
:0

4
 1

0:
50

:2
3

 1
0:

50
:4

2

Pa
ck

et
s/

se
co

nd

Time

Effect of 25% Packet Loss on Packets/Second with the
Deterministic Algorithm

 normal packets

 even packets

29

The Bounded Random Algorithm

The next phase of the PacketDropper application adds the ability to drop packets

randomly over an interval. This function is provided a user defined interval and it will

drop random packets within this interval to meet the drop rate. Below is the pseudo code

for the bounded random loadDistArrary() method:

loadDistArray() {
 Set all elements of the DistArray to zero;
 If the seed has not been set, set the seed
 Compute how many packet to drop, todrop, by
multiplying the droprate times the interval;
 For (i = 0; i < todrop; i++ {
 randnum = random();
 if (distarry[randnum % interval] == 0) {
 distarry[randnum % interval] = 1;
 } else {
 i--; // collision try again
 }
 }
}

As we see in Figures 11 and 12 over the same section of network traffic we get

graphs that look very similar to the graphs we saw using the deterministic algorithm.

This should not surprise us since we are dropping the same number of packets per

interval; we are simply dropping different packets. Interestingly, increasing the interval

does not seem to have a major effect. We used an interval of 10,000 for Figures 11 and

12.

Originally this algorithm was called simply “random.” Very late in this process

the name was changed to “bounded random” because we felt that name more clearly

describes the algorithm; however, artifacts of the original name still remain especially in

the Packet Dropper application. For example the Class which implements the bounded

random algorithm is still called the RandomDropper, and in order to invoke the bounded

30

random algorithm one would use the option “–algorithm random” not

“--algorithm bounded random.”

Figure 11 Effect of 25% Packet Loss on Mb/Second with the Bounded Random Algorithm

0

100

200

300

400

500

600

700

800

 1
0:

45
:0

0
 1

0:
45

:1
8

 1
0:

45
:3

6
 1

0:
45

:5
4

 1
0:

46
:1

2
 1

0:
46

:3
0

 1
0:

46
:4

8
 1

0:
47

:0
6

 1
0:

47
:2

4
 1

0:
47

:4
2

 1
0:

48
:0

0
 1

0:
48

:1
8

 1
0:

48
:3

6
 1

0:
48

:5
4

 1
0:

49
:1

2
 1

0:
49

:3
0

 1
0:

49
:4

8
 1

0:
50

:0
6

 1
0:

50
:2

4
 1

0:
50

:4
2

M
b/

Se
co

nd

Time

Effect of 25% Packet Loss on Mb/Second with the
Bounded Random Algorithm

 normal megabits

 random megabits

31

Figure 12 Effect of 25% Packet Loss on Packets/Second with a Bounded random Algorithm

The Random Algorithm

The random algorithm generates a random number for each packet read. If the

random number is below the drop rate we drop the packet, otherwise we keep the packet.

Below is the pseudo code for the dropit() method.

dropit() {
 If seed is not set
 Set the seed;
 randnum = random();
 Return (droprate * 100 > randnum % 100);
}

Looking at Figures 13 and 14 we can see that the random algorithm does not look

all that different from the deterministic or bounded random algorithm.

Originally this algorithm was called simply “chance” to distinguish it from the

algorithm originally called “random”. Very late in this process the name was changed to

0

200

400

600

800

1000

1200

1400

1600

 1
0:

45
:0

0
 1

0:
45

:1
8

 1
0:

45
:3

6
 1

0:
45

:5
4

 1
0:

46
:1

2
 1

0:
46

:3
0

 1
0:

46
:4

8
 1

0:
47

:0
6

 1
0:

47
:2

4
 1

0:
47

:4
2

 1
0:

48
:0

0
 1

0:
48

:1
8

 1
0:

48
:3

6
 1

0:
48

:5
4

 1
0:

49
:1

2
 1

0:
49

:3
0

 1
0:

49
:4

8
 1

0:
50

:0
6

 1
0:

50
:2

4
 1

0:
50

:4
2

Pa
ck

et
s/

Se
co

nd

Time

Effect of 25% Packet Loss on Packets/Second with the
Bounded Random Algorithm

 normal packets

 random packets

32

“random” because we felt that name more clearly describes the algorithm; however,

artifacts of the original name still rename especially in the Packet Dropper application.

For example the Class which implements the random algorithm is still called the

ChanceDropper, and in order to invoke the bounded random algorithm one would use the

option “–algorithm chance” not “--algorithm random” as this would

given one the bounded random algorithm instead.

Figure 13 Effect of 25% Packet Loss on Mb/Second with the Random Algorithm

0

100

200

300

400

500

600

700

800

 1
0:

45
:0

0
 1

0:
45

:2
0

 1
0:

45
:4

0
 1

0:
46

:0
0

 1
0:

46
:2

0
 1

0:
46

:4
0

 1
0:

47
:0

0
 1

0:
47

:2
0

 1
0:

47
:4

0
 1

0:
48

:0
0

 1
0:

48
:2

0
 1

0:
48

:4
0

 1
0:

49
:0

0
 1

0:
49

:2
0

 1
0:

49
:4

0
 1

0:
50

:0
0

 1
0:

50
:2

0
 1

0:
50

:4
0

M
b/

Se
co

nd

Time

Effect of 25% Packet Loss Mb/Second with the
Random Algorithm

 normal megabits

 chance megabits

33

Figure 14 Effect of 25% Packet Loss upon Packets/Second with a Random Algorithm

The Sinusoidal Algorithm

At this point we introduce the concept of the function dropper. Function droppers

divide a period of the function into intervals. For each interval the value of the function

is computed for the center, and that value is used as the drop rate for that interval.

Function droppers employ a minor dropping algorithm to drop packets along that

interval. Since the input into the function is the packet count, the domain must include

positive integers up to the maximum value for an integer. The range must be positive

real numbers between 0 and 1 where the average value over a period is the drop rate.

The FunctionDropper class implements the dropit() method and establishes the

virtual method funcDropRate() which will be implemented by the child classes. Below is

the pseudo code for the dropit() class.

0

200

400

600

800

1000

1200

1400

1600

 1
0:

45
:0

0
 1

0:
45

:2
0

 1
0:

45
:4

0
 1

0:
46

:0
0

 1
0:

46
:2

0
 1

0:
46

:4
0

 1
0:

47
:0

0
 1

0:
47

:2
0

 1
0:

47
:4

0
 1

0:
48

:0
0

 1
0:

48
:2

0
 1

0:
48

:4
0

 1
0:

49
:0

0
 1

0:
49

:2
0

 1
0:

49
:4

0
 1

0:
50

:0
0

 1
0:

50
:2

0
 1

0:
50

:4
0

Pa
ck

et
s/

Se
co

nd

Time

Effect of 25% Packet Loss on Packets/Second with the
Random Algorithm

 normal packets

 chance packets

34

if we are at the end of an interval {
 compute the droprate using the funcDropRate() method;
 set the droprate of the minor dropper using the
setDropRate() method;
}

 retval = minorDropper->dropit(header);
 increment the count;
 return retval;

The sine function has a natural period of 0 to 2𝜋 in radians which the default unit

for the sin() function in the C standard library. In order to convert this natural period into

the defined period we will divide our current position, x, by the period and multiply it by

the end of the period for: 𝑦 = 𝐴 sin � 𝑋
𝑝𝑒𝑟𝑖𝑜𝑑

2𝜋�. We want to compute the value of the

center of next interval giving us: 𝑥 = 𝑐𝑜𝑢𝑛𝑡 + 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
2

. Now the natural range of the

sine function is from -1 to 1, but we need a range from 0 to 1 with a center at the drop

rate. If we set the amplitude of the sine wave to the drop rate then add the adjusted sin

value to the drop rate we get a function that moves from 0 to 2 times the drop rate

centered around the drop rate. This is perfect for drop rates less than 50%. For drop rates

greater than 50% the upper bound is outside of our range. To account for this if the drop

rate is greater than 50% we use an amplitude of 1 minus the drop rate. This amplitude

adjustment is depicted in Figure 15 which plots the sine wave used to adjust the drop rate

for drop rates of 25%, 50%, and 75%. Notice that the amplitude of the wave is smaller

the farther we get from 50% on both ends in order for the results of the function to remain

within the range.

Originally this algorithm was called simply “sine.” Very late in this process the

name was changed to “sinusoidal” because we felt that name more clearly describes the

algorithm; however, artifacts of the original name still rename especially in the Packet

35

Dropper application. For example the Class which implements the deterministic

algorithm is still called the SineDropper, and in order to invoke the bounded random

algorithm one would use the option “--algorithm sine” not “--algorithm

sinusoidal”.

Figure 15 Amplitude Adjustment for the Sinusoidal Algorithm

The pseudo code for this method is given below:

Let 𝑥 = 𝑐𝑜𝑢𝑛𝑡 + 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
2

;

Let 𝑦 = sin � 𝑋
𝑝𝑒𝑟𝑖𝑜𝑑

2𝜋�;
Let 𝑎 = (𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 < 0.5)? 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒: 1− 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒;

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 45 90 135 180 225 270 315 360 405 450 495 540 585 630 675 720

Dr
op

 R
at

e

Degrees

Amplitude Adjustment for Sinusoidal Algorithm

25%

50%

75%

36

Let 𝑧 = 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 + 𝑎𝑦;
Return z;

Looking at Figures 16 and 17 which plots the effect of 25% packet loss using the

sinusoidal algorithm on Mb/second and packets/second, we can clearly see the wave.

Figure 16 Effect of 25% Packet Loss on Mb/Second with a Sinusoidal Algorithm

0

100

200

300

400

500

600

700

800

 1
0:

45
:0

0
 1

0:
45

:1
9

 1
0:

45
:3

8
 1

0:
45

:5
7

 1
0:

46
:1

6
 1

0:
46

:3
5

 1
0:

46
:5

4
 1

0:
47

:1
3

 1
0:

47
:3

2
 1

0:
47

:5
1

 1
0:

48
:1

0
 1

0:
48

:2
9

 1
0:

48
:4

8
 1

0:
49

:0
7

 1
0:

49
:2

6
 1

0:
49

:4
5

 1
0:

50
:0

4
 1

0:
50

:2
3

 1
0:

50
:4

2

M
b/

Se
co

nd

Time

Effect of 25% Packet Loss on Mb/Second with the
Sinusoidal Algorithm

 normal megabits

 sine megabits

37

Figure 17 Effect of 25% Packet Loss on Packets/Second with a Sinusoidal Algorithm

A Sawtooth Algorithm

The sawtooth algorithm uses the following function which has domain of any

positive integer and a range of negative one to positive one.

𝑦 = 2 �
𝑐𝑜𝑢𝑛𝑡
𝑝𝑒𝑟𝑖𝑜𝑑 − ��

1
2 +

𝑐𝑜𝑢𝑛𝑡
𝑝𝑒𝑟𝑖𝑜𝑑�

��

Like the sinusoidal algorithm we will adjust the amplitude to ensure that drop rate

stays between zero and one hundred percent.

The pseudo code to implement this algorithm is very similar to the code for the

sinusoidal algorithm.

Let 𝑥 = 𝑐𝑜𝑢𝑛𝑡 + 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
2

;

Let 𝑦 = 2 � 𝑥
𝑝𝑒𝑟𝑖𝑜𝑑

− ��1
2

+ 𝑥
𝑝𝑒𝑟𝑖𝑜𝑑

���;
Let 𝑎 = (𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 < 0.5)? 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒: 1− 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒;
Let 𝑧 = 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 + 𝑎𝑦;
Return z;

0

200

400

600

800

1000

1200

1400

1600

 1
0:

45
:0

0
 1

0:
45

:1
9

 1
0:

45
:3

8
 1

0:
45

:5
7

 1
0:

46
:1

6
 1

0:
46

:3
5

 1
0:

46
:5

4
 1

0:
47

:1
3

 1
0:

47
:3

2
 1

0:
47

:5
1

 1
0:

48
:1

0
 1

0:
48

:2
9

 1
0:

48
:4

8
 1

0:
49

:0
7

 1
0:

49
:2

6
 1

0:
49

:4
5

 1
0:

50
:0

4
 1

0:
50

:2
3

 1
0:

50
:4

2

Pa
ck

et
s/

Se
co

nd

Time

Effect of 25% Packet Loss on Packets/Second with the
Sinusoidal Algorithm

 normal packets

 sine packets

38

Looking at Figures 18 and 19 plotting the effect of this algorithm at a drop rate of

25% on Mb/second and packets/second, we can clearly see the sawtooth in the much

sharper lines than we saw with the sinusoidal algorithm.

Figure 18 Effect of 25% Packet Loss on Mb/Second with the Sawtooth Algorithm

0

100

200

300

400

500

600

700

800

 1
0:

45
:0

0
 1

0:
45

:1
9

 1
0:

45
:3

8
 1

0:
45

:5
7

 1
0:

46
:1

6
 1

0:
46

:3
5

 1
0:

46
:5

4
 1

0:
47

:1
3

 1
0:

47
:3

2
 1

0:
47

:5
1

 1
0:

48
:1

0
 1

0:
48

:2
9

 1
0:

48
:4

8
 1

0:
49

:0
7

 1
0:

49
:2

6
 1

0:
49

:4
5

 1
0:

50
:0

4
 1

0:
50

:2
3

 1
0:

50
:4

2

M
b/

Se
co

nd

Time

Effect of 25% Packet Loss on Mb/Second with the
Sawtooth Algorithm

 normal megabits

sawtooth megabits

39

Figure 19 Effect of 25% Packet Loss on Packets/Second with the Sawtooth Algorithm

Pcapgraph

For the next phase of the Packet Dropper, we need to be able to keep track of the

current Mb/second and packets/second so that we can drop packets when we have

reached a cap. The Pcapgraph tool, which provides these measures for each second of

the PCAP file, is a logical first step. We know that there are other tools that will graph

the flow of a PCAP file; however, this was deemed a reasonable exercise because the

lessons learned will be incorporated into the capped dropping algorithm.

The tricky part is the interior while loop. This ensures that if there are empty

spots in the traffic, and we do not see a packet for an interval, we will write an entry with

zero packets and zero Mb covering that interval. The pseudo code looks like this:

While we can get the next packet {
 If current is zero {

Set current to packet time plus the interval;

0

200

400

600

800

1000

1200

1400

1600

 1
0:

45
:0

0
 1

0:
45

:1
9

 1
0:

45
:3

8
 1

0:
45

:5
7

 1
0:

46
:1

6
 1

0:
46

:3
5

 1
0:

46
:5

4
 1

0:
47

:1
3

 1
0:

47
:3

2
 1

0:
47

:5
1

 1
0:

48
:1

0
 1

0:
48

:2
9

 1
0:

48
:4

8
 1

0:
49

:0
7

 1
0:

49
:2

6
 1

0:
49

:4
5

 1
0:

50
:0

4
 1

0:
50

:2
3

 1
0:

50
:4

2

Pa
ck

et
s/

Se
co

nd

Time

Effect of 25% Packet Loss on Packets/Second with the
Sawtooth Algorithm

 normal packets

 sawtooth packets

40

Set packets and megabits to zero;
 }
 While (current < time of the packet) {
 Write Date, Time, Packets, Megabits;
 Increment current by the interval;
 Set packets and megabits to zero;
 }
 Increment the packet count by one;
 Add the current packet size to megabits;
}

Pcapstats

Pcapgraph is a good first step; however, there are a few more issues that need to

be solved before we are ready to write the capped dropper. Pcapgraph computes the

packets and Mb for a discreet interval, but what we really want are the packets and Mb

for a rolling interval. The natural units to control the capped dropper would be maximum

number of packets per second or maximum number of bits per second; however, the other

droppers are driven by the drop rate. In order to compare the other droppers to the

capped dropper we need to be able to set the packet or bit limit such that we meet the

given drop rate. Pcapstats is the program written to explore these problems, and it also

provided useful information about PCAP files.

We need to be able to compute the number of packets per second and Mb per

second over an interval at the precise moment when we receive the packet. The idea is to

simulate a buffer that fills if the number packets/second or Mb/second exceeds the limit.

We create a queue of PCAP packet headers. When we read a new packet, we drain the

queue of any packets older than the current packet minus the interval decrementing the

number of packets and bits. Then we add the new packet incrementing the packet count

and adding the size of the current packet to the Mb.

41

A Capped Algorithm

The capped algorithm will need to implement a first in first out (FIFO) data

structure for PCAP headers. When the algorithm is passed a new packet header, the

FIFO will be drained of all packets that were received an interval before the current

packet appropriately decrementing the packet count and the Mb. When this operation is

complete the packet count and Mb are compared against the caps and if they are above

the caps the packet is dropped. Below is the pseudo code for the dropit() method of the

capped algorithm:

Retval = false;
If the packet limit is greater than zero then
 retval = current packets/sec > packet limit;
If retval == false && byteLimit > 0 then
 Retval = current bytes/sec > byte limit;
If Retval == False

Add current packet to the queue;
Return retval;

For the drop rate to match the percentile we need to add all of the packets to the

queue; however, this produces a graph with huge canyons wherever the packets or bytes

per second is over the cap. The effect that we are trying to model would produce

plateaus where the caps are reached. In order to do this we must not enter packets that

we drop into the queue. If we do this, we can no longer use the percentile to compute the

cap limit from the drop rate. The way we compute the correct limit for a given drop rate

is to run through the data using a binary selection algorithm repeatedly until the correct

cap is discovered. As we look at the graph in Figures 20 and 21, we can see the plateau

in the traffic.

42

Figure 20 Effects of 25 % Packet Loss on Mb/Second with the Capped Algorithm

Figure 21 Effects of 25% Packet Loss with a Capped Algorithm on Packets/Second

0

100

200

300

400

500

600

700

800

 1
0:

45
:0

0
 1

0:
45

:2
2

 1
0:

45
:4

4
 1

0:
46

:0
6

 1
0:

46
:2

8
 1

0:
46

:5
0

 1
0:

47
:1

2
 1

0:
47

:3
4

 1
0:

47
:5

6
 1

0:
48

:1
8

 1
0:

48
:4

0
 1

0:
49

:0
2

 1
0:

49
:2

4
 1

0:
49

:4
6

 1
0:

50
:0

8
 1

0:
50

:3
0

 1
0:

50
:5

2

M
b/

Se
co

nd

Time

Effects of 25% Packet Loss on Mb/Second with the
Packets per Second Capped Algorithm

 normal megabits

capped megabits

0

200

400

600

800

1000

1200

1400

1600

 1
0:

45
:0

0
 1

0:
45

:2
2

 1
0:

45
:4

4
 1

0:
46

:0
6

 1
0:

46
:2

8
 1

0:
46

:5
0

 1
0:

47
:1

2
 1

0:
47

:3
4

 1
0:

47
:5

6
 1

0:
48

:1
8

 1
0:

48
:4

0
 1

0:
49

:0
2

 1
0:

49
:2

4
 1

0:
49

:4
6

 1
0:

50
:0

8
 1

0:
50

:3
0

 1
0:

50
:5

2

Pa
ck

et
s/

Se
co

nd

Time

Effects of 25% Packet Loss on Packets/Second with a
Packets per Second Capped Algorithm

 normal packets

capped packets

43

A Two State Channel Model

The final theoretical algorithm is a based upon a Markov chain with two states

used to generate bursts as described by Gilbert (Gilbert, 1960) and is illustrated in Figure

22 where state G is a good state where no dropping take place and state B is a bad state

where packet dropping takes place. Let h represent the probability that a packet will be

transmitted in state B. The value P represents the probability that we will transition from

the good state to the bad state. The value p represents the probability that we will

transition from the bad state to the good state.

G B

P

p

qQ

Figure 22 Two State Channel Model

Gilbert provides us with the following formula to calculate the error probability of

the previous model letting d be the drop rate and P=P(Bad state|Good State) and Q =

P(Good state|Bad state) ; h represents the probability that the a packet will transmitted in

state B we have:

:

𝑑 =
(1 − ℎ)𝑃
𝑝 + 𝑃

44

Solving for P we get:

𝑃 =
𝑑𝑝

1− ℎ − 𝑑

Gilbert used the following values P = 0.03, p = 0.25, h = 0.5. Since we want to

vary the drop rate from 0% to 100% , those values will not work. To allow for the full

domain yet ensure that the value of P stays within the range for 0 to 1 we need to set h =

0, and p = 0.05; The value of P is undefined when d = 1; therefore, we will add code to

test for this condition and return true. Below is the pseudo code for this algorithm:

if (droprate == 1) {
 Return true;
}

if P equals zero {

 𝑃 = (𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒∗𝑝)
(1−ℎ−𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒)

}

switch (state) {
case GOOD:
 retval = false;
 randnum = random number between 0 and 1;
 if (P > randnum) {
 state = BAD;
 }
 Break;
case BAD:
 randnum = random number between 0 and 1;
 retval = (h > randnum);
 randnum = random number between 0 and 1;
 if (p > randnum) {
 state = GOOD;
 }
 Break;
}
return retval;

In Figures 23 and 24 we can see the Mb/second and packets/second graphed for

the state algorithm at 25% packet loss. Although the difference between the state and

45

deterministic algorithms is not as dramatic as the sinusoidal, sawtooth, or capped

algorithms, it is quite different.

Figure 23 Effect of 25% Packet Loss on Mb/Second with the State Algorithm

0

100

200

300

400

500

600

700

800

 1
0:

45
:0

0
 1

0:
45

:2
0

 1
0:

45
:4

0
 1

0:
46

:0
0

 1
0:

46
:2

0
 1

0:
46

:4
0

 1
0:

47
:0

0
 1

0:
47

:2
0

 1
0:

47
:4

0
 1

0:
48

:0
0

 1
0:

48
:2

0
 1

0:
48

:4
0

 1
0:

49
:0

0
 1

0:
49

:2
0

 1
0:

49
:4

0
 1

0:
50

:0
0

 1
0:

50
:2

0
 1

0:
50

:4
0

M
b/

Se
co

nd

Time

Effect of 25% Packet Loss on Mb/Second with the
State Algorithm

 normal megabits

state megabits

46

Figure 24 Effect of 25% Packet Loss on Packets/Second with the State Algorithm

Summary

In summary, we will review how well the packet dropper meets the requirements

laid out above. Using the Open Source libpcap library allows the packet dropper to be

compatible with most packet capture and network intrusion detection systems. The

packet dropper has a robust interface that allows the user to configure it through a

configuration file, the environment or the command line making it ideal for utilization in

batch processing. The object oriented design of the packet dropper allows new

algorithms to be added to the system requiring very little code outside the algorithm

itself. The packet dropper currently supports seven algorithms which as we can see in

Figures 25 and 26 provided a range of dropping options sufficient for us to determine if

the manner in which packets are dropped has a direct bearing on the loss of intrusion

alerts.

0

200

400

600

800

1000

1200

1400

1600

 1
0:

45
:0

0
 1

0:
45

:2
2

 1
0:

45
:4

4
 1

0:
46

:0
6

 1
0:

46
:2

8
 1

0:
46

:5
0

 1
0:

47
:1

2
 1

0:
47

:3
4

 1
0:

47
:5

6
 1

0:
48

:1
8

 1
0:

48
:4

0
 1

0:
49

:0
2

 1
0:

49
:2

4
 1

0:
49

:4
6

 1
0:

50
:0

8
 1

0:
50

:3
0

 1
0:

50
:5

2

Pa
ck

et
s/

Se
co

nd

Time

Effect of 25% Packet Loss on Packets/Second with
the State Algorithm

 normal packets

state packets

47

Figure 25 Effect of 25% Packet Loss on Mb/Second with Various Algorithms

Figure 26 Effect of 25% Packet Loss on Packets/Second with Various Algorithms

0

100

200

300

400

500

600

700

800
 1

0:
45

:0
0

 1
0:

45
:1

8
 1

0:
45

:3
6

 1
0:

45
:5

4
 1

0:
46

:1
2

 1
0:

46
:3

0
 1

0:
46

:4
8

 1
0:

47
:0

6
 1

0:
47

:2
4

 1
0:

47
:4

2
 1

0:
48

:0
0

 1
0:

48
:1

8
 1

0:
48

:3
6

 1
0:

48
:5

4
 1

0:
49

:1
2

 1
0:

49
:3

0
 1

0:
49

:4
8

 1
0:

50
:0

6
 1

0:
50

:2
4

 1
0:

50
:4

2

M
b/

Se
co

nd

Time

Effect of 25% Packet Loss on Mb/Second with
Various Algorithms

 normal megabits

 even megabits

 random megabits

 chance megabits

 sine megabits

sawtooth megabits

capped megabits

state megabits

0

200

400

600

800

1000

1200

1400

1600

 1
0:

45
:0

0
 1

0:
45

:1
8

 1
0:

45
:3

6
 1

0:
45

:5
4

 1
0:

46
:1

2
 1

0:
46

:3
0

 1
0:

46
:4

8
 1

0:
47

:0
6

 1
0:

47
:2

4
 1

0:
47

:4
2

 1
0:

48
:0

0
 1

0:
48

:1
8

 1
0:

48
:3

6
 1

0:
48

:5
4

 1
0:

49
:1

2
 1

0:
49

:3
0

 1
0:

49
:4

8
 1

0:
50

:0
6

 1
0:

50
:2

4
 1

0:
50

:4
2

Pa
ck

et
s/

Se
co

nd

Time

Effect of 25% Packet Loss on Packets/Second
with Various Algorithms

 normal packets

 even packets

 random packets

 chance packets

 sine packets

 sawtooth packets

capped packets

state packets

48

Results

Validity vs. PCAP Datafile Size

Once the packet dropper’s deterministic algorithm was working, we applied it to

an hour of data from the CDX 2009 (Cyber Defense eXercise of 2009) dataset. Figure 27

is a chart mapping alert vs. drop rate for that hour which contained only 33 alerts. Notice

the very irregular curve. We will see that as we look at more traffic containing more

alerts this curve becomes significantly more regular. This implies that these results will

not necessarily scale down well and should not be applied for small numbers of packets

and small numbers of alerts.

Figure 27 Impact of Deterministic Packet Loss on Alerts using the CDX 20090424.08 dataset

DARPA 1998 Training Dataset

In 1995 Rome Laboratory and the Department of Defense Advanced Research

Projects Agency contracted with Massachusetts Institute of Technology’s Lincoln

Laboratory to conduct a study on Evaluating Intrusion Detection Systems (Lippmann, et

-5

0

5

10

15

20

25

30

35

0.00% 20.00% 40.00% 60.00% 80.00% 100.00% 120.00%

Sn
or

t A
le

rt
s

Loss Rate in Percent

Impact of Even Packet Loss on CDX 20090424.08

Alerts

49

al., 2000). As part of their evaluation they created a training dataset that contained both

malicious traffic and background traffic. Each session in the training data was labeled

identifying whether it was part of an attack or not. The training dataset contains seven

weeks of labeled data in PCAP format. The simulated network used to construct the

1998 training dataset was composed of UNIX workstations. Although this dataset is over

twenty years old, it is still one of the best fabricated datasets available for research in

intrusion detection (Brugger & Chow, 2007). The content of network traffic has changed

significantly since 1998 with the advent of Web 2.0 and very popular sites like Facebook

launched in 2004, YouTube launched in 2005, and Internet Video streaming like the

NetFlix “Watch Instantly” service launched in 2008. One of the reasons that we find this

data set so interesting for this research is we want to see if our findings about the impact

of packet loss will still be valid several years after the research is completed, or will the

experiments need to be repeated as the character of network traffic changes. This dataset

contains 40,667,322 packets and about 16 Gigabytes of data. Snort detected 5,165 alerts

for a distribution of about one alert for every 7,900 packets.

The charts in Figures 28 and 29 were created by running snort 2.6.8 against the

dataset using the various dropping algorithms and drop rates ranging from 0% to 100% in

5% intervals. The first chart graphs raw alerts versus PLR. The second chart graphs

ALR. The hope is that the charts graphing ALR vs. PLR will be normalized and may be

compared against different datasets.

In Figures 27 and 28 notice how that for all of the dropping algorithms except the

capped algorithm the PLR to ALR curve is very linear and that there is very little

difference between the impacts of these algorithms. The conjecture is that this is because

50

although the deterministic, random, random, sinusoidal, sawtooth, and state algorithms

all drop packets very differently, they still drop packets across the dataset without any

respect to the data itself. The capped algorithm whether capping by packet/second or by

bits/second incorporates the volume of traffic into the equations, and it is believed that is

the cause of the difference in their results. It is important to note that the results of the

deterministic, random, random, and to a lesser degree state algorithms appears very

similar to the findings of Schaelicke and Freeland (compare Figure 4 to Figures 10, 12,

14, and 24), but the capped algorithms best reflect our own findings (compare Figure 6

to Figure 21).

Figure 28 Impact of Packet Loss on the DARPA 1998 Training Data

0

1000

2000

3000

4000

5000

6000

0%

5%

10
%

15

%

20
%

25

%

30
%

35

%

40
%

45

%

50
%

55

%

60
%

65

%

70
%

75

%

80
%

85

%

90
%

95

%

10
0%

Sn
or

t A
le

rt
s

PLR

Impact of Packet Loss on the DARPA 1998
Training Data

even alerts

random alerts

chance alerts

sine alerts

sawtooth alerts

capped-pkt alerts

capped-bit alerts

state alerts

51

Figure 29 Impact of Packet Loss on the DARPA 1998 Training Data

DARPA 1998 Test Data

During the same study Lippman et.al. created two weeks of test data (Lippmann,

et al., 2000). This data was very similar to the training data however it was released

without the labels. After the evaluation was completed, the labels were released. This

data is valuable for the same reason that the training data had value. This dataset

contains 23,341,583 packets and about 5.8 Gigabytes of data. Snort detected 2,173 alerts

for a distribution of about one alert for every 10,000 packets.

In Figures 30 and 31 we see very similar graphs to what we saw in Figures 27 and

28, but with greater deviation. It seems reasonable that the deviation can be attributed to

the smaller size of the dataset and the smaller number of alerts as we previously

discussed in the section on the validity of our results on smaller datasets.

0%

20%

40%

60%

80%

100%

120%
AL

R

PLR

Impact of Packet Loss on the DARPA 1998 Training Data

drop rate

even alert loss rate

random loss rate

chance loss rate

sine loss rate

sawtooth loss rate

capped-pkt loss rate

capped-bit loss rate

state loss rate

52

Figure 30 Impact of Packet Loss on the DARPA 1998 Test Data

Figure 31 Impact of Packet Loss on ALR in the DARPA 1998 Test Data

0

500

1000

1500

2000

2500

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Sn
or

t A
le

rt
s

PLR

Impact of Packet Loss on the DARPA 1998
Test Data

even alerts

random alerts

chance alerts

sine alerts

sawtooth alerts

capped-pkt alerts

capped-bit alerts

state alerts

0%

20%

40%

60%

80%

100%

120%

AL
R

PLR

Impact of Packet Loss on Alert Loss Rate inthe DARPA 1998 Test
Data

drop rate

even alert loss rate

random loss rate

chance loss rate

sine loss rate

sawtooth loss rate

capped-pkt loss rate

capped-bit rate

state loss rate

53

DARPA 1999 Data Set

Later Lincoln Labs release a dataset containing seven days of traffic from a

simulated network with systems running Microsoft Windows operating systems (Haines,

Lippman, & Cunningham, 2001). This dataset contains 84,327,351 packets and about 18

Gigabytes of data. Snort detected 6,420 alerts for a distribution of about one alert for

every 13,000 packets.

Notice that the graphs in Figures 32 and 33 look almost identical to Figures 28

and 29. Therefore, it is reasonable to conclude that this shows that the results remain the

same whether the traffic is dominated by UNIX traffic or Microsoft Windows traffic.

54

Figure 32 Impact of Packet Loss on Alerts in the DARPA 1999 Data

Figure 33 Impact of Packet Loss on ALR in the DARPA 1999 Data

0

1000

2000

3000

4000

5000

6000

7000

Sn
or

t A
le

rt
s

PLR

Impact of Packet Loss on Alerts in the
DARPA 1999 Data

even alerts

random alerts

chance alerts

sine alerts

sawtooth alerts

capped-pkt alerts

capped-bit alerts

state alerts

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

AL
R

PLR

Impact of Packet Loss on Alert Loss Rate in
the DARPA 1999 Data

even alert loss rate

random loss rate

chance loss rate

sine loss rate

sawtooth loss rate

capped-pkt loss rate

capped-bit alert rate

state loss rate

55

Cyber Defense Exercise 2009

In 2009 The National Security Agency/Central Security Service (NSA/CSS)

conducted an exercise pitting teams from the military academies of the U.S. and Canada

against teams of professional network specialists to see who could best defend their

network (West Point Takes the NSA Cyber Defense Trophy for the Third Straight Year,

2009).

In their paper, Sangster et al. describe their efforts to collect and label traffic from

this competition. We were able to obtain this data from

https://www.itoc.usma.edu/research/dataset/ (Sangster, et al., 2009). This dataset

contains 47,511,801 packets and about 23 Gigabytes of data. Snort detected 2,900 alerts

for a distribution of about one alert for every 16,000 packets.

Reviewing Figures 34 and 35, we see a slight bow developing in the relationship

between packet loss and alert loss that we did not see in the data from over twenty years

ago. This slight curve may indicate that the changes in network activity in the twenty

years from 1999 to 2009 have altered the relationship between packet loss to ALRs when

packets are dropped consistently across the dataset (as observed by Shaelicke and

Freeland and modeled by the deterministic, random, change, and state algorithms).

However, this difference may also be attributable to the fact that the DARPA datasets are

fabricated in an attempt to reflect the real world traffic they were observing at the time,

and the CDX traffic was captured from a competition. The deviation is very similar to

what we saw in the DARPA 98 test data, and we believe that this variation is attributable

to the fact that these datasets have a similar number of alerts.

56

Figure 34 Impact of Packet Loss on Alerts in the CDX 2009 Dataset

Figure 35 Impact of Packet Loss on ALR in the CDX 2009 Dataset

0

500

1000

1500

2000

2500

3000

3500

0%

5%

10
%

15

%

20
%

25

%

30
%

35

%

40
%

45

%

50
%

55

%

60
%

65

%

70
%

75

%

80
%

85

%

90
%

95

%

10
0%

Sn
or

t A
le

rt
s

PLR

Impact of Packet Loss on Alerts in the CDX 2009 Dataset

even alerts

random alerts

chance alerts

sine alerts

sawtooth alerts

capped-pkt alerts

capped-bit alerts

state alerts

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

AL
R

ALR

Impact of Packet Loss on ALR in the CDX 2009 Dataset

even alert loss rate

random loss rate

chance loss rate

sine loss rate

sawtooth loss rate

capped-pkt loss rate

capped-bit alert loss rate

state alert loss rate

57

Collegiate Cyber Defense Competition 2010 (CCDC 2010)

Paul Asadoorian describes his experiences as a Red Team captain in the Mid-

Atlantic Regional Collegiate Cyber Defense Competition (CCDC) which pitted blue

teams representing Universities and red teams composed of security experts (Asadoorian,

2010). We were able to obtain the packet capture data from CCDC 2010. This dataset

contains 264,973,151 packets and about 32 Gigabytes of data. Snort detected 84,913

alerts for a distribution of about one alert for every 3,120 packets.

Looking at Figures 36 and 37 we see further development of the slight curve we

first observed in the CDX dataset. For the first time we see a vast divergence between

the curve for the capped algorithm when it is capped by packets/second or capped by

bits/second with each curving the on the opposite side of the mean. Where the

deterministic, random, and random algorithms which best reflect Schaelicke and Freeland

observations are plotted almost right on top of each other, we see a divergence of the

state, sinusoidal, and saw tooth algorithms that we have not seen in the past.

58

Figure 36 Impact of Packet Loss on Alerts in the CCDC 2010 Dataset

Figure 37 Impact of Packet Loss on ALR in the CCDC Dataset

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Sn
or

t A
le

rt
s

PLR

Impact of Packet Loss on Alerts in the CCDC
2010 Dataset

even alerts

random alerts

chance alerts

sine alerts

sawtooth alerts

capped-pkt alerts

capped-bit alerts

state alerts

0%

20%

40%

60%

80%

100%

120%

AL
R

PLR

Impact of Packet Loss on ALR in the CCDC
2010 Dataset

drop rate

even alert loss rate

random loss rate

chance loss rate

sine loss rate

sawtooth loss rate

capped-pkt loss rate

capped-bit alert rate

state loss rate

59

 Summary

We specifically normalized the detection loss by plotting loss rate so that we

could compare the results of different datasets. In Figure 38 we have plotted the loss

rates of all the datasets and all of the algorithms that we have used in an effort see if there

is a consistent pattern we can infer from the data. We see significant deviation; however,

the preponderance of the data falls between 𝐴𝐿𝑅 = 𝑃𝐿𝑅2 as a lower bound, and 𝐴𝐿𝑅 =

 √𝑃𝐿𝑅 as an upper bound. Since we are able to set bounds upon the vast majority of the

data, it seems reasonable to conclude that a general formula does exist and with further

research we will be able to identify it.

Figure 38 ALR vs. PLR for all Datasets and Algorithms

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0%

5%

10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

AL
R

ALR vs PLR for all Datasets and Algorithms

ALR= PLR½

ALR = PLR2

ALR = PLR

60

Discussion

We started by asking several research questions. We will focus our discussion by

reviewing each of these questions and relating the answers we have presented.

We asked if there is sufficient regularity in packet loss to allow an algorithm to be

developed to model it. Our experiments show packet loss that is very similar to what we

saw in the capped algorithms (see Figures 6, 20, and 21). The deterministic, random, and

random algorithms produce packet loss which is very similar to that observed by

Shaelicke and Freeland. Future research should be explored to determine which models

are more indicative of what is seen in the real world; however, it is reasonable to believe

that we have enough data to conclude that it may be modeled.

We asked if the impact of packet loss on NIDS performance is sufficiently regular

to allow a formula to be developed which will accurately predict the effects. In Figure 38

we see that the vast majority of data points generated by evaluating NID performance

may be bounded by the equations 𝐴𝐿𝑅 = 𝑃𝐿𝑅2 as a lower bound and 𝐴𝐿𝑅 = √𝑃𝐿𝑅 as

an upper bound. Since we have found formulas that provide reasonable upper and lower

bounds for the impact of packet loss on ALR allowing us to predict this impact with some

level of confidence, it is reasonable to believe that formula exists and that with further

research we can close the gap and provided an deterministic greater level of confidence.

We asked if the same rate of packet loss would induce the same loss of sensor

alerts regardless of the strategy used to induce the packet loss. Figures 25 and 26 show

that our selection of dropping algorithms do a very good job of covering the space; so

that if the way packets are dropped impacts the results of the NIDS we will see it. For

most of the algorithms the differences between the algorithms was about the same or less

61

than the differences between datasets. The capped algorithms are the exception. Most of

the algorithms show a linear relations or perhaps a slight curve; however, the capped

algorithms all show a clear curve. Therefore, we must conclude that the algorithm used

to drop the packets does impact the results.

We asked if the results are independent of the composition of the network traffic.

We looked a diverse set of datasets from 1998, 1999, 2009, and 2010. About half of this

data was fabricated and the other half was captured from Cyber Defense Competitions. It

would be valuable to run our tests against data captured from a live network, but as

Figure 27 illustrates we would need a significant amount of data with a significant

number of alerts for our results to be meaningful. The datasets are not only different is

age, but also in type. The older data are fabricated and the newer data are collected from

actual competitions. Although more research is warranted to determine whether the

difference in the data is more attributable to age or to type, we cannot say the results are

similar enough that conclusions based upon the older data sets would be valid for the

newer data sets.

Although much work has been done to reduce packet loss, very little work has

been done to characterize or model packet loss and its impact upon NIDS performance

and actual intrusion detection. In this research we discovered that a capped algorithm

models the packet loss that we are seeing in our experiments. We find that the formula

𝐴𝐿𝑅 = 𝑃𝐿𝑅2 provided a reasonable lower bound for the impact of PLR on ALR. We

discovered that the deterministic, bounded random, and random algorithms best model

the observations of Shaelicke and Freeland. We find that the formula 𝐴𝐿𝑅 = 𝑃𝐿𝑅

provides a reasonable lower bound for the impact of PLR on ALR.

62

With future research we will be able to continue to experimentally study how

packets are dropped in a laboratory environment and compare that to our theoretical

experiments. We may also examine data captured from live networks for evidence of

packet loss to characterize how this happens in practice. This additional data will allow

us to improve the Packet Dropper application. Also it will allow us to prune unrealistic

algorithms from the study. Once unrealistic and duplicate algorithms are pruned, we will

be able to apply rigorous regression techniques to provide more accurate predictive

formulas with confidence intervals.

63

References

Asadoorian, P. (2010, March 18). The Mid-Atlantic Regional CCDC 2010 Event - Part I.
Retrieved March 22, 2013, from tenable netowrk security:
http://www.tenable.com/blog/the-mid-atlantic-regional-ccdc-2010-event-part-i

Brugger, S. T., & Chow, J. (2007). An Assessment of the DARPA IDS Evaluation
Dataset Using Snort. UCDAVIS department of Computer Science 1.

Chung, B.-H., Kim, J.-N., Sohn, S.-W., & Park, C.-h. (2004). Kernel-level intrusion
detection system for minimum packet loss. Advanced Communication Technology, 2004.
The 6th International Conference on, (pp. 207-212).

Gilbert, E. N. (1960). Capacity of a Burst-Noise Channel. The Bell System Technical
Journal , 1253-1265.

Haines, J. W., Lippman, R. P., & Cunningham, R. K. (2001). Extending the DARPA off-
line intrusion detection evaluations. DARPA Information Survivability Conference &
Exposition II, 2001. DISCEX '01. Proceedings , vol.1 (pp. 35,45). DISCEX.

Kim, N.-U., Park, M.-W., Park, S.-H., Jung, S.-M., Eom, J.-H., & Chung, T.-M. (2011).
A study on effective hash-based load balancing scheme for parallel NIDS . Advanced
Communication Technology (ICACT), 2011 13th International Conference on , (pp. 886-
890).

Lippmann, R., Fried, D., Graf, I., Haines, J., Kendall, K., McClung, D., et al. (2000).
Evaluating intrusion detection systems: the 1998 DARPA off-line intrusion detection
evaluation. DARPA Information Survivability Conference and Exposition (pp. 12-26).
DISCEX '00.

Mizrak, A. T., Savage, S., & Marzullo, K. (2009). Detecting Malicious Packet Losses.
Parallel and Distributed Systems, IEEE Transactions on , 191-206.

O'Neill, T. (2007, August 23). SPAN Port or TAP? CSO Beware . Retrieved February 21,
2012, from LoveMyTool: http://www.lovemytool.com/blog/2007/08/span-ports-or-t.html

Paxson, V., & Floyd, S. (1997). Why We Don't Know How To Simulate the Internet.
Proceedings of the 1997 Winter Simulation Conference, (pp. 1037-1044). Atlanta.

Salah, K., & Kahtani, A. (2009). Improving Snort performance under Linux. IET
Communications , 1883-1895.

Sangster, B., O'Connor, T. J., Cook, T., Fanelli, R., Dean, E., Adams, J., et al. (2009).
Toward Instrumenting Network Warfare Comptetions to Generate Labeled Datasets.
USENIX Security's Workshop on Cyber Security Experimentation and Test (CST).

64

Schaelicke, L., & Freeland, J. C. (2005). Characterizing sources and remedies for packet
loss in network intrusion detection systems. Workload Characterization Symposium,
2005. Proceedings of the IEEE International (pp. 188-196). Austin, Texas: IEEE
Conference Publications.

Song, B., Yang, W., Chen, M., Zhao, X., & Fan, J. (2010). Achieving Flow-Level
Controllability in Network Intrusion Detection System. SNPD '10 Proceedings of the
2010 11th ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (pp. 55-60). Washington,
DC: IEEE Computer Society.

Tcpreplay. (n.d.). Retrieved April 2, 2013, from Syn Fin dot Net:
http://tcpreplay.synfin.net

Vasiliadis, G., Polychronakis, M., & Ioannidis, S. (2011). MIDeA: a multi-parallel
intrusion detection architecture. Proceedings of the 18th ACM conference on Computer
and communications security (pp. 297-308). New York: ACM.

Wei, C., Fang, Z., Li, W., Liu, X., & Yang, H. (2008). The IDS Model Adapt to Load
Characteristic under. CORD Conference Proceedings, (pp. 1-4).

Welcome. (n.d.). Retrieved April 02, 2013, from TCPDUMP&LIBPCAP:
http://www.tcpdump.org

West Point Takes the NSA Cyber Defense Trophy for the Third Straight Year. (2009,
April 28). Retrieved March 22, 2013, from Natioinal Security Agency Central Security
Service: http://www.nsa.gov/public_info/press_room/2009/cyber_defense_trophy.shtml

Yueai, Z., & Junjie, C. (2009). Application of Unbalanced Data Approach to Network
Intrusion Detection. First International Workshop on Database Technology and
Applications (pp. 140-143). IEEE.

65

Curriculum Vita

NAME: Sidney Charles Smith

PERMANENT ADDRESS: 1600 Cynthia Court, Jarrettsville, MD 21084

PROGRAM OF STUDY: Computer Science

DEGREE AND DATE TO BE CONFERRED: Master of Science 2013

Secondary education: North Harford High School, Pylesville, MD 1984

Towson University 2010 – 2013 Master of Science

Towson State University 1988 – 1990 Bachelor of Science

Harford Community College 1985 – 1987 None

Major: Computer Science

Professional publications: N/A

Professional Certifications:

Certified Information Systems Auditor 1081888

Certified Accreditation Professional (CAP) CN: 98606

Security + COMP001006858518

Certified Information Systems Security Professional (CISSP) CN: 98606

Professional positions held:

 01 Jan 2010 to Present, Computer Scientist, Team Leader of the Product
Integration and Test Team (PITT) for the US Army Research Laboratory 2800 Powder
Mill Road, Adelphi, MD 20783

 14 May 2006 to 31 Dec 2009, Computer Scientist, Information Assurance
Program Manager for the US Army Research Development & Engineering Command
3071 Aberdeen Blvd., Aberdeen Proving Ground, MD 21005

66

 01 Oct 2003 to 14 May 2006, Computer Scientist, Information Assurance
Network Manager for the US Army Research Development & Engineering Command
3071 Aberdeen Blvd., Aberdeen Proving Ground, MD 21005

 05 Dec 1999 to 01 Oct 2003, Computer Scientist, Information Assurance Network
Manager for the US Army Soldier and Biological Chemical Command 5183 Black Hawk
Road, APG MD 20010

 23 Apr 1990 to 05 Dec 1999. Computer Scientist, Systems Administrator for the
Chemical Biological Defense Command 5183 Black Hawk Road, APG MD 20010

	Acknowledgements
	Abstract
	Table of Tables
	Table of Figures
	Introduction
	Problem Definition
	Objectives
	Research Questions
	Outline

	Literature Review
	Methods and Materials
	Understanding Packet Loss
	Theory
	Experiments
	Experimental Environment
	Experiment 1 Network Based Packet Loss.
	Experiment 2 Host Based Packet Loss.
	Experiment 3 Sensor Based Packet Loss.

	Modeling Packet Loss
	Requirements
	Pcapcat
	User Interface
	The Deterministic Algorithm
	The Bounded Random Algorithm
	The Random Algorithm
	The Sinusoidal Algorithm
	A Sawtooth Algorithm
	Pcapgraph
	Pcapstats
	A Capped Algorithm
	A Two State Channel Model
	Summary

	Results
	Validity vs. PCAP Datafile Size
	DARPA 1998 Training Dataset
	DARPA 1998 Test Data
	DARPA 1999 Data Set
	Cyber Defense Exercise 2009
	Collegiate Cyber Defense Competition 2010 (CCDC 2010)
	Summary

	Discussion
	References
	Curriculum Vita

