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Abstract. Quantum information scrambling refers to the loss of local
recoverability of quantum information, which has found widespread attention from
high energy physics to quantum computing. In the present analysis we propose
a possible starting point for the development of a comprehensive framework for
the thermodynamics of scrambling. To this end, we prove that the growth of
entanglement as quantified by the mutual information is lower bounded by the
time-dependent change of Out-Of-Time-Ordered Correlator. We further show
that the rate of increase of the mutual information can be upper bounded by the
sum of local entropy productions, and the exchange entropy arising from the flow
of information between separate partitions of a quantum system. Our results are
illustrated for the ion trap system, that was recently used to verify information
scrambling in an experiment, and for the Sachdev-Ye-Kitaev model.

1. Introduction

One of the most intriguing problems in theoretical physics is the information paradox
[1–3], which suggests that physical information crossing the event horizon could
permanently disappear in a black hole. In essence, the paradox originates in the
unresolved incompatibility of current formulations of quantum mechanics and general
relativity. To date, many possible solutions have been proposed, some as esoteric as
the many-worlds interpretation of reality [2,4], whereas others are rooted in quantum
information theory [5, 6].

A particularly fruitful concept has been dubbed quantum information scrambling
[7]. Within this paradigm, information that passes the event horizon is quickly and
chaotically “scrambled” across the entirety of the horizon. Thus, the information only
appears lost, as no local measurement allows to fully reconstruct the original quantum
state [8–10]. In recent years, the study of quantum information scrambling has led to
new physical concepts, such as the black hole complementarity and the holographical
principle [11, 12]. In addition, information scrambling has found attention in high
energy physics [13,14], quantum information [15,16], condensed matter physics [17,18],
and quantum thermodynamics [19–21].

Remarkably, it has also been recognized that exploiting the AdS/CFT duality [22]
and the “ER=EPR-conjecture” [23], the information scrambling dynamics of black
holes can be studied with analog quantum systems. Loosely speaking, the dynamics
of two black holes connected through an Einstein-Rosen bridge can be mathematically
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mapped onto the dynamics of entangled quantum systems. In fact, this idea led to the
first verification of quantum information scrambling [24] in an ion trap experiment.

This ubiquity of information scrambling poses the question which underlying
physical principles determine, if, when, and how information is distributed. Since
information is physical [25], and its processing requires thermodynamic resources
[26–31], it is only natural to realize that the second law of (quantum) thermodynamics
[32] must hold the answer. The task is then to uniquely quantify the thermodynamics
resources (such as heat or work) that are consumed while information is scrambled.

In the literature, a plethora of quantifiers have been proposed that can track
and characterize quantum information scrambling, such as, for instance, Out-of-Time-
Ordered Correlators (OTOCs) [33–36], the Loschmidt Echo [37,38], and versions of the
mutual information [39–41]. Out of this variety of measures, the OTOC has probably
gained the most attention. This is due to the fact that the properties of the OTOC
characterize the dynamical emergence of “non conventional” quantum chaos [39, 42].
To the very best of our knowledge, however, a concise, transparent, and practically
relevant relationship between the OTOC and a thermodynamic observable appears to
be lacking ‡.

Therefore, in the present analysis we prove upper and lower bounds on the
quantum mutual information. As main results, we find (i) that the time-dependent
mutual information is lower bounded by the change of the OTOC, and (ii) that the
rate of change of the mutual information is upper bounded by the sum of the stochastic
entropy productions [43] in the separate partitions of a quantum system. Our findings
are illustrated for the experimental system described in Ref. [24] and an example of a
quantum chaotic system, the SYK model.

2. Time-dependent mutual information and the change of the OTOC

Imagine a quantum system S that can be separated into two partitions, A and B. The
total system S evolves under unitary dynamics, and the quantum state is initially
prepared as a product, ρS(0) = ρA(0) ⊗ ρB(0). Typically, quantum information
scrambling then occurs in situations, in which ρS(0) is chosen to be pure, and the
unitary dynamics of S yields the growth of entanglement between A and B. This
means, in particular, state tomography on only A is not longer sufficient to reconstruct
ρA(0) for any time t > 0.

The loss of local recoverability is conveniently characterized by the Out-of-Time-
Ordered-Correlator (OTOC) [7–10], which can be written as,

O(t) =
〈
O†AO

†
B(t)OAOB(t)

〉
. (1)

Here, OA and OB are local operators acting only on A and B, respectively. More
specifically, we have OA ≡ oA ⊗ IB , OB ≡ IA ⊗ oB , and OB(t) = U†(t)OB(0)U(t),
where U(t) denotes the unitary time evolution operator of S. It has been argued,
that O(t) characterizes the spread of the operator OB(t) as it evolves in time, which
tracks how information is scrambled from A to B [7–10]. The average in Eq. (1) is
often taken over a thermal state in S [7, 37], which is, however, not necessarily an
instrumental choice [37].

‡ For obvious reasons, the projective measurements considered in Ref. [19] are neither feasible nor
practical in complex many body systems
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Figure 1. Sketch of a black hole scrambling quantum information. A1

characterizes the information falling into the black hole, A2 determines the initial
state of the black hole, A4 the Hawking radiation, and A3 the remaining black
hole.

Note, however, that (to the best of our knowledge) there is no rigorous proof of
the existence of operators correctly tracking information scrambling in any physical
scenario. For instance, taking operators that commute with the Hamiltonian of S
results in a time-invariant OTOC. Thus, one often takes an average over operators,
rather then working with O(t) directly [44,45].

2.1. Lower bound on quantum mutual information

For the following analysis, we will be motivated by the conceptual framework that
maps notions from high energy physics onto a quantum information theoretic language
[23]. To this end, imagine a situation in which some quantum information falls across
the event horizon of a black hole, and we can describe the dynamics of that black
hole by a scrambling (entangling) unitary map, U(t). The set-up is depicted in Fig. 1,
which is similar in spirit to Ref. [46]. Hosur et al consider that (A1, A3) and (A2, A4)
describe EPR pairs, connected through the scrambling unitary U . More specifically,
A1 determines the initial information thrown into the black hole, A2 encodes the initial
state of the black hole, A4 the Hawking radiation and A3 the remainder of the black
hole.

For such scenarios, it has been shown [47–49] that

〈OA1OA4(t)OA1OA4(t)〉avg = 2−I
(2)
A1,A2A4 , (2)

where I(2)i,j is the Rényi-2 mutual information between the partitions i and j. Notice

that A2 appears in the subscript of I(2), which is related to why knowing A2 and A4

specifies A1. In the case of a unitary map modeling the scrambling of information in a
black hole the Hawking radiation (A4) and knowledge of the initial state of the black
hole (A2) is enough to reconstruct the quantum state described by A1. This can be
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seen by realizing that black holes can be regarded as quantum error correcting codes,
i.e., if we wait long enough, whatever information that got scrambled within the black
hole can be accessed through only Hawking radiation and the initial state of the black
hole (that is we do need to know the state of the black hole before any information
was thrown into it), without the need to access any other degrees of freedom [2].

For initially pure states§, we can write

I(2)i,j = Si(2) + Sj(2) = − ln(tr
{
ρ2i
}

)− ln(tr
{
ρ2j
}

) . (3)

Furthermore, the average in Eq. (2) is taken over the Haar measure on the unitary
group U(d) with ∫

Haar

dU = 1, (4)

and where we have for an arbitrary function f and ∀ V ∈ U(d),∫
Haar

dUf(U) =

∫
Haar

dUf(V U) =

∫
Haar

dUf(UV ) . (5)

It is interesting to note that for quantum systems comprised of qubits, such as the
experimental system analyzed in Ref. [24], the Haar average is equivalent to an average
over the Pauli group for each operator [45].

Equation (2) can now be used to relate the OTOC with a thermodynamically
relevant quantity, the quantum mutual information. Adopted to our current purposes
A1 and A3 are operators that live on subsystem A, and A2 and A4 live on B. Therefore,
we consider

1− 〈OAOB(t)OAOB(t)〉avg = 1− 2−I
(2)
A,B ≤ I(2)A,B , (6)

where we identified A1 ≡ OA and A2A4 ≡ OB . To justify this identification, we
note that knowledge about the degrees of freedom A2 and A4 is enough to infer the
information encoded in A1. The same argument holds for any closed quantum system
and any unitary evolution U(t). In this case, the analog of “Hawking radiation”, is a
subset of the degrees of freedom that is enough to reconstruct the initial information.

Note that the Rényi-2 mutual information is upper bounded by the quantum
mutual information I [50,51]. This is a direct consequence of the strong subadditivity
of the von Neumann entropy [50,51]. We have

I(t) = SA(t) + SB(t)− SS(t), (7)

where Si = −tr {ρi ln(ρi)} is the von Neumann entropy of system i with density matrix
ρi. Note that SS(t) = SS(0) for unitary dynamics. Thus, we immediately obtain

1− 〈OAOB(t)OAOB(t)〉avg ≤ I(t) . (8)

Now introducing the notation Ō(t) ≡ 〈OAOB(t)OAOB(t)〉avg and noticing that by

definition Ō(0) = 1, we can write

I(t) ≥ Ō(0)− Ō(t) , (9)

which is true for all times t > 0, and which constitutes our first main result.

§ For the sake of simplicity we only consider initially pure states. If the composite quantum state
was initially mixed, we would obtain the same results up to additive constants.
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Equation (9) is a rigorous relationship between the mutual information and
the change of the OTOC. In scrambling dynamics, Ō(0) − Ō(t) is a monotonically
growing function, and Eq. (9) asserts that also I(t) has to be growing. This is
consistent with intuitive understanding of “scrambling”, which should be equivalent
to the growth of entanglement between A and B. We will now continue the
analysis by illustrating Eq. (9) with two important examples, before we discuss the
thermodynamic significance of I(t).

2.2. Information scrambling in experimentally relevant systems

2.2.1. Verified quantum information scrambling in ion traps The experimental
verification of quantum information scrambling [24] was conducted with a 7-qubit
fully-connected quantum computer with a family of 3-qubit entangling unitaries U(t)‖.
These entangling (scrambling) unitaries were constructed from a combination of 1-
qubit and 2-qubit gates. Due to the experimental specifics, the observables OA and
OB had to be of special form. Therefore, Ref. [24] considered a modified version of
the OTOC, namely

MO(t) =
∑
φ,Op

〈
O†1O

†
P(t)O1OP(t)

〉
, (10)

where O1 ≡ |ψ〉 〈φ| acts on the first qubit, |ψ〉 denotes the state of the qubit, and |φ〉
is the teleported state (the last qubit of the experiment). Moreover, OP(t) are Pauli
matrices evolved by a scrambling unitary in the Heisenberg picture, and the average
is taken over all Pauli matrices and state vectors |φ〉.

It is relatively easy to see that ∆MO ' ∆O at times close to zero, since OP (t)
has a simple form (in terms of operator complexity). However, in general we have
∆MO ≤ ∆O, since the specific average taken in Ref. [24] to computeMO is only an
approximate 1-design, which does not capture the complex dynamics of OP (t) as the
operator spreads to the other support (becomes non-local) with time.

In Fig. 2 we plot the mutual information (7), together with ∆O (9) and ∆MO
(10) for the scrambling dynamics of Ref. [24]. As in Ref. [24], B = {2, 3, 4, 5, 6, 7}
refers to the qubits in the experiment, and A = {1} is the first qubit. We observe that
all quantities are montonically increasing functions of time t.

Furthermore, I(0) = 0 indicates the absence of any scrambling in the system,
while I(t) = 2 ln(2) indicates maximal scrambling: the maximum value of the
information that B can know about A (or that A can know about B) is reached.
This accentuates an important advantage of I as a measure of scrambling over MO.
In general, Imax(t∗) = min {dA, dB} ln(2) is the maximum value of I at the scrambling
time, t∗, whereas the maximal value ofMO depends on the specifics of the performed
experiment.

2.2.2. Quantum chaotic dynamics – the SYK model As a second example to illustrate
Eq. (9) we choose the Sachdev-Ye-Kitaev (SYK) model [52–54]. This is an exactly
solvable, chaotic many-body system consisting of N interacting Majorana fermions
with random interactions between q of these fermions (q taken as an even number).
The SYK model has found important applications, for instance, as a quantum gravity
model of a 1 + 1-dimensional black hole [54] in the limit of large N .

‖ The exact and rather lengthy expressions for U(t) can be found in the methods section of Ref. [24].
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Figure 2. Mutual information I (blue, top line), change of the OTOC ∆O(t)
(red, middle line), and change of the modified OTOC ∆MO (orange, bottom
line) as function of time.
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Figure 3. Mutual information I(t) (blue, upper line) and ∆O (red, lower line)
for the SYK model with N = 10 Majorana fermions, q = 4, J2=2, and averaged
over 300 realizations, where in each realization we generate a new Hamiltonian
with different random interaction terms.

The Hamiltonian can be written as

H = (i)
q
2

∑
1≤i1<i2<···<iq≤N

Ji1i2···iqψi1ψi2 · · ·ψiq , (11)

where Ji1i2···iq are real independent random variables with values drawn from a

Gaussian distribution with mean
〈
Ji1···iq

〉
= 0 and variance

〈
J2
i1···iq

〉
= J2(q −

1)!/Nq−1, the parameter J (in the variance) sets the scale of the Hamiltonian. Further,
ψi are Majorana field operators for i ∈ {1, . . . , N}.

Remarkably, the problem can be mapped from interacting Majorana fermions
to interacting qubits with random interaction terms by using the Jordan-Wigner
transformation [55,56]. For the exact mapping between interacting Majorana fermions
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and interacting spins, we follow the notation of Ref. [56], to get

ψ2j =
1√
2

N/2−1∏
i=1

σzi

σyN/2, ψ2j−1 =
1√
2

N/2−1∏
i=1

σzi

σxN/2, (12)

such that ∀i, j ∈ {1, . . . , N} we have {ψi, ψj} = δij . Notice that Eq. (12)
demonstrates that N Majorana fermions can be represented by a string of N/2 Pauli
operators.

For the present purposes, we choose the first qubit to be subsystem A and the
complement of A constitutes subsystem B. In Fig. 3 we plot of the mutual information
and together with ∆O, for a Hamiltonian with N = 10 Majorana fermions, of which
any set of q = 4 fermions is interacting. Hence, we have a total of 210 terms in the
Hamiltonian (11).

We observe that both ∆O and I are montonically increasing functions with time.
Moreover, we see that ∆O is always upper bounded by the mutual information, and
I reaches a maximum value slightly lower than 2 ln(2) given that in each realization
we have small oscillations due to finite size effects. Note that for large N the small
oscillations (recurrences) will die out as the system becomes strongly chaotic.

In conclusion, Eq. (9) establishes a rigorous lower bound on the quantum mutual
information and the Out-of-Time-Order Correlator. Thus, from a theoretical point of
view the quantum mutual information has the same appealing properties as the OTOC
in characterizing information scrambling. However, the mutual information has the
added benefit that it is also a well-studied quantity in quantum thermodynamics [32],
and it can be closely related to irreversible entropy production.

3. Stochastic entropy production in quantum scrambling

Quantum information scrambling is an inherently dynamical phenomenon. Especially
in chaotic quantum systems it is, thus, important to understand the rate with which
information is lost to local observation [42]. Moreover, from a thermodynamic point
of view, it appears appealing to relate the rate with which the quantum mutual
information, I(t), grows to the local entropy production in subsystems A and B.
Therefore, motivated by analyses of the rate of information production [57–59], we
now seek to upper bound the rate of change of I(t) in terms of the thermodynamic
resources (locally) consumed while scrambling information.

3.1. Continuous quantum systems

We start by considering the continuity equation for S as expressed in continuous
variables

∂tρS(x, y; t) = −∇ · jS(x, y; t) . (13)

Here, ρS(x, y; t) = 〈xy| ρS(t) |xy〉 is the density function of the system evaluated in
variables x and y. Without loss of generality and for the sake of simplicity, we choose
x and y as the coordinates in which ρA and ρB are diagonal, respectively, cf. Fig. 4,
and jS(x, y; t) denotes the probability current. Note that this choice is made purely
out of mathematical convenience with the sole purpose to be able to relate the rate of
change of the mutual information to stochastic entropy production: quantities that are
basis independent (see below). It has proven useful in quantum stochastic dynamics
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Figure 4. Sketch of the two subsystems A and B as represented in continuous
variables.

to analyze such abstract and “non-experimental” quantities to gain insight into the
universal behavior, for instance see also Refs. [60, 61]. From an experimental point
of view this choice would be highly impractical, since it requires the instantaneous
diagonalization of ρA and ρB . However, rephrasing the current treatment in a more
general choice of coordinates, would require to write all expressions in terms of four
variables (instead of only two) to account for the off-diagonal terms. For the present
purposes we expect no additional physical insight, and such a choice would only make
the mathematical expressions messier.

The corresponding, local continuity equations are obtained by tracing out the
corresponding other subsystem. In particular, we have

∫
dx ρS(x, y; t) = ρB(x; t) and∫

dy ρS(x, y; t) = ρA(y; t). Therefore, we can write

∂tρA(x; t) = −∇x · jA(x; t) + jS(x, 0; t). (14)

and
∂tρB(y; t) = −∇y · jB(y; t)− jS(0, y; t) , (15)

where jS(x, 0; t) is a boundary term that describes the influx of information from A
to B, and jS(0, y; t) is the flow from B to A.

Now, again using that at t = 0 subsystems A and B are prepared in a product
state, we can write by simply taking the derivative of Eq. (7)

İ = −
∫
dx (∂tρA) ln (ρA)−

∫
dy (∂tρB) ln (ρB) . (16)

Employing the local continuity equations (14) and (15), we thus have

İ =

∫
dx (∇x · jA) ln (ρA)−

∫
dx jS(x, 0; t) ln (ρA)

+

∫
dy (∇y · jB) ln (ρB) +

∫
dy jS(0, y; t) ln (ρB) .

(17)

The latter can be further simplified by partial integration, and we obtain

İ =−
∫
dx jA ·∇x ln (ρA)−

∫
dx jS(x, 0; t) ln (ρA)

−
∫
dy jB ·∇y ln (ρB) +

∫
dy jS(0, y; t) ln (ρB) ,

(18)

for which it is now easy to find upper bounds.
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Using the trivial inequality, İ ≤ |İ|, and then bounding the absolute value with
the Cauchy-Schwarz inequality we can write [58]

İ ≤ α
(∫

dx
j2A
ρA

)1/2

+ γ1

(∫
dx

jS
ρS

(x, 0; t)

)1/2

+ β

(∫
dy

j2B
ρB

)1/2

+ γ2

(∫
dy

jS
ρS

(0, y; t)

) 1
2

,

(19)

where we introduced the Frieden integrals [57,58],

α =

∫
dx ρA (∇x ln (ρA))

2
and β =

∫
dy ρB (∇y ln (ρB))

2
. (20)

The Frieden integral is related to the Fisher information [58], but generally depends on
the choice of variables, x and y, and the geometry of the quantum system S. Similarly,
we have

γ1 =

∫
dx ρS(x, 0; t) (ln (ρA))

2
and γ2 =

∫
dy ρS(0, y; t) (ln (ρB))

2
, (21)

which are geometric terms corresponding to the flow of information across the
boundary separating A and B.

However, we also immediately recognize the stochastic entropy production [62,63]
in subsystems A and B, which reads,

ṠA =

∫
dx

j2A
ρA

and ṠB =

∫
dy

j2B
ρB

. (22)

In conclusion, we obtain

İ ≤ α
(
ṠA
)1/2

+ β
(
ṠB
)1/2

+ γ |ṠE | , (23)

where we introduced γ |ṠE | to denote to the exchange entropy due to flow of
information between A and B.

Equation (23) provides an intuitive way to think about information scrambling, or
information flow between any arbitrary partitions A and B. The mutual information
achieves a maximum if and only if the stochastic irreversible entropy productions
within A and B as well as the entropy flow between A and B vanish. So far we
have only considered scenarios where the dynamics of the quantum system is driven
by information flow. A fullly thermodynamic formalism, where a system can be in
contact with an information reservoir as well as the usual heat and work reservoirs [29],
will require a thoroughly developed conceptual framework which is beyond the scope
of the present analysis.

3.2. Discrete quantum systems

The above analysis can be generalized to discrete representations of S. To this end,
we consider the von Neumann equation describing the unitary dynamics of ρS

∂tρS = − i
~

[H, ρS ] . (24)
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with which the rate of change of I(t) (7) can be written as

İ =
i

~
[tr {[H, ρS ] (ln (ρA)⊗ IB)}+ tr {[H, ρS ] (IA ⊗ ln(ρB))}] , (25)

which is mathematical a little more tedious than the continuous case. Therefore, we
relegate the technical details of the derivation to the appendix.

Expressing the quantum states in Fock-Liouville space and after straightforward
manipulations we again find

İ ≤ A ṠA + B ṠB + C |ṠE | , (26)

where as before A, B, and C are discrete versions of the Frieden integral [57, 58],
that depend only on the geometry of the problem. Furthermore, ṠA and ṠB are the
stochastic irreversible entropy production [43] in A and B, respectively. Finally, ṠE
is the entropy (or information) flow between A and B.

4. Concluding remarks

4.1. The thermodynamic limit

We conclude the analysis with a few remarks on thermodynamic implications. To this
end, note that both quantum systems, A and B, can be considered as open systems,
for which the respective other system plays the role of an “environment”. Imagine
now that B is much larger than A in the sense that B becomes a heat reservoir for
A. For such a scenario and ultra-weak coupling it was shown in Ref. [63] that the
thermodynamic entropy, SS(t), is related to the correlation entropy, Scor, and we
have

SS(t) = SA(t) + SB(t) + Scor(t) . (27)

Comparing the latter with the definition of the quantum mutual information (7), we
immediately conclude Scor(t) = −I(t) for unitary dynamics.

This observation indicates that the chaotic spread of quantum information is
intimately related to thermalization in quantum systems – a conclusion that can
hardly be substantiated by looking only at the OTOC. Note, however, that for the
above identification we had to assume that the heat reservoir B is large compared
to A, and that B remains in equilibrium at all times. More generally, one also has
to account for the entropy that is produced due to the fact that the reservoir B is
pushed out of equilibrium through the interaction with A [64,65]. We leave this more
sophisticated analysis for a forthcoming publication [66].

4.2. Summary

The present analysis provides a possible starting point for the development of a
comprehensive framework for the thermodynamics of information scrambling. In
particular, we related the OTOC with thermodynamically relevant quantities by
proving that the change of the OTOC sets a lower bound on the time-dependent
quantum mutual information. This bound was demonstrated for two experimentally
relevant scenarios, namely for a system of trapped ions and the SYK model. We
further showed that the rate of increase of the mutual information is upper bounded
by the sum of local stochastic entropy productions, and the flow of entropy between
separate partitions of the quantum system.
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Possible applications of our work may be sought in the study of the
thermodynamics of quantum chaotic systems, and the dynamical emergence of
classicality from quantum mechanics. For each of these cases, our results provide
a possible route to quantify the thermodynamics resources, such as work and heat,
that are consumed while information is scrambled.
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7. Appendix: Entropy production in Fock-Liouville space

This appendix is dedicated to the technical details that lead to Eq. (26). To this end,
we express all quantum states in Fock-Liouville space [67]. In this formalism operators
are represented as vectors and superoperators as operators, which is convenient to
numerically simplify computations in Hilbert space.

We introduce the notation [67], ρS ≡ |ρS〉 and 〈ρ|σ〉 ≡ tr
{
ρ†σ
}

, which defines
a pre-Hilbert space and completeness is guaranteed by definition. Thus, the von
Neumann equation becomes [68],

|ρ̇S〉 = W |ρS〉 and W =
1

i~
(
H ⊗ I − I ⊗H>) . (B.1)

Note, that in contrast to classical stochastic dynamics that are described by rate
matrices, the dynamics in Fock-Liouville space is determined by a skew Hermitian
matrix, W .

Thus, the rate of change of I(t) (7) can be expressed as

İ = −
∑
m,m′

Wm,m′ρm′ ln (ρ′Am)−
∑
m,m′

Wm,m′ρm′ ln (ρ′Bm) , (B.2)

where ρ′A ≡ ρA ⊗ IB and ρ′B ≡ IA ⊗ ρB . Using standard tricks from stochastic
thermodynamics of adding and subtracting terms we write

İ =
∑
m,m′

ρm′Wm,m′ ln

(
Wm,m′ρ′Am′

Wm′,mρ′Am

)
+
∑
m,m′

ρm′Wm,m′ ln

(
Wm,m′ρ′Bm′

Wm′,mρ′Bm

)

+ 2
∑
m,m′

ρm′Wm,m′ ln

(
Wm′,m

Wm,m′

)

−
∑
m′

ln (ρ′Am′) ·

(∑
m

Wm,m′

)
· ρm′ −

∑
m′

ln (ρ′Bm′) ·

(∑
m

Wm,m′

)
· ρm′ ,

(B.3)

which is not as involved as it looks. In particular, note that we have independent of



Quantum scrambling and the growth of mutual information 12

the choice of basis,
∑
m,m′ Wm,m′ = 0, and hence

İ =
∑
m,m′

ρm′Wm,m′ ln

(
Wm,m′ρ′Am′

Wm′,mρ′Am

)
+
∑
m,m′

ρm′Wm,m′ ln

(
Wm,m′ρ′Bm′

Wm′,mρ′Bm

)

+ 2
∑
m,m′

ρm′Wm,m′ ln

(
Wm′,m

Wm,m′

)
.

(B.4)

In complete analogy to the continuous case (18) we can now upper bound İ as

İ ≤
∑
m,m′

∣∣∣∣ρm′ρ′−1Am′ · ρ′Am′Wm,m′ ln

(
Wm,m′ρ′Am′

Wm′,mρ′Am

)∣∣∣∣
+
∑
m,m′

∣∣∣∣ρm′ρ′−1Bm′ · ρ′Bm′Wm,m′ ln

(
Wm,m′ρ′Bm′

Wm′,mρ′Bm

)∣∣∣∣+ C |ṠE | ,
(B.5)

where we already introduced the exchange entropy production

C |ṠE | = A
∑
m,m′

∣∣∣∣ρ′Am′Wm,m′ ln

(
Wm,m′

Wm′,m

)∣∣∣∣+ B
∑
m,m′

∣∣∣∣ρ′Bm′Wm,m′ ln

(
Wm,m′

Wm′,m

)∣∣∣∣ ,
(B.6)

with A =
∑
m,m′

∣∣ρm′ρ′−1Am′

∣∣ and B =
∑
m,m′

∣∣ρm′ρ′−1Bm′

∣∣. Note that this is an
identification only by analogy, as W is not a proper rate matrix. Since S is closed and
evolves under unitary dynamics, the exchange entropy describes the flow of information
between A and B.

The first two terms in Eq. (B.5) can be further simplified to read

İ ≤ A ṠA + B ṠB + C |ṠE | , (B.7)

where we finally introduced the local, stochastic entropy production [43]

ṠA =
∑
m,m′

∣∣∣∣ρ′Am′Wm,m′ ln

(
Wm,m′ρ′Am′

Wm′,mρ′Am

)∣∣∣∣ (B.8)

and

ṠB =
∑
m,m′

∣∣∣∣ρ′Bm′Wm,m′ ln

(
Wm,m′ρ′Bm′

Wm′,mρ′Bm

)∣∣∣∣ . (B.9)
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