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Abstract 

In this thesis we review the problem of packet loss as it pertains to Network 

Intrusion Detection with the intent to build a model that can be used to predict the impact 

of packet loss.  We examine the potential places where packet loss may occur dividing 

the problem into network, host, and sensor based packets loss.  We review the literature 

not only for other similar work, but for any work which might provide insight into this 

issue.  We posit theories about how that packet loss may present itself.  We construct a 

test environment and conduct experiments to induce packet loss in this environment.   We 

develop the Packet Dropper application that induces packet loss into a dataset based upon 

eight different dropping algorithms selected to cover the theories previously posited.  We 

apply each of these eight algorithms with drop rates ranging from 0% to 100% in 5% 

increments to the DARPA 98 Training, DARPA 98 Test, DARPA 99, CDX 2009, and 

CCDC 2010 datasets analyzing the resulting abridged datasets with Snort to collect alert 

information.  The Alert Loss Rate (ALR) is plotted against the packet loss rate (PLR) 

allowing us to make general inferences about the relationship between PLR and ALR.  In 

this paper we discovered that deterministic, bounded random, and random algorithms 

closely match the dropping patterns found in the literature and that a capped algorithm 

models the packet loss that we observed in our experiments.  We present formulas that 

provide reasonable upper and lower bounds for the impact of PLR on ALR allowing us to 

predict this impact with some level of confidence. 
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Introduction 

Network Intrusion Detection (NID) depends upon the sensor being able to see the 

network traffic between the adversary and the target.  This is often done by placing the 

sensor on a mirrored port in the network boundary which sends a copy of all the packets 

flowing into and out of the network to the sensor.  Packet loss occurs when some of these 

packets fail to make it all the way to the sensor software for analysis.  Intuitively, we 

understand that a sensor cannot detect what it cannot see; therefore, this packet loss must 

have a negative impact on the sensor’s ability to detect malicious activity. This 

fundamental truth is well known, and much work has been done to reduce or eliminate 

packet loss.  Very little work has been done to understand, predict, and model packet loss 

or the impact on network intrusion detection.  The novel focus of this research is to build 

a model that can be used to predict packet loss and the impact on intrusion detection. 

Problem Definition 

The Internet is a very dangerous place for packets.  They can collide and be 

destroyed.  They can encounter a host, switch or a router with a full buffer and be 

dropped.  They could pass through faulty systems and be altered.  Internet protocols such 

as TCP are designed with the ability to compensate for these problems and retransmit 

dropped or altered packets.  The focus of this research is not packet loss in general, but 

specifically any packet loss where packets from the adversary reach the target, but do not 

reach the sensor from a NID point of view. We will divide this problem into three distinct 

areas: network based packet loss, host based packet loss, and sensor based packet loss 

which are illustrated in Figure 1. 
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Figure 1 Packet Loss Diagram 

Network Packet Loss.  Network based packet loss is defined as any circumstance 

that would prevent packets which reach the target from reaching the network interface of 

the sensor and is represented by bit bucket A in Figure 1.  Since the network from the 

switch to the sensor is significantly simpler than the network from switch to the target, 

we assume that almost all of this packet loss occurs in the switch itself as packets are 

delivered to the target network but fail to be mirrored. 

Host Packet Loss.  Host based packet loss is defined as any circumstance that 

would prevent packets which reach the network interface of the sensor from being 

presented to the analysis software and is represented by bit bucket B in Figure 1.  A key 
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culprit here could be packets dropped because the buffers fill as new packets arrive faster 

than the CPU is capable of processing them. 

Sensor Packet Loss.  Sensor based packet loss is defined as circumstance that 

would prevent packets which are presented to the analysis software from being processed 

and is represented by bit bucket C in Figure 1.  A prime candidate is resource exhaustion 

caused by the analysis software itself. 

Objectives 

Overall program objective:  
Methodology and Analysis of Capture Packet Loss and Impact on Network 

Intrusion Detection Systems (NIDS) 
Sub-topic Key 

Research 
Hypothesis 

Research 
Question 

Key Research 
Result  
Expected 

Tangible 
Value 

Understanding 
Packet Loss 

There exists 
patterns in 
packet loss that 
may be modeled 
with some level 
of fidelity 

RQ1 A packet loss 
model which may 
be used to simulate 
packet loss 

This model may 
be used to build 
packet loss 
resistant 
systems 

Modeling 
Packet Loss 

An application 
may be written 
that will 
simulate packet 
loss over an 
existing dataset 

RQ3 A simulator will be 
developed that will 
allow analysis to be 
conducted without 
requiring 
experimentation 
using a network 
environment 

This simulator 
may be used to 
inexpensively 
test packet loss 
resistant 
algorithms 

Effect of 
Packet Loss 

Packet Loss has 
a Predictable 
Impact upon 
NIDS that may 
be 
mathematically 
modeled. 

RQ2, RQ4 A mathematical 
model for 
predicting the 
effect of packet 
loss on NIDS  

This model may 
be used to set 
tolerances and 
allow network 
managers to 
make risk based 
decisions 

Table 1  Overall program objective 
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Research Questions 

During this research, we will answer the following research questions: 

1. Is there sufficient regularity in packet loss to feasibility model it, or is 

this phenomenon sufficiently irregular as to be effectively considered random?  The only 

work in this area seems to imply that packet loss is closely related to network traffic 

volume (Schaelicke & Freeland, 2005).  However, this work did not consider network 

packet loss and appears not to have differentiated between host and sensor packet loss.  

This applies directly to sub-topic, “Understanding Packet Loss” in Table 1.  If there is not 

sufficient regularity in packet loss, then we will be able to simulate packet loss as 

correctly as possible with a simple random packet loss algorithm. 

2. Is the impact of packet loss on NIDS performance sufficiently regular to 

allow a formula to be developed which will accurately predict the effect? The only work 

in this area seemed to imply a fairly linear relationship where as packet loss increased, 

sensor alerts decreased; however, there seems to be very large standard deviation 

(Schaelicke & Freeland, 2005).  This applies directly to the sub-topic, “Effect of Packet 

Loss” in Table 1.  If the impact of packet loss on NIDS performance is completely 

random, then it will be impossible to set tolerances which may be used for risk based 

engineering decisions.   

3. Would the same rate of packet loss induce the same loss of sensor alerts 

regardless of the strategy used to induce the packet loss?  For example would a random 

packet loss induction of 5% cause the same loss in sensor alerts as 5% packet loss evenly 

distributed through the dataset, or would a sine wave based 5% packet loss algorithm 

cause the same loss in sensor alerts as a 5% packet loss based upon a Markov chain two 
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state channel model?  This applies directly to the sub-topic, “Modeling Packet Loss” in 

Table 1.  Using the Packet Dropper, which we will develop in this research, we will be 

able to compare the resulting loss in alerts at the same rate of packet loss over different 

loss algorithm.  If the alert loss is highly dependent upon the packet loss algorithm, this 

implies that the correctness of the packet loss model is very important.  Conversely, if the 

alert loss is independent of the packet loss strategy, then the correctness of the packet loss 

model is not very important. 

4. Are the results independent of the composition of the network traffic?  

The only available results were obtained using only one dataset (Schaelicke & Freeland, 

2005). Would the same result be obtained if different datasets were used?  If packet loss 

were applied to capture the flag competition datasets that are exploit rich would be same 

relationship hold?  If we applied packet loss to a much older dataset, would we see the 

same relationship implying that our results are likely to hold over time?  This applies 

directly to the sub-topic, “Effect of Packet Loss” in Table 1 because the composition of 

network traffic varies significantly from site to site; if the results are highly dependent 

upon the composition of the network traffic, then we will unable to generalize our results. 

Outline 

The remainder of this paper is organized into the following sections.  The 

“Literature Review” provides an overview of the existing literature as it pertains to 

network, host and sensor base packet loss.  The “Methods and Materials” discusses our 

experimental work using the network test environment we created and the theoretical 

work using the Packet Dropper application that we developed.  The “Results” discusses 

the findings from applying the Snort Network Intrusion Detection tool to datasets 
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abridged using the Packet Dropper.  The “Discussion” section summarizes our findings 

and outlines directions for future research.  



7 
 

Literature Review 

Previous research in this area has focused on eliminating packet loss.  We will 

divide the literature review along the same lines that we have divided our research.  One 

must keep in mind however, that this categorization is of our own making and previous 

research may not fit well into our categories.  We observe that if we were able to model 

the Internet traffic that is received by the sensor, this analysis would be straight forward; 

however, modeling the Internet is a very difficult problem that has yet to be solved.  

Paxson and Floyd sited heterogeneity and rapid change as key factors complicating 

efforts to simulate the Internet (Paxson & Floyd, 1997).  The heterogeneity and rapid 

change of the Internet has only increased since Paxson and Floyd did their research. 

Network Packet Loss.  During their work on detecting malicious packet losses, 

Mizrak et al. encountered the problem of distinguishing malicious packet loss which is 

caused by a compromised router from benign packet loss which is simply part and parcel 

of the way traffic flows through the Internet.  They observed that “modern routers 

routinely drop packets due to bursts in traffic that exceed their buffering capacities, and 

the widely used Transmission Control Protocol (TCP) is designed to cause such loses as 

part of its normal congestion control behavior” (Mizrak, Savage, & Marzullo, 2009).  

Although generalized packet loss is not the focus of this research because it is assumed 

that the target and sensor are seeing the same traffic, many sensors are connected to the 

network through a mirrored port on a switch.  Since mirroring is the lowest priority task 

that switches perform, it is possible to create a situation where the malicious traffic would 

reach the target but fail to reach the sensor (O'Neill, 2007). As illustrated in Figure 1 at 
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bit bucket A, the network path diverges at the mirrored port on the switch.  The focus of 

this research is those packets that reach the target but fail to reach the sensor. 

Host Packet Loss. The movement of packets from the Network Interface Card 

(NIC) through the kernel to user space where most sensor software is executed with 

multiple points of failure as illustrated in Figure 2 which expands upon bit bucket B from 

Figure 1.  There are many things that may cause this as illustrated by the solutions 

provided to correct the problem. Handling interrupts is significantly more costly than 

processing more regular code because it cannot benefit from advances in processor 

performance.  Interrupt handling may constitute 15% of the total processing time.  

Interrupt cost may be reduced 60% and the packet loss rate (PLR) by 46% by aggregating 

32 interrupts (Schaelicke & Freeland, 2005).  Packet loss was greatly reduced by 

increasing the level-2 cache (Schaelicke & Freeland, 2005). The Multi-Parallel Intrusion 

Detection Architecture was able to achieve impressive capture rates on a 10GbE network 

by parallelizing both the kernel and user land detection processes by assigning each flow 

to a single core (Vasiliadis, Polychronakis, & Ioannidis, 2011).  Yueai and Junjie 

employed multiple sensors with load balancing to address the problem of host based 

packet loss (Yueai & Junjie, 2009).  Chung, et al. discusses host based packet loss as 

packets that cannot be copied from kernel to user space quickly enough to prevent loss.  

They explore moving the IDS engine into kernel space as one solution to this problem 

(Chung, Kim, Sohn, & Park, 2004). 
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Figure 2 Snort NIDS underlying kernel support architecture (Salah & Kahtani, 2009) 

 

Sensor Packet Loss.   The number of different suggested solutions speaks to the 

various causes packets may not be processed by the analysis software.  Some 

improvements in the PLR were obtained by increasing the level optimization employed in 

the compiler (Schaelicke & Freeland, 2005).  Setting the netdev_budget, a Linux kernel 

configuration parameter, in the New Application Programming Interface (NAPI) to a low 

number like 2 has been shown to greatly decrease packet loss.  This is primarily because 

both pulling packets from the network and analyzing the packets are bound by available 

CPU cycles and not buffer memory.  By allocating the bulk of the CPU time to the sensor 

application, more packets may be processed and the packets that are dropped are dropped 

very early in the process where CPU cycles will not be wasted processing a packet which 

will only be dropped later (Salah & Kahtani, 2009).  Significant improvements in the 
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PLR could also be achieved by pruning the sensor rule set (Schaelicke & Freeland, 2005).  

Multi-processing techniques have been employed to increase the throughput of the sensor 

and reduce packet loss (Kim, Park, Park, Jung, Eom, & Chung, 2011).  In addition to this 

Song et al. point to the software crash as yet another cause of packet loss (Song, Yang, 

Chen, Zhao, & Fan, 2010). Wei et al. consider the problem of packet loss in an IPv6 

environment.  As a solution they propose breaking the detection task into three units: the 

Data Acquisition Unit, the Adapt Load Characteristic Analysis unit, and the 

Collaborative Analysis and Control Center (Wei, Fang, Li, Liu, & Yang, 2008). 

Combined Effect.  In their paper, “Characterizing Sources and Remedies for 

Packet Loss in Network Intrusion Detection Systems”, Schaelicke and Freeland observed 

a near linear relationship between PLR and Alert Loss Rate (ALR). We very grossly 

simplified the results shown in Figure 3 and using a graphical method we could describe 

the relationship by the equation: 𝐴𝐿𝑅 = 𝑃𝐿𝑅 − 15.  According to this model, if one is 

seeing a 20% PLR one should expect a 5% ALR.  Looking at Figure 4 we can see that 

they observed packet loss which rose and fell almost identically to the traffic that they 

captured.  Since the focus of their paper was reducing packet loss, they made little effort 

to validate or generalize their model.  Their network traffic consisted of 13 seconds 

captured on the Internet connection of a major university containing over 530,000 

packets that contained 521 known attacks at a ratio of about 1000 packets per alert 

(Schaelicke & Freeland, 2005).  Although sufficient for their purposes, there is 

insufficient robustness to extrapolate a general packet loss to alert loss relationship from 

their results. 
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Figure 3 Alert Loss vs Packet Loss (Schaelicke & Freeland, 2005) 

 

Figure 4 Packet Rate vs Time (Schaelicke & Freeland, 2005) 

 

It is clear from all of the effort expended to reduce packet loss that it is generally 

considered to be a serious problem which promises to only get more serious as network 

bandwidth continues to outpace CPU clock speeds. Although much work has been done 

to minimize packet loss, very little work has been done to characterize packet loss and 
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even less work has been done to quantify the impact of packet loss on intrusion detection. 

The purpose of the effort is to understand, predict and model both packet loss itself and 

the impact upon network intrusion detection.  
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Methods and Materials 

Understanding Packet Loss 

In order to understand packet loss we will begin by reviewing the key points 

where packet loss might take place and based upon the information gained in the 

literature review we will posit theories on how this packet loss may present itself.  Then 

we will design and conduct experiments to induce each type of packet loss in a laboratory 

environment capturing the traffic for analysis.  

Theory 

Network Packet Loss.  Revisiting Figure 1 bit bucket A, we see a network switch 

with basically three network connections.  The first connection is from the switch to the 

frontier router which is connected to the Internet point of presence.  The second 

connection is from the switch to the firewall which is connected to the Intranet backbone.  

The third connection is from the mirrored port on the switch to the NID sensor.  Given 

that the routing and firewall functions are significantly more complicated than the 

switching function, one would not expect the switch to have difficulty keeping pace with 

the two.  However, there is a potential problem inherent in this design.  Unlike network 

hubs which are half duplex, network switches are full duplex.  Although traffic may flow 

from the firewall to the frontier router through the switch in both directions at the same 

time, there is still only one traffic path between the switch and the sensor.  When packets 

pass each other at the switch, one must be buffered until the other has completed 

transmission to the sensor.  In the event of heavy traffic in both directions, one could 

image this buffer filling and packets being lost.  Since the nature of TCP’s congestion 

control algorithm tends to make network traffic bursty, we theorize that we can model 
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this kind of packet loss using a two-state Markov chain similar to the one that has been 

used since 1960 to simulate channel fading and packet loss in wireless channels (Gilbert, 

1960). 

Host Packet Loss.  Revisiting Figure 1 bit bucket B, we see buffers in the kernel 

used to hold packets that have been received by the NIC and have yet to be processed by 

the CPU.  One could easily envision a general purpose computer system being unable to 

keep up with the firewall and the frontier router which are both dedicated network 

devices tuned specifically to move network traffic.  We theorize that we can simulate this 

effect by implementing what we will call a capped algorithm.  This capped algorithm will 

implement a queue of packets.  As we look at each packet we will drain the queue of any 

packet that is some interval older than the current packet.  Once this is complete, if the 

number of packets per interval or bytes per interval is below some cap, we will add the 

packet to the queue; otherwise we will drop the packet. 

Sensor Packet Loss.  Revisiting Figure 1 bit bucket C, we expect that the 

resource consumption of the sensor application itself will contribute the greatest 

component of packet loss at this level.  We theorize that we can simulate this effect 

through some cyclic function such as a sine wave or a saw tooth wave which would 

model this pattern of resource utilization. 

Experiments 

We studied the phenomenon at the network, host, and sensor levels.  We theorized 

that the number of packets dropped as network traffic increases would be regular enough 

that we will be able plot this relationship.  Further, we theorized that we can use 

regression techniques to discover a formula that we can use to simulate packet loss with 
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some level of fidelity.  Each of these experiments will produce an abridged dataset which 

we processed by an Open Source NIDS.  These experiments are directly related to the 

sub-topic, “Understanding Packet Loss” from Table 1, and address research question 1. 

Experimental Environment 
Figure 5 is a diagram of the network we constructed for conducting our 

experiments.  Table 2 provides the hardware specifications, and Table 3 provides the 

software specification of this environment.  The switch is configured as a layer 3 switch 

with 2 VLANs and traffic routed between them.  The VLANs separates the hosts into an 

“external” network, VLAN 100, and an “internal” network, VLAN 200.  This 

configuration allows mirroring of all traffic from both VLANs to a collection port which 

is similar to how the sensors are typically set up.  

 

Figure 5 Experimental Environment 
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Name Manufacture Model CPU Memory Hard drive IP Address 
Bilbo Dell PowerEdge 

R610 
Intel Xeon 16 core 
X5450 @ 2.53 
GHz 

12 GB 4X 300 GB 
10K SAS 

192.168.2.10 

Gator-
rs010 

Dell PowerEdge 
R210 II 

Intel Xeon 4 core, 
E31220 @ 3.10 
GHz, 

8 GB  192.168.2.100 

Gollum Dell PowerEdge 
R610 

Intel Xeon 16 
core, E5540 @ 
2.53 GHz 

12 GB 4X 300GB 
10K SAS 

192.168.1.2 

Smaug Dell PowerEdge 
2950 

Intel Xeon 8 core, 
X5450 @ 3.00 
GHz, 

8 GB 1X 300 GB 
10K SAS 

192.168.1.12 

rsswitch Cisco Catalyst 
3560-X 

    

Thorin Dell PowerEdge 
2950 

Intel Xeon 8 core, 
X5450 @ 3.00 
GHz, 

8 GB 6X 145 GB 
15K SAS 

192.168.2.12 

Table 2 Hardware Specifications 

 

Name Source Version 
Snort www.snort.org 2.9.4 
Tcpdump www.tcpdump.org 4.3.0 
Libpcap www.tcpdump.org 1.3.0 
Tcpreplay tcpreplay.synfin.net 3.4.4 
MGEN cs.itd.nrl.navy.mil 5.02 
Table 3 Software Specifications 

Experiment 1 Network Based Packet Loss.   
First we configured Gollum to be the MGEN source and Bilbo to be the MGEN 

sink and sent packets from Gollum to Bilbo while collecting everything on Gator-rs010. 

We were not able, in this configuration, to send enough packets over the switch to cause 

the mirror to fail.  Next using Aaron Turner’s tcpreplay (Tcpreplay) we were able to 

replay the hour of network traffic from the Cyber Defense eXercise (CDX) 2009 that we 

will later use to show the impact of our packet loss algorithms.  Tcpreplay provides the 

ability to rerun the traffic at arbitrary speeds.  Table 4 lists the speed multiplier that we 

used and the packet loss we observed.  We were able to replay that hour of the CDX 2009 

data at speeds, over 1000 times the original speed, and were not able to produce packet 

http://www.snort.org/
http://www.tcpdump.org/
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loss at the switch.  Finally we configured Bilbo and Smaug as MGEN sources and 

Gollum and Thorin as MGEN sinks in an effort to introduce traffic in both directions.  

We ran this configuration at bursts of 30 MB/Sec, and we were unable to cause the 

switch to fail.  We ran this configuration at bursts of 70 MB/Sec and saw 5% packet loss.  

This means that our Gigabit switch failed to mirror 5% of the traffic when we pushed 

1.12 Gigabits over the network.  A reasonable conclusion is that, at least for the 

equipment that we used in a configuration typical for network intrusion detection, mirror 

failure is not a significant problem. 
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Experiment 2 Host Based Packet Loss.   
In order to test host based packet loss we configured our sensor with tcpdump to 

collect the network traffic.  Using tcpreplay as we did above to exercise the switch we 

collected the information in Table 4.  We noticed that if we asked tcpdump to do any 

analysis at all on the traffic, we started to see packet loss.  From this we conclude that the 

hardware and operating system of the components that we used were capable of handling 

the traffic we were able to generate until userprocesses began to consume resources. 

Run Multiplier Time (sec) TimeRatio PktsReceived PktLoss 
1 200 17.73 0.985 1,340,209 0 
2 250 14.22 0.988 1,340,212 0 
3 300 11.93 0.994 1,340,212 0 
4 600 6.43 1.072 1,340,212 0 
5 1,000 4.53 1.258 1,340,212 0 
6 1,200 4.19 1.397 1,340,245 0 
7 1,400 3.94 1.532 1,340,212 0 
Table 4 Network Packet Loss Results 

Experiment 3 Sensor Based Packet Loss.  
Sensor based packet loss may occur when the NID software takes so much time to 

process the packets that they saturate the buffer and packets are dropped.  In order to 

characterize this we will install the Snort sensor on the system and observe the packet 

loss.  Replaying the hour from CDX 2009 at different rates we are able to show how 

Snort loses the ability to capture packets as the data rate increases as graphed in Figure 6.  

The left hand axis is the number of packets.  The bottom axis is time adjusted to account 

for speeding up the process; for example the capture run at 250 times the speed of the 

original traffic is plotted as if it took the same amount of time as the original traffic, even 

though it actually took considerably less time.  This was done to better show the 

relationship between the original and accelerated data streams.  This graph shows that 
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Snort has a fixed limit to how many packets it can process.  This graph looks very similar 

to the graphs of the capped algorithm that we will see later in Figures 20 and 21. 

 

Figure 6 Packet Loss as Measured by Snort 

Snort is capable of capturing packets to a file, or analyzing packets against a rule 

set looking for malicious network activity.  These results were obtained running Snort in 

capture mode because we are unable to graph packet loss when running in analysis mode.  

Although, we expect packet loss to be greater when Snort is run in analysis mode; 

however, at the time we are unable to measure this. To measure it one would need to 

create a tool similar to tcpreplay that would replay a PCAP file at a multiple of its 

original speed.  It would check the system clock before it writes each packet and if the 

Adjusted Time 

Packets 



20 
 

time to write that packet is in the past, it would send that packet into a bit bucket instead 

of sending it to snort.  In this way we would have a record of which packets were lost for 

further analysis. 

Modeling Packet Loss 

Requirements 

The Packet Dropper was built in order to model packet loss.  This software has 

the following requirements: 

1. The Packet Dropper must be able to read and write network traffic in a 

format that is compatible with available datasets and network intrusion detection 

software. 

2. The Packet Dropper must be able to execute in a batch mode 

compatible with the X-Wray Statistics and Performance Explorer (X-Wray SPEX).  The 

X-Wray SPEX was built for a previous study of the efficiency of NIDS. 

3. The Packet Dropper must facilitate the addition of new algorithms for 

dropping packets. 

4. The Packet Dropper must support a sufficient number of diverse 

dropping algorithms to ensure that research question 3 may be answered. 

Pcapcat 

In order to satisfy requirement number 1, we selected the PCAP format used by 

tcpdump, a popular Open Source command-line packet analyzer (Welcome).  The initial 

version of the Packet Dropper simply reads packets from a file in PCAP format and 

writes the packets out to a file in PCAP format.  It is useful for our purposes to be able to 
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concatenate several files in PCAP format.  Each file in PCAP format begins with some 

global data; therefore, tools like cat will not work.  We decided to expand this phase just 

to implement a tool that would allow us to concatenate these files.  We understand that 

tools like tcpsplice and mergecap will do this job; however, we wanted the functionality 

incorporated into the packet dropper, and the exercise provided a good first step. 

Upon initial consideration this would seem to be a simple algorithm implemented 

with the following pseudo code: 

Open output file for writing; 
For each input file { 
 Open input file for reading; 

While read a packet from the input file { 
  Write a packet to the output file; 

} 
Close input file; 

} 
Close output file; 

 
The problem is that information from the input file, specifically the cap length, is 

necessary to properly open the output file; therefore the pseudo code looks more like this: 

For each input file { 
 Open the input file; 
 If the output file is not  opened { 
  Open the output file with information from the 
first input file; 
 } 
 While reading a packet from the input file is 
successful { 
  Write a packet to the output file; 
 } 
 Close input file; 
} 

 Close output file; 

User Interface 

Since the Packet Dropper will need to be executed in batch mode, a command line 

user interface was selected.  It was also considered useful to be able to configure the 
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Packet Dropper from a configuration file or through the environment.  The Configuration 

library was written to facilitate this.  The Configuration object contains a data structure of 

Configuration Items which provide specific information about how to configure each 

item.  See Figure 7 for the Configuration class diagram. 

 

Figure 7 UML Class Diagram for Configuration Objects 

Using the Configuration library first the Configuration object must be created and 

configured then ConfigItem object are created, configured, and added to the 

Configuration object.  Once this is complete the user would invoke the loadConfig 

method passing argc, and argv from the command line.  Then call getConfig( “ci name” ) 

whenever the value of a configuration item is required.  The biggest problem with this is 
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that we want the values specified on the command line to override values specified in the 

environment or in a configuration file, and we want the values specified on the 

environment to over ride values specified in the configuration file.  So what happens if 

we specify a configuration file on the command line?  The Packet Dropper processes the 

new file, and then processes the environment and the command line again. 

The Deterministic Algorithm 

First we implemented a very simple algorithm that evenly distributes packet loss 

across the dataset.  We did that as a control to help discover how dependent ALR is upon 

the way the packets are dropped. 

At this point we introduced the Dropper class.  Dropper objects contain all of the 

parameters necessary to implement a dropping algorithm plus the methods to manipulate 

them.  The Dropper class contains a virtual dropit() method which takes a pcap packet 

header as an argument and returns true if the packet is to be dropped or false if the packet 

is to be kept.  Each dropping algorithm is implemented as subclass of the Dropper class 

and implements the dropit()  method.  Looking ahead we notice that the deterministic and 

the bounded random algorithms are both based upon dropping over an interval and that 

the sinusoidal and sawtooth algorithms are both based upon a function; therefore, we will 

implement the subclasses IntervalDropper and FunctionDropper to capture the similar 

parts of those algorithms.  See Figure 8 for the Dropper class diagram. 

Originally this algorithm was called simply “even.”  Very late in this process the 

name was changed to deterministic because we felt that name more clearly describes the 

algorithm; however, artifacts of the original name still remain especially in the Packet 

Dropper application.  For example the Class which implements the deterministic 
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algorithm is still called the EvenDropper, and in order to invoke the deterministic 

algorithm one would use the option “–algorithm even” not “–algorithm 

deterministic.”
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Figure 8 Dropper Class Diagram
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The interval based dropping algorithms do their work with two methods.  The first 

method, loadDistArray(), loads a distribution array of interval length with either zero if 

the packet is to be kept and a one if the packet is to be dropped.  The second method, 

dropit(), keeps a running count of packets and returns the value in the distribution array 

of the packet count modulo the interval.  All of the interval class of dropping algorithms 

share the same code for the dropit() method; therefore it is implemented in the 

IntervalDropper class.  Also the setInterval() method is overridden to create the 

distArray.  Each of the different algorithms then only have to implement the 

loadDistArray() method.  Below is the pseudo code for the dropit() method shared by all 

of the IntervalDropper subclasses: 

Dropit( header ) { 
 If (count % interval == 0) { 
  loadDistArray(); 
 } 
 retval = distarry[count % interval]; 
 count++; 
 return retval; 
} 
 
The deterministic algorithm drops packets evenly through the stream at a given 

rate expressed as a percentage.  For example: If the drop rate is set at 1%, PacketDropper 

will drop every 100th packet.  If the drop rate is set at 2%, PacketDropper will drop every 

50th packet.  If the drop rate is set at 3%, PacketDropper will drop every 33rd packet.  

Below is the pseudo code to implement the loadDistArray() method for the deterministic 

algorithm:  

loadDistArray() { 
 Set all elements of the DistArray to zero; 
 Compute how many packet to drop, todrop, by 
multiplying the droprate times the interval; 
 If the todrop is greater than zero { 
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  Compute the dropstep by dividing the interval by 
todrop; 
  For (i = dropstep -1; I < interval; I += dropstep 
{ 
   Distarray[i] = 1; 
  } 
 } 
} 
 
To illustrate the effects of these different algorithms on network traffic, we have 

graphed the Mb/second and packets/second of about five minutes of network traffic from 

CDX 2009.  These five minutes were selected because the traffic was consistent enough 

for the peaks and valleys not to obscure the results.  Looking at Figure 9 (Mb/second) and 

Figure 10 (packets/second) we can see that the deterministic dropping algorithm produces 

a line almost identical to the original line a little lower on the graph which is exactly the 

behavior that we would expect.  This is very similar to what Schaelicke & Freeland 

observed (see Figure 4).  
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Figure 9 Effect of 25% Packet Loss on Mb/Second with the Deterministic Algorithm 

 

Figure 10 Effect of 25% Packet Loss on Packets/Second with the Deterministic Algorithm 
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The Bounded Random Algorithm   

The next phase of the PacketDropper application adds the ability to drop packets 

randomly over an interval.  This function is provided a user defined interval and it will 

drop random packets within this interval to meet the drop rate.  Below is the pseudo code 

for the bounded random loadDistArrary() method: 

loadDistArray() { 
 Set all elements of the DistArray to zero; 
 If the seed has not been set, set the seed 
 Compute how many packet to drop, todrop, by 
multiplying the droprate times the interval; 
 For (i = 0; i < todrop; i++ { 
  randnum = random(); 
  if (distarry[randnum % interval] == 0) { 
   distarry[randnum % interval] = 1; 
  } else { 
   i--; // collision try again 
  } 
 } 
} 
 
As we see in Figures 11 and 12 over the same section of network traffic we get 

graphs that look very similar to the graphs we saw using the deterministic algorithm.  

This should not surprise us since we are dropping the same number of packets per 

interval; we are simply dropping different packets.  Interestingly, increasing the interval 

does not seem to have a major effect.  We used an interval of 10,000 for Figures 11 and 

12. 

Originally this algorithm was called simply “random.”  Very late in this process 

the name was changed to “bounded random” because we felt that name more clearly 

describes the algorithm; however, artifacts of the original name still remain especially in 

the Packet Dropper application.  For example the Class which implements the bounded 

random algorithm is still called the RandomDropper, and in order to invoke the bounded 
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random algorithm one would use the option “–algorithm random” not                  

“--algorithm bounded random.” 

 

Figure 11 Effect of 25% Packet Loss on Mb/Second with the Bounded Random Algorithm 
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Figure 12 Effect of 25% Packet Loss on Packets/Second with a Bounded random Algorithm 

The Random Algorithm 

The random algorithm generates a random number for each packet read.  If the 

random number is below the drop rate we drop the packet, otherwise we keep the packet.  

Below is the pseudo code for the dropit() method. 

dropit() { 
 If seed is not set 
  Set the seed; 
 randnum = random(); 
 Return (droprate * 100 > randnum % 100); 
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Looking at Figures 13 and 14 we can see that the random algorithm does not look 

all that different from the deterministic or bounded random algorithm. 

Originally this algorithm was called simply “chance” to distinguish it from the 

algorithm originally called “random”.  Very late in this process the name was changed to 
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“random” because we felt that name more clearly describes the algorithm; however, 

artifacts of the original name still rename especially in the Packet Dropper application.  

For example the Class which implements the random algorithm is still called the 

ChanceDropper, and in order to invoke the bounded random algorithm one would use the 

option “–algorithm chance” not      “--algorithm random” as this would 

given one the bounded random algorithm instead. 

 

Figure 13 Effect of 25% Packet Loss on Mb/Second with the Random Algorithm 
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Figure 14 Effect of 25% Packet Loss upon Packets/Second with a Random Algorithm 
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if we are at the end of an interval { 
 compute the droprate using the funcDropRate() method; 
 set the droprate of the minor dropper using the 
setDropRate() method; 
} 

 
 retval = minorDropper->dropit( header ); 
 increment the count; 
 return retval; 

 

The sine function has a natural period of 0 to 2𝜋 in radians which the default unit 

for the sin() function in the C standard library.  In order to convert this natural period into 

the defined period we will divide our current position, x, by the period and multiply it by 

the end of the period for: 𝑦 = 𝐴 sin � 𝑋
𝑝𝑒𝑟𝑖𝑜𝑑

2𝜋�.  We want to compute the value of the 

center of next interval giving us:  𝑥 = 𝑐𝑜𝑢𝑛𝑡 + 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
2

.  Now the natural range of the 

sine function is from -1 to 1, but we need a range from 0 to 1 with a center at the drop 

rate.  If we set the amplitude of the sine wave to the drop rate then add the adjusted sin 

value to the drop rate we get a function that moves from 0 to 2 times the drop rate 

centered around the drop rate.  This is perfect for drop rates less than 50%.  For drop rates 

greater than 50% the upper bound is outside of our range.  To account for this if the drop 

rate is greater than 50% we use an amplitude of 1 minus the drop rate.  This amplitude 

adjustment is depicted in Figure 15 which plots the sine wave used to adjust the drop rate 

for drop rates of 25%, 50%, and 75%.  Notice that the amplitude of the wave is smaller 

the farther we get from 50% on both ends in order for the results of the function to remain 

within the range. 

Originally this algorithm was called simply “sine.”  Very late in this process the 

name was changed to “sinusoidal” because we felt that name more clearly describes the 

algorithm; however, artifacts of the original name still rename especially in the Packet 
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Dropper application.  For example the Class which implements the deterministic 

algorithm is still called the SineDropper, and in order to invoke the bounded random 

algorithm one would use the option “--algorithm sine” not      “--algorithm 

sinusoidal”. 

 

Figure 15 Amplitude Adjustment for the Sinusoidal Algorithm 
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Let 𝑧 = 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 + 𝑎𝑦; 
Return z; 
 
 
Looking at Figures 16 and 17 which plots the effect of 25% packet loss using the 

sinusoidal algorithm on Mb/second and packets/second, we can clearly see the wave. 

 

Figure 16 Effect of 25% Packet Loss on Mb/Second with a Sinusoidal Algorithm 
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Figure 17 Effect of 25% Packet Loss on Packets/Second with a Sinusoidal Algorithm 

A Sawtooth Algorithm 
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Like the sinusoidal algorithm we will adjust the amplitude to ensure that drop rate 

stays between zero and one hundred percent. 

The pseudo code to implement this algorithm is very similar to the code for the 

sinusoidal algorithm. 
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���; 
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Let 𝑧 = 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 + 𝑎𝑦; 
Return z; 
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Looking at Figures 18 and 19 plotting the effect of this algorithm at a drop rate of 

25% on Mb/second and packets/second, we can clearly see the sawtooth in the much 

sharper lines than we saw with the sinusoidal algorithm. 

 

Figure 18 Effect of 25% Packet Loss on Mb/Second with the Sawtooth Algorithm 
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Figure 19 Effect of 25% Packet Loss on Packets/Second with the Sawtooth Algorithm 

Pcapgraph 

For the next phase of the Packet Dropper, we need to be able to keep track of the 

current Mb/second and packets/second so that we can drop packets when we have 

reached a cap.  The Pcapgraph tool, which provides these measures for each second of 

the PCAP file, is a logical first step.  We know that there are other tools that will graph 

the flow of a PCAP file; however, this was deemed a reasonable exercise because the 

lessons learned will be incorporated into the capped dropping algorithm. 

The tricky part is the interior while loop.  This ensures that if there are empty 

spots in the traffic, and we do not see a packet for an interval, we will write an entry with 

zero packets and zero Mb covering that interval.  The pseudo code looks like this: 

While we can get the next packet { 
 If current is zero { 

Set current to packet time plus the interval; 
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Set packets and megabits to zero; 
 } 
 While (current < time of the packet) { 
  Write Date, Time, Packets, Megabits; 
  Increment current by the interval; 
  Set packets and megabits to zero; 
 } 
 Increment the packet count by one; 
 Add the current packet size to megabits; 
} 
 

Pcapstats 

Pcapgraph is a good first step; however, there are a few more issues that need to 

be solved before we are ready to write the capped dropper.  Pcapgraph computes the 

packets and Mb for a discreet interval, but what we really want are the packets and Mb 

for a rolling interval.  The natural units to control the capped dropper would be maximum 

number of packets per second or maximum number of bits per second; however, the other 

droppers are driven by the drop rate.  In order to compare the other droppers to the 

capped dropper we need to be able to set the packet or bit limit such that we meet the 

given drop rate.  Pcapstats is the program written to explore these problems, and it also 

provided useful information about PCAP files. 

We need to be able to compute the number of packets per second and Mb per 

second over an interval at the precise moment when we receive the packet.  The idea is to 

simulate a buffer that fills if the number packets/second or Mb/second exceeds the limit.  

We create a queue of PCAP packet headers.  When we read a new packet, we drain the 

queue of any packets older than the current packet minus the interval decrementing the 

number of packets and bits.  Then we add the new packet incrementing the packet count 

and adding the size of the current packet to the Mb. 
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A Capped Algorithm 

The capped algorithm will need to implement a first in first out (FIFO) data 

structure for PCAP headers.  When the algorithm is passed a new packet header, the 

FIFO will be drained of all packets that were received an interval before the current 

packet appropriately decrementing the packet count and the Mb.  When this operation is 

complete the packet count and Mb are compared against the caps and if they are above 

the caps the packet is dropped.  Below is the pseudo code for the dropit() method of the 

capped algorithm: 

Retval = false; 
If the packet limit is greater than zero then 
 retval = current packets/sec > packet limit; 
If retval == false && byteLimit > 0 then 
 Retval = current bytes/sec > byte limit; 
If Retval == False 

Add current packet to the queue; 
Return retval; 
 
For the drop rate to match the percentile we need to add all of the packets to the 

queue; however, this produces a graph with huge canyons wherever the packets or bytes 

per second is over the cap.  The effect that we are trying to model  would produce 

plateaus where the caps are reached.  In order to do this we must not enter packets that 

we drop into the queue.  If we do this, we can no longer use the percentile to compute the 

cap limit from the drop rate.  The way we compute the correct limit for a given drop rate 

is to run through the data using a binary selection algorithm repeatedly until the correct 

cap is discovered.  As we look at the graph in Figures 20 and 21, we can see the plateau 

in the traffic. 
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Figure 20 Effects of 25 % Packet Loss on Mb/Second with the Capped Algorithm  

 

Figure 21 Effects of 25% Packet Loss with a Capped Algorithm on Packets/Second 
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A Two State Channel Model 

The final theoretical algorithm is a based upon a Markov chain with two states 

used to generate bursts as described by Gilbert (Gilbert, 1960) and is illustrated in Figure 

22 where state G is a good state where no dropping take place and state B is a bad state 

where packet dropping takes place.  Let h represent the probability that a packet will be 

transmitted in state B.  The value P represents the probability that we will transition from 

the good state to the bad state.  The value p represents the probability that we will 

transition from the bad state to the good state.   

G B

P

p

qQ

 

Figure 22 Two State Channel Model 

Gilbert provides us with the following formula to calculate the error probability of 

the previous model letting d be the drop rate and P=P(Bad state|Good State) and Q = 

P(Good state|Bad state) ; h represents the probability that the a packet will transmitted in 

state B we have: 

: 

𝑑 =
(1 − ℎ)𝑃
𝑝 + 𝑃  
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Solving for P we get: 

𝑃 =
𝑑𝑝

1− ℎ − 𝑑 

Gilbert used the following values P = 0.03, p = 0.25, h = 0.5.  Since we want to 

vary the drop rate from 0% to 100% , those values will not work.  To allow for the full 

domain yet ensure that the value of P stays within the range for 0 to 1 we need to set h = 

0, and p = 0.05;  The value of P is undefined when d = 1; therefore, we will add code to 

test for this condition and return true.  Below is the pseudo code for this algorithm: 

if (droprate == 1) { 
 Return true; 
} 
 
if P equals zero { 

 𝑃 = (𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒∗𝑝)
(1−ℎ−𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒)

 

} 
 
switch (state) { 
case GOOD: 
 retval = false; 
 randnum = random number between 0 and 1; 
 if (P > randnum) { 
  state = BAD; 
 } 
 Break; 
case BAD: 
 randnum = random number between 0 and 1; 
 retval = (h > randnum); 
 randnum = random number between 0 and 1; 
 if (p > randnum) { 
  state = GOOD; 
 } 
 Break; 
} 
return retval; 
 
In Figures 23 and 24 we can see the Mb/second and packets/second graphed for 

the state algorithm at 25% packet loss.  Although the difference between the state and 
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deterministic algorithms is not as dramatic as the sinusoidal, sawtooth, or capped 

algorithms, it is quite different. 

 

Figure 23 Effect of 25% Packet Loss on Mb/Second with the State Algorithm 
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Figure 24 Effect of 25% Packet Loss on Packets/Second with the State Algorithm 

Summary 

In summary, we will review how well the packet dropper meets the requirements 

laid out above.  Using the Open Source libpcap library allows the packet dropper to be 

compatible with most packet capture and network intrusion detection systems.  The 

packet dropper has a robust interface that allows the user to configure it through a 

configuration file, the environment or the command line making it ideal for utilization in 

batch processing.  The object oriented design of the packet dropper allows new 

algorithms to be added to the system requiring very little code outside the algorithm 

itself.  The packet dropper currently supports seven algorithms which as we can see in 

Figures 25 and 26 provided a range of dropping options sufficient for us to determine if 

the manner in which packets are dropped has a direct bearing on the loss of intrusion 

alerts.  
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Figure 25 Effect of 25% Packet Loss on Mb/Second with Various Algorithms 

 

Figure 26 Effect of 25% Packet Loss on Packets/Second with Various Algorithms 
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Results 

Validity vs. PCAP Datafile Size 

Once the packet dropper’s deterministic algorithm was working, we applied it to 

an hour of data from the CDX 2009 (Cyber Defense eXercise of 2009) dataset.  Figure 27 

is a chart mapping alert vs. drop rate for that hour which contained only 33 alerts.  Notice 

the very irregular curve.  We will see that as we look at more traffic containing more 

alerts this curve becomes significantly more regular.  This implies that these results will 

not necessarily scale down well and should not be applied for small numbers of packets 

and small numbers of alerts. 

 

Figure 27 Impact of Deterministic Packet Loss on Alerts using the CDX 20090424.08 dataset 
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al., 2000).  As part of their evaluation they created a training dataset that contained both 

malicious traffic and background traffic.  Each session in the training data was labeled 

identifying whether it was part of an attack or not.  The training dataset contains seven 

weeks of labeled data in PCAP format.  The simulated network used to construct the 

1998 training dataset was composed of UNIX workstations.  Although this dataset is over 

twenty years old, it is still one of the best fabricated datasets available for research in 

intrusion detection (Brugger & Chow, 2007).  The content of network traffic has changed 

significantly since 1998 with the advent of Web 2.0 and very popular sites like Facebook 

launched in 2004, YouTube launched in 2005, and Internet Video streaming like the 

NetFlix “Watch Instantly” service launched in 2008.  One of the reasons that we find this 

data set so interesting for this research is we want to see if our findings about the impact 

of packet loss will still be valid several years after the research is completed, or will the 

experiments need to be repeated as the character of network traffic changes.  This dataset 

contains 40,667,322 packets and about 16 Gigabytes of data.  Snort detected 5,165 alerts 

for a distribution of about one alert for every 7,900 packets. 

The charts in Figures 28 and 29 were created by running snort 2.6.8 against the 

dataset using the various dropping algorithms and drop rates ranging from 0% to 100% in 

5% intervals.  The first chart graphs raw alerts versus PLR.  The second chart graphs 

ALR.  The hope is that the charts graphing ALR vs. PLR will be normalized and may be 

compared against different datasets. 

In Figures 27 and 28 notice how that for all of the dropping algorithms except the 

capped algorithm the PLR  to ALR curve is very linear and that there is very little 

difference between the impacts of these algorithms.  The conjecture is that this is because 
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although the deterministic, random, random, sinusoidal, sawtooth, and state algorithms 

all drop packets very differently, they still drop packets across the dataset without any 

respect to the data itself.  The capped algorithm whether capping by packet/second or by 

bits/second incorporates the volume of traffic into the equations, and it is believed that is 

the cause of the difference in their results.  It is important to note that the results of the 

deterministic, random, random, and to a lesser degree state algorithms appears very 

similar to the findings of Schaelicke and Freeland (compare Figure 4 to Figures 10, 12, 

14, and 24 ), but the capped algorithms best reflect our own findings (compare Figure 6 

to Figure 21). 

 

Figure 28 Impact of Packet Loss on the DARPA 1998 Training Data 
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Figure 29 Impact of Packet Loss on the DARPA 1998 Training Data 
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Figure 30 Impact of Packet Loss on the DARPA 1998 Test Data 

 

Figure 31 Impact of Packet Loss on ALR in the DARPA 1998 Test Data 
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DARPA 1999 Data Set 

Later Lincoln Labs release a dataset containing seven days of traffic from a 

simulated network with systems running Microsoft Windows operating systems (Haines, 

Lippman, & Cunningham, 2001).  This dataset contains 84,327,351 packets and about 18 

Gigabytes of data.  Snort detected 6,420 alerts for a distribution of about one alert for 

every 13,000 packets. 

Notice that the graphs in Figures 32 and 33 look almost identical to Figures 28 

and 29.  Therefore, it is reasonable to conclude that this shows that the results remain the 

same whether the traffic is dominated by UNIX traffic or Microsoft Windows traffic. 
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Figure 32 Impact of Packet Loss on Alerts in the DARPA 1999 Data 

 

Figure 33 Impact of Packet Loss on ALR in the DARPA 1999 Data 
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Cyber Defense Exercise 2009 

In 2009 The National Security Agency/Central Security Service (NSA/CSS) 

conducted an exercise pitting teams from the military academies of the U.S. and Canada 

against teams of professional network specialists to see who could best defend their 

network (West Point Takes the NSA Cyber Defense Trophy for the Third Straight Year, 

2009). 

In their paper, Sangster et al. describe their efforts to collect and label traffic from 

this competition.   We were able to obtain this data from 

https://www.itoc.usma.edu/research/dataset/ (Sangster, et al., 2009).  This dataset 

contains 47,511,801 packets and about 23 Gigabytes of data.  Snort detected 2,900 alerts 

for a distribution of about one alert for every 16,000 packets. 

Reviewing Figures 34 and 35, we see a slight bow developing in the relationship 

between packet loss and alert loss that we did not see in the data from over twenty years 

ago.  This slight curve may indicate that the changes in network activity in the twenty 

years from 1999 to 2009 have altered the relationship between packet loss to ALRs when 

packets are dropped consistently across the dataset (as observed by Shaelicke and 

Freeland and modeled by the deterministic, random, change, and state algorithms).  

However, this difference may also be attributable to the fact that the DARPA datasets are 

fabricated in an attempt to reflect the real world traffic they were observing at the time, 

and the CDX traffic was captured from a competition.  The deviation is very similar to 

what we saw in the DARPA 98 test data, and we believe that this variation is attributable 

to the fact that these datasets have a similar number of alerts.  
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Figure 34 Impact of Packet Loss on Alerts in the CDX 2009 Dataset 

 

Figure 35 Impact of Packet Loss on ALR in the CDX 2009 Dataset 
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Collegiate Cyber Defense Competition 2010 (CCDC 2010) 

Paul Asadoorian describes his experiences as a Red Team captain in the Mid-

Atlantic Regional Collegiate Cyber Defense Competition (CCDC) which pitted blue 

teams representing Universities and red teams composed of security experts (Asadoorian, 

2010).  We were able to obtain the packet capture data from CCDC 2010.  This dataset 

contains 264,973,151 packets and about 32 Gigabytes of data.  Snort detected 84,913 

alerts for a distribution of about one alert for every 3,120 packets. 

Looking at Figures 36 and 37 we see further development of the slight curve we 

first observed in the CDX dataset.  For the first time we see a vast divergence between 

the curve for the capped algorithm when it is capped by packets/second or capped by 

bits/second with each curving the on the opposite side of the mean.  Where the 

deterministic, random, and random algorithms which best reflect Schaelicke and Freeland 

observations are plotted almost right on top of each other, we see a divergence of the 

state, sinusoidal, and saw tooth algorithms that we have not seen in the past.  
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Figure 36 Impact of Packet Loss on Alerts in the CCDC 2010 Dataset 

 

Figure 37 Impact of Packet Loss on ALR in the CCDC Dataset 
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 Summary 

We specifically normalized the detection loss by plotting loss rate so that we 

could compare the results of different datasets.  In Figure 38 we have plotted the loss 

rates of all the datasets and all of the algorithms that we have used in an effort see if there 

is a consistent pattern we can infer from the data.  We see significant deviation; however, 

the preponderance of the data falls between 𝐴𝐿𝑅 = 𝑃𝐿𝑅2 as a lower bound, and 𝐴𝐿𝑅 =

 √𝑃𝐿𝑅  as an upper bound.  Since we are able to set bounds upon the vast majority of the 

data, it seems reasonable to conclude that a general formula does exist and with further 

research we will be able to identify it. 

 

Figure 38 ALR vs. PLR for all Datasets and Algorithms 
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Discussion 

We started by asking several research questions.  We will focus our discussion by 

reviewing each of these questions and relating the answers we have presented. 

We asked if there is sufficient regularity in packet loss to allow an algorithm to be 

developed to model it.  Our experiments show packet loss that is very similar to what we 

saw in the capped algorithms (see Figures 6, 20, and 21).  The deterministic, random, and 

random algorithms produce packet loss which is very similar to that observed by 

Shaelicke and Freeland.  Future research should be explored to determine which models 

are more indicative of what is seen in the real world; however, it is reasonable to believe 

that we have enough data to conclude that it may be modeled. 

We asked if the impact of packet loss on NIDS performance is sufficiently regular 

to allow a formula to be developed which will accurately predict the effects.  In Figure 38 

we see that the vast majority of data points generated by evaluating NID performance 

may be bounded by the equations 𝐴𝐿𝑅 = 𝑃𝐿𝑅2 as a lower bound and 𝐴𝐿𝑅 =  √𝑃𝐿𝑅 as 

an upper bound.  Since we have found formulas that provide reasonable upper and lower 

bounds for the impact of packet loss on ALR allowing us to predict this impact with some 

level of confidence, it is reasonable to believe that formula exists and that with further 

research we can close the gap and provided an deterministic greater level of confidence. 

We asked if the same rate of packet loss would induce the same loss of sensor 

alerts regardless of the strategy used to induce the packet loss.  Figures 25 and 26 show 

that our selection of dropping algorithms do a very good job of covering the space; so 

that if the way packets are dropped impacts the results of the NIDS we will see it.  For 

most of the algorithms the differences between the algorithms was about the same or less 
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than the differences between datasets.  The capped algorithms are the exception.  Most of 

the algorithms show a linear relations or perhaps a slight curve; however, the capped 

algorithms all show a clear curve.  Therefore, we must conclude that the algorithm used 

to drop the packets does impact the results. 

We asked if the results are independent of the composition of the network traffic.  

We looked a diverse set of datasets from 1998, 1999, 2009, and 2010.  About half of this 

data was fabricated and the other half was captured from Cyber Defense Competitions.  It 

would be valuable to run our tests against data captured from a live network, but as 

Figure 27 illustrates we would need a significant amount of data with a significant 

number of alerts for our results to be meaningful.  The datasets are not only different is 

age, but also in type.  The older data are fabricated and the newer data are collected from 

actual competitions.  Although more research is warranted to determine whether the 

difference in the data is more attributable to age or to type, we cannot say the results are 

similar enough that conclusions based upon the older data sets would be valid for the 

newer data sets. 

Although much work has been done to reduce packet loss, very little work has 

been done to characterize or model packet loss and its impact upon NIDS performance 

and actual intrusion detection.  In this research we discovered that a capped algorithm 

models the packet loss that we are seeing in our experiments.  We find that the formula 

𝐴𝐿𝑅 = 𝑃𝐿𝑅2 provided a reasonable lower bound for the impact of PLR on ALR.  We 

discovered that the deterministic, bounded random, and random algorithms best model 

the observations of Shaelicke and Freeland.  We find that the formula 𝐴𝐿𝑅 = 𝑃𝐿𝑅 

provides a reasonable lower bound for the impact of PLR on ALR. 
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With future research we will be able to continue to experimentally study how 

packets are dropped in a laboratory environment and compare that to our theoretical 

experiments.  We may also examine data captured from live networks for evidence of 

packet loss to characterize how this happens in practice.  This additional data will allow 

us to improve the Packet Dropper application.  Also it will allow us to prune unrealistic 

algorithms from the study.  Once unrealistic and duplicate algorithms are pruned, we will 

be able to apply rigorous regression techniques to provide more accurate predictive 

formulas with confidence intervals. 
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