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Abstract. Objective. Most arrhythmias due to cardiovascular diseases alter the
heart’s electrical activity, resulting in morphological alterations in electrocardiogram
(ECG) recordings. ECG acquisition is a low-cost, non-invasive process and is
commonly used for continuous monitoring as a diagnostic tool for cardiac abnormality
identification. Our objective is to diagnose twenty-nine cardiac abnormalities and
sinus rhythm using varied lead ECG signals. Approach. This work proposes a deep
residual inception network with channel attention mechanism (RINCA) for twenty-
nine cardiac arrhythmia classification (CAC) along with normal ECG from multi-label
ECG signal with different lead combinations. The RINCA architecture employing the
Inception-based convolutional neural network backbone uses residual skip connections
with the channel attention mechanism. The Inception model facilitates efficient
computation and prevents overfitting while exploring deeper networks through
dimensionality reduction and stacked 1-dimensional convolutions. The residual
skip connections alleviate the vanishing gradient problem. The attention modules
selectively leverage the temporally significant segments in a sequence and predominant
channels for multi-lead ECG signals, contributing to the decision-making. Main
results. Exhaustive experimental evaluation on the large-scale ’PhysioNet/Computing
in Cardiology Challenge (2021)’ dataset demonstrates RINCA ’s efficacy. On the
hidden test data set, RINCA achieves the challenge metric score of 0.55, 0.51, 0.53,
0.51, and 0.53 (ranked 2nd, 5th, 4th, 5th and 4th) for the twelve-lead, six-lead, four-lead,
three-lead, and two-lead combination cases, respectively. Significance. The proposed
RINCA model is more robust against varied sampling frequency, recording time,
and data with heterogeneous demographics than the existing art. The explainability
analysis shows RINCA ’s potential in clinical interpretations.
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1. Introduction

1.1. Background

Burgeoning cardiovascular diseases (CVDs) have become one of the world’s most critical
public healthcare issues, taking an estimated 17.9 million lives each year (WHO 2020).
Strokes and heart attacks account for more than four out of every five CVD fatalities,
with one-third of these deaths occurring under 70 years of age (Virani et al. 2021).
CVDs comprise heart and blood vessel-related abnormalities in the coronary artery
and cerebrovascular, cardiomyopathy, rheumatic heart disease, etc. Most cardiac
arrhythmias due to CVDs alter the heart’s electrical activity and may be detected
by an electrocardiogram (ECG) (Berkaya et al. 2018). In general, the 12-lead ECG
signal acquisition is employed for early-stage multiple cardiac abnormality detection
(Roth, Johnson, et al. 2018). However, manual ECG interpretation is time-consuming,
tedious, and requires trained cardiologists to investigate and distinguish abnormal
inter-beat and intra-beat patterns meticulously. Moreover, manual ECG waveform
analysis is vulnerable to inter-observer and intra-observer variabilities. As such, reliable
CVD diagnosis methods for automated ECG pattern classification are essential to
aid cardiologists with timely interventions for prompt therapies and improve clinical
outcomes (Roth, Mensah, et al. 2020).

Conventional CVD identification approaches employ feature-based machine
learning (ML) techniques to extract disease-specific handcrafted features from the ECG
signals. These include empirical mode decomposition (Abdelazez, Rajan, and Chan
2020), S-transform, wavelet transform, and Hermite interpolation (Ince, Kiranyaz, and
Gabbouj 2009, Ye, Kumar, and Coimbra 2012), with ML classifiers-based hybrid expert
systems with genetic algorithms (Moavenian and Khorrami 2010), neural networks
(NN) (Hammad et al. 2020), support vector machines, K-nearest neighbor algorithm,
decision trees (Qin et al. 2021), and random forests (Manibardo et al. 2019). However,
these shallow ECG descriptors poorly comprehend the ECG signal’s intricate properties
pertinent to different CVDs with many non-linear components.Moreover, these ML
models often fail to decipher the wide inter- and narrow intra-record variability in ECG
records with high precision and pose challenges for end-to-end CVD detection. Further,
ECG feature engineering requires time and domain expertise to check the feasibility
of designing disease-specific morphological attributes from the ECG waveforms, which
limits its practical application (Hong et al. 2020).

Recently deep learning (DL) methods have shown efficacy in achieving promising
results and democratized the CVD recognition task with improved performance through
supervised or unsupervised learning (Hannun et al. 2019, A. H. Ribeiro et al. 2020,
Strodthoff et al. 2020). DL architectures strongly encapsulate the underlying non-
linear and complex relationships in ECG signals with significantly improved performance
(Mousavi and Afghah 2019, Hong et al. 2020). DL models envisage automated ECG
feature representations for highly efficient CVD recognition in an end-to-end manner and
significantly lessen the data processing complexity (Natarajan et al. 2020, Kirodiwal et
al. 2020, Bos et al. 2021). A broad comparative evaluation with the prior work spanning
ML and DL methods for CVD diagnosis is summarized in this work.
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1.2. Research Motivation and Problem Statement

Most of the above-mentioned handcrafted feature-based ML and DL methods focus on
single-label diagnosis, not multi-label cardiac arrhythmia classification (CAC) (Smith
et al. 2019, Kirodiwal et al. 2020, Z. Xiong, Stiles, and J. Zhao 2017). The ECG data for
method validation generally comes from Holter monitor or cardiac event monitor-based
acquisition and has a duration spanning between a few seconds to a few hours from the
same demographic region (Hannun et al. 2019, Clifford et al. 2017, Luz et al. 2016).
Further, there are few publicly available databases aimed at multi-label CAC (Clifford
et al. 2017, Luz et al. 2016). The MIT-BIH Malignant Ventricular Ectopy and MIT-
BIH atrial fibrillation database have two-channel ECG recordings of 22 and 25 subjects,
respectively, and it contains three CVD classes (Moody 1983, Greenwald 1986). The
Creighton University (CU) ventricular tachyarrhythmia database contains three CVD
classes with one channel recording of 35 subjects (Nolle et al. 1986). The prior art
abounds in ML and DL algorithms validated on these publicly available databases for
CAC, comprised of training data ranging from 20 to 50,000 collected from a very few
subjects and thus limits its generalization potency (Oh et al. 2018).

The present study focuses on normal sinus rhythm and twenty-nine multi-label
CAC from varied ECG lead combinations. The proposed framework is experimentally
evaluated on the PhysioNet/Computing in Cardiology Challenge (2021) database having
more than 1,11,000 ECG records with diverse demographics (Alday et al. 2020, Reyna
et al. 2021). A detailed description of the studied cardiac abnormalities and their
class-wise subject count is described in https://github.com/physionetchallenges/

evaluation-2021/blob/main/dx_mapping_scored.csv. The training data comprises
twelve-lead ECGs. The validation and test data encompass twelve-lead, six-lead, four-
lead, three-lead, and two-lead ECGs, with various lead combinations enumerated below:

• 12-lead: I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6

• 6-lead: I, II, III, aVR, aVL, aVF

• 4-lead: I, II, III, V2

• 3-lead: I, II, V2

• 2-lead: I, II

1.3. Main Contribution

The present work is in response to the invitation to submit an extended article
to the Physiological Measurement Focus Issue (refer https://iopscience.iop.org/

journal/0967-3334/page/Classification_Multilead_ECGs). A shorter version of
this article was presented at the IEEE 2021 Computing in Cardiology (CinC) Conference
for the PhysioNet/Computing in Cardiology Challenge (2021) (Srivastava et al. 2021).
Our team participated in PhysioNet/Computing in Cardiology Challenge (2021) under
the name ”cardiochallenger”. In this treatise, technical intricacies of the proposed deep
residual inception network with channel attention mechanism (RINCA) framework, its
different variants, hyperparameters tuning, exhaustive experimental validation results,
and explainability of RINCA’s underlying predictions for clinical interpretations are
expounded in detail. The RINCA architecture is inspired from the recently proposed
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squeeze and excitation (SE) network (Hu, Shen, and G. Sun 2018, Zhu, H. Wang, et al.
2020). The design and evaluation of our RINCA framework on a large-scale database
of more than 1,11,000 records for twenty-nine multi-label CAC provide the following
contributions:

• To the best of authors’ knowledge, RINCA framework is the first to employ an
Inception architecture with residual skip connections and attention modules for
multi-label CAC from varied length ECG signals, with RINCA outperforming the
prior art (refer https://physionetchallenges.org/2021/leaderboard/).

• The Inception backbone and the residual skip connections in the RINCA
architecture improve the multi-label CAC performance for twenty-nine classes
without increasing the model’s complexity, as evident by 6.85% less trainable
parameters than the SE network (Hu, Shen, and G. Sun 2018).

• RINCA’s multi-head channel attention mechanism leverage significant temporal
segments among the important leads, imparting robustness against variable
sampling frequency, recording duration, and varied lead combinations, an essential
aspect for clinical deployment in resource-constrained challenging environments.

Ongoing, Section 2 outlined the data pre-processing and the technical intricacies of the
RINCA architecture (refer to Figure 1, 2, 3). Experimental results are discussed in
Section 3 and Section 4 concludes the paper.

Figure 1: Pipeline showing the proposed RINCA framework and component modules.

2. Methodology

2.1. Pipeline for multi-label CAC from Pre-processed ECG

Most of the prior DL-based CAC research followed a similar workflow (Figure 1):
Initial ECG pre-processing, ECG segmentation into equal-length segments, and then fed
into DL frameworks. The ECG records from the PhysioNet/Computing in Cardiology
Challenge (2021) (Reyna et al. 2021) database have variable sampling frequency and
varying signal duration ranging between 6 seconds to 30 minutes. In the pre-processing
stage, all the ECG records are down-sampled to 125 Hz (Ellis et al. 2015) by selecting
every fourth ECG sample. All the model layers are modified to accept variable-length
input and propagate the corresponding masks. ECG records longer than two minutes
are condensed to two minutes (Only 74 records are affected, i.e., < 0.01 % of the total
samples). The pre-processed ECG segments are fed as input to the RINCA model
with the multi-label output array having an entry value equal to one when a particular
abnormality is present, else set to zero.
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2.2. Proposed RINCA Architecture

RINCA’s backbone architecture consists of the SE-based Inception blocks (Hu,
Shen, and G. Sun 2018) and residual skip connections. Multi-head attention
and channel attention modules are fused to focus more on the salient temporal
segments and channel-wise spatial feature representations. Source code with detailed
technical specifications will be released (https://github.com/apoorvasrivastava23/
ECG_RINCA). A modular level schematic of RINCA and its variants is shown in Figure
2 & 3, and brief functionalities of the different modules is explained below.

2.2.1. Inception Modules and Residual Connections: The fully connected
layers in the convolutional neural network (CNN) are replaced with sparsely connected
Inception network (Szegedy et al. 2015), which reduces the computational complexity
while exploring a deeper multi-scale spatial feature representation. The introduction of
residual skip connections alleviates the vanishing gradient problem, results in fewer extra
parameters with increasing network depth, and accelerates training convergence (He et
al. 2016). Mathematically, the residual block’s (Resblock) output can be depicted as y
= R (hj) +D(xj), where R(.) is the residual mapping learned during the the embedding
phase. The convolutional operation is depicted as D(.). Figure 2(b) demonstrate the
Resblock’s connection in the RINCA architecture, which is followed by max-pooling
layer for feature map condensation (Scherer, Müller, and Behnke 2010).

Figure 2: RINCA framework and its architectural variants. The grey output block of
the model is one-hot encoded cardiac arrhythmias with the normal class. The Figure
exemplify: (a) proposed RINCA model; (b) Residual block; (c) Inception block.

2.2.2. Attention Mechanism in RINCA: Attention in a DL framework boosts the
important input channels and salient segments in input for improved model performance
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and aids in prediction explainability. In the proposed RINCA model, two kinds of
attention mechanisms are explored: channel attention and attention pooling.

2.2.3. X-block (Channel Attention): The CNN filters extract the feature maps,
whose feature vector length is the number of neuronal units of the last residual block
(Albawi, Mohammed, and Al-Zawi 2017). The spatial information in each input channel
is extracted from the local receptive fields of the CNN layers. As depicted in Figure 3,
the input to the X-block is of dimension X ∈ RT×C , where T are the extracted spatial
features and C is number of input channels from which N features are extracted in the
feature extraction block. The various channel attention strategies (X-block) proposed
for abstracting the relative importance of the input channels are explained below.

2.2.4. Squeeze and Excitation Network (SE-Net): The existing CNN
architectures consider all the input channels of the same importance while computing
the output feature maps. However, recent studies (Ilse, Tomczak, and Welling 2018, Tao
et al. 2018, Nejedly et al. 2021) have highlighted the significance of channel attention
in making the final prediction. The SE-Net architecture pioneered the incorporation
of spatial channel-wise information within the local receptive fields at each layer (Hu,
Shen, and G. Sun 2018). This work employs the SE-Net’s adaptive channel weighting
strategy for multi-label CAC. Here, global average pooling is explored for a channel’s
importance comprehension (refer Figure 3 (a)).

Figure 3: Technical intricacies of the X-block in the RINCA architecture for different
variants. The overall X-block module is shown in the left. The variants of feature
extraction modules are illustrated in (a) SE network; (b) Statistical feature-based
RINCA architecture; (c) Deep feature-based RINCA architecture.

2.2.5. Statistical feature based RINCA (s-RINCA): The design of s-RINCA
is inspired from SE-Net (Hu, Shen, and G. Sun 2018). s-RINCA uses multiple channel
features like mean, maximum, root mean square (R.M.S.), and standard deviation (S.D.)
instead of a single channel-wise feature for channel attention (refer Figure 3 (b)).
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2.2.6. Deep feature-based RINCA (d-RINCA): In d-RINCA deep features are
explored to comprehend the interdependence among the different ECG channels and use
the SE-Net as the backbone architecture. Here, the deep features are extracted from the
output of the Resblock’s after passing it through a one-dimension CNN block followed
by ReLu activation (refer Figure 3 (c)).

2.2.7. Attention Pooling layer: The attention pooling is based on adaptive multi-
instance pooling methodology (Ilse, Tomczak, and Welling 2018). Attention pooling
helps to concentrate on informative and important relative features exacted from ECG
segments. Likewise, multi-head attention mechanism incorporates an ensemble of multi-
label class-specific feature importance depending on the number of output classes (Tao
et al. 2018). The output of the multi-head attention block in RINCA is fed into the
Softmax activation function. For V = {v1, v2, · · · , vK} being a bag of K feature vectors,
the attention pooling operation is defined as: p =

∑K
k=1 akvk, p ∈ RN×L is feature

vector corresponding to N disease classes with L features. The attention weights (ak)

are given by ak =
exp{WT tanh(UvTk )}∑K
j=1 exp{WT tanh(UvTj )} , where, U and W are trainable. In the multi-

head attention module, thirty attention units correspond to each one of the twenty-
nine cardiac abnormalities and normal sinus rhythm under study (refer Figure 4). The
number of attention units is motivated by the number of desired classes.

Figure 4: Technical intricacies of the attention pooling module
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2.3. Threshold Optimisation

The output of the attention pooling layer goes into the prediction layer. The sigmoid
activation in the prediction layer will generate the probabilities of occurrence of twenty-
nine cardiac abnormalities and sinus rhythm. Converting these probabilities in binary
format by applying a threshold to these prediction values to evaluate the challenge
metric (CM) score is required. A value of one is assigned to the element of the multi-
label output array corresponding to a particular cardiac abnormality class is present
else, it is set to zero. Optimal thresholds values are calculated by maximizing the CM
score on the validation dataset by using a genetic algorithm (Whitley 1994).

3. Experiment Results and Discussion

3.1. Experimental setup and Challenge Evaluation Metric

Although the dataset for the method validation comprises 133 cardiac arrhythmias, only
twenty-nine cardiac abnormalities and the normal sinus rhythm are classified in the
challenge. The Systematized Nomenclature of Medicine - Clinical Terms (SNOMED
CT) codes of the CAC classes are used as ECG record labels (Alday et al. 2020).
For the model the loss function, loss(x, y) = α · BCE(x, y) − Snormalised is optimized
during the training phase. Here BCE is the binary cross-entropy, Snormalized is the
normalized CM score, α is the scaling factor, x and y are the true and predicted arrays,
respectively. If the divergence between the ground truth and predicted label is less than
0.3, the BCE loss is scaled by a factor of 0.1, else scaled by a factor of 1, and Snormalised

is evaluated as: Snormalised = Sobserved−Sinactive

Strue−Sinactive
. Here, S(x,y) = XT × ( y

norm
) · Wreward,

norm = max(x + y − xy, 1), Wreward is the reward matrix (Alday et al. 2020). The
reward matrix is designed to give partial credit for wrong predictions and full credit for
correct prediction, considering the symptoms and medication of the diseases.

In addition to standard performance evaluation metrics (refer Table 4), the official
scoring methodology (refer Table 3) given by the PhysioNet/CinC Challenge 2021
(Alday et al. 2020) has been used for the proposed method’s assessment. The challenge
metric conforms with real-world clinical practice (Reyna et al. 2021). Some misdiagnoses
are less detrimental than others, and partial credit is given to the misdiagnoses that
result in comparable results as the ground truth. Further, the CM score encapsulates
the clinical fact that certain misdiagnoses are more dangerous than others and should
be graded appropriately (Zhu, Lan, et al. 2021). Comprehensive technical details can
be found in https://github.com/physionetchallenges/evaluation-2021.

3.2. Training Details

TheRINCA framework and its variants are trained using the Adam optimizer (Kingma
and Ba 2014) with a learning rate of 0.001 for 100 epochs and a batch size of 32. The d-
RINCA architecture has ”715,512 (≈ 0.7 million)” trainable parameters and the model
hyper-parameters are initialized using the Xaviar uniform initializer (Glorot and Bengio
2010). Early stopping is used to evade model overfitting. The model is implemented
in Python using Tensorflow and Keras libraries in Ubuntu 20.04 LTS x64 OS with the
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system hardware consisting of 1xTesla K80, compute 3.7, having 2496 CUDA cores
GPU, 12GB GDDR5 VRAM, and single-core hyperthreaded Xeon Processors @2.3Ghz
CPU.

3.3. Dataset Description

We used annotated ECG data collected from 7 sources as provided by the organizers
of the PhysioNet challenge, which spans four countries across three continents. There
are more than 1,11,000 recordings of 12-lead ECG signals. Out of those recordings, the
organizers offered 88,000 for training, 6,630 for validation, and more than 36,000 for
testing purposes. Table 2 summarize the databases. The six-lead, four-lead, three-lead,
and two-lead versions of the recordings are created from the twelve-lead recordings. A
total of twenty-nine cardiac arrhythmia are studied listed in Table 1

3.4. Comparative Analysis of the RINCA Framework and its Variants

The averaged 3-fold cross validated CM scores on the in-house validation dataset for
a variable number of ECG leads are tabulated in Table 3. The in-house training
and validation comprise the publicly available ECG records from the PhysioNet/CinC
challenge (https://physionetchallenges.org/). The in-house non-overlapping train
and validation split for each fold is 70% and 30%.

Table 3 tabulate the CM scores on the hidden 6,630 and 16,630 ECG recordings for
validation and test, respectively. The model’s performance for varying lead combinations
remains similar to the 12-lead case. There are 0.04% and 0.02% variances in the CM
scores on the hidden validation and test datasets over the various lead sets. The model
reduces the necessity of all the 12-lead ECG signal acquisition as per the performance.

For s-RINCA statistical features like minimum, skewness, kurtosis, crest factor,
etc., are explored, but they did not improve the CAC results. The efficacy of d-RINCA
compared to s-RINCA, and the SE-Net models may be attributed to the competency
of non-linearity abstraction by the CNN layers. In SE-Net, the global average pooling
outputs the single feature per channel, indicating averaged magnitude of signal. Instead
of outputting single feature, s-RINCA computed four different statistical features for
each channel. d-RINCA further extrapolates the idea of extracting multiple features.
With CNN layer in d-RINCA 36 deep non-linear features per channel is extracted.
The number of trainable parameters in s-RINCA and d-RINCA models are less than
the SE-Net architecture.

3.5. Detailed Performance Evaluation Scores Across Different Datasets

Different evaluation metrics such as the area under piecewise linear function with
sensitivity and specificity (AUROC), the area under piecewise linear function with recall
and precision (AUPRC), CM score, etc., are used for d-RINCA’s efficacy evaluation in
multi-label CAC performance. Table 4 highlights the different performance metrics for
the hidden validation and test datasets with the d-RINCA model taking 2497 minutes
for training. Here, 78% and 50% of CPSC and G12EC datasets, respectively, are taken
for the d-RINCA’s training, and correspondingly, 11% and 25% of CPSC and G12EC
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Table 1: Disease annotated in the ECG signals along with its abbreviation

Abbreviation Disease Name

IAVB 1st Degree of AV Block

AF Atrial fibrillation

AFL Atrial flutter

BBB Bundle branch block

Brady Bradycardia

CLBBB Complete left bundle branch block

CRBBB Complete right bundle branch block

IRBBB Incomplete right bundle branch block

LAnFB Left anterior fascicular block

LAD Left axis deviation

LBBB Left bundle branch block

LQRSV Low QRS voltage

NSIVCB Nonspecific intraventricular conduction disorder

PR Pacing rhythm

PRWP Poor R wave progression

PAC Premature atrial contraction

PVC Premature ventricular contraction

LPR Prolonged PR interval

LQT Prolonged QT interval

QAb Q wave abnormal

RAD Right axis deviation

RBBB Right bundle branch block

SA Sinus arrhythmia

SB Sinus bradycardia

ST Sinus tachycardia

SVPB Supraventricular premature beats

TAb T wave abnormal

TInv T wave inversion

VPB Ventricular premature beats

Table 2: Dataset Description (Reyna et al. 2021).

Name Origin Number of Samples Duration Sampling frequency

CPSC and CPSC-Extra China 13256 6-144 seconds 500 Hz

INCART St Petersburg, Russia 74 30 minutes 257 Hz

PTB and PTB-XL Germany 22353 10-120 seconds 500 or 1000 Hz

G12EC Georgia 20672 5-10 seconds 500 Hz

Augmented Undisclosed USA 10000 - -

Chapman-Shaoxing and Ningbo Shaoxing, Ningbo 45152 10 seconds 500 Hz

UMich Michigan 19642 10 seconds 250 or 500 Hz
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Table 3: Overall performance of RINCA model variants and d-RINCA’s ranking.

Lead Training set d-RINCA’s CM score set

SE-Net s-RINCA d-RINCA Validation Set Test Set Rank

12-Lead 0.71 0.77 0.81 0.64 0.55 2nd

6-Lead 0.69 0.74 0.79 0.64 0.51 5th

4-Lead 0.69 0.75 0.77 0.64 0.53 4th

3-Lead 0.67 0.70 0.76 0.63 0.51 5th

2-Lead 0.66 0.68 0.74 0.63 0.53 4th

BOLD signifies in-house better performance.

datasets, respectively, are taken for both model validation and testing on the hidden
dataset.

For the hidden validation dataset, the CM score on the CPSC and the G12EC
dataset is higher than the hidden UMich and undisclosed test dataset (Table 4). On
the hidden test dataset, the d-RINCA performance was superior with 12-lead ECG
signals as compared to other lead combinations. The CM score degrades by 4.0% from
using 12-lead, as we lower the number of leads. It may be due to the loss of clinically
relevant information with the left-out ECG leads. There is an 8.87% increment and
a 3.58% decrement in CM score for the CPSC and the G12EC test data, respectively,
compared to the hidden validation data, which may be attributed to more CAC classes
in the G12EC database. The CM score on the UMich and the undisclosed test data is
reduced due to fewer subjects from North America in the training dataset.

3.6. Comparison with Other Challenge Approaches

Table 5 tabulate the prevalent other challenges approaches for CAC using ML and
DL-based techniques and compares them with respect to the CM scores in the hidden
validation and test datasets. From Table 5, the potency of DL models are apparent for
CAC from ECG signals (Al-Nashash 2000,Y. Wang et al. 2001, Huang et al. 2019, J.-S.
Wang et al. 2013, Jadhav, Nalbalwar, and Ghatol 2010). The top-scoring methods in
Table 5 particularly uses different variants of deep neural network (DNN) architectures.

Proposed d-RINCA’s performance in the PhysioNet/CinC Challenge 2021 placed
our team in the top five and outperformed the other challenge techniques (refer Table
5). Table 5 highlights a wide difference between the CM scores on the confidential
validation data and hidden test data for a majority of the top-scoring teams in the
PhysioNet/CinC Challenge 2021. For some of these methods, the CM score dropped by
more than 25% on the confidential test data, which shows the issue of overfitting in the
top-scoring methods (refer to Table 5). In contrast, proposed d-RINCA showed only a
14% drop in the CM score from the confidential validation data to the confidential test
data, which demonstrates better generalization capability of d-RINCA.
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Table 4: Detailed performance evaluation of d-RINCA across different datasets.

Dataset Metric Number of Leads

12 6 4 3 2

Training set Training Run Time (minutes) 2497 2497 2497 2497 2497

Validation AUROC 0.924 0.909 0.916 0.902 0.896

AUPRC 0.474 0.477 0.469 0.454 0.452

Accuracy 0.321 0.357 0.32 0.308 0.31

F-measure 0.412 0.421 0.41 0.399 0.394

Challenge Metric 0.642 0.641 0.638 0.626 0.625

Test Run Time (minutes) 6 7 6 7 6

CPSC Test AUROC 0.95 0.96 0.956 0.946 0.953

AUPRC 0.805 0.84 0.829 0.796 0.825

Accuracy 0.405 0.526 0.453 0.388 0.411

F-measure 0.177 0.192 0.18 0.172 0.179

Challenge Metric 0.699 0.784 0.738 0.675 0.706

Test Run Time (minutes) 3 3 3 3 3

G12EC Test AUROC 0.906 0.881 0.898 0.894 0.884

AUPRC 0.48 0.474 0.468 0.472 0.455

Accuracy 0.268 0.292 0.271 0.27 0.266

F-measure 0.412 0.407 0.401 0.395 0.39

Challenge Metric 0.619 0.61 0.614 0.613 0.603

Test Run Time (minutes) 3 3 3 3 3

Undisclosed Test AUROC 0.866 0.85 0.884 0.876 0.852

AUPRC 0.472 0.464 0.487 0.492 0.476

Accuracy 0.253 0.196 0.268 0.196 0.199

F-measure 0.309 0.275 0.298 0.305 0.287

Challenge Metric 0.434 0.407 0.4 0.358 0.433

Test Run Time (minutes) 6 6 6 6 6

UMich Test AUROC 0.909 0.892 0.9 0.9 0.891

AUPRC 0.485 0.48 0.485 0.48 0.466

Accuracy 0.297 0.306 0.309 0.303 0.309

F-measure 0.418 0.402 0.411 0.403 0.396

Challenge Metric 0.568 0.513 0.554 0.548 0.551

Test Run Time (minutes) 12 12 12 12 13

3.7. Attention Weight Visualization for Clinical Interpretation

The explainability of d-RINCA’s predictions with physiological interpretations is
visually depicted in Figure 5. Experimental validation of d-RINCA shows state-of-
the-art superior performance. However, the clinical acceptance of d-RINCA requires
explainable artificial intelligence (XAI) to analyze d-RINCA’s transparency and the
social right to explain d-RINCA’s inferences (Došilović, Brčić, and Hlupić 2018).
Here attention weight visualization is encompassed for a better understanding of d-
RINCA’s interpretations. A higher attention weight is associated with an ECG segment
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Table 5: Other challenge approach comparison on multi-label CAC from 12-lead ECG
signals.

Reference Method Validation score Test score

Cai et al. 2021 Deep residual convolutional neural networks 0.56 0.52

Bugata et al. 2021. 1D variant of the ResNet50 network 0.70 0.52

Vazquez et al. 2021 CNN and hand-crafted features 0.57 0.52

Ren, M. Xiong, and Hooi 2021 Deep Residual Network 0.64 0.51

Li et al. 2021 SE-ResNet, and ensemble models 0.67 0.49

Seki et al. 2021 DNN with DivideMix and stochastic weight averaging 0.62 0.49

This Work d-RINCA 0.64 0.55

ResNet = Residual Neural Network.

being more salient and informative towards making the final prediction (Adadi and
Berrada 2018). The multi-head attention module generates an ensemble of twenty-nine
weights from one ECG recording. These twenty-nine weight vector entries represent the
probabilities of a particular distinct cardiac arrhythmia being present. Figure 5 shows
the efficacy of attention modules in improved multi-label CAC performance with clinical
saliency corresponding to three commonly occurring cardiac arrhythmias, namely Atrial
Fibrillation (AF), Premature Atrial Contraction/ Supraventricular Premature Beats
(PAC/SVPB), and Premature Ventricular Contractions/ Ventricular Premature Beats
(PVC/VPB). Due to similar symptoms of cardiac arrhythmia, PAC and SVPB, PVC,
and VPB are considered the same class. In Figure 5 shows the ECG signals with clinical
demarcated abnormal regions (green), and highlights the attention weights (red; salient
ECG segments which the DL model gives more weightage for a making a prediction).
The attention weights are higher in the abnormal ECG segments, and they can be used
to highlight abnormal ECG patterns, as seen in Figure 5.

4. Conclusion

The present work proposes a DL framework based on a residual-Inception architecture
with channel attention blocks for automated multi-label CAC from different ECG lead
combinations with varying durations. Compared to the prevalent art, the proposed
RINCA model is more robust against variable sampling frequency, recording duration,
and data having diverse demographics. Out of all the RINCA variants, the deep
feature-based RINCA performs superior to the statistical-based RINCA and SE-Net
models (refer to Table 3). The channel attention module in RINCA perceives the
spatial interdependence among the channels, and the attention pooling identifies the
salient temporal ECG segments having decision-making implications. The potency of
the attention mechanisms as mentioned above is evident from the improved CM scores
with scaled BCE loss. The CM score is highest for the d-RINCA architecture (refer
Figure 3). In the future, we plan to explore techniques to mitigate the class imbalance
problem and explore DL frameworks aiming to improve the CM score for the multi-label
CAC task with different combinations of ECG leads.
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Figure 5: d-RINCA’s explainability visualization. (a) ECG recordings (blue), (b)
overlayed clinically demarcated abnormal regions (green), and (c) overlayed attention
weights (red), showing the ECG segments’ saliency toward the final prediction.
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Došilović, F. K., Brčić, M., and Hlupić, N. (2018). “Explainable Artificial Intelligence: A
Survey”. In: 2018 41st International convention on information and communication
technology, electronics and microelectronics (MIPRO). IEEE, pp. 0210–0215.

Ellis, R. J., Zhu, B., Koenig, J., Thayer, J. F., and Wang, Y. (2015). “A Careful look
at ECG Sampling Frequency and R-peak Interpolation on Short-term Measures of
Heart Rate Variability”. In: Physiological measurement 36.9, p. 1827.

Glorot, X. and Bengio, Y. (2010). “Understanding the Difficulty of Training Deep
Feedforward Neural Networks”. In: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, pp. 249–256.

Greenwald, S. D. (1986). “The Development and Analysis of A Ventricular Fibrillation
Detector”. PhD thesis. Massachusetts Institute of Technology.

Page 15 of 19 AUTHOR SUBMITTED MANUSCRIPT - PMEA-104534.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

https://www.cinc.org/2021/Program/accepted/78.html
https://www.cinc.org/2021/Program/accepted/78.html
https://www.cinc.org/2021/Program/accepted/105.html


REFERENCES 16

Hammad, M., Iliyasu, A. M., Subasi, A., Ho, E. S., and Abd El-Latif, A. A. (2020). “A
Multitier Deep Learning Model for Arrhythmia Detection”. In: IEEE Transactions
on Instrumentation and Measurement 70, pp. 1–9.

Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., Tison, G. H., Bourn, C., Turakhia, M. P.,
and Ng, A. Y. (2019). “Cardiologist-level Arrhythmia Detection and Classification
in Ambulatory Electrocardiograms using a Deep Neural Network”. In: Nature
Medicine 25.1, pp. 65–69.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep Residual Learning for Image
Recognition”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778.

Hong, S., Zhou, Y., Shang, J., Xiao, C., and Sun, J. (2020). “Opportunities and
Challenges of Deep Learning Methods for Electrocardiogram Data: A Systematic
Review”. In: Computers in Biology and Medicine, p. 103801.

Hu, J., Shen, L., and Sun, G. (2018). “Squeeze-and-Excitation Networks”. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–
7141.

Huang, J., Chen, B., Yao, B., and He, W. (2019). “ECG Arrhythmia Classification using
STFT-based Spectrogram and Convolutional Neural Network”. In: IEEE Access 7,
pp. 92871–92880.

Ilse, M., Tomczak, J., and Welling, M. (2018). “Attention-based Deep Multiple Instance
Learning”. In: International Conference on Machine Learning, pp. 2127–2136.

Ince, T., Kiranyaz, S., and Gabbouj, M. (2009). “A Generic and Robust Ssystem for
Automated Patient-Specific Classification of ECG Signals”. In: IEEE Transactions
on Biomedical Engineering 56.5, pp. 1415–1426.

Jadhav, S. M., Nalbalwar, S., and Ghatol, A. (2010). “Artificial Neural Network based
Cardiac Arrhythmia Classification using ECG Signal Data”. In: 2010 International
Conference on Electronics and Information Engineering. Vol. 1. IEEE, pp. V1–228.

Kingma, D. P. and Ba, J. (2014). “Adam: A Method for Stochastic Optimization”. In:
arXiv preprint arXiv:1412.6980.

Kirodiwal, A., Srivastava, A., Dash, A., Saha, A., Penaganti, G. V., Pratiher, S., Alam,
S., Patra, A., Ghosh, N., and Banerjee, N. (2020). “A Bio-toolkit for Multi-Cardiac
Abnormality Diagnosis Using ECG Signal and Deep Learning”. In: 2020 Computing
in Cardiology, pp. 1–4. doi: 10.22489/CinC.2020.225.

Li, X., Li, X., Li, C., Xu, X., Wei, Y., Wei, J., Sun, Y., Qian, B., and Xu, X. X. (2021).
“Towards Generalization of Cardiac Abnormality Classification Using ECG Signal”.
In: url: https://www.cinc.org/2021/Program/accepted/212.html.
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