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ABSTRACT

Title of dissertation: COMBINING TEXT EMBEDDING WITH
ADDITIONAL KNOWLEDGE FOR
INFORMATION EXTRACTION

Arpita Roy, Doctor of Philosophy, 2021

Dissertation directed by: Dr. Shimei Pan
Department of Information Systems
University of Maryland, Baltimore County (UMBC)

Information Extraction (IE) is an essential field of natural language process-

ing (NLP). Over the years, researchers have studied numerous approaches and tech-

niques to meet the challenges of different IE tasks. This dissertation explores various

knowledge fusion techniques to combine diverse domain-independent and domain-

specific knowledge with multiple text embedding techniques for effective IE. Specif-

ically, this work presents a systematic investigation to combine different types of

knowledge (e.g., lexical, syntactic, semantic, and domain knowledge) with different

text embedding techniques (e.g., static and contextual embeddings) to achieve the

state of the art performance in several IE tasks (e.g., Open IE, malware attribute

identification and clinical relation extraction).



COMBINING TEXT EMBEDDING WITH ADDITIONAL
KNOWLEDGE FOR INFORMATION EXTRACTION

by

Arpita Roy

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Dr. Shimei Pan, Chair/Advisor
Dr. Zhiyuan Chen
Dr. James Foulds
Dr. Tim Finin
Dr. Youngja Park



© Copyright by
Arpita Roy

2021





Dedication

To my parents.

ii



Acknowledgments

I owe my gratitude to all the people who have made this thesis possible.

First and foremost, I would like to thank my advisor, Dr. Shimei Pan, for

guidance, encouragement and support. I cannot begin to express how grateful I am

to have her as my advisor. It has been a pleasure to work with and learn from such

an extraordinary researcher. I want to thank Dr. Zhiyuan Chen, Dr. Tim Finin,

Dr. James Foulds and Dr. Youngja Park for taking time out of their busy schedule

to be on my thesis committee. Many thanks to my mentors Dr. Youngja Park and

Dr. Taesung Lee at IBM Research, for giving me a wonderful opportunity to work

with them during my internship at IBM. I would like to thank Dr. Anupam Joshi,

Dr. Karuna Joshi, Dr. Tim Finin and Dr. Frank Ferraro for their valuable feedback

while working on the IBM Accelerated Cognitive Cybersecurity project. I would like

to acknowledge the IBM Accelerated Cognitive Cybersecurity Laboratory Grant for

supporting my research.

Special thanks to Fatema Hasan, Tao Ding and Philip Feldman for all the

collaborations, discussions and suggestions.

I want to thank my friends for lifting my spirit in stressful times.

Finally, I would like to thank my family. I am incredibly thankful to my

mother, Namita Roy, and my father, Sanjoy Roy, for their endless love, support

and encouragement. I owe all my success to them. I want to mention my dearest

younger brother, Sudipta. Last but not least, Shawoon, my partner, thank you so

much for being there for me.

iii



Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Overview of Information Extraction . . . . . . . . . . . . . . . . . . . 1
1.2 Text Embedding for IE . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Additional Knowledge for IE . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Combining Text Embedding with Additional Knowledge . . . . . . . 7
1.5 IE Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Related Work 14
2.1 Combining Text Embeddings with Additional Knowledge . . . . . . . 15

2.1.1 Adding Knowledge into Static Embedding . . . . . . . . . . . 16
2.1.2 Adding Knowledge into Contextual Embedding . . . . . . . . 17

2.2 Relevant IE Applications . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Open IE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 IE for cybersecurity . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Clinical Relation Extraction . . . . . . . . . . . . . . . . . . . 22

3 Combining Static Embedding with Domain-independent Knowledge for Open
Information Extraction 24
3.1 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Static Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Open IE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Input Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Static Word Embedding: . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Domain-independent Knowledge . . . . . . . . . . . . . . . . . 30

iv



3.6 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7.1 Baseline Systems . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.2 Experiment Data . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 36
3.7.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 37
3.7.5 Evaluation Metric and Matching Function . . . . . . . . . . . 37
3.7.6 Comparison with the Baseline Systems . . . . . . . . . . . . . 38
3.7.7 Feature Ablation Study . . . . . . . . . . . . . . . . . . . . . 39
3.7.8 SupervisedOIE as Annotator . . . . . . . . . . . . . . . . . . . 41

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Combining Static Embedding with Domain-specific Knowledge for Malware
Attribute Extraction 45
4.1 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Annotation Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Word Annotation Embedding (WAE) . . . . . . . . . . . . . . . . . . 50
4.6 Feature Generation and Classification . . . . . . . . . . . . . . . . . . 55
4.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Combining Contextual Embedding with Domain-independent Knowledge for
Clinical Relation Extraction 60
5.1 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Contextual Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Input Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.1 Text embedding . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.2 Domain-independent Features . . . . . . . . . . . . . . . . . . 64

5.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.3 Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 72

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Combining Contextual Embedding with Domain-specific Knowledge for Clin-
ical Relation Extraction 75
6.1 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 UMLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

v



6.3.1 Generating Text Embeddings Using BERT . . . . . . . . . . . 79
6.3.2 Text and UMLS Concept Alignment . . . . . . . . . . . . . . 79
6.3.3 Creating Knowledge Graph from Metathesaurus and Semantic

Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.4 Generating Knowledge Graph Embeddings . . . . . . . . . . . 82
6.3.5 Integrating UMLS Knowledge with BERT . . . . . . . . . . . 83

6.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.2 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.3 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 94

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Conclusion and Future Work 98
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography 102

vi



List of Tables

3.1 Extracted tuples by different Open IE systems for an input sentence . 28
3.2 Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Performance (F1-score) comparison of SupervisedOIE and the base-

line systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Performance (F1-score) comparison of different feature sets . . . . . . 41
3.5 Performance (F1-score) of SupervisedOIE V2 trained with the human-

labeled data vs. labeled data generated by SupervisedOIE . . . . . . 44

4.1 Evaluation Results on Malware Attribute Extraction . . . . . . . . . 58

5.1 A Example of Relative Distance and IOB Encoding . . . . . . . . . . 66
5.2 Statistics of the relation extraction dataset from the 2010 i2b2/VA

challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 System Performance on Clinical Relation Extraction . . . . . . . . . . 72

6.1 Result of link prediction task . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Summary of the knowledge fusion methods . . . . . . . . . . . . . . . 91
6.3 System Performance on Clinical Relation Extraction . . . . . . . . . . 94

vii



List of Figures

1.1 Word Embedding Visualization . . . . . . . . . . . . . . . . . . . . . 4
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Word2Vec CBOW Architecture . . . . . . . . . . . . . . . . . . . . . 26
3.2 Word2Vec Skipgram Architecture . . . . . . . . . . . . . . . . . . . . 26
3.3 An Open IE System with Combined Knowledge of Multiple Existing

Open IE Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 System Overview of SupervisedOIE . . . . . . . . . . . . . . . . . . . 29
3.5 Features Extracted from Existing Open IE Systems . . . . . . . . . . 31
3.6 Model Architecture of SupervisedOIE . . . . . . . . . . . . . . . . . . 33
3.7 Word level F1-score comparison . . . . . . . . . . . . . . . . . . . . . 40
3.8 Model Architecture of SupervisedOIE V2 . . . . . . . . . . . . . . . . 42
3.9 Example of Beam Search Predicting Multiple Relation Extraction

Sequences from One Sentence . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Annotated Sentence Fragment for SemEval Shared Task. . . . . . . . 47
4.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 A Snippet of the MAEC Specification . . . . . . . . . . . . . . . . . . 49
4.4 Architecture of WAE Model 1 . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Architecture of WAE Model 2 . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Architecture of WAE Model 3 . . . . . . . . . . . . . . . . . . . . . . 53
4.7 Architecture of WAE Model 4 . . . . . . . . . . . . . . . . . . . . . . 53
4.8 Architecture of WAE Model 5 . . . . . . . . . . . . . . . . . . . . . . 54
4.9 Impact of Label-aware Negative Sampling . . . . . . . . . . . . . . . 54

5.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 An Example of a Sentence Dependency Tree and POS Tags . . . . . . 66
5.3 Model Architecture of Word2Vec-DIF-BiLSTM . . . . . . . . . . . . 69
5.4 Model Architecture of BERT-DIF-BiLSTM . . . . . . . . . . . . . . . 70
5.5 Model Architecture of Doc2Vec-DIF-BiLSTM . . . . . . . . . . . . . 71

6.1 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 BERT Architecture for Sentence Classification . . . . . . . . . . . . . 80

viii



6.3 Model Architecture of BERT-EE . . . . . . . . . . . . . . . . . . . . 81
6.4 Example of cTAKES Output . . . . . . . . . . . . . . . . . . . . . . . 82
6.5 A Snippet of a Knowledge Graph Created from UMLS . . . . . . . . 83
6.6 Model Architecture of ClinicalBERT-EE-KGE . . . . . . . . . . . . . 85
6.7 Model Architecture of ClinicalBERT-EE-MLP . . . . . . . . . . . . . 86
6.8 ClinicalBERT with Relation Indicator . . . . . . . . . . . . . . . . . . 88
6.9 Model Architecture of ClinicalBERT with Entity Definition . . . . . . 89

ix



Chapter 1: Introduction

1.1 Overview of Information Extraction

As a significant part of human knowledge is captured in text, we must pro-

cess and extract the knowledge in texts efficiently. As the amount of text available

in electronic form is overwhelming and increasing every day, manually managing

all the text and making sense of it is time-consuming and unscalable. The noisi-

ness and flexibility of natural language also pose a significant challenge to analyzing

the information in text using traditional statistical analysis and data mining meth-

ods. To access information from a vast amount of unstructured text effectively, we

need efficient and accurate methods that can extract structured information from

unstructured text automatically. This explosion of machine-readable text and the

need to access information expressed in unstructured text gives rise to Information

Extraction (IE), a natural language processing (NLP) technique that automatically

extracts structured information from unstructured text. IE systems are frequently

used to extract entities, attributes, relations, and events from text, which can then

be stored in a structured format to facilitate downstream data query and analysis

with traditional statistical or data-mining techniques. Typical IE applications range

from business intelligence [1], financial investigation [2, 3], scientific research [4, 5],

1



healthcare record management [6–8], resume harvesting [9], social media analysis

[10], sentiment analysis [11], email scanning [12] and many more.

1.2 Text Embedding for IE

As in many NLP tasks, one of the major challenges for IE is input text rep-

resentation. As words can not be directly processed or understood by a computer,

obtaining effective representations of text that capture important lexical, syntactic,

semantic and contextual information in input text has long been a research focus in

NLP. Like many NLP tasks, IE needs meaningful word, phrase and sentence repre-

sentations. In many early NLP systems, a word is often represented as a one-hot

vector. Since the construction of such a vector is simple, this method and other sim-

ilar techniques like tf-idf and n-gram vectors have been widely used in many NLP

tasks. However, these representations have obvious shortcomings like the curse of

dimensionality, poor scalability, feature sparsity and being incapable of representing

syntactic, semantic and contextual information in the text. For instance, in typi-

cal NLP tasks, the number of unique words can be millions. As a result, the size

of corresponding one-hot vectors becomes extremely large, leading to an inefficient

representation of words. In addition, these discrete vectors are unable to capture the

syntactic, semantic and contextual relations between words. To resolve these issues,

recent NLP research focuses on learning low-dimensional continuous vector repre-

sentations of words, also known as word embedding. Word embedding is a process

to automatically map the words in a vocabulary into dense vectors of real numbers

2



in a continuous embedding space. Word embedding is learned based on word co-

occurrences so that semantically and contextually related words have similar vector

representations. Figure 1.1 shows an example of word embedding visualization.

Word embedding is mostly derived from large text corpora in an unsupervised/self-

supervised manner. It has gained much attention and popularity as the derived word

vectors often encode essential syntactic and semantic information that is useful for

NLP. Research has shown that word embedding boost the performance of diverse

downstream NLP tasks such as sentiment analysis [13], text classification [14] and

question answering [15]. Significant improvement has also been achieved with word

embedding for various IE tasks such as named entity recognition [16] and relation

extraction [17].

According to the methodologies used, word embedding can be divided into

two main categories: (1) static embedding and (2) contextual embedding.

Static embedding only learns a single context-independent representation

for each word. This implies that each word has only one meaning regardless of its

context. In reality, however, the meaning of a word may change with its context.

For example, the word “bank” has two meanings; one is related to a “financial in-

stitution” and the other is related to the “land alongside rivers.” However, in static

embedding, “bank” has only one embedding representation regardless of its sen-

tence and application context. Commonly used static embedding methods include

Word2Vec [18], Glove [19] and FastText [20].

Contextual embedding models generate a word representation that is a

function of its context (e.g., the sentence in which it appears). Using the same

3



Figure 1.1: Word Embedding Visualization

example, the word “bank” may have many dynamic embedding representations; each

is tailored to its sentence and domain contexts. Recent research has shifted chiefly

towards contextual embedding. CoVe [21], context2vec [22] and [23] are some of

the earlier efforts to learn context dependent representation. These researches were

followed by ELMo (Embeddings from Language Models) [24], GPT (Generative Pre-

trained Transformer Models) [25] and BERT(Bidirectional Encoder Representations

from Transformers) [26]. BERT is the most popular contextual embedding technique

to generate text embeddings for input texts.
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The main differences between static and contextual embedding include:

• Static word embedding models cannot represent word polysemy. Contex-

tual word embedding models can address this issue by generating context-

dependent word representations.

• Static embedding is frequently trained with shallow neural networks, while

contextual embedding is trained using deep neural networks.

• Frequently downstream NLP tasks utilize pre-stored word embedding vectors

learned by a static embedding model because the number of unique words

in a vocabulary is limited. In contrast, with contextual embedding, since the

representation of a word varies with its context, each word may be represented

by a large number of word vectors. As a result, downstream NLP tasks often

rely on a pre-trained contextual embedding model to dynamically generate

context-sensitive word vectors.

• Contextual embedding models are more computationally expensive to train

than static embedding models because the number of model parameters in a

contextual embedding model is frequently much larger than that of a static

embedding model.

1.3 Additional Knowledge for IE

Types of knowledge explored in IE systems are domain-independent knowledge

and domain-specific knowledge.

5



Domain-independent knowledge that can be automatically inferred by

standard NLP tools such as part-of-speech tags [27], dependency-tree paths between

entities [28], constituent-tree paths between entities [29] and syntactic roles [30].

Domain-independent features are more likely to be either surface or syntactic fea-

tures as existing NLP tools can more reliably infer them. They are also more

generalizable across different domains.

Domain-specific knowledge such as domain lexicons [31] and domain on-

tology [32] has been used in various IE tasks. Domain knowledge may provide

new information about the semantic types of words, explain the meaning of do-

main terms and indicate the semantic relationships between domain concepts. For

example, based on the information in a biomedical knowledge base UMLS [33] an

IE system may know that “fever” has a concept definition of “abnormal elevation

of body temperature, usually as a result of a pathologic process”; “fever” may be

treated by “ibuprofen”; “fever” is a “sign” and “symptom”; “hyperpyrexia” is a

type of “fever”; and “fever” is interpreted as “abnormal body temperature”. Thus,

incorporating additional knowledge from such a biomedical knowledge base may

help an IE system better understand the entities and relations expressed in clinical

texts. Domain-specific knowledge is also unlikely to be generalizable across different

domains.
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1.4 Combining Text Embedding with Additional Knowledge

While word embeddings are powerful tools for representing input texts, using

only word embeddings might be insufficient to extract all the necessary information.

As a result, in this research, I explore, besides text embeddings, whether additional

knowledge can be incorporated to help improve the performance of IE systems.

Static embedding models such as Word2Vec capture context similarity between

words. That is, words that appear in similar contexts often have similar meanings.

Prior research suggests that static embeddings may capture some morphological

(e.g., walk and walking) and syntactic relations between words [34]. However, the

syntactic information captured in static word embeddings may not be as powerful as

those uncovered via the state-of-the-art syntactic parsers trained on a large number

of supervised examples [34]. Since dependency tree paths are often used in different

IE tasks like named entity recognition [35] and relation extraction [28], it is possible

that additional information from a parse tree may help improve the performance of

an IE system than those that only use static word embeddings.

Recently, the efforts on text embeddings have been mostly shifted to contex-

tual embedding models that are trained on massive amounts of texts. As their

context heavily influences the dynamic embeddings of words, it is even harder to

decipher the type of information captured in dynamic embeddings. For example, it

is unclear whether syntactic information is adequately captured in BERT embed-

dings and whether additional information from a syntactic parser may help improve

IE performance when they are combined with BERT embeddings. Due to their
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superb performance in diverse NLP tasks, it has been speculated that given enough

parameters and training data, contextual embedding models such as BERT might

be able to make external knowledge augmentation unnecessary [36].

IE in specialized domains (e.g., cyber-security and bio-medical) presents new

challenges as text in these domains often has unique characteristics. Usually, do-

main text contains domain-specific terms, which may not occur frequently in general

domain text corpora. For example, the term “Malignant Neoplasms” which means

“Cancer” in bio-medical text, may not be easily found in general domain text.

Moreover, there may exist domain-specific relation among domain concepts. For

example, the word “Virus” is related to “disease” in the biomedical domain and

“software” in the cyber-security domain. Often there are many synonyms referring

to the same concept in domain-specific texts. For example in biomedical text, “Ma-

lignant Neoplasms”, “Neoplasm, Malignant”,“Malignant tumour”, “Malignancy”,

“Cancer”, “Cancers”, and “CA” all refer to same the concept. Additionally, abbre-

viations, acronyms, shorthand lexical units and spelling variations are heavily used

in clinical texts. Additional domain knowledge such as the knowledge encoded in

a domain ontology may help an IE system correctly identify domain concepts and

relations.

Typical techniques to combine additional knowledge with text embeddings

for IE can be categorized into two classes: (1) feature concatenation and (2) di-

rect knowledge injection into text embeddings. Feature concatenation is a simple

yet effective way to combine various syntactic, semantic and lexical features with

text embeddings. Concatenation provides the flexibility to combine multiple types

8



of features all within one framework without requiring feature-specific handling.

Knowledge injection refers to directly incorporating knowledge into the same text

embedding space. This technique enables to generate text embedding based on both

text and knowledge. Injecting knowledge into text embedding may help to encode

domain semantics effectively. Knowledge injection can be implemented during the

training of embedding models or as a post-processing step.

1.5 IE Applications

IE has a wide range of applications such as merge and acquisition event ex-

traction from financial reports [2,3], medical information extraction from healthcare

records [6–8] and terrorist event extraction and tracking from news [37, 38]. In the

following, I briefly introduce the main IE applications studied in this thesis.

Open IE: Open IE focuses on extracting relations from text [39]. Typically,

Open IE systems read one sentence and extract tuples with one relation phrase and

two or more arguments. Open IE is necessary when the number of extracted relations

is large and the relations themselves are unknown. As Open IE does not require

the specification of target relations in advance, it can facilitate domain-independent

knowledge discovery from the text.

IE for Malware Attribute Identification: Cybersecurity is one of the

highly specialized domains that require focused effort and specialized techniques

for effective IE. There is a critical need to aid cybersecurity analysts in processing

a large amount of online text and extracting targeted information such as mal-
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ware attributes, exploits, and security vulnerabilities. In the cybersecurity domain,

automated malware attribute identification based on texts is vital for immediate

awareness of security flaws. For example, extracting attributes like malware names,

capabilities, and operating strategies can help cybersecurity specialists monitor mal-

ware’s appearance and spread.

IE for Clinical Relation Extraction: The clinical text contains valuable in-

formation about a patient’s conditions such as symptoms, diagnoses and treatments.

Hence identifying, extracting, and mining this information is of great importance

to managing and improving patient care. One of the fundamental tasks of clinical

NLP is extracting entities and semantic relations between medical concepts from

clinical notes (e.g., extracting relations between diseases and treatments). Identify-

ing these relations is important for caregivers to understand how patients respond

to treatments and facilitate clinical decision-making.

1.6 Thesis Statement

Since the word embedding features are latent, it is hard to know exactly what

knowledge has been captured in the embedding representations and whether the

information needed for IE has been encoded properly and adequately. The main

research question explored in this thesis is:

Given the power of text embeddings, do we still need additional knowl-

edge for IE?
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1.7 Thesis Contributions

The main contributions of this thesis include:

• I develop a novel Open IE system employing static word embedding and

domain-independent knowledge, including part-of-speech tags, syntactic roles,

dependency tree information and output of existing Open IE systems. In

this paradigm, the proposed model can take advantage of the semantics cap-

tured in word embedding, additional knowledge about sentence structure, and

the outputs of existing Open IE models. Evaluations conducted on several

benchmark datasets show that the proposed method outperforms the baseline

systems by a large margin.

• I develop a novel Word Annotation Embedding (WAE) algorithm to incor-

porate domain-specific semantic information into static word embeddings.

Knowledge utilized here includes diverse heterogeneous knowledge sources such

as human annotations, raw texts and specifications from domain experts. Then

the enriched word embeddings are used to build a malware attribute identifi-

cation system with the state of the art performance.

• I perform an experimental study to investigate whether domain independent

syntactic features can be combined with contextual embeddings generated by

BERT to improve relation extraction from clinical text.

• I conduct a comprehensive examination of different techniques to add biomed-

ical knowledge into contextual embedding models. I explore how domain-
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specific semantic knowledge from UMLS, a biomedical knowledge base, can be

added to contextual word embeddings generated by BERT to facilitate clinical

relation extraction. The proposed knowledge fusion methods outperformed the

state-of-the-art systems on a benchmark clinical relation extraction dataset.

1.8 Thesis Organization

Based on the type of embedding techniques and additional knowledge utilized,

the thesis can be organized into four parts: (1) static word embedding with domain-

independent knowledge, (2) static word embedding with domain-specific knowledge,

(3) contextual embedding with domain-independent knowledge and (4) contextual

embedding with domain-specific knowledge. As shown in figure 1.2, I investigate

novel methods that systematically combine different types of knowledge with dif-

ferent types of embedding techniques. Additionally, I verify the effectiveness of

proposed methods in various IE applications such as OpenIE, malware attribution

identification and clinical relation extraction.

The rest of the dissertation is organized as follows. Chapter 2 provides a

comprehensive overview of recent research work on different IE tasks. Following

chapters explore various methodologies to combine additional knowledge with dif-

ferent text embedding techniques. Chapter 3 details how static word embedding

can be combined with domain-independent knowledge extracted by existing NLP

tools to improve Open IE performance. Chapter 4 presents a solution to over-

come the challenges of domain-specific IE with additional domain-specific semantic
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Figure 1.2: Thesis Organization

knowledge and static word embedding for malware attribute identification. Chap-

ter 5 and chapter 6 illustrate novel IE techniques that combine contextual word

embedding with additional knowledge for clinical relation extraction. While chap-

ter 5 focuses on incorporating domain-independent knowledge, chapter 6 leverages

domain-specific knowledge from an existing bio-medical knowledge base to improve

clinical relation extraction. Finally, chapter 7 summarizes the main findings. It also

identifies the main limitations of the current research and points out a few future

research directions aiming at addressing these issues.
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Chapter 2: Related Work

IE is one of the fastest growing fields of NLP. Research in IE has explored a

variety of approaches and techniques. The complex task of IE can be divided into

several sub-tasks: Named Entity Recognition [40,41], Coreference Resolution [42,43],

Relation Extraction [40,44–46] and Event Detection [47,48].

To address the needs of diverse applications, the techniques of IE have evolved

over the past years. Early systems were Knowledge-based and used crafted rules

based on language syntax, grammar, lexical resources and domain specific knowl-

edge [49–52]. As manual coding of rules was tedious, machine learning-based meth-

ods were developed [53–57]. Hybrid models [58, 59] attempted to take advantage

of both supervised learning methods and rule-based methods. Overall supervised

learning remains the dominant approach to solve IE problems. However, annotat-

ing training data for each new domain is challenging and time-consuming. This has

led to semi-supervised learning [60, 61] and distant supervised approaches [62]. As

these learning based models mostly relied on feature engineering, they still required

human effort to hand craft features. Recently research has shifted towords feature-

inferring neural network systems that use automatically learned text embedding.

Studies have shown the importance of text embedding for neural network based
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IE systems [63–66]. In the following sections, I survey prior work on topics that

are most relevant to this research: (a) knowledge fusion techniques that combine

text embeddings with additional knowledge and (b) the state-of-the-art techniques

developed for relevant IE applications used in the thesis (i.e., Open IE, IE for cy-

bersecurity and clinical relation extraction).

2.1 Combining Text Embeddings with Additional Knowledge

In recent years text embedding has become the most popular input text rep-

resentation for IE approaches. Since traditional word embeddings mainly capture

the semantic relatedness between co-occurring words in a predefined context, they

suffer from certain limitations. For example, it may not capture syntactic or domain-

specific semantic information very well. Additional knowledge can help bridge this

gap when combined with word embedding and boost the performance of IE systems.

Consequently a large portion of recent research has presented approaches to incor-

porate extra morphological, syntactic, semantic and domain knowledge with word

embedding to facilitate IE systems. In this section, I summarize the recent advances

in this research area. I include representative work on enhancing both static word

embedding (e.g., Word2Vec) where a fixed embedding vector is learned for each

word and dynamic/contextual word embedding (e.g., BERT), where the embedding

vector for each word varies with its context. I discuss both domain-independent

and domain-specific knowledge incorporation using feature concatenation and di-
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rect knowledge injection techniques.

2.1.1 Adding Knowledge into Static Embedding

Feature concatenation has been used in studies [67–69] to combine various

kinds of knowledge with Word2Vec embedding. To directly incorporate knowledge

into static word embedding (Word2Vec), either joint optimization or post-processing

is used. In joint optimization, word embedding is trained with both text and ex-

tra knowledge simultaneously. These methods frequently modify the training ob-

jective to include both the native word embedding objective and a new objective

related to the knowledge. The methods can be further categorized into: (1) adding

prior or regularization to the original distributed representation learning objective

[70, 71]; (2) extending the original distributed representation learning objective to

learn additional embedding [15, 72]; (3) adding rank or hierarchical structure con-

straints [14, 73]; (4) combining training objective with knowledge graph embedding

objective [16,17]; and (5) augmenting the input text with extra knowledge [74–78].

While [16, 17, 71, 72] focused on combining semantic knowledge, [74, 75, 77, 78]

aimed to incorporate syntactic knowledge such parts-of-speech tag and dependency

parse tree. These models are tied to the distributional objective and any change

of the underlying distributional model induces a change in the entire joint model.

Post-processing-based methods integrate extra knowledge into pre-trained word em-

bedding. Popular post-processing methods such as retrofitting [79] fine-tuned the

original word embeddings so that they satisfy additional constraints generated from
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the extra knowledge. The most significant benefit of post-processing over joint

optimization is that it can be applied to any pre-trained word embedding mod-

els without expensive retraining. Post-processing methods often only locally update

word vectors involved in the external constraints, whereas vectors of the other words

remain intact. In contrast, joint optimization propagates the influence of external

knowledge to all the words via the joint objective.

2.1.2 Adding Knowledge into Contextual Embedding

To integrate knowledge into contextual word embedding (BERT), researchers

have followed two methods: (1) fine-tune with domain text and (2) combine knowl-

edge graph into BERT.

Incorporating domain text in BERT: There are quite a few BERT mod-

els which have been trained (or fine-tuned) with bio-medical text: BioBERT [80] is

pre-trained on PubMed abstracts and PMC full-text articles; ClinicalBERT [81] is

pre-trained on the clinic notes in the MIMIC-III database [82]; BlueBERT [83] is

pre-trained on the PubMed abstracts and the clinical notes in MIMIC-III; PubMed-

BERT [84] is pre-trained using abstracts from PubMed and full-text articles from

PMC; Scibert [85] is pre-trained on biomedical papers. Among them, BioBERT and

BlueBERT are initialized with weights from a general-domain BERT model, Clini-

calBERT is initialized from BioBERT, and PubMedBERT is trained from scratch.
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Combining knowledge graph information with BERT: The simplest

method to combine knowledge graph information with BERT is concatenation. For

example, [86] combined knowledge graph embedding trained using Graph Convolu-

tion Networks (GCN) with BERT embeddings for citation recommendation. Efforts

to directly inject knowledge graph information into BERT can be further catego-

rized into the following categories.

• Joint optimization with knowledge graph objectives: For example, Clinical

KB-BERT [87] pre-trained BERT with a knowledge graph objective. In addi-

tion to predicting masked words, a triplet classification objective was added,

where given a triplet of two concepts and a relation in UMLS, the model aimed

to predict if the relationship exists between the two concepts.

• Fusing entity embeddings from knowledge graphs with BERT: For exam-

ple, [88] first retrieved pre-trained entity embeddings from a knowledge graph,

then used them to update BERT word embeddings via word-to-entity atten-

tion. [89] incorporated entity embeddings learned from a UMLS knowledge

graph into BERT using adversarial learning.

• Augmenting BERT input with knowledge graph information: For example, [90]

presented K-BERT in which triples from knowledge graphs were added into

the input sentences before being sent to BERT. In [91], relevant knowledge
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statements were assigned to each training instance and BERT was fine-tuned

on the modified training data to facilitate question answering tasks.

2.2 Relevant IE Applications

In this section, I discuss IE applications that are relevant to this research.

2.2.1 Open IE

Domain-independent Open IE system was first introduced in TextRunner [39].

This system generated candidate tuples by first identifying pairs of noun phrase ar-

guments and then classified if the tuple holds valid relation. A large body of work

on the task of Open IE has been carried out since [39]. ReVerb [92] extracted

verbal propositions from part-of-speech tags using a logistic regression classifier.

OLLIE [93] was built on ReVerb and extracted relations from syntactic and lex-

ical dependency patterns. ClausIE [94] first classified clauses into clause types

and extracted tuples based on the clause type using predefined rules. Followed

by these systems, Stanford OpenIE [95] and OpenIE5 were developed by combin-

ing several different approaches such as CALMIE [96], BONIE [97], RelNoun [98]

and SRLIE [99]. Further, several systems focusing on a specialized constructs were

developed, including noun-mediated relations [100], n-ary relations [101], nested

propositions [102] and numerical Open IE [103].

Recently, there have been efforts to apply deep learning methods to Open

IE. RnnOIE [67] was the first attempt to apply a supervised learning approach for
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Open IE using the labeled data set from [104]. One study [105] formulated Open

IE as a sequence-to-sequence generation problem and presented an encoder-decoder

framework with an attention-based copying mechanism to extract binary relation

tuples. Instead of relying on manually labeled data, [105] trained the model using

the results of OpenIE4 [106] as labeled training data and evaluated the model using

the human-labeled data from [104] as RnnOIE [67]. [107] presented a supervised

neural Open IE model for Chinese information extraction and applied attention-

based sequence-to-sequence learning similarly to [105]. However, [107] used the

gated dependency attention mechanism based on the shortest path between a pair

of words in the sentence’s dependency tree.

2.2.2 IE for cybersecurity

Cybersecurity researchers have recently recognized the benefits of leveraging

information extracted from security documents. Most prior work utilizing NLP for

cybersecurity has focused on privacy policy analysis and Android security [108–112].

These systems aimed to map written policies and the actual permission requests

from Android applications and assessed the risk level of these applications. IE in

cybersecurity is needed to assist security analysts with crucial information about

malware, vulnerability and security patches. Researchers have explored various

methods to extract cybersecurity entities and their relations in the cybersecurity

domain. [113] described a semi-supervised technique for entity and relation extrac-

tion that incorporates active learning. [114] extracted cybersecurity-relevant enti-
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ties, terms and concepts from the text and then mapped and linked to related

resources on the Web. [115] used maximum entropy models with history-based fea-

tures for cyber entity extraction. [116] developed a semi-supervised bootstrapping

algorithm for identifying cyber entities from large unannotated text corpora. [117]

used LSTM for named entity recognition and relation extraction on text collected

national vulnerability database. [118] represented the first major effort to apply

NLP techniques for general text-based malware behavior analysis. This work pro-

cessed reports by cybersecurity companies (e.g., FireEye, IBM X-Force, Symantec

and Trend Micro) on malware or campaigns associated with Advanced Persistent

Threat (APT) groups [119] and assigned attributes to identified malware actions.

This research used word unigrams as predicting features. SVM and Naive Bayes were

used to build classifiers for attribute label prediction. SemEval organized a shared

task (called SecureNLP) on semantic analysis for cybersecurity texts to extend this

effort. It adopted the same dataset and task definitions as [118]. There are four sub-

tasks in SemEval SecureNLP: (1) identifying sentences containing malware actions

from APT reports; (2) identifying “Malware Action”, “Subject of Action”, “Ob-

ject of Action” and “Modifier of Action” in the identified sentences; (3) identifying

four relations, “Subject-Action”, “Action-Object”, “Modifier-Action” and “Action-

Modifier” in identified sentences; (4) assigning attribute labels to each identified

action based on the MAEC specification.
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2.2.3 Clinical Relation Extraction

Early work on clinical relation extraction employed supervised machine learn-

ing with a wide range of hand-crafted features such as lexical features, syntactic

features, and semantic features extracted from external knowledge resources such

as UMLS, cTAKES, and Medline. Feature engineering and SVM were commonly

used in [120–128]. In addition to supervised approach, hybrid approach [129] and

bootstrapping [130, 131] also were applied. Some of the works used semantic fea-

tures obtained from external knowledge sources. [130,132] derived concept mapping

and concept types based on UMLS. [128,130] employed Medline to calculate Point-

wise Mutual Information (PMI) between two concepts. Later, pre-trained word

embeddings (e.g. Word2Vec) became the most popular input feature for relation

extraction. A neural network-based classifier (e.g., CNN, LSTM, GCN) was often

used to predict clinical relations based on word embeddings. [133] used convolution

neural network (CNN), [134] proposed a Segment Convolutional Neural Network

(Seg-CNN) and [135, 136] used LSTM to solve clinical relation extraction task.

Word embedding features were frequently combined with additional features such

as word types, POS tags, IOB encoding of semantic concepts, relative distance, and

dependency relations to further improve performance [133–136]. Recently, BERT-

based text embedding has gained dominance due to its superior performance [137].

However, [137] did not explore how contextual embedding features can be combined

with traditional NLP features to improve performance. [138] is the first to combine

BERT embeddings with standard IOB tags. However, [138] did not explore whether
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BERT embeddings can be effectively combined with other syntactic and semantic

features commonly used in relation extraction. Despite a substantial body of re-

search on relation extraction, it is still an open question regarding the best method

to integrate bio-medical knowledge graphs (e.g., UMLS) into BERT for clinical re-

lation extraction. To the best of my knowledge, no existing study systematically in-

vestigates the effectiveness of combining a comprehensive set of domain-independent

and domain-specific features with BERT contextual embedding in clinical relation

extraction.
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Chapter 3: Combining Static Embedding with Domain-independent

Knowledge for Open Information Extraction

3.1 Research Overview

In recent years static word embedding has become popular over previous text

representation techniques like bag of words, one-hot vector and tf-idf. Static Word

embedding follows the basic principle of distributed hypothesis, which states that

words occurring in similar contexts tend to have similar semantics. A study has also

shown that in addition to semantic information, static word embeddings contain

some useful syntactic information [34]. However, captured syntactic information is

often insufficient for IE tasks. As IE systems often rely on sentence syntax and gram-

matical patterns for extracting desired information, syntactic features are crucial.

For example, syntactic features like part-of-speech tag and dependency parse tree are

beneficial for different IE tasks like named entity recognition [35, 139] and relation

extraction [28,140]. This research builds an IE system that uses semantically mean-

ingful text representation from static embedding and domain-independent knowl-

edge. In particular, this work combines static word embedding from the Word2Vec

model with part-of-speech tag, dependency parse tree information, syntactic role
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label and output of existing IE systems for Open IE application. Similar to [67], in

this research, Open IE is defined as a sequence tagging problem and classifies each

word if it is a part of a relation, arguments or none. In this paradigm, the proposed

model can enjoy the advantages of semantics captured in word embedding, syntactic

knowledge about sentence structure and grammar, and the wisdom of existing Open

IE models. Evaluations with several benchmark datasets and Open IE systems show

that the proposed method outperforms the baseline systems by a large margin.

3.2 Static Embedding

Word2Vec [141] is the most popular static word embedding model that em-

ploys a feed-forward shallow neural network trained with unlabeled text corpora.

Two Word2Vec models have been proposed: CBOW and skipgram. Figure 3.1 and

Figure 3.2 shows architecture of these two models. In the CBOW model, context

words are used to predict a target word and in the Skipgram model, context words

are predicted based on the target word. Both models are focused on learning about

words given their local usage context, where a window of neighboring words defines

the context. The key benefit of the approach is that high-quality word embeddings

can be learned efficiently with low space and time complexity.

3.3 Open IE

Open IE extracts textual tuples consisting of a relation phrase and argument

phrases from a sentence [39]. Open IE was introduced as an alternative to the

25



Figure 3.1: Word2Vec CBOW Architecture

Figure 3.2: Word2Vec Skipgram Architecture

traditional supervised IE method to address two major limitations of supervised ap-

proaches. First, supervised IE relies heavily on labeled training data. Since manual

relation annotation is very expensive, this method does not scale to a large number

of relations and is very difficult to adapt to new domains. Second, supervised IE

systems require the target relations to be predetermined and learn to extract only

the predefined relations. Therefore, they miss new and potentially meaningful do-

main relations that are prominent in a given dataset. In contrast, Open IE operates

in a completely domain-independent manner and is suitable when the target rela-

tions are not known in advance. Recently, Open IE has gained much attention, and

various Open IE tools have been developed [67,92–94,100,101,142–144]. Typically,

these systems read in one sentence and extract tuples with a relation phrase and

26



one or more arguments. However, while most existing Open IE systems extract

verbal relations, each of the systems focuses on different relational structures and

extraction rules, resulting in heterogeneous results. Table 3.1 shows the different

extraction results from the same sentence by three different Open IE systems. Sim-

ilar to other lexical and syntactic features, the outputs of these Open IE systems

are domain-independent and can be obtained readily. These outputs can be used

as features for a new Open IE model and help the model learn from the wisdom of

multiple existing Open IE systems. This is especially attractive as no retraining or

customization is needed to apply multiple existing Open IE systems, and they can

be used as any other NLP tools.

Figure 3.3: An Open IE System with Combined Knowledge of Multiple Existing

Open IE Systems
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Input Evil Corp has released a new improved variant of the Dridex trojan that was

spread through Andromeda botnet.

OpenIE5 1. (the Dridex trojan; was spread; )

2. (Evil Corp ; has released; new variant of the Dridex trojan)

Stanford 1. (Evil Corp; has released; variant)

2. (Evil Corp; has released; variant of Dridex trojan)

3. (Evil Corp; has released; new variant)

4. (Evil Corp; has released; new variant of Dridex trojan)

UKG 1. (Evil Corp; has released; a new improved variant of the Dridex trojan)

2. (new improved variant of the Dridex trojan; was spread through; An-

dromeda botnet)

Table 3.1: Extracted tuples by different Open IE systems for an input sentence

3.4 System Overview

In this work, I consider supervised open IE system (SupervisedOIE ) that ex-

tracts of binary relations from sentences. Let us consider an input sentence S.

The goal of this system is to extract a set of relation tuples T from S, where

T = {T1, T2, . . . , Tn} and the i-th tuple Ti consists of < ei1, ri, ei2 >, where ri is

the relation phrase of Ti and ei1 and ei2 are the first and second arguments of ri.

This task is framed as a sequence tagging, and the model annotates each word in

the sentence to E1, E2, R or O (EOR tags). E1 and E2 denote the first and the
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second arguments, R is the relation, and O represents all other words. Figure 3.4

shows a system overview of the model.

Figure 3.4: System Overview of SupervisedOIE

3.5 Input Features

3.5.1 Static Word Embedding:

Given an input sentence S = 〈w1, w2, w3, ..., ..., wn〉, the static word embed-

ding of each word wi ∈ S is defined as emb(wi). Pre-trained Word2Vec trained on

Google news is used for word embedding.
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3.5.2 Domain-independent Knowledge

Domain-independent knowledge comes from syntactic features and output

from existing Open IE systems.

A. Syntactic features: Following syntactic features are used in the model.

• Part-of-speech tag : POS embedding for each word wi as emb(pos(wi))

is learned during model training.

• Syntactic role label : emb(role(wi) is the syntactic role embedding for

word wi. This is also learned during model training.

• Dependency parse tree : In particular, I consider dependency parse tree

based on the one-hop neighbors (i.e., parent and children) of a word

in the dependency tree. I use parent(wi), the parent of word wi, and

left-child(wi) and right-child(wi), the closest left and right children of wi.

B. Output from existing Open IE systems: Output from three different

Open IE systems are used. These systems are Stanford Open IE [95], OpenIE

51 and UKG (a private Open IE tool). Stanford Open IE is a dependency

parser-based system that uses handcrafted patterns to extract a predicate-

argument triple from a sentence. On the other hand, OpenIE 5 can extract

verbal relation, nominal relation, relation with numeric argument and relation

from consecutive sentences. UKG extracts binary verbal relations based on

noun phrase detection, named entity recognition and dependency parsing. All

1http://openie.allenai.org
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Figure 3.5: Features Extracted from Existing Open IE Systems

three of these Open IE systems have different extraction rules and patterns

focusing on extracting different relation tuples. Stanford Open IE, OpenIE 5

and UKG can complement each other when combined. To use the output of

existing Open IE systems as input features, I first collect the Open IE system

outputs by 1) running the existing Open IE systems as a black-box on the

labeled corpus, 2) mapping the extracted tuples back to the original input

sentence, and 3) assigning the EOR tags to each word based on the outputs

of each Open IE system. This gives k EOR tags for each word from k Open

IE tools (e.g., ‘E, E, O’ by three Open IE systems). Figure 3.5 shows an

example of how features are created from existing Open IE systems output.

For input to the system, I extract the all features for each word in the corpus.

Formally, given an input sentence S, I extract a feature vector F(wi) for each word
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wi ∈ S defined as follows:

F(wi) = emb(wi)⊕FB(wi)⊕FB(parent(wi))

⊕FB(left-child(wi))⊕FB(right-child(wi))

where⊕ denotes concatenation, FB(wi) = emb(pos(wi))⊕emb(role(wi))⊕EOR1,...,k(wi);

pos(wi) is the part-of-speech of wi; role(wi) is the syntactic role of wi; emb(·) is the

respective embedding for the categorical input that can be trained as part of the

model, or pre-trained; and EOR1,...,k(wi) represent the k EOR tags for wi assigned

by the k Open IE tools.

3.6 Model Architecture

The proposed system uses bidirectional long short term memory (Bi-LSTM) [145]

to aggregate features and classify the labels of a sequence of words. The advantage of

using Bi-LSTM is that it can leverage the information from neighboring words from

both sides. The outputs are used in softmax for each word, producing independent

probability distributions over possible EOR tags.

3.7 Experiments

3.7.1 Baseline Systems

I validate SupervisedOIE with several benchmark data sets and compare it

with the state-of-the-art Open IE systems, including (1) a supervised Open IE

system by [67]; (2) three unsupervised Open IE systems, OpenIE5 2, Standford

2http://openie.allenai.org
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Figure 3.6: Model Architecture of SupervisedOIE

OpenIE 3 [95] and UKG which is a proprietary Open IE tool.

RnnOIE is the first supervised model built for Open IE [67]. The model

is based on a Bi-LSTM transducer and is trained using the annotated corpus built

by the same research team [104]. It takes a sentence and the word index of the

predicate’s syntactic head as input, and generates a feature vector for each word in

the sentence by concatenating the word embeddings and POS tag embeddings of the

word and the predicate head. Given these input features, the model learns whether

the current word is part of an argument of the particular predicate. At inference

time, they first identify verbs and verb nominalization as candidate predicates and

generate an input instance with each candidate predicate head.

Stanford Open IE is heavily based on dependency parsers. The system

3https://stanfordnlp.github.io/CoreNLP/openie.html
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first splits a sentence into a set of logically entailed shorter clauses by recursively

traversing its dependency tree and predicts whether an edge should yield an in-

dependent clause or not. To increase the usefulness of the extracted propositions,

each self-contained clause is then maximally shortened by running natural logic in-

ference over it. In the end, a set of 14 handcrafted patterns are used to extract a

predicate-argument triple from each utterance.

OpenIE 5 is a combination of four Open IE systems CALMIE [96], BONIE [97],

RelNoun [98] and SRLIE [99]. SRLIE converts the output of a SRL system into an

Open IE extraction by treating the verb as the relational phrase, and taking its role-

labeled arguments as the arguments of the relation. On the other hand, RelNoun

is a nominal Open IE system that extracts relations from compound noun phrases.

BONIE focuses on extracting tuples where one of the arguments is a number or a

quantity-unit phrase. CALMIE extracts information from conjunctive sentences by

using language model-based scoring and several linguistic constraints to search over

hierarchical conjunct boundaries.

UKG is a proprietary tool that was developed to construct a knowledge graph

for the cybersecurity domain, which contains information about cyber-incidents in-

volving malware, campaign, and IoCs (Indicators of Compromise). It extracts bi-

nary verbal relations based on noun phrase detection, named entity recognition,

dependency parsing. UKG currently extracts binary verbal relations from three de-

pendency structures, ‘NP-VP-NP’, ‘NP-VP-PP’ and ‘VP-NP-PP’. Named entity ex-

traction is performed to detect cybersecurity-specific entities (e.g., malware names)

and constrain the extractions to only cybersecurity-related relations (those with

34



at least one argument being a cybersecurity entity). Furthermore, UKG employs

a coreference resolution, and coordination and apposition analysis to increase the

recall of the extraction. To make UKG similar to other OpenIE systems for the

evaluation, I did not run the cybersecurity named entity extraction but used all

noun phrases as candidate arguments.

Majority Votes is another baseline system that I compared with Supervise-

dOIE. In this system majority votes were taken from three different IE systems that

were used to generate input feature for SupervisedOIE.

3.7.2 Experiment Data

I use four different benchmark datasets to train and test the models. The

datasets are AW-OIE [67], WEB and NYT [146] and PENN [147]. Table 3.2 presents

more details on these datasets.

Data Set # of Sentences # of Tuples

AW-OIE 3,300 17,165

AW-OIE-C 3,300 13,056

WEB 500 461

NYT 222 222

PENN 100 51

Table 3.2: Dataset Statistics

AW-OIE corpus was created by extending the OIE2016 corpus released by

[104]. OIE2016 [104] was created by an automatic translation from question-answering
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driven semantic role labeling annotations [148]. [67] extended these techniques and

apply them to the QAMR corpus [149] to create AW-OIE. This dataset is the largest

dataset available for supervised open information extraction.

However, when I observe the information extracted from this dataset, I notice

that the dataset is not accurate enough to be considered as a benchmark dataset.

I often find missing relations and noise introduced during the automatic generation

process. To solve this problem, I manually inspect the dataset and find several

patterns causing this noise in the dataset. I use these patterns to filter out noisy

and missing relations from the dataset and call the cleaned data set ‘AW-OIE-C’.

The WEB dataset represents the challenges of dealing with web text. This

contains many incomplete and grammatically unsound sentences. NYT contains

formal, well written news stories from the New York Times Corpus. The PENN

dataset was created from PENN Tree Bank. I use AW-OIE-C for training and

testing purpose and other three datasets only for testing. I use 8,000 instances from

AW-OIE-C to train SenseOIE and 1,456 instances to test all the models. I set aside

3,600 instances for a new experiment described in Section 3.7.8.

3.7.3 Implementation Details

SupervisedOIE is implemented using the Keras framework [150] with Tensor-

Flow backend 4. Two layers of stacked bidirectional LSTM are used, each with

100 neurons with tanh activation. RMSprop optimizer is used as it is often recom-

mended for recurrent neural networks. The model is trained using early stopping

4https://www.tensorflow.org/
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to prevent overfitting. A batch size of 32 samples with 10% word-level dropout is

used. The word embeddings are initialized using the Word2Vec [18] Google News

300-dimensions pre-trained embeddings. The part of speech and syntactic role em-

beddings are 25 dimensional and randomly initialized and updated during training.

3.7.4 Performance Evaluation

In this section, I report the utility of the proposed model by comparing its

performance with the baseline systems on the four datasets (AW-OIE-C, WEB,

NYT and PENN).

3.7.5 Evaluation Metric and Matching Function

I compare the systems using precision, recall and F1-score. To compute the

measures, I need to match the automated extractions by the systems and the ground

truth extractions. In this work, I compute the measures based on tuple-level match-

ing and word-level matching. Word-level matching has been used for the evaluation

metric for many NER systems. For each word, I match the tag generated by the

system with the word’s label.

Tuple-level matching is used in other Open IE systems [67,105]. It is done by

mapping extracted tuples with their corresponding benchmark tuples. One strategy

for tuple matching would be to enforce an exact match by matching the boundaries of

the extracted and benchmark tuples in text. However, as noted in earlier works [67,

151], this method penalizes different but equally valid arguments, which are resulted

37



from different annotation styles employed by different Open IE systems. Therefore,

dealing with multiple OIE systems requires a less restrictive matching strategy.

[151] introduced relaxed containment strategy. With this strategy, extractions are

counted correct as long as they contain all gold standard arguments. [67] used a

partial matching strategy allowing some variability (e.g., omissions of prepositions

or auxiliaries) in the predicted tuples.

Following these works, I also use a partial matching strategy that accommo-

dates all sorts of variabilities. I consider each argument or predicate correct if it

partially matches with the benchmark data over a certain threshold. This threshold

can control the leniency or strictness of the matching function. This metric allows

a more balanced and fair comparison between systems that can extract potentially

correct arguments beyond benchmark extraction.

3.7.6 Comparison with the Baseline Systems

Table 3.3 shows the tuple-level F1-score of SupervisedOIE and the benchmark

systems. SupervisedOIE outperforms all baseline systems with a large difference.

On the AE-OIE-C dataset, SupervisedOIE achieves the highest F1-score of 0.79.

In comparison with the unsupervised Open IE methods, the performance gain of

SupervisedOIE ranges from 66% to 315%. SupervisedOIE outperforms OpenIE5 by

36% to 56%. When compared to UKG, SupervisedOIE ’s performance gain ranges

from 92% to 186%. In terms of SupervisedOIE ’s performance over the different

datasets, it’s worth noting the differences in annotations in the different datasets.
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AW-OIE-C Web NYT PENN AW-OIE

SupervisedOIE 0.79 0.66 0.41 0.52 0.72

RnnOIE - 0.67 0.35 0.44 0.62

OpenIE5 0.58 0.46 0.29 0.34 -

Stanford OpenIE 0.19 0.24 0.21 0.31 -

UKG 0.41 0.23 0.15 0.21 -

Majority Votes 0.40 0.42 0.24 0.27 -

Table 3.3: Performance (F1-score) comparison of SupervisedOIE and the baseline

systems

As the test data from AW-OIE-C follows the same annotation style as the training

data, the performance of SupervisedOIE is much higher on this dataset compared

to other datasets.

Figure 3.7 shows the comparison results based on the word level F1-scores. The

results also demonstrate that SupervisedOIE works better than the other systems.

Especially, SupervisedOIE shows much higher accuracy in detecting words belonging

to the arguments and the relation, but a slightly lower accuracy for other words.

3.7.7 Feature Ablation Study

To investigate the contribution of each feature type on SupervisedOIE, I con-

ducted a feature ablation study. Table 3.4 shows the F1-scores of several variations
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Figure 3.7: Word level F1-score comparison

built with a different subset of features. I note that the performance of Supervise-

dOIE is, on average, 109% higher than the model using the only word embedding

features. Overall the performance gain over word embedding gain ranges from 37%

to 156%. This performance boost proves that using domain independent knowledge

with static embedding for OpenIE systems is very effective. Surprisingly model

without features from the dependency parse tree outperforms SupervisedOIE in 2

out of 4 datasets. This might be an indicator that simple concatenation is not the

best way to include features from the dependency tree.
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AW-OIE-C Web NYT PENN

Word Embedding 0.38 0.48 0.16 0.22

(Word + PoS + SRL) Embedding 0.42 0.58 0.16 0.27

Features from Existing Open IE 0.70 0.54 0.38 0.47

All Features - DTI 0.78 0.69 0.45 0.51

All Features 0.79 0.66 0.41 0.52

Improvement over Word Embedding 107% 37% 156% 136%

Table 3.4: Performance (F1-score) comparison of different feature sets

3.7.8 SupervisedOIE as Annotator

Since SupervisedOIE outperforms the baseline systems by a large margin, it is

worth investigating if SupervisedOIE can be used to bootstrap a supervised Open

IE model for new domains by automatically producing annotated data. Previously,

[105] used OpenIE4 [152], an earlier version of OpenIE5, to automatically create a

training dataset. The limitation of their approach is that using only one OpenIE

system’s extraction as ground truth will result in biased and low coverage of ex-

tracted relations. As each unsupervised OpenIE system has its own rules to extract

different relations, applying only one system might miss other potential relations

that other Open IE systems can extract. However, since SupervisedOIE learns from

multiple existing Open IE systems, it can extract many different relation types.

For this purpose, I run SupervisedOIE on the 3,600 instances from AW-OIE-
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Figure 3.8: Model Architecture of SupervisedOIE V2

C and use its extracted results as the ground truth to train a supervised model.

This new model is named SupervisedOIE V2 to differentiate it from SupervisedOIE.

The model is quite similar to SupervisedOIE using LSTM to aggregate features and

classify the labels of a sequence of words. The input features for each word are word

embedding, POS embedding, syntactic role embedding, dependency tree information

and label of the previous word. During training, label of the previous word comes

from ground truth and during testing, this value is predicted by the model. This

feature is helpful to generate multiple sequences of extractions from a single sentence.

However, note that this model does not use the results of unsupervised systems as

features. Figure 3.8 shows the architecture and features of SupervisedOIE V2.

During the inference time, to extract multiple relations from a single sentence,
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Figure 3.9: Example of Beam Search Predicting Multiple Relation Extraction Se-

quences from One Sentence

beam search is used to find multiple possible labels for each word. Instead of greedily

choosing the most likely next step as the sequence is constructed, the beam search

expands all possible next steps and keeps the k most likely results, where k is a user-

specified parameter and controls the number of beams or parallel searches through

the sequence of probabilities. Figure 3.9 shows an example of beam search predicting

multiple relation extraction sequences from one sentence.

To validate the effectiveness of SupervisedOIE as an annotator model, I com-

pare SupervisedOIE V2 ’s performance when trained with the human-labeled data

and SupervisedOIE ’s extractions. As with SupervisedOIE, both models are initial-

ized with the pre-trained word embedding and randomly initialize the part-of-speech

and syntactic role embeddings. In this experiment, the beam size is set to 3, which

gives an overall best performance. Table 3.5 shows the results from these two mod-

els. Both models achieve similar F1-scores on the four test dataset. These results
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support SupervisedOIE ’s role as a digital annotator for an unlabeled dataset.

AW-OIE-C Web NYT PENN

Human Labels 0.55 0.51 0.23 0.27

SupervisedOIE Labels 0.54 0.50 0.23 0.23

Table 3.5: Performance (F1-score) of SupervisedOIE V2 trained with the human-

labeled data vs. labeled data generated by SupervisedOIE

3.8 Summary

I develop a new supervised Open IE system that uses static word embed-

ding and domain independent knowledge including parts of speech tag, syntactic

role label, dependency tree information and results of existing Open IE systems as

features. Validation using several benchmark data sets generated for the Open IE

task shows that the proposed method is very effective in outperforming both other

supervised and unsupervised Open IE systems.

Further, I investigate if proposed model can be applied to automatically gener-

ate annotated data to train a new supervised model for a new task. The experiment

shows that a supervised model trained with the model-generated data performs

similarly to the model trained with human labeled data. This result shows that

the proposed approach can overcome the cold-start problem in machine learning by

leveraging existing unsupervised systems.
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Chapter 4: Combining Static Embedding with Domain-specific Knowl-
edge for Malware Attribute Extraction

4.1 Research Overview

IE in a specific domain focuses on satisfying precise, narrow, pre-specified tar-

get information from domain-specific text. Domain-specific IE is challenging because

domain-specific text usually has a highly specialized vocabulary and domain-specific

relations between domain concepts. Domain knowledge can be very beneficial to

overcome the challenges of the domain-specific IE approach. A specialized domain

like cybersecurity is ideal for illustrating the benefit of utilizing domain knowledge

with word embedding for IE tasks.

In the cyber-security domain, automated malware identification based on text

is crucial for immediate awareness of security flaws. Detection of malware often

relies on an understanding of the characteristics of malware behavior. To estab-

lish a standard for unambiguously characterizing malware, MAEC (Malware At-

tribute Enumeration and Characterization), a community-based project organized

by MITRE, has specified a set of standard malware attributes [153]. Based on

MAEC, the actions of a malware can be categorized by four attributes: Action-

Name, Capability, StrategicObjectives and TacticalObjectives. ActionName specifies

the actions taken by a malware. For example, “delete file” is a malware action that
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deletes existing files from affected systems. Capability defines the general capabili-

ties of a malware. For example, “anti-removal” is a malware capability that prevents

itself from being removed from a system. StrategicObjectives and TacticalObjectives

are subcategories of Capability to capture more details. For example, a malware can

have a StrategicObjective of “staging data for exfiltration” and a TacticalObjective

of “moving data to a staging server”. In total, MAEC specified 211 ActionNames,

20 Capabilities, 65 StrategicObjectives, and 148 TacticalObjectives.

The IE task of automated malware attribute identification based on cyber-

security text is very challenging for three reasons: 1. domain-specific text, 2. a

large number (444) of malware attribute labels and 3. a small number of training

instances. To solve this domain-specific IE task, I incorporate domain knowledge

with static word embedding. Domain knowledge that details what type of informa-

tion is to be obtained from domain-specific text can boost the performance of the

IE system. In this research, I develop a technique to enrich static word embedding

with diverse domain knowledge, including domain text, MAEC attribute specifica-

tion and human annotation. Domain knowledge enriched embeddings are used as

features to train a supervised IE model that achieves high performance. Evaluation

has demonstrated the effectiveness of the proposed method over the state-of-the-art

malware attribute prediction systems.

4.2 Background

SemEval organized a shared task (called SecureNLP) on semantic analysis

for cybersecurity texts. It adopted the same dataset and task definitions as [118].
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Figure 4.1: Annotated Sentence Fragment for SemEval Shared Task.

There are four subtasks in SemEval SecureNLP: (1) identifying sentences containing

malware actions from APT reports; (2) identifying “Malware Action”, “Subject of

Action”, “Object of Action” and “Modifier of Action”in the identified sentences;

(3) identifying four relations,“Subject-Action”, “Action-Object”, “Modifier-Action”

and “Action-Modifier” in identified sentences; (4) assigning attribute labels to each

identified action based on the MAEC specification. Figure 4.1 shows an annotated

example for these tasks.

This research describes my approach to solve subtask 4. The input to the

proposed system includes all the sentences identified in subtask 1 with additional

labels for the entities identified in subtask 2. Each training and testing instance

used in SemEval SecureNLP only contains a single malware action.

4.3 System Overview

Figure 4.2 shows the high-level system architecture. First, all the raw APT

reports are augmented with annotations to encode the knowledge from both the

training data and MAEC. This allows designing a unified representation for both
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Figure 4.2: System Architecture

types of knowledge. The annotated texts are then used by WAE to learn embed-

dings for both words and malware attribute labels simultaneously. The learned

word and attribute label embeddings are then used to construct high qualify predic-

tion features. Finally, supervised machine learning is employed to predict malware

attribute labels. There are four classifiers, one for each malware attribute. Each

classifier performs n+1-way classification, where n is the number of possible labels

for each attribute and 1 is for ‘no value’ when the value of an attribute is not

conveyed in the text.

4.4 Annotation Generation

To annotate text with additional knowledge, the first step is to map each

attribute label to a set of keywords based on both MAEC and the human annotations

in the training data. Then attribute labels are used to annotate corresponding

keywords in text. Details of these steps are described below.

Identify keywords from MAEC: Figure 4.3 shows a snippet of the MAEC

specification. Each malware attribute label in MAEC includes a description and a

few keywords. The malware action 004 in Figure 4.3 has a name ‘emulate driver’, a

description ‘specify the defined action of emulating an existing driver on a system’
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Figure 4.3: A Snippet of the MAEC Specification

and two keywords: ‘driver’ and ‘emulate’. Since the keywords carry the most es-

sential information about a malware attribute label, each label is linked with these

keywords (e.g., ActionName004: ‘driver’, ‘emulate’).

Identify keywords from training data: Since a malware attribute label

in the training data is at the sentence level, to extract keywords for each attribute

label, all the sentences associated with the same label are extracted and considered

as one document. To select the most relevant keywords, I only keep those conveying

“Malware Action”, “Subject of Action”, or “Object of Action” (which were identified

in subtask 2).

Keywords ranking: For the same attribute label, the keywords from MAEC

and those from the training data are merged to form a single document. Then tf-idf

scores are used to select the most informative keywords to differentiate these labels.

In the experiments, the top 25 keywords based on their tf-idf scores are used.

Text annotation generation: Finally, for all the APT documents, the text

is annotated with malware attribute labels. Specifically, for any word in the APT

documents, if it is a keyword associated with k different labels, the word is annotated

with k attribute labels.
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4.5 Word Annotation Embedding (WAE)

To combine domain knowledge with static word embedding, I develop a novel

Word Annotation Embedding (WAE) method that learns word embeddings with

text annotations. Similar to static word embedding Word2Vec [141], the goal here

is to learn features that capture the semantic relations between words. In addition,

to facilitate attribute classification, WAE aims to capture the semantic relations

between words and their labels. Specifically, WAE brings words and their attribute

labels closer in the embedding space and pushes the embeddings of different labels

far away from each other. The inputs to this system are texts as well as annotations.

In addition to producing vector representations of words, WAE also produces vector

representations of the annotations in the same embedding space. Similar to the

CBOW and the Skip-gram models used in Word2Vec, there are five variants of the

WAE model with different objectives.

WAE Model 1: The learning objective of model 1 is to predict a word

given its annotations plus the other words in its context. A sliding window on the

input text stream is employed to generate the training samples. In each sliding

window, the model uses the surrounding words and the annotations of the target

word as the input to predict the target word. More formally, assume a word Wt has

a set of Mt annotations (At,1, At,2, ...,At,Mt). Given a sequence of T training words,

{W1,...,Wt,...,WT}, the objective of WAE Model 1 is to maximize the average log

probability shown in Equation 4.1.

1

T

T∑
t=1

( ∑
−C≤j≤C,j 6=0

logP (Wt|Wt+j) +
∑

0≤k≤Mt

logP (Wt|At,k)
)

(4.1)
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where C is the window size, Wt is the target word, Wt+j is a context word, At,k is

the k-th annotation of Wt.

WAE Model 2: The objective of this model is to predict the context words

and their annotations based on a target word. More formally, given a sequence

of T training words, {W1,...,Wt,...,WT}, and their annotations ((A1,1, ...A1,M1), ...,

(At,1, ..., At,Mt), ..., (AT,1,...AT,MT
)), the objective of WAE Model 2 is to maximize

the average log probability shown in Equation 4.2.

1

T

T∑
t=1

∑
−C≤j≤C,j 6=0

(
logP (Wt+j |Wt) +

∑
0≤k≤Mt+j

logP (At+j,k|Wt)
)

(4.2)

where At+j,k is the k-th annotation of the context word Wt+j, and Mt+j is the

number of annotations associated with the context word Wt+j.

WAE Model 3: The objective of model 3 is to use the target word to predict

it’s own annotation as well as the context words and to maximize the average log

probability shown in Equation 4.3.

1

T

T∑
t=1

( ∑
−C≤j≤C,j 6=0

logP (Wt+j |Wt) +
∑

0≤k≤Mt

logP (At,k|Wt)
)

(4.3)

WAE Model 4: The objective of model 4 is to use the target word to predict

the context words and the annotations of both the target word and the context words

and to maximize the average log probability shown in Equation 4.4.

1

T

T∑
t=1

( ∑
−C≤j≤C,j 6=0

(
logP (Wt+j |Wt) +

∑
0≤k≤Mt+j

logP (At+j,k|Wt)
)
+

∑
0≤l≤Mt

logP (At,l|Wt)
)

(4.4)

WAE Model 5: The target word is used to predict not only its context words

but also its labels. To further strengthen their relations, the labels of the target

word are also used to predict the target word. Specifically, given a sequence of T
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words (W1,..,Wt,...,WT ) and their annotations ((A1,1,...,A1,M1),...,(AT,1,...,AT,MT
)),

the objective of this model is to maximize the average log probability shown in

Equation 4.5, where C is the size of the context window, Wt is the target word,

Wt+j is a context word, Mt is number of annotations Wt has and At,k is the k-th

annotation of Wt.

1

T

T∑
t=1

( ∑
−C≤j≤C,j 6=0

logP (Wt+j |Wt) +
∑

0≤k≤Mt

(logP (At,k|Wt) + logP (Wt|At,k))
)

(4.5)

Figure 4.4: Architecture of WAE Model 1

Figure 4.5: Architecture of WAE Model 2
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Figure 4.6: Architecture of WAE Model 3

Figure 4.7: Architecture of WAE Model 4

Label-aware Negative Sampling: Negative sampling [141] was introduced

as an approximation method in Word2Vec to improve the efficiency of model train-

ing. Previously, negative samples were selected either randomly or based on pop-

ularity. The method, however, is insensitive to class labels. Here, I develop a new

annotation-aware negative sampling method to (1) keep different annotations apart

in the embedding space and (2) to keep words associated with different labels apart,

in addition to bringing words and their associated labels closer to each other via

positive samples. For example, in the figure 4.9, word W1, W2 are close to their

annotation A1 and W3 is close to its annotation A2 in the embedding space. W1

and W2 are nearby as they share the same annotation A1. And W3 is far away from
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Figure 4.8: Architecture of WAE Model 5

W1 and W2 as annotation of W3 is different from them. And finally, annotation

A1 and A2 are also distant from each other. To achieve this, WAE randomly selects

(1) a word as a negative sample if it does not share the same annotations as the

target word; (2) an attribute label as a negative sample if it is not the same as the

labels of the target word.

Figure 4.9: Impact of Label-aware Negative Sampling
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4.6 Feature Generation and Classification

Six sets of features are constructed to train the classifiers.

A. (S1) WAEW+Sim: Assume the average word embeddings for a given data

instance generated by WAE is Iwae, and the malware attribute label embed-

ding learned by WAE is LabelEi for each label i. For each LabelEi, SIMi, is

the cosine similarity between WEwae and LabelEi. WAEW+Sim is the con-

catenation of WEwae and all the SIMi. For example, to predict ActionName,

the model will include 100 word embedding features learned by WAE plus 211

similarity features, one for each ActionNames.

B. (S2) w.WAEW+Sim: This feature set is similar to WAEW+Sim except when

computing WEwae, a word with a label is assigned twice as much weight as one

without a label. The intuition is words with labels are important keywords

based on either MAEC or the training data.

C. (S3) WAEW+WAEL+Sim: It is similar to WAEW+Sim except the average

embeddings of attribute labels associated with the instance is also included.

D. (S4) w.WAEW+WAEL+Sim: This is the weighted version of (S3).
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E. (S5) WAEW+WAEL+Sim+Cap: Since the label of StrategicObjective and

TacticalObjective depends on the label of Capability, the capability label is

added in the feature set. A 1-hot vector with 20 elements is used to encode

a Capability label. The ground truth and the predicted label of Capability is

used during training and testing respectively.

F. (S6) w.WAEW+WAEL+Sim+Cap: This is the weighted version of (S5)

4.7 Experiments

4.7.1 Dataset

The dataset used in the experiments was provided as a part of the SemEval

shared task. It contains 456 APT reports [119], 39 of them were annotated by hu-

mans. Among them, 2975 sentences contain malware actions, which are the data

instances used in this study. The annotated data are very sparse. There are 982 sen-

tences with ActionName label, 2524 sentences with Capability label, 2004 sentences

with StrategicObjective label and 1592 sentences with TacticalObjective label. Out

of the 444 attribute labels, 190 labels do not appear in the labeled data. For the

remaining 254 attribute labels, 92 labels occur less than five times, and 50 labels

occur only once. In the experiments, I use the raw text in all the APT reports to

train WAE. There are 16423 unique tokens and a total of 2544645 tokens in the

dataset. I train both Word2Vec and WAE with context window size 5 and 100 di-

mension vectors. The 39 annotated documents were divided into a training set (23

documents), a validation set (8 documents) and a test set (8 documents). Only the
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training dataset is used to generate annotations for WAE. The validation dataset

isused for parameter tuning.

4.7.2 Evaluation Results

For feature generation, I test all five versions of WAE model. In all the exper-

iments, features learned from WAE model 5 consistently give the best performance

over other four WAE models. In this section I only report results using features

from WAE model 5. For classification, I try both SVM and neural network-based

models such as multilayer perceptron. After experimenting with different model

parameters, I find that the best SVM model with a linear kernel performed slightly

better than the best neural network models. I speculate that this might be because

SVM is less likely to overfit when the training data are sparse. Table 3.3 shows

the average F-scores over 5 runs by the SVM models on the test data. I compare

proposed models with three baseline systems: (B1) [118], (B2) Word2Vec and (B3)

Word2Vec + cap. Among them, (B1) represents the best published results on the

same dataset. (B2) and (B3) are all comparable models with embeddings learned

by Word2Vec.

As shown in Table 4.1, all proposed models outperform all the baseline systems.

For ActionName, best model achieve a F-score of 0.46 (w.WAEW+Sim) and for

Capability, best model achieve a F-score of 0.63 (e.g., WAEW+WAEL+Sim). For

StrategicObjective and TechnicalObjective, the WAEW+WAEL+Sim+Cap model

results in the highest F-score of 0.47 and 0.45 respectively. The improvement over

the Word2Vec model is 15%, 11%, 15% and 25% respectively, and, the improvement
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Models ActionName Capability StratObj TactObj

(B1) [118] 0.33 0.41 0.27 0.22

(B2) Word2Vec 0.40 0.57 0.41 0.36

(B3) Word2Vec+Cap NA NA 0.41 0.39

(S1) WAEW+Sim 0.44 0.61 0.43 0.41

(S2) w.WAEW+Sim 0.46 0.62 0.44 0.43

(S3) WAEW+WAEL+Sim 0.45 0.63 0.46 0.43

(S4) w.WAEW+WAEL+Sim 0.45 0.63 0.45 0.43

(s5) WAEW+WAEL+Sim+Cap NA NA 0.47 0.45

(S6) w.WAEW+WAEL+Sim+Cap NA NA 0.47 0.45

∆1 : over [118] ↑39%(p < 0.05) ↑54%(p < 0.05) ↑74%(p < 0.05) ↑105%(p < 0.05)

∆2 : over Word2Vec ↑15%(p < 0.05) ↑11%(p < 0.05) ↑15%(p < 0.05) ↑25% (p < 0.05)

∆3 : over Word2Vec+Cap NA NA ↑15%(p < 0.05) ↑15% (p < 0.05)

Table 4.1: Evaluation Results on Malware Attribute Extraction

over [118], a previous state of the art, is 39%, 54%, 74% and 105% respectively. The

improvement over Word2V ec + Cap is 15% and 15% respectively for StrategicOb-

jective and TechnicalObjective. I also conduct t-tests to verify the significance of

the improvements. The t-test results confirm that the proposed models significantly

outperformed the baseline models with p<0.05. Moreover, the value of ”Capability”

seems to help the prediction of StrategicObjective and TechnicalObjective.
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4.8 Summary

In this chapter, I combine domain specific knowledge with static word em-

bedding to build IE system for cyber-security. I present a novel method to predict

malware attribute labels from cybersecurity text. Given a large number of attribute

labels and limited training data, I develop a new feature learning method to incor-

porate knowledge from diverse knowledge sources such as raw text, MAEC specifi-

cations and human annotations. I test the new system using the SemEval shared

task data and evaluation demonstrates that the features learned by the proposed

models are much more effective than an existing state of the art as well as embed-

ding features learned by word2vec. My investigation highlights the importance of

incorporating diverse domain knowledge sources in domain specific IE task.
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Chapter 5: Combining Contextual Embedding with Domain-independent
Knowledge for Clinical Relation Extraction

5.1 Research Overview

Electronic Medical Record (EMR) is an electronic version of a patient’s med-

ical history that healthcare providers maintain over time. Clinical text in EMR

includes physicians’ notes, surgical records, discharge summaries and laboratory

reports. This contains valuable information about a patient’s conditions such as

symptoms, diagnoses and treatments. Hence identifying, extracting and mining this

information is of great importance for managing and improving patient care. Manu-

ally inspecting a large amount of clinical text is labor-intensive and time-consuming.

Therefore, IE system, which can automatically extract information of interest from

text, is beneficial for clinical research and applications. One of the fundamental

tasks of clinical NLP is extracting relations between medical concepts from texts

(e.g., extracting relations between diseases and treatments). For example, in the

sentence “Ibuprofen reduced inflammation but likely caused heartburn”, “inflam-

mation” was effectively treated by “ibuprofen” and “heartburn” is an adverse event

caused by the same drug. Identifying these relations is essential to understand how

patients respond to treatments. Therefore, automated extraction of relations be-

tween medical concepts is necessary for clinical decision making and patient care.
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In this study, I develop neural network models that classify the relationship be-

tween two medical concepts in a given sentence (e.g., between a treatment such as

“ibuprofen” and a medical problem such as “inflammation”).

Text embedding, a technique to automatically learn dense vector represen-

tations for words and sentences, has proven to be effective for relation extrac-

tion [154, 155]. Recently contextual word embedding (e.g., BERT), where the em-

bedding vector for each word varies with its context, has gained much popularity

over static word embedding (e.g., Word2Vec), where a fixed embedding vector is

learned for each word. In this research, I investigate the effectiveness of contextual

word embedding for clinical relation extraction task. While contextual embedding

has produced impressive results on diverse downstream NLP tasks, it is unclear

whether contextual embedding can be combined effectively with typical surface and

syntactic features commonly used in traditional relation extracting systems. In this

research, I combine contextual embedding from BERT with domain-independent

knowledge, including POS tag, dependency tree path, relative distance between en-

tities and IOB encoding. These domain-independent syntactic and surface features

are traditionally used for IE applications. These combined embeddings and knowl-

edge are used as input features for the relation classifier model. I compare the

effectiveness of BERT contextual embedding with Word2Vec static embedding, es-

pecially when combined with traditional domain-independent features. I investigate

if these domain-independent features are beneficial for IE systems in a specialized

domain like clinical text. I evaluate models on a benchmark clinical text dataset;

the i2b2-2010 dataset [156] where the task is to classify relations between medical
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concepts.

5.2 Contextual Embedding

BERT (Bidirectional Encoder Representations from Transformers) is the most

popular contextual embedding model. BERT is a transformer-based language model

that uses an attention mechanism to learn contextual relations between words in a

text. Unlike directional models, which read the text input sequentially (left-to-right

or right-to-left), the Transformer encoder reads the entire sequence of words at once.

Therefore it is considered bidirectional. This characteristic allows the model to learn

the context of a word based on its surroundings (left and right of the word). BERT is

trained on large text corpora collected from the Books Corpus and Wikipedia. BERT

uses a masked language model (MLM) and next sentence prediction objectives to

learn text embedding. Before feeding word sequences into BERT, 15% of the words

in each sequence are replaced with a [MASK] token. The model then attempts to

predict the original value of the masked words based on the context provided by the

other, non-masked words in the sequence. In the BERT training process, the model

receives pairs of sentences as input and learns to predict if the second sentence in

the pair is the subsequent sentence in the original document. The input is processed

in the following way before entering the model. Input is tokenized using wordpiece

tokenization. A [CLS] token is inserted at the beginning of the first sentence and a

[SEP] token is inserted at the end of each sentence. Pre-trained BERT model can

be fine-tuned with just one additional output layer to create state-of-the-art models

for a wide range of NLP tasks.

62



5.3 System Overview

I develop a supervised relation classifier trained with contextual embedding

and domain-independent knowledge. I also compare models using contextual em-

bedding with baselines that use static embedding. Figure 5.1 shows system overview

of the model.

Figure 5.1: System Overview

5.4 Input Features

In this section, I describe the diverse feature sets used for clinical relation

extraction.

5.4.1 Text embedding

Word embedding: To generate static word embedding a Word2Vec model

is trained on the Medical Information Mart for Intensive Care (MIMIC)-III clinical
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corpus [82] and the i2b2 dataset to ensure good quality word features for target

application domain. Given an input sentence S = 〈w1, w2, w3, ..., ..., wn〉, the word

embedding of each word wi ∈ S is defined as Ew(wi).

Sentence embedding: [CLS] token embedding from BERT is used as con-

textual sentence embedding in the relation extraction model. ClinicalBert [157], a

pre-trained BERT model in the clinical domain is used to generate embedding. Clin-

icalBert is trained on the texts from BookCorpus, English Wikipedia, biomedical

articles from PubMed and EMRs from the (MIMIC)-III dataset [82]. To get static

sentence embedding, Doc2Vec (D2V) [158] which employs an embedding learning

method similar to Word2Vec is used. Similar to Word2Vec, D2V model is trained

on the Medical Information Mart for Intensive Care (MIMIC)-III clinical corpus [82]

and the i2b2 dataset.

Entity embedding: Entity embedding is generated by taking the average of

the embeddings of the words presented in a concept for both static and contextual

embedding. For example, the embedding of entity e2 in Table 5.1 is generated by

averaging the word embeddings of “left”, “carotid”, “ophthalmic” and “aneurysm”.

5.4.2 Domain-independent Features

POS embedding: Part of speech tag of each word, POS(wi) is derived using

Stanford CoreNLP [159]. Then a POS embedding for each word wi as Epos(wi) is

learned.

IOB encoding: To encode whether each word in S belongs to any of the

target entity, IOB encoding IOB(wi) is assigned to each word. There are a total of
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seven IOB tags in the system: 〈Itreatment, Itest, Iproblem, Btreatment, Btest, Bproblem, O〉,

where the prefix B represents the beginning of a entity (E.g., Btreatment represents

the first word of a treatment entity), and I indicates a word inside a entity (e.g.,

Itreatment represents an internal word of a treatment). The tag O represents other

words not related to any of the target entity. Thereafter, each IOB tag is transformed

into an IOB embedding during model trainining. Table 5.1 shows an example of the

IOB encoding of the words in a sentence.

Relative distance: A relative distance encoding is employed for each of

the two entities e1, e2 in a relation. This is done by marking the positions of all the

words in a target concept as 0. Every word to its right is assigned an incrementally

higher distance number and every word to its left is assigned an incrementally lower

number. The embedding of the relative positions as Er1(wi) and Er2(wi) are learnt

during model training. Table 5.1 shows an example of the relative distance encoding

for the two concepts e1, e2 in a relation.

Dependency tree: Dependency tree is represented as a directed graph, with

m nodes corresponding to each of the m words in a sentence. Figure 5.2 shows

the dependency tree for an example sentence. Dependency tree is extracted using

Stanford CoreNLP [159]. To create a fix sized data structure irrespective of the

length of the sentence and the depth of the dependency tree, the tree is converted

to an n×n adjacency matrix, A, where n is a pre-determined fixed sentence length,

If there is a edge between wi and wj in the dependency tree, then Aij = Aji = 1

and 0 otherwise. Following [160], self-loop and normalization are added into the

adjacency matrix as these operations have shown to improve effectiveness. Self loop
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Sentence, S She is status post [coiling]treatment with stent placement for [left carotid ophthalmic aneurysm]problem.

e1 coiling

e2 left carotid ophthalmic aneurysm

Relative Distance (e1) 〈−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9〉

Relative Distance (e2) 〈−9,−8,−7,−6,−5,−4,−3,−2,−1, 0, 0, 0, 0, 1〉

IOB Encoding 〈 O, O, O, O, Btreatment, O, O, O, O, Bproblem, Iproblem, Iproblem, Iproblem, O 〉

Table 5.1: A Example of Relative Distance and IOB Encoding

Figure 5.2: An Example of a Sentence Dependency Tree and POS Tags

is added by Ã = (A+ I) where I is an n×n identity matrix. Then normalization is

performed for each row of Ã so that Ãi = Ãi/di where di =
∑n

j=1Aij is the degree

of the word at the ith position in the graph.

5.5 Experiment

5.5.1 Dataset

For this study, I use the 2010 i2b2/VA dataset on Natural Language Process-

ing Challenges for Clinical Records. This dataset contains discharge summary and

progress report from different healthcare providers. My research focuses on the rela-

tion extraction task, which is to identify eight target relations among three medical

concepts such as treatments, problems and tests. The dataset used for relation ex-

traction during the 2010 i2b2/VA challenge includes 394 training reports, 477 test

reports, and 877 un-annotated reports. After the challenge, however, only a part of

the data was publicly released. The dataset I downloaded from the i2b2 website only
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Relation Type Train Report Test Report Total

Treatment improve or cure medical problem (TrIP) 51 152 203

Treatment worsen medical problem (TrWP) 24 109 133

Treatment caused medical problems (TrCP) 184 342 526

Treatment administered medical problem (TrAP) 885 1732 2617

Treatment was not administered because of medical problem (TrNAP) 62 112 174

Test reveal medical problem (TeRP) 993 2060 3053

Test conducted to investigate medical problem (TeCP) 166 338 504

Medical problem indicates medical problems (PIP) 755 1448 2203

No Relation (None) 7111 12821 19932

Table 5.2: Statistics of the relation extraction dataset from the 2010 i2b2/VA chal-
lenge

includes 170 documents for training and 256 documents for testing. Descriptions

and statistics of the target relations can be found in table 5.2.

5.5.2 Model Architecture

To systematically investigate the advantage of contextual embedding over

static embedding and the effectiveness of merging domain-independent knowledge

with different types of embedding, I train several models. Here I discuss each model

in detail.

Word2Vec-BiLSTM : In this model, static word embeddings are used as

input to BiLSTM. BiLSTM is used to aggregate word-level features and generate

sentence-level representations [161]. BiLSTM can learn the word order as well as

the long-term dependency in a sentence. The advantage of using BiLSTM is that it

can leverage the information from neighboring words on both sides. The output of
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BiLSTM is used for classification.

Doc2Vec-Classifier : Doc2Vec sentence embedding is connected to a fully

connected layer and finally to the classifier layer.

BERT-classifier : BERT is fine-tuned for the relation extraction task by

adding a softmax layer on top of BERT final layer. This model only uses [CLS]

token embedding as sentence embedding for classification.

Word2Vec-DIF-BiLSTM : In this model, static word embedding and in-

dependent domain features (DIF) are combined and passed through the BiLSTM

model. In general, words in sentences, words in concepts, relative distances, POS

tags and IOB tags are first input into an embedding layer to learn their embeddings.

The embedding features are then concatenated and input to BiLSTM: E(wi) =

Ew(wi)⊕Epos(wi)⊕Eiob(wi)⊕Er1(wi)⊕Er2(wi)⊕Ãi, where⊕ operator denotes a con-

catenation operation. Therefore, EBiLSTM = 〈E(w1), E(w2), E(w3), ..., ..., E(wn)〉

forms our input features for all words in a sentence. Output of BiLSTM is combined

with concept embedding for relation classification. Figure 5.3 shows the architecture

of Word2Vec-DIF-BiLSTM model.

BERT-DIF-BiLSTM: To combine BERT contextual sentence embedding

with other features, there are two options: early fusion and late fusion. Early fusion

combines BERT embedding with other features at the word/token level and then

uses BiLSTM to learn a sequential representation of all the word features. With

this strategy, feature fusion occurs at the word level. Late fusion combines the

sentence representation learned by BERT with the sequential representation of all
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Figure 5.3: Model Architecture of Word2Vec-DIF-BiLSTM

the other features learned by BiLSTM. With this strategy, feature fusion occurs at

the sentence level.

Previous research suggested that using BERT sentence embedding for classi-

fication is more effective than using BERT word/token embedding and then input

them to an LSTM to generate a sentence embedding [138]. As BERT already cap-

tures long-term dependency between words in a sentence, it could be redundant to

use LSTM to capture contextual information again. For this reason, in the model

shown in Figure 5.4, a late fusion strategy is adapted where BERT sentence embed-

ding is combined with a sequential representation of other word-level features (POS

tag, relative distances, IOB encoding and dependency tree information) learned by

LSTM. In addition, entity embeddings are learned by averaging the embeddings of

the tokens in each entity. Finally, all the representations are merged and passed
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through a fully connected layer for classification. In this model, all the existing

BERT parameters and the new parameters in BiLSTM are fine-tuned during rela-

tion classification.

Figure 5.4: Model Architecture of BERT-DIF-BiLSTM

Doc2Vec-DIF-BiLSTM: Same late fusion is adopted to combine Doc2Vec-

based static sentence embedding with the output of BiLSTM as shown figure 5.5.

5.5.3 Experiment Setting

All models with BiLSTM are implemented with 2 stacked BiLSTM layers with

128 cells in each layer, each using the tanh(·) activation function. Two fully con-

nected layers are used for all the models before the softmax layer with 128 and 64

neurons, respectively. Adam optimizer [162] with a 0.001 learning rate is used for

all the models. Batch size of 256, with 10% word-level dropout and 10% recurrent

dropout, are used in training BiLSTM. To avoid over-fitting, 10% dropout is em-

ployed in the fully connected layer. The word embeddings and concept embeddings
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Figure 5.5: Model Architecture of Doc2Vec-DIF-BiLSTM

are initialized using 100-dimensional Word2Vec embedding and 768-dimensional

BERT embedding. The embedding layers for POS, IOB encoding, Relative Po-

sitions are 20, 5, 50 respectively and randomly initialized. For relative position

embedding, a specialized Position Embedding layer1 that maps integers (negative,

positive, zero) to an embedding space is used. All models are implemented using

Keras2 with a Tensorflow3 backend. As this is a relatively small corpus, the train-

ing and testing data are combined, and 5-fold cross-validation is performed in all

experiments.
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Model Name No Relation PIP TeCP TeRP TrAP TrCP TrIP TrNAP TrWP
9 Class

F1 Score

Baseline[1] N/A 0.6333 0.6117 0.8444 0.7974 0.6213 0.6159 0.4227 0.4457 0.7434

Word2Vec-biLSTM 0.8398 0.2924 0.2047 0.4536 0.5334 0.3298 0.1453 0.0621 0 0.6979

Word2Vec-DIF-BiLSTM 0.9275 0.7896 0.6437 0.8685 0.8057 0.6320 0.5000 0.4025 0.2262 0.8808

Doc2Vec 0.8057 0.0362 0 0.0165 0.0299 0 0 0 0 0.5585

Doc2Vec-DIF-BiLSTM 0.8985 0.7154 0.2931 0.7984 0.6967 0.4152 0.2222 0.1896 0.0925 0.8249

BERT 0.8438 0.4280 0.4593 0.5520 0.6068 0.5064 0.4946 0.5372 0.3183 0.7447

BERT-DIF-BiLSTM 0.8554 0.4634 0.4494 0.6788 0.6266 0.5096 0.4299 0.1860 0.0606 0.7646

Table 5.3: System Performance on Clinical Relation Extraction

5.5.4 Performance Evaluation

This section evaluates (i) the effectiveness of static versus contextual text

embedding and (i) the efficacy of domain-independent knowledge combined with

text embedding.

As shown in table 5.3, BERT sentence embedding on its own is the most useful

feature for relation extraction. BERT-Classifier model only using contextual embed-

ding outperforms model using both static word embedding and sentence embedding.

BERT-classifier achieves F1=0.7447 over Word2Vec-BiLSTM with F1=0.6974 and

Doc2Vec-Classifier with F1=0.5585. This result highlights the power of BERT con-

textual embedding in capturing the semantics of a sentence.

However, adding domain-independent knowledge to BERT embedding (BERT-

DIF-BiLSTM) provides only 2.7% improvement of the F1 score. In contrast, adding

the same features to static Word2Vec embedding (Word2Vec-DIF-BiLSTM) has re-

sulted in a 26% increase in performance. The performance of BERT-DIF-BiLSTM

1https://github.com/CyberZHG/keras-pos-embd
2https://keras.io/
3https://www.tensorflow.org/
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(F1=0.7646) is 15% lower than Word2Vec-DIF-BiLSTM (F1=0.8808). This result

is quite surprising as it implies some incompatibility between BERT and other tra-

ditional NLP features, which prevents them from being combined effectively. In

contrast, static word embeddings (e.g., Word2Vec) do not seem to suffer from the

same problem. One possible explanation could be that the late fusion strategy

adopted to combine BERT embeddings with other features differs from the early

fusion strategy used to combine Word2Vec embeddings. To test this hypothesis,

instead of merging word embedding with other word-level features before inputting

to BiLSTM, I adopt late fusion to combine Doc2Vec-based sentence embedding

with the output of BiLSTM. As shown in Table 5.3, Doc2Vec-Classifier on its own

(F1=0.5622) is much worse than either BERT-Classifier (F1=0.7447) or Word2Vec-

Classifier (F1=0.6974). However, when combining Doc2Vec with other features

(Doc2Vec-DIF-BiLSTM), the performance improvement is 49%, which is the high-

est among all the text embedding models. Doc2Vec-DIF-BiLSTM (F1=0.8249) also

outperformed BERT-DIF-BiLSTM (F1=0.7646) by (7.8%). Since the model with

Doc2Vec also adopts a late fusion strategy, late fusion may not directly cause the

poor performance of BERT models.

In summary, if used alone, BERT embedding is the best for relation extrac-

tion. However, Word2Vec-based static embedding works the best when combined

with domain-independent knowledge. In contrast, combining domain-independent

knowledge with contextual embedding has a limited positive impact on performance.
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5.6 Summary

In this research, I investigate effectiveness of combining domain independent

knowledge with contextual embedding for relation extraction from clinical texts. Ex-

periment results show that although contextual embedding learned by BERT on its

own is very effective, it performed poorly when combined with domain-independent

knowledge. Combining domain independent knowledge with static embedding is

very effective for such a task.
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Chapter 6: Combining Contextual Embedding with Domain-specific
Knowledge for Clinical Relation Extraction

6.1 Research Overview

In recent years contextual embedding from pre-trained language models (PLMs)

such as ELMo [23], BERT [163], XLNet [164], and GPT [165] have become very

popular as they can effectively boost the performance of diverse NLP tasks such as

information extraction [166,167], sentiment analysis [168], question answering [169]

and language entailment [163]. These models are trained on large text corpora using

self-supervised tasks such as masked language modeling (MLM) and next sentence

prediction. These models can learn meaningful context-sensitive text embeddings,

and they are frequently used to encode input text in many downstream text analysis

tasks. However, PLMs trained on general-domain text (e.g., books, Wikipedia and

web data) may not be ideal for domain-specific NLP applications (e.g., bio-medical

NLP). In this research, I explore how domain-specific semantic knowledge can be

added to contextual embedding. In particular, I investigate how medical knowledge

can be combined with contextual embedding to facilitate clinical relation extraction.

Previously, significant effort has been made to add domain knowledge into con-

textual embedding. Based on the types of knowledge added, we can group the work

into two categories: integrating domain text [80, 83, 84] and integrating domain-
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specific knowledge [88, 170, 171]. In this research, I conduct a comprehensive in-

vestigation of these methods. I test their effectiveness in integrating knowledge

from Unified Medical Language System (UMLS) into BERT for clinical relation ex-

traction. I focus on UMLS because it is one of the most widely used bio-medical

knowledge sources for clinical NLP.

The main contributions of this work include-

• I conduct a comprehensive empirical analysis of the effectiveness of applying

diverse knowledge integration techniques to combine medical knowledge en-

coded in UMLS with contextual embeddings from pre-trained BERT models

for clinical relation extraction.

• I develop several new knowledge fusion methods such as ClinicalBERT-EE-RI-

CT/ST/SG, ClinicalBERT-EE-ED-CT and ClinicalBERT-EE-KB-MLM for

clinical relation extraction.

• Proposed method ClinicalBERT-EE-RI-ST achieves the state of the art per-

formance on a benchmark clinical relation extraction dataset.

6.2 UMLS

The Unified Medical Language System (UMLS) [33] is a repository of biomed-

ical vocabularies developed by the National Library of Medicine of US. It has three

Knowledge Sources: the Metathesaurus, Semantic Network and SPECIALIST Lex-

icon and Lexical Tools.

The Metathesaurus integrates millions of concepts from over 200 vocabular-
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ies, including CPT, ICD-10-CM, LOINC, MeSH, RxNorm, and SNOMED CT. The

Metathesaurus is organized by concepts. Each concept is characterized by a unique

concept identifier (CUI), definition, attributes and relationships with other concepts.

Additionally, concepts are linked to the corresponding concept names in the various

source vocabularies. For example, the concept “Headache” has CUI C0018681, a

definition of “The symptom of pain in the craninal region” and is related to the

concept “Acetanilide” (CUI C0000973) with the relation of type “may treat”, and

connected to “Ache” (CUI C0234238) with “is a” relation. “Headache” has a to-

tal of 1165 relations with other concepts. The Metathesaurus mentions if different

vocabularies use different names for the same concept or use the same name for mul-

tiple concepts. The Metathesaurus retains all hierarchical information from source

vocabularies. UMLS 2018AB release has a total of 3.82 million concepts and 33.5

million relations.

Semantic Network provides consistent categorization of all concepts repre-

sented in the UMLS Metathesaurus. Each concept in the Metathesaurus is assigned

one or more semantic types linked with each other through semantic relationships.

The links among semantic types define the network structure and show relationships

between the groupings and concepts. The primary link between semantic types is

the ”is a” link, establishing a hierarchy of types. Semantic Network groups concepts

according to their semantic types. It helps to reduce the complexity of the Metathe-

saurus by interpreting the meaning of the Metathesaurus concept. Each semantic

type has an identifier, a definition, a few examples, and relationships. For example,

the semantic type of “Headache” is “Sign or Symptom”. The definition of “Sign or
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Figure 6.1: Methodology Overview

Symptom” is “An observable manifestation of a disease or condition based on clini-

cal judgment or a manifestation of a disease or condition which is experienced by the

patient and reported as a subjective observation”. “Sign or Symptom” is a “finding”

and has “associated with” relation with semantic type “Anatomical Abnormality”

and “manifestation of” relation with semantic type “Pathologic Function”. There

are 127 semantic types and 54 relationships in total.

SPECIALIST Lexicon and Lexical Tools include a large syntactic lexicon

and tools for normalizing strings, generating lexical variants, and creating indexes.

6.3 Methodology

The main steps in this research include (a) generating text embeddings using

BERT, (b) aligning the entities in text with the concepts in UMLS, (c) creating

knowledge graph from Metathesaurus and Semantic Network, (d) generating knowl-

edge graph embeddings and (e) integrating UMLS knowledge with BERT. Figure

6.1 shows overview of this methodology.
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6.3.1 Generating Text Embeddings Using BERT

Study [172] shows that incorporating information about the target entities

along with BERT sentence representation greatly benefits relation classification.

To implement this, given a sentence S, four markers e11, e12, e21 and e22 are

inserted at the beginning and end of the two target entities (e1,e2) in a relation.

In this study’s i2b2 relation extraction dataset, the ground truth entity locations

were provided as the input to the relation extraction model. After inserting these

special tokens, for a sentence “The patient was given ibuprofen for high fever.” with

target entities “ibuprofen” and “fever” becomes: “[CLS] The patient was given e11

ibuprofen e12 for high e21 fever 22 . [SEP]”. Based on the positions of the two

target entities in the BERT embedding, entity embeddings (EE) can be calculated.

Then sentence embedding derived from the [CLS] token embedding and the entity

embeddings are concatenated and passed through a fully connected layer to generate

a representation that contains both sentence and entity embeddings (BERT+EE).

Figure 6.2 shows model architecture of BERT sentence classifier and Figure 6.3

shows model architecture of BERT-EE.

6.3.2 Text and UMLS Concept Alignment

To incorporate domain knowledge from UMLS into BERT, the first step is

to identify UMLS concepts in clinical notes. Apache cTAKES [173] is used to

extract named entity mentions in clinical notes and align them with the concepts in

UMLS. cTAKES is a clinical Text Analysis and Knowledge Extraction System that

extracts clinical information from unstructured text. It processes clinical notes and
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Figure 6.2: BERT Architecture for Sentence Classification

identifies clinical named entities such as drugs, diseases/disorders, signs/symptoms,

anatomical sites and procedures, and maps them to UMLS concepts. Figure 6.4

shows an example of cTAKES output. Using cTAKES 46305 out of 58688 entities

in the dataset can be mapped to UMLS concepts.

6.3.3 Creating Knowledge Graph from Metathesaurus and Semantic
Network

The Metathesaurus and the Semantic Network can be considered multi-relational

knowledge graphs with nodes corresponding to concepts or semantic types and edges

to relations. Each relationship is represented as a triplet (h, r, t), indicating a re-

lationship (r) between two nodes (h and t). A subset of the Metathesauras and

the complete semantic network are used to create the knowledge graph (KG) for
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Figure 6.3: Model Architecture of BERT-EE

this research. Specifically, all the CUIs extracted from our dataset using cTAKES

are selected. Then a subset of the Metathesauras is selected by collecting all CUIs

and relations that are one hop away from the initial set of CUIs. This graph is

connected with the semantic network by including CUI and their semantic type

relationships. This created knowledge graph contains 312474 nodes and 1613019

relations. Figure 6.5 shows an example of the created knowledge graph.
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Figure 6.4: Example of cTAKES Output

6.3.4 Generating Knowledge Graph Embeddings

Once the knowledge graph is created, multiple popular KGE models such as

TransE [174], DistMult [175], ComplEx [176], [177] and ConvKB [178] are employed

to create knowledge graph embeddings. TransE is a translation-based model that

uses a distance-based scoring function. DistMult and ComplEx are Semantic match-

ing models that exploit similarity-based scoring functions. ComplEx is an extension

of DistMult that uses complex-valued embedding vectors that contain complex num-

bers to handle asymmetric data. ConvE and ConveKB are neural network-based

models that use convolution networks. The effectiveness of these methods is evalu-

ated on a link prediction task, which predicts an entity that has a specific relation

with a given entity, i.e., predicting h given (r, t) or t given (h, r). Among these

KGE methods, ComplEx performs the best on the link prediction task. As a result,

knowledge graph embeddings from ComplEx are used in the experiments. Table 6.1

shows the results of different KGE methods. From KGE, concept embedding, se-
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Figure 6.5: A Snippet of a Knowledge Graph Created from UMLS

mantic type embedding, semantic group embedding and relation embedding are

collected.

6.3.5 Integrating UMLS Knowledge with BERT

In the experiments, I primarily use ClinicalBERT trained on clinical text cor-

pora. I systematically investigate different techniques to infuse knowledge from

UMLS with Pre-trained ClinicalBERT. The methods I have examined include:

ClinicalBERT-EE-KGE: The first technique is to combine knowledge graph

embedding with the text embeddings from ClinicalBERT and feed them to the re-

lation classifier. For two entities in an input sentence, I retrieve their respective

concept embeddings (CT), semantic type embeddings (ST) and semantic group em-

beddings (SG) from KGE. In addition, for a pair of concepts mapped from two

entities in a sentence, I use KGE to predict the UMLS relation between them. Then

I retrieve the UMLS relation embedding from KGE. Finally, I concatenate all the
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Method MRR Hits@10 Hits@3 Hits@1

TransE 0.3285 0.488 0.374 0.24

DistMult 0.68367 0.93 0.7995 0.544

ComplEx 0.8778 0.941 0.914 0.8355

ConvE 0.4159 0.636 0.4615 0.3055

ConvKB 0.3574 0.5545 0.395 0.254

Table 6.1: Result of link prediction task

KGE embeddings with the sentence and entity embeddings from ClinicalBERT for

relation classification. Please note that text embeddings and knowledge graph em-

beddings are in two separate embedding spaces in this approach.

ClinicalBERT-EE-MLP: Effectively merging knowledge graph embeddings

with BERT can be tricky. Because pre-trained language models, such as BERT,

are often trained for 2 to 5 epochs with a smaller learning rate during fine-tuning,

whereas graph embedding features extracted from KGE need to be trained for much

longer with a higher learning rate. If BERT output is directly concatenated with the

KGE features, the relation classifier might not benefit much from the KGE features.

I first train a multi-layer perceptron (MLP) with knowledge graph embeddings for

relation classification to solve this issue. The output of the hidden layer of the

trained MLP is combined with BERT text embeddings for relation classification.

The use of a trained MLP ensures that the KGE features do not underfit when
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Figure 6.6: Model Architecture of ClinicalBERT-EE-KGE

trained in an ensemble with pre-trained BERT models for a small number of epochs.

ClinicalBERT with Relation Indicator: In each input sentence, relevant

knowledge from a knowledge graph is injected into an input sentence to BERT, trans-

forming the original sentence into a knowledge-enriched text input. I add knowledge

from UMLS as the second sentence in the BERT input. Then both the original input

sentence and the synthesized second sentence are sent to pre-trained ClinicalBERT.

ClinicalBERT uses these knowledge enriched sentences to predict relation labels.

With this method, UMLS knowledge is injected directly into the BERT embedding

space. To construct this second sentence, first, I find corresponding CUIs for the

two entities in a sentence using cTAKES. Then I use pre-trained KGE to predict
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Figure 6.7: Model Architecture of ClinicalBERT-EE-MLP

the UMLS relation between them. Then I construct the second input sentence in

the form of “concept1 relation concept2”. For the input sentence, “The patient was

given ibuprofen for high fever”, I first map “ibuprofen” and “fever” to their UMLS

CUIs. Pre-trained KGE predicts the UMLS relation between them is “may treat”.

Then I construct the second sentence as “ibuprofen may treat fever”. This KGE-

predicted UMLS relation can potentially act as a relation indicator that may help

to differentiate relation class labels. To pass this relation indicator information to

BERT, I use special tokens before and after the relation indicator phrase. These

tokens are used to extract the relation indicator embedding from BERT. Finally, the
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combined sentence embedding, entity embedding and relation indicator embedding

are used for relation classification. For example, the final input would be “[CLS]

Patient was given e11 ibuprofen e12 for high e21 fever e22 . [SEP] ibuprofen r31

may treat r32 fever . [SEP]”.

I also try a variety of the second sentence where its semantic type or semantic

group replaces each entity. In the same example, the second sentence would be

“pharmacologic substance r31 may treat r31 Sign or Symptom” or “drug and chem-

ical r31 may treat r31 disease and disorder”, where “pharmacologic substance” and

“sign or symptom” are the semantic types of “ibuprofen” and “fever”, and “drug and

chemical” and “disease and disorder” are the semantic groups of “ibuprofen” and

“fever”. These models are called ClinicalBERT-EE-RI-CT, ClinicalBERT-EE-RI-

ST and ClinicalBERT-EE-RI-SG where “RI” stands for “relation indicator”, “CT”

for “concept”, “ST” for “semantic type”, “SG” for “semantic group”.

ClinicalBERT with Entity Definition: In this method, I fine-tune BERT

with input sentences and the text descriptions of the two entities. For entities in an

input sentence, I extract their corresponding concept definitions from UMLS. They

are used as the input to BERT to get concept embeddings (ClinicalBERT-EE-ED-

CT). I also generate semantic type embeddings using its definitions (ClinicalBERT-

EE-ED-ST). These definitions are fed to a separate BERT model as input. Text

representations are extracted based on the special entity markers I inserted. I use

the [CLS] token embeddings related to the concept and semantic type definitions

as the concept and semantic type embeddings. These embeddings are concatenated
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Figure 6.8: ClinicalBERT with Relation Indicator

with text embeddings of the input sentence before relation classification.

ClinicalBERT-EE-KB: UMLS knowledge is infused into BERT by jointly

optimizing both a knowledge graph objective and a masked language model objec-

tive. Jointly optimizing the two objectives can implicitly integrate knowledge from

external knowledge graphs into language models. Here I adopt the pre-trained Clin-

ical KB-BERT [87] in my analysis.

ClinicalBERT-EE-KB-MLM: In this method, I pre-train BERT with

UMLS information with only the masked language model (MLM) objective. I use

the abbreviations provided by UMLS to map a triple into a natural language sen-

tence (e.g., generating a sentence like “fever may be treated by ibuprofen” based

on the triple (fever, may be treated by, ibuprofen). In this way, I can get a set of
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Figure 6.9: Model Architecture of ClinicalBERT with Entity Definition

sentences based on the triples in UMLS. I have created a total of 1613019 UMLS

sentences. I then fine-tune ClinicalBERT with these UMLS sentences using only the

MLM objective. By transferring the knowledge graph into natural language texts,

I fuse UMLS knowledge with BERT in the same representation space.

Summary of Methods: Table 6.2 summarizes the methods I develop to add

domain knowledge to BERT. I characterize them along multiple dimensions: infu-

sion stage, type of domain knowledge added, the form of domain knowledge added

and fusion methods.

Fusion stage: Domain knowledge fusion can happen (a) during BERT model

training, which results in a BERT model that is aware of the domain information

encoded in clinical notes or UMLS (BERT-train) and (b) during BERT prediction,

where domain knowledge is combined with the input or output of BERT in relation
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classification (BERT-PredIn or BERT-PredOut).

Knowledge type: Additional domain knowledge can be characterized into (a) do-

main text corpora such as clinical notes or PubMed publications (Text-Corpora), (b)

UMLS concept, semantic type and semantic group, relation as well as UMLS triples

with two entities and one relation (UMLS-CT, UMLS-ST, UMLS-SG , UMLS-RE,

UMLS-triple) and (c) UMLS concept and semantic type definition (UMLS-CTD and

UMLS-STD).

Knowledge form: Before fusion, domain knowledge is transformed into (a) em-

bedding features extracted from KGE or KGE with MLP fine turning (embedding),

(b) texts which are either synthetic sentences generated from UMLS or entity de-

scriptions extracted from UMLS (text) and (c) training objective where knowledge

graph training objective is combined with the BERT training objective to fuse knowl-

edge in BERT(Training-Obj).

Fusion methods: Finally, in terms of fusion methods, we characterize them into

(a) concatenation where BERT features are concatenated with knowledge graph fea-

tures for relation classification, (b) joint optimization with both BERT and knowl-

edge graph objectives (Joint-Opt), (c) BERT fine-tuning on sentences synthesized

from UMLS using only the BERT training objective (BERT-Tune) and (d) BERT-

fusion where additional domain knowledge is provided as the second sentence to

BERT so that BERT itself becomes the fusion mechanism to combine domain knowl-

edge with each input sentence (BERT-Fuse).
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Method Stage Knowledge Type Knowledge Form Fusion Methods

ClinicalBERT-EE-KGE BERT-PredOut UMLS-(CT,ST,SG,RE) Embedding Concatenate

ClinicalBERT-EE-MLP BERT-PredOut UMLS-(CT,ST,SG,RE) Embedding Concatenate

ClinicalBERT-EE-RI-CT BERT-PredIn UMLS-(CT,RE) Text BERT-Fuse

ClinicalBERT-EE-RI-ST BERT-PredIn UMLS-(CT,RE) Text BERT-Fuse

ClinicalBERT-EE-RI-SG BERT-PredIn UMLS-(SG,RE) Text BERT-Fuse

ClinicalBERT-EE-ED-CT BERT-PredIn UMLS-CTD Text BERT-Fuse

ClinicalBERT-EE-ED-ST BERT-PredIn UMLS-STD Text BERT-Fuse

ClinicalBERT-EE-KB BERT-train UMLS-Triple Training-Obj Joint-Opt

ClinicalBERT-EE-KB-MLM BERT-train UMLS-Triple Text BERT-Tune

Table 6.2: Summary of the knowledge fusion methods

6.4 Experiments and Results

6.4.1 Dataset Description

For this study, I use the same clinical relation extraction dataset used in Chap-

ter 5. This dataset contains discharge summaries and progress reports from different

healthcare providers. The relation extraction task is to identify nine target relations

between three types of medical concepts: treatments, problems and tests. Descrip-

tions and statistics of the target relations can be found in table 5.2.

6.4.2 Experiment Details

In all the BERT-based classifiers, I use both the BERT sentence embedding

and entity embedding (EE). I train all classifiers for five epochs with a learning rate

of 0.00002 and a batch size of 8 with a softmax classification layer. In addition,

for ClinicalBERT-EE-KGE, I concatenate 700 dimensional KGE with 768 di-

mensional BERT text representations. This 1468 dimensional vector is used as the
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input to the softmax layer. To implement ClinicalBERT-EE-MLP, I first train

a MLP with KGE as the input. I use a single hidden layer consisting of 128 hidden

units, a tanh activation function and a final linear layer with a softmax function

to make predictions. I train this model for 50 epochs with a learning rate of 0.001

and a batch size of 32. After the MLP model is trained, I combine the output

of the hidden layer (a 128-dimensional vector) with the BERT text embeddings (a

768-dimensional vector). This combined vector is connected to a linear layer and

a softmax function to make predictions. In ClinicalBERT-EE-RI-CT/ST/SG,

I employ different variations of the second input sentence. Text embedding is cre-

ated by combining sentence embedding, entity embedding and relation indicator

embedding. I connect the combined embeddings to a fully connected layer. In ad-

dition, I combine sentence embedding (768-dimensional vector) with two concept

embedding (each a 768-dimensional vector) to create a 2304 dimensional input vec-

tor in ClinicalBERT-EE-ED-CT/ST). ClinicalBERT-EE-KB uses only the

768-dimensional text embedding. I pre-train ClinicalBERT-EE-KB-MLM with

4.4 million tokens from the text dataset created from the UMLS knowledge graph

with 425K steps and a learning rate of 0.00002. I initialized this model with weights

from ClinicalBERT.

6.4.3 Baseline Methods

To compare with the current state-of-the-art, I consider systems that employ

the same number of training instances and define the classification task with the

same granularity level. So far, I have found only one existing systems [135] meeting
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these criteria. In addition, [179] and [89] also integrate UMLS knowledge into BERT

for this task. Their reported weighted F1 scores are 0.747 and 0.782, respectively.

But I did not include them in table 5.3 because either the total number of relations

considered or the classification granularity (number of relation classes) are different.

To systematically investigate the effectiveness of different knowledge fusion

methods, I consider multiple baselines. To evaluate the advantages of text em-

beddings generated from BERT over static embedding models (e.g. Word2Vec,

Doc2Vec), I include baselines with static embeddings. I train a Word2Vec [18] and

Doc2Vec [158] model using the MIMIC-III clinical corpus [82] plus the sentences in

the i2b2 dataset. I implement the following baselines with static text embeddings.

• (Word2Vec+BiLSTM) : To generate sentence representations, I use a bidi-

rectional LSTM to aggregate word embeddings in a sentence. This sentence

representation is fed into a fully connected layer with ReLu activation and a

linear layer with softmax activation.

• KGE+Word2Vec+BiLSTM : Here, I concatenate pre-trained knowledge graph

embeddings with sentence embeddings generated by Word2Vec+BiLSTM. These

combined embeddings are used as the input to a fully connected layer with

ReLu activation and a linear layer with softmax activation.

• Doc2Vec : I use Doc2Vec generated sentence representations for classification.

• KGE+Doc2Vec : I combine Doc2Vec sentence representations with pre-trained

knowledge graph embeddings.
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To show the impact of domain text, I consider a baseline model where I use

text embedding from BERT trained on general domain text (BERT-EE). I also

consider a baseline where I only use sentence representations from BERT (BERT)

to show the advantage of incorporating entity embeddings.

6.4.4 Performance Evaluation

Model Name No Relation PIP TeCP TeRP TrAP TrCP TrIP TrNAP TrWP
9 Class

F1 Score

[135] N/A 0.6333 0.6117 0.8444 0.7974 0.6213 0.6159 0.4227 0.4457 0.7434

Word2Vec-biLSTM 0.8398 0.2924 0.2047 0.4536 0.5334 0.3298 0.1453 0.0621 0 0.6979

KGE-Word2Vec-biLSTM 0.8610 0.4554 0.4374 0.6939 0.64040 0.4604 0.4141 0.3537 0.0719 0.7693

Doc2Vec 0.8057 0.0362 0 0.0165 0.0299 0 0 0 0 0.5585

KGE-Doc2Vec 0.8277 0.0091 0 0.5434 0.2604 0.0689 0 0 0 0.6468

BERT 0.8529 0.3496 0.4508 0.4059 0.5487 0.5229 0.4827 0.6153 0.4878 0.7256

BERT-EE 0.94252 0.8005 0.6870 0.8940 0.8438 0.7109 0.7059 0.7288 0.5053 0.9039

ClinicalBERT-EE 0.9473 0.8085 0.7102 0.9045 0.8654 0.7559 0.6935 0.7469 0.5304 0.9127

ClinicalBERT-EE-KGE 0.9486 0.8149 0.7373 0.9058 0.8693 0.7671 0.7027 0.7945 0.51851 0.9162

ClinicalBERT-EE-MLP 0.9459 0.8209 0.7019 0.9008 0.8616 0.7823 0.7449 0.7177 0.5087 0.9124

ClinicalBERT-EE-RI-CT 0.9456 0.8277 0.7115 0.9003 0.8684 0.7745 0.7489 0.7490 0.4685 0.9133

ClinicalBERT-EE-RI-ST 0.9490 0.8270 0.7358 0.9146 0.8691 0.7980 0.7218 0.7955 0.4835 0.9181

ClinicalBERT-EE-RI-SG 0.9469 0.8290 0.7195 0.9018 0.8605 0.7740 0.7331 0.7404 0.5460 0.9140

ClinicalBERT-EE-ED-CT 0.9449 0.8205 0.7357 0.9074 0.8721 0.7081 0.7567 0.7415 0.6037 0.9137

ClinicalBERT-EE-ED-ST 0.9439 0.8128 0.7113 0.8994 0.8563 0.7692 0.7123 0.7536 0.5806 0.9107

ClinicalBERT-EE-KB 0.9473 0.8301 0.7429 0.9102 0.8792 0.7821 0.7435 0.8195 0.5094 0.9177

ClinicalBERT-EE-KB-MLM 0.9425 0.8211 0.6967 0.8947 0.8597 0.7112 0.7446 0.7491 0.5150 0.9078

Table 6.3: System Performance on Clinical Relation Extraction

In this section, I evaluate the effectiveness of different methods to incorporate

knowledge into BERT. I use an 80%-20% train and test split and report the average

result over multiple runs for each model. I calculate per class (9 class) and weighted

F1 scores. Results of all models can be found in table 6.3.
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Quality of text embedding: To investigate the quality of different types of

sentence embedding techniques, I first compare the results from Word2Vec+biLSTM,

Doc2Vec and BERT-base. Here sentence embedding from BERT-base (BERT)

achieved significant improvement (3.9% and 29.9% ) over sentence representations

learned from Word2Vec and Doc2Vec (Word2Vec+biLSTM and Doc2Vec). More-

over, entity informed text representation from BERT-base (BERT-EE) achieved an

impressive 24% performance boost over a model that use only the BERT sentence

embedding (BERT).

Impact of domain text: I use ClinicalBERT to demonstrate the effect of

domain text. Since entity-informed text representation achieves high performance,

I continue to use that in all experiments. The result shows that ClinicalBERT-EE

improves the performance by 0.97% over a general domain BERT-EE model. This

demonstrates the utility of pre-training BERT using domain-specific text.

Impact of UMLS knowledge: To demonstrate the impact of additional

UMLS knowledge, I combine knowledge graph embeddings with static text embed-

dings and ClinicalBERT text embeddings. While combined with word2Vec and

Doc2Vec embeddings, UMLS knowledge results in a 10% and a 15% performance

gain over Word2Vec-biLSTM and Doc2Vec. This performance gain indicates that

UMLS knowledge is valuable for this task. As simple concatenation of KGE with

static embedding works great, I continue to concatenate UMLS KGE with contex-

tual embedding from ClinicalBERT. However result of adding UMLS knowledge

with contextual embedding is not as impressive as adding it with static embedding.

ClinicalBERT-EE-KGE (F1=0.9162) provides a 0.38% increase in performance over
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ClinicalBERT-EE (F1=0.9127). To avoid underfitting on KGE embeddings, I train

ClinicalBERT-EE-MLP. However, ClinicalBERT-EE-MLP (F1=0.9124) do not per-

form as well. I hypothesize that important information is lost when the 128-

dimensional hidden layer vectors are used (versus the 700-dimensional knowledge

graph embedding vectors). Next, I try to inject knowledge graph information di-

rectly into BERT input. Out of the three variations, ClinicalBERT-EE-RI-ST (with

semantic type information and relation indicator in the second input) performed the

best. This is overall best performing model, achieving an F1-score of 0.9181. The

relation indicator predicted by KGE may play an important role in boosting perfor-

mance. The results of ClinicalBERT-EE-ED-CT (F1=0.9137) and ClinicalBERT-

EE-ED-ST (F1=0.9107) show that concept definitions and semantic type definitions

did not help much. I hypothesize that the entity embeddings learned from BERT

or the concept embeddings from KGE may be more precise than the embeddings

learned from their text definitions. Next, I move on to pretrain BERT with knowl-

edge graph information. Here I can see that ClinicalBERT-EE-KB is our second-

best performing model with an F1-score of 0.9177. Finally, when I pre-train BERT

with knowledge graphs using a Masked Language Model objective, I see that result

(F1=0.9101) slightly goes down compared to ClinicalBERT-EE (F=0.9127). This

indicates that incorporating knowledge into BERT using knowledge graph objec-

tive may be more efficient than training UMLS sentences with a language model

objective.
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6.5 Summary

In this research, I explore various ways to combine domain-specific knowledge

into contextual word embedding. In particular, I investigate various techniques to

incorporate the bio-medical knowledge base UMLS into BERT for clinical relation

extraction. Results show that locating, extracting and adding entity embeddings

from BERT is highly effective for relation extraction (24% improvement). Adding

domain-specific information such as domain text (in ClinicalBERT) or UMLS do-

main knowledge (in ClinicalBERT-EE-RI-ST) only results in moderate performance

gain (0.97% increase for adding domain text and an additional 0.59% increase for

adding UMLS). The most effective method to fuse UMLS knowledge into BERT

is BERT itself. The best performing model ClinicalBERT-EE-RI-ST transforms a

corresponding triplet inferred from UMLS into a natural language sentence, which

is added as the second sentence to BERT.
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Chapter 7: Conclusion and Future Work

7.1 Conclusion

In this thesis, I investigate the effect of combining text embedding and addi-

tional knowledge for IE systems. I develop several novel IE systems for different

applications. Experimental studies demonstrate the advantage of incorporating ad-

ditional knowledge with text embedding and the superiority of proposed models

over existing IE systems. The proposed SupervisedOIE, a supervised OpenIE model

uses static word embedding and domain-independent knowledge, including parts

of speech tag, syntactic role label, dependency tree information and results of ex-

isting Open IE systems as features. Validation using several benchmark datasets

generated for the Open IE task shows that the proposed method is very effective

in outperforming other supervised and unsupervised Open IE systems. To build an

IE system for cyber-security, I combine domain-specific knowledge with static word

embedding. I present a novel method WAE, to incorporate domain knowledge, in-

cluding domain specification and human annotation, into static word embedding.

Knowledge enriched embeddings are used to predict malware attribute labels from

cybersecurity text. My investigation highlights the importance of incorporating di-

verse domain knowledge sources in domain-specific IE tasks. Next, I investigate the

effectiveness of combining both domain-independent and domain-specific knowledge
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with contextual embedding for relation extraction from clinical texts. While con-

textual embedding outperforms static embedding, it does not significantly improve

the result after incorporating domain-independent knowledge. Experimental stud-

ies demonstrate that domain-independent knowledge works best while integrated

with static embedding for clinical relation extraction task. I explore a wide range

of techniques to incorporate the bio-medical knowledge base UMLS into contextual

embedding model BERT for clinical relation extraction. Experimental studies il-

lustrate that the most effective method to fuse domain knowledge into BERT is

to transform a corresponding triplet inferred from UMLS into a natural language

sentence and add it as the second sentence to BERT.

All the experimental studies in this thesis indicate that combining text embed-

ding with additional knowledge is effective for IE systems. Both domain-independent

and domain-specific knowledge combined with text embedding play a significant

role in boosting the performance of IE systems. Both domain-independent and

domain-specific knowledge are highly effective when combined with static embed-

dings. Static embedding encodes limited syntactic and domain-specific semantic in-

formation; thus, combining additional knowledge provides a significant boost. Over-

all it is more challenging to effectively combine additional knowledge with contextual

embedding than static embedding. Both domain-independent and domain-specific

knowledge have a positive but limited impact on performance when combined with

contextual embeddings. Contextual embedding is comparatively better at encod-

ing context-appropriate syntactic and semantic information. As a result, additional

knowledge has minor effect on performance. Overall, knowledge injection is a better
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technique to combine additional knowledge with BERT contextual embedding than

knowledge concatenation.

7.2 Future Work

Currently, there is a limited understanding of the impact of adding new knowl-

edge to word embedding. Especially for contextual embedding, it is unclear why

additional knowledge provides only a minor improvement in IE tasks. In the future, I

would like to focus on understanding the impact of knowledge integration on learned

embeddings. I want to investigate how different types of knowledge and integration

techniques may impact the embedding space. This issue can also be solved if we

can interpret the meaning of word embeddings. Since the learned embeddings are in

a high dimensional latent space that humans cannot intuitively understand, novel

embedding visualization techniques may shed light on how different knowledge and

injection methods may impact the embedding space.

Learning word embedding, primarily contextual embedding (e.g., BERT), re-

quires massive data and computational power. Adding extra knowledge (e.g., an

extensive knowledge base) to train a joint embedding only intensifies this problem.

Due to resource limitations, I was able to explore only a specific type of knowledge

incorporation method. In the future, I would like to explore other techniques like

joint optimization of knowledge graph and text. I would also like to develop a unified

framework to combine both domain-independent and domain-specific knowledge.

Recently, research shifted to contextual embedding because of its superiority;

it is worth revisiting earlier works in this thesis with contextual embedding. It will
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give a clear picture if we should always use contextual embedding instead of static

embedding. Or if there are certain cases where static embedding is more beneficial

when combined with additional knowledge.

I want to explore the ethical implication of additional knowledge. Specifically,

I want to focus on how additional knowledge can be used to build fair IE systems.

For example, human-generated text is biased, additional knowledge sources such as

UMLS may have less bias.
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