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Key Points:12
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Abstract19

The Surface Biology and Geology (SBG) investigation will create global maps of spec-20

tral surface reflectance and emissivity at a cadence of 16 days or better, with coverage21

to address global questions about Earth’s geology, cryosphere and ecosystems. The rev-22

olutionary potential poses a commensurate challenge: creating contiguous maps free from23

regional biases induced by atmosphere, observation geometry, or inversion error. This24

will require an accurate calibration with precise knowledge of each channel’s spectral re-25

sponse. Here we quantify the impact of spectral calibration on SBG’s aquatic and ter-26

restrial ecosystem objectives. We find that contemporary algorithms for ecosystem trait27

retrieval demand more accurate spectral calibration than historical missions. Errors due28

to drift or spatial nonuniformity in the wavelength calibration that have previously been29

considered acceptable can cause systematic errors larger than the instrument noise and30

of the same order as the variability SBG aims to measure. Moreover, their impact on31

atmospheric correction can induce climate-dependent systematic errors that thwart com-32

parisons between ecosystems. These results underscore the importance of spectral re-33

sponse accuracy in SBG mission design.34

Plain Language Summary35

Remote imaging spectrometers operating in visible to shortwave infrared wavelengths36

of the electromagnetic spectrum measure the intensity of solar-reflected light at hundreds37

of distinct channels. This requires knowing the precise spectral range to which each chan-38

nel is sensitive. The accurate association of wavelengths to instrument channels is known39

as the spectral calibration of the instrument, or simply spectral fidelity. Small errors in40

this calibration can have a significant impact on measurement accuracy. This study eval-41

uates the sensitivity of a future global investigation of Earth’s ecosystems to such errors.42

We find that small errors in spectral calibration can cause large inaccuracies in maps of43

ecosystem properties. This means that accurate spectral calibration will be critical for44

the success of these future investigations.45

1 Introduction46

The National Aeronautics and Space Administration (NASA) commissioned a 201747

Decadal Survey report by the National Academies of Science, Engineering and Medicine48

to prioritize Earth science measurements in the coming decade. This report designated49

a global Surface Biology and Geology (SBG) investigation with Visible and Shortwave50

InfraRed (VSWIR) imaging spectroscopy and Thermal InfraRed (TIR) imagery (National51

Academies, 2018). Such instruments have a long prior history of regional airborne and52

orbital campaigns, but SBG’s scale will be dramatically larger. It will cover Earth’s en-53

tire terrestrial and coastal aquatic area at an approximate 16 day cadence. Data shar-54

ing with the European Space Agency’s Copernicus Hyperspectral Imaging Mission (CHIME)55

(Nieke & Rast, 2018) could permit an 8-11 day cadence in some areas. It will reach re-56

gions that have been underserved by previous campaigns, such as terrestrial and aquatic57

biodiversity hotspots throughout South America, Sub-Saharan Africa, and Southeast Asia58

(Schimel et al., 2020; Jetz et al., 2016; Myers et al., 2000). SBG will provide the first global59

spectroscopic map and the first dense spectroscopic time series, revealing planetary pro-60

cesses — such as ecosystem function and biodiversity, land cover change and hydrology,61

and the occurrence of natural hazards — to understand the whole Earth as a system.62

63

We focus here on the VSWIR component, which is likely to span the 380-2500 nm64

range with approximately 10 nm spectral sampling and 30-60m spatial resolution. It is65

sensitive to diverse surface properties, including: snow albedo, grain size, and contam-66

inants; maps of sessile aquatic organisms such as seagrass and coral reefs; functional traits67

of terrestrial vegetation to understand ecosystem-level condition, diversity, and change;68

–2–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Biogeosciences

maps of mineralogy and surface composition, including soil properties and chemistry;69

coastal aquatic and inland water composition, productivity, and biological diversity; and70

more (Schimel et al., 2020; Cawse-Nicholson et al., 2021). All these VSWIR measure-71

ments involve three core operations. First, investigators calibrate sensor data to mea-72

sure the spectral radiance at the sensor, i.e. the intensity of reflected radiation from the73

surface and atmosphere in each spectral channel. Second, they invert an atmospheric Ra-74

diative Transfer Model (RTM) to estimate the hemispherical directional surface reflectance75

(D. R. Thompson, Babu, et al., 2019), from which view-independent reflectance quan-76

tities can be derived (Figure 1). Third, investigators analyze these reflectance and emis-77

sivity products to quantify surface properties. In all cases, the downstream analyses are78

only as accurate as the original radiometric measurement. Accurate spectroradiometry79

forms the foundation for all later analyses, and deserves special attention in mission de-80

sign.81

Figure 1. Right: Spectral radiance measured by an orbiting sensor observing vegetation. The

radiance incorporates the surface reflectance but also atmospheric scattering and absorptions

due to gas absorption features. Right: The associated spectral surface reflectance. Gaps in the

spectrum correspond to deep water vapor absorption features that are opaque to remote sensing.

Instrument performance is often represented by radiometry — the accurate mea-82

surement of the radiant intensity. Radiometric performance standards are generally well83

understood, with studies across many disciplines (Swayze et al., 2003). Here we deal with84

a less common but equally important aspect of performance, the calibration of the spec-85

tral response, or simply spectral fidelity (Mouroulis et al., 2000). Failure to accurately86

calibrate the instrument spectral response can impact measurement of surface proper-87

ties by shifting or diluting reflectance features. It can also damage atmospheric correc-88

tion, since imaging spectrometers estimate the atmospheric state from the data them-89

selves, and spectral miscalibration can distort the shapes and positions of atmospheric90

absorptions. These errors are systematic; they do not average down over multiple ob-91

servations and thus propagate directly into erroneous conclusions at the global scale. More-92

over, contemporary VSWIR imaging spectrometers show more variability in spectral cal-93

ibration than radiometric performance. Yet while the Decadal Survey prescribed stan-94

dards for SBG radiometry, it did not give any for spectral calibration. This paper fills95

the gap by evaluating the impact of spectral calibration on SBG objectives.96

This study considers two kinds of spectral calibration errors. The first is error in97

the center wavelengths for each channel. This can occur due to sensor drift, but is more98

often caused by uncorrected spatial nonuniformities like frown (Neville et al., 2003) or99

twist distortions (Figure 2) that cause cross-track locations to have different wavelength100

centers (Richter et al., 2010). The second error involves departure of the spectral response101

function from the assumed — typically Gaussian — profile. This often occurs when scat-102

ter from optical surfaces broadens the spectral response, elevating the tails and blurring103

spectral features (D. R. Thompson et al., 2018a; Zong et al., 2006). Figure 3 shows the104

effects of each distortion on the spectral response function, and Figure 4 shows the as-105
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sociated radiance errors. A grey overlay shows the high resolution structure of the at-106

mospheric radiance. Wavelength shifts induce asymmetric residuals, while stray spec-107

tral response changes the apparent depth and width of atmospheric absorption features.108

Several studies precede us. Nieke et al. (2008) provide a comprehensive review of109

spectroradiometric uncertainties and their aggregate affect on radiance errors. Others110

assess the effect of wavelength calibration on atmospheric inversions (Dadon et al., 2010;111

Richter et al., 2010; Guanter, Richter, & Moreno, 2006; Kuhlmann et al., 2016; D. R. Thomp-112

son et al., 2018a). Similar corrections appear in planetary science (Ceamanos & Douté,113

2010). Green (1998) quantifies systematic errors caused by wavelength miscalibration,114

and in later work the impact on water vapor estimation error (Green, 2001). These prior115

studies generally evaluate errors in surface reflectance terms. To our knowledge no study116

has attempted to quantify the impact of spectral calibration on the end products of a117

multifaceted global investigation like SBG.118

W
avelength

Cross Track Sample

Nominal Alignment

Spectrometer

Telescope

FPA

Slit

Failure by Frown

Cross Track Sample Cross Track Sample

Failure by Twist

Figure 2. Left: The spectrometer observation system, adapted from Mouroulis et al. (2000).

Center and Right: Nominal and distorted projections onto the focal plane array.

Figure 3. The spectral response function (SRF) under different spectroscopic distortions.

Left: wavelength shift of 0.1 nm (10% of the channel spacing). Right: stray spectral response.

Spectral calibration accuracy is difficult to predict because it rests on a chain of119

optical design decisions, alignment procedures, and any software corrections (Bender et120

al., 2011; D. R. Thompson et al., 2018a). Investigators have occasionally attempted post-121

processing to characterize and potentially correct these spectral response errors (Cea-122

manos & Douté, 2010; D. R. Thompson et al., 2018b). However, there is no gold stan-123

dard remedy. Corrections can introduce their own interpolation errors (Bender et al.,124

2011), and in any case may not fully correct the distortion (Alonso et al., 2019). Con-125

sequently, this paper assesses the effects of uncorrected residual miscalibration. We first126

describe the experimental design, including the strategy for synthesizing, inverting, and127
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Figure 4. Effects of different distortions on measured radiance. The grey line refers to the

actual radiance at sensor, shown with high spectral resolution. Left: Wavelength shift and associ-

ated residuals. Right: Stray spectral response and associated residuals.

analyzing distorted radiance spectra. We then present results and discuss implications128

for SBG and other future imaging spectrometer missions.129

2 Method130

We evaluate the impact of spectral calibration errors in simulation. Specifically, we131

define a true surface and atmospheric state and then apply an atmospheric RTM to syn-132

thesize spectral radiance at the sensor. We then simulate the measurement process, ap-133

plying some level of spectroscopic distortion in either (1) wavelength center position or134

(2) stray spectral response. We invert the resulting distorted measurement to estimate135

surface reflectance, and apply downstream algorithms to evaluate the impact on the re-136

sulting products.137

While SBG has many products, we focus on two benchmark cases measuring ter-138

restrial and aquatic ecosystems. These studies are particularly challenging because they139

involve parts of the visible and near infrared spectrum with high contrast atmospheric140

and solar lines. Additionally, they span many regions of the planet, so global maps must141

reconcile measurements acquired under a wide range of conditions. Finally, ecosystem142

trait and functional type analyses often rely on full-spectrum models which are finely143

tuned to subtle features of specific wavelengths. These factors make them likely to drive144

spectral calibration needs.145

The first benchmark case is a vegetation functional trait analysis. These functional146

traits include nutrient and pigment concentrations, leaf structure, and metabolic param-147

eters. They represent the ecological and evolutionary processes that drive plant func-148

tion, and indicate plant health, efficiency, and ecosystem diversity (Cavender-Bares et149

al., 2020). Pigments and water content may be estimated at a leaf level by leaf RTMs150

(DiVittorio, 2009; Shiklomanov et al., 2016; Féret et al., 2017), but these algorithms are151

typically computationally intensive and require additional ancillary information such as152

the plant to soil ratio in the pixel. A more common alternative is to fit statistical rela-153

tionships between individual spectra and chemical and structural composition (such as154

nitrogen content, chlorophyll, leaf mass and lignin) using partial least squares regression,155

or PLSR (Wold et al., 2001). Once the model coefficients have been derived, this method156

is computationally efficient and has been applied to many remotely sensed datasets (Coops157

et al., 2003; Townsend et al., 2003; Serbin et al., 2014; Asner et al., 2015; Singh et al.,158

2015; Wang et al., 2019, 2020). It has shown good performance in a wide range of con-159

ditions, making it a primary candidate for SBG. However, PLSR requires significant ini-160

tial training, and is sensitive to small systematic perturbations in the spectral input (Singh161

et al., 2015). Here we base our analysis on the models developed by Chadwick et al. (2020).162

That work was a regional study but typifies state of the art vegetation analysis that might163
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be performed on a broader scale for SBG. A training set of remote spectra and paired164

field measurements is used to train a PLSR model that predicts various functional traits165

for tree canopy spectra. We select five moderately dense tree canopy spectra that rep-166

resent the dataset. We then apply the PLSR coefficients to estimate three canopy traits:167

leaf mass per area (LMA), which averaged 399.2 g m−2; nitrogen content (N), which av-168

eraged 2.25% of dry leaf mass; and leaf water content (LWC), which averaged 49.92%169

of fresh leaf mass. The original study used tenfold cross validation, resulting in ten mod-170

els trained with different held out subpopulations. We take the average prediction of the171

models as the aggregate estimate.172

The second benchmark case typifies a coastal aquatic study. Coastal and inland173

waters show diverse spectral shapes (Dekker et al., 2002) that indicate different water174

column constituents such as phytoplankton pigments, carbon in particulate and dissolved175

forms, and suspended sediment (Hestir et al., 2015). These constituents can indicate wa-176

ter quality in inland water ecosystems and productivity in coastal regions. While many177

of these absorption signatures overlap, contemporary VSWIR imaging spectrometers pro-178

vide sufficient spectral resolution to estimate them independently. Here we focus on three179

simple and well-understood water column constituents: chlorophyll, Colored Dissolved180

Organic Matter (CDOM), and sediments. We limit ourselves to the dominant phytoplank-181

ton pigment for simplicity, but more sophisticated community structure retrievals are182

possible (Cael et al., 2020; Kramer & Siegel, 2019) and will certainly be important for183

SBG. Water column constituent signals appear in the visible and UV wavelengths of wa-184

ter leaving reflectance spectra. Since these targets are dark, and the atmospheric scat-185

tering in short wavelengths is strong, the target signal constitutes a small fraction of the186

measured radiance. Consequently, accurate atmospheric correction is critical. We use187

a water-leaving reflectance spectrum calculated using the Hydrolight RTM (Mobley, 1994),188

with assumptions typical of Case II coastal waters. We simulate ten spectra with chloro-189

phyll a concentrations of 0.2-0.5 mg m−3, CDOM absorption of 0.1-0.3 at 440 nm, and190

sediment concentrations of 0.5-1 g m−3, all typical of continental shelf zones targeted191

by SBG. We calculate water-leaving reflectance at 1 nm spectral sampling and interpo-192

late to SBG spectral sampling. Our inversion is a popular lookup table method similar193

to that of Mobley et al. (2005). In advance, we calculate a comprehensive table of water-194

leaving reflectance spectra for a wide range of parameter values. We then perform a least195

squares fit of the measured surface reflectance by adjusting the concentrations of chloro-196

phyll, CDOM and suspended minerals.197

Figure 5 shows the spectral gain coefficients (Rodgers, 2000) for both reflectance198

inversions. Gain coefficients represent the partial derivative of the solution with respect199

to a change in the input reflectance for each channel. Here they are evaluated at the true200

state. These shapes indicate the reflectance changes which would increase the estimated201

quantity of interest. For the PLSR model at left, the inversion is perfectly linear so the202

gain coefficients are the PLSR coefficients. For the aquatic case, the coefficients were cal-203

culated as in Rodgers (2000) using a local linearization of the lookup table reflectance204

model and uniform noise assumptions. The terrestrial coefficients show rapid oscillations205

and large first derivatives, which affect their sensitivity to wavelength miscalibrations.206

To transform terrestrial and aquatic reflectances into measured radiance we must207

posit a set of observing conditions. These observing conditions can influence sensitiv-208

ity to wavelength miscalibration, since its impact depends on the depth and shape of gas209

absorption features. Rather than attempt to anticipate the distribution of SBG atmo-210

spheres, we simulate two different conditions that span a range of conditions. Specifi-211

cally, we consider observations of a surface at sea level with an atmosphere that is ei-212

ther dry or humid (with water vapor columns of 1.5 or 3 g cm−2 respectively). We use213

haze free aerosol loading (AOD < 0.05) in all cases. We evaluated performance for a so-214

lar zenith angle at 45 degrees, a situation which would be encountered regularly in both215

tropical and midlatitude regions for a polar orbit with 10:30h crossing time.216
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Figure 5. Gain coefficients for both terrestrial (Left) and aquatic (Right) inversion algo-

rithms. They show the partial derivative of the estimate with respect to each reflectance channel.

The PLSR model at left oscillates rapidly, and is more sensitive to spectral nonuniformities than

the smooth lookup table inversion at right.

Following Vermote et al. (1997), our observation model relates the surface reflectance217

ρs, to the radiance at sensor Lobs with the following expression:218

Lobs =
E cos(θs)

π
◦
[
ρa +

t↓tdir ◦ ρs
1 − (s ◦ ρb)

+
t↓tdif ◦ ρs

1 − (s ◦ ρb)

]
(1)

Here θs the solar zenith angle, and all other variables are vector-valued spectra with ◦219

representing element-wise multiplication. E is the extrasolar irradiance, ρa is the path220

reflectance, and s is the spherical sky albedo. The symbol ρb represents the reflectance221

of the background outside the pixel. The total downward transmittance along the sun222

to ground path is t↓. The upward transmittance is written as a sum of a diffuse portion223

tdif , and a direct portion tdir. The total transmittance t is the product of upward and224

downward transmittances. For an isotropic reflector following Lambert’s cosine law, di-225

viding by π converts the irradiance quantity E into a radiance. We further simplify the226

model by taking the spatial reflectance field to be uniform, in which case ρs = ρb:227

Lobs =
E cos(θs)

π
◦
[
ρa +

t ◦ ρs
1 − (s ◦ ρs)

]
(2)

We calculate values of s, t, and ρa using the MODTRAN 6.0 RTM (Berk & Hawes, 2017)228

for a given atmospheric state. Our calculations use a high resolution 0.1 cm−1 correlated-229

k band model. Note that expression 2 assumes the surface is Lambertian. Accounting230

for photometric effects of observation geometry is outside the scope of this work; such231

treatments generally leverage empirical or geometric optical models that are insensitive232

to spectral calibration, so we can safely ignore them for this study.233

After calculating the radiance at the sensor aperture, we add sensor noise to sim-234

ulate the measurement process. We use instrument noise similar to the standard recom-235

mended by the Decadal Survey: a signal-to-noise ratio (SNR) of 400 in the Visible to236

Near infrared from 400-1500 nm, and an SNR of 250 in the Shortwave Infrared from 1500-237

2500 nm. The Decadal Survey defined these SNR standards for a 25% reflective surface,238

so spatial averaging, or co-adding, might be necessary to achieve this noise level over dark239
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aquatic targets. We apply random noise independently to every radiance channel, which240

is appropriate for measurement variance caused by photon shot noise, read noise, and241

electronic signal chain effects. We assume a channel spacing and spectral response full242

width at half maximum of 10 nm. We simulate measurements by resampling the high-243

resolution radiative transfer calculation using artificial wavelength offsets ranging from244

0 to 2 nm in 0.2 nm increments, representing various degrees of spectral calibration shift.245

These offsets are applied uniformly to all channels, reflecting typical smile or shift-related246

errors in grating-based imaging spectrometers. Prism-based spectrometers might expe-247

rience more severe transformations, with wavelength-dependent changes in dispersion.248

We also apply a blurring operation representing off-nominal thick tails of the response249

function. Specifically, we construct a linear spectral blurring operator as in D. R. Thomp-250

son et al. (2018a). This thick tailed response is a second Gaussian line shape with a width251

that is four times the main response, and a magnitude that varies from 0 to 0.0005 times252

that of the central peak. Naturally, different instruments may have many response func-253

tion shapes, so our model provides only a rough indication of sensitivity to this param-254

eter.255

We invert the distorted radiance measurements using a Bayesian Maximum A Pos-256

teriori procedure similar to previous work (D. R. Thompson et al., 2018c). This inver-257

sion aims to maximize the posterior probability of the state vector given the measure-258

ment, accounting for the measurement noise and the strength of background knowledge259

about the surface and atmosphere parameters. We define a forward model F(x) which260

transforms the state vector x of surface and atmospheric parameters onto the radiance261

at the sensor Lobs. The actual measurement y is perturbed by random observation noise262

ε:263

y = F(x) + ε (3)

The free parameters in the retrieval form a state vector x containing the reflectance in264

every channel, as well as two additional values describing the aerosol optical depth and265

atmospheric water vapor concentration. The inversion estimates the most probable state266

given the measurement. In a Bayesian formalism this is equivalent to minimizing the cost267

function:268

χ(x) = (F(x) − y)TS−1ε (F(x) − y) + (x− xa)TS−1a (x− xa) (4)

The matrix Sε represents the covariance of the zero mean observation noise. Its term pe-269

nalizes departure of the modeled radiance from the true measurement, weighted by the270

observation noise covariance. The second term of equation 4 penalizes departure from271

the prior where the prior distribution is a multivariate Gaussian with mean xa and co-272

variance Sa. We construct a prior distribution following the procedure of D. R. Thomp-273

son et al. (2020), assuming atmospheric terms are independent. We form a surface prior274

using a wide range of terrestrial spectra from the USGS Spectral library (Kokaly et al.,275

2017), and a set of open water spectra described in D. R. Thompson, Cawse-Nicholson,276

et al. (2019). As in D. R. Thompson et al. (2020), we use a conservative prior with all277

wavelengths uncorrelated outside the key water absorption windows. We also use reg-278

ularization (Theiler, 2012) to ensure that the inversion can accurately reproduce shapes279

outside the envelope of library spectra. With this conservative uninformed prior, and haze-280

free scenes, the results are very similar to other alternative inversion methods based on281

differential optical absorption ratios (Schläpfer et al., 1998).282

In order to evaluate the impact of the miscalibration-induced errors, we compare283

the magnitudes to: (1) the error induced by measurement noise alone; and (2) the back-284

ground variability in ecosystems similar to what SBG would measure. For the second285

comparison, we use the standard deviation of traits from representative surveys in pub-286

lic literature. Terrestrial ecology traits use values taken from a multi-site study by Wang287

et al. (2020): the standard deviation of LMA is 62.9 g m−2; the standard deviation of288

N concentration 0.72%, and the standard deviation of LWC is 7.9%. The standard de-289

viation of marine ecosystem chlorophyll is 0.275 mg m−3; it comes from long-term ob-290
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Figure 6. Vegetation and aquatic spectra used for this study, with characteristic errors that

result from a 1 nm wavelength shift.

servations of a Pacific Coastal ecosystem (Marrari et al., 2017). CDOM standard devi-291

ations of 0.11 (absorption at 440 nm) come from 36 months of observations in coastal292

waters by Keith et al. (2002). These only provide a rough indication of expected nat-293

ural system variability and may not represent all regions.294

Figure 6 shows the reflectance spectra used for this study. The black line shows the295

original inversion result for a perfectly calibrated instrument. The red lines show the same296

result with a wavelength miscalibration of 1 nm. This is well within the range of shifts297

experienced by many historical instruments. The effect is most obvious in wavelengths298

with jagged, high contrast radiance structure. Artifacts appear in the near infrared re-299

gion of the plant canopy from 750 to 1300 nm, which includes a range of oxygen and wa-300

ter vapor features. The aquatic spectral range has less absorption by atmospheric gases,301

but shows artifacts in the shortest wavelengths near 400 nm that correspond to sharp302

solar absorption lines. We run 100 trials for each combination of distortions, atmospheres303

and spectra, and take the mean result.304

3 Results305

Figure 7 shows performance for the LMA model. The leftmost plot shows error as306

a function of spectral wavelength shift. The discrepancy at zero miscalibration is due solely307

to instrument measurement error, but departures increase rapidly with larger miscali-308

brations. The black solid line is a polynomial fit to the datapoints for the dry atmospheric309

state, and the red solid line represents the humid atmospheric state. As expected, per-310

formance degrades more dramatically in humid conditions. The black dotted line rep-311

resents the true value. A dark shaded area represents the variance due to retrieval noise,312

and a light grey shaded area represents the background variability (Wang et al., 2020).313

Error due to miscalibration exceeds the measurement noise at wavelength shifts of less314

than 0.25 nm, and it exceeds the background variability at wavelength shifts between315

0.35 and 0.6 nm. The rightmost plot shows the stray spectral response errors. These im-316

pacts depend even more strongly on ambient atmospheric conditions - the dry atmosphere317

is almost unaffected, while the humid atmosphere is strongly affected at stray response318

levels above 0.0001 times the peak response.319

Figures 8 and 9 shows similar plots for the N and LWC traits. The impact of wave-320

length shifts, in the leftmost plots, are similar to LMA. As miscalibrations grow, these321

errors quickly exceed instrument noise. They eventually exceed background variability322

at shifts between 0.5 and 1.25 nm, with humid atmospheres always more sensitive than323

dry atmospheres. The effect of stray spectral response is also consistent; observations324
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in dry atmospheres are nearly immune to spectral response error while observations in325

humid atmospheres are highly sensitive. N is severely impacted, exceeding background326

variability for even small amounts of spectral calibration error. These differences between327

dry and humid atmospheres would induce atmospheric biases in the trait retrieval, thwart-328

ing attempts to combine results across dry and humid atmospheres. These errors are par-329

ticularly problematic because they masquerade as ecosystem-related signals in different330

vegetation, when in fact they are from the atmosphere. In general, the humidity-induced331

biases for these plant traits exceed the background variability at a spectral shift of 1.0332

nm, and stray response magnitudes of less than 0.0001.333

Figure 7. Errors induced by calibration errors for LMA in dry and humid atmospheres.

Shaded areas represent the uncertainty due to measurement noise in dark gray and the back-

ground variability in ecosystem traits from Wang et al. (2020) in light gray. The black dotted line

shows the true value. Left: Errors due to spectral wavelength shift. Right: Errors due to stray

spectral response.

Figure 8. Errors in leaf nitrogen induced by calibration errors in dry and humid atmospheres.

Shaded areas represent the uncertainty due to measurement noise and the background variability

in ecosystem traits from Wang et al. (2020). The black dotted line shows the true value. Left:

Errors due to spectral wavelength shift. Right: Errors due to stray spectral response.

To quantify this effect we calculate shift-induced errors for different terrestrial biomes334

based on the annual mean water vapor content of their atmospheres. We correlate land335
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Figure 9. Errors induced by calibration errors for LWC in dry and humid atmospheres.

Shaded areas represent the uncertainty due to measurement noise and the background variability

in ecosystem traits from Wang et al. (2020). The black dotted line shows the true value. Left:

Errors due to spectral wavelength shift. Right: Errors due to stray spectral response.

H2O LMA Error N Error LWC Error

Land Cover Type (g cm2) (%) (%) (%)

Evergreen Needleleaf Forest 0.958 21 -18 36

Evergreen Broadleaf Forest 3.614 40 -39 76

Deciduous Needleleaf Forest 0.770 20 -16 33

Deciduous Broadleaf Forest 2.023 29 -26 52

Mixed Forest 1.213 23 -20 39

Woodlands 2.007 29 -26 51

Wooded Grasslands/Shrublands 1.101 22 -19 38

Closed Bushlands or Shrublands 1.869 28 -25 49

Open Shrubland 2.496 32 -30 59

Grasslands 1.119 22 -19 38

Croplands 1.647 26 -23 46

Table 1. Expected systematic errors in percent for each vegetation trait induced by a 1 nm

(10%) wavelength shift, as a function of atmospheres in different land cover type. Humid atmo-

spheres, such as the broadleaf forests of tropical regions, are most heavily impacted. Predictions

are based on the annual mean water vapor content for each land cover class.

cover maps from the University of Maryland land cover classification system (Defries &336

Hansen, 2010) and annualized MODIS mean water vapor estimates (Gao et al., 2015).337

This procedure indicates the mean water vapor content for each land cover class. Inter-338

polating between our wet and dry errors yields a first-order approximation of the expected339

total error induced from spectral miscalibration for each land cover type. Table 1 shows340

the result for a wavelength offset of 1.0 nm. Clearly, some biomes have atmospheres that341

lead to more severe errors than others due to the higher water vapor content. This level342

of wavelength shift (which is nevertheless within historic bounds) induces the largest sys-343

tematic errors in humid atmospheres, particularly the evergreen broadleaf forest cover344

type. Such systematic differences would complicate any attempt to apply a single model345

across multiple biomes.346

As expected, the aquatic analyses are all less sensitive to spectral calibration er-347

ror. Figures 10, 11 and 12 show the result for chlorophyll, CDOM absorption at 440 nm,348

–11–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Biogeosciences

and suspended sediment respectively. Again, the shaded areas represent measurement349

noise and background variability. As wavelength shift increases, performance initially de-350

grades more gracefully than in the vegetation case, with errors of just 25% for a 1 nm351

shift. Wavelength shifts above 1.0 nm become increasingly detrimental, and even catas-352

trophic for chlorophyll as residual artifacts grow around the sharp solar lines overlap-353

ping the 440 nm absorption feature. The other water column parameters show a sim-354

ilar degradation profile with very little effect until the 1.0 nm threshold is reached. Single-355

spectrum measurement errors due to noise alone are 5-10% for all constituents. Neither356

dry nor humid atmospheres show any significant sensitivity to stray spectral response.357

Figure 10. Errors induced by wavelength calibration errors for chlorophyll a estimation in

dry and humid atmospheres. Shaded areas represent the uncertainty due to measurement noise

and the background variability in ecosystem traits as described in the text. Left: Errors due to

spectral wavelength shift Right: Errors due to stray spectral response.

Figure 11. Errors induced by wavelength calibration errors for CDOM estimation in dry and

humid atmospheres. Shaded areas represent the uncertainty due to measurement noise and the

background variability in ecosystem traits as described in the text. The black dotted line shows

the true value. Left: Errors due to spectral wavelength shift Right: Errors due to stray spectral

response.
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Figure 12. Errors induced by wavelength calibration errors for suspended sediment estimation

in dry and humid atmospheres. A shaded area represents the uncertainty due to measurement

noise. The black dotted line shows the true value. Left: Errors due to spectral wavelength shift

Right: Errors due to stray spectral response.

4 Discussion358

Our experiments demonstrate that the SBG investigation will be highly sensitive359

to spectral calibration error. In particular, SBG’s terrestrial ecosystem objectives, as cur-360

rently envisioned to use data driven trait models, will likely demand tighter calibration361

tolerances than previous missions such as Hyperion. The unique, global nature of the362

investigation, coupled with the subtle and spectrally-dispersed nature of ecosystem sig-363

nals, means that small miscalibrations can have a significant impact on product accu-364

racy and science yield. This extends upon earlier analysis by Green (1998), which demon-365

strated that wavelength shifts exceeding 1-2% produce visible artifacts in reflectance spec-366

tra. Here we show that these artifacts affect the downstream biogeochemical measure-367

ments critical for SBG. Even inaccuracy of 5% (0.5 nm), a level which would tradition-368

ally have been considered safe for most applications, has a performance impact larger369

than the instrument noise. Higher levels become progressively more deleterious, induc-370

ing atmosphere-dependent biases that could impact comparisons across biomes or en-371

vironmental gradients. More sophisticated aquatic retrievals, such as estimation of sec-372

ondary pigments beyond chlorophyll a (Cael et al., 2020; Kramer & Siegel, 2019), could373

be similarly sensitive. Potential sources of these errors include wavelength drift over time,374

stray spectral response, and spatial non-uniformity of the wavelength calibration. All should375

be considered in the SBG design.376

Historical missions show that adequate spectral calibration is achievable. Atmo-377

spheric features reveal the on-orbit spectral calibration from flight data (Guanter, Alonso,378

et al., 2006). These show that imaging spectrometers vary widely in wavelength calibra-379

tion, spanning an order of magnitude in performance. The first orbital VSWIR imag-380

ing spectrometer, the Hyperion instrument onboard the EO-1 mission, achieved a cross-381

track spectral nonuniformity of 1.7 - 2.55 nm in the Visible Near InfraRed (VNIR) (Pearl-382

man et al., 2001). At the other extreme, airborne instruments like the National Ecolog-383

ical Observation Network (NEON) Imaging Spectrometer have demonstrated uncorrected384

cross-track uniformity within 0.1 nm, or 2% of the channel spacing (Leisso et al., 2014).385

Between these extremes like a range of calibration errors. Table 2 summarizes these wave-386

length shifts along with several performance thresholds in our study: the miscalibration387

levels equivalent to measurement noise, and those at which miscalibration errors exceed388

the standard deviation of environmental variability. The result is sobering; to succeed,389

SBG must outperform most historical instruments.390
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There are several ways to prevent spectroscopy-induced trait errors. Combating391

drift is relatively easy, since atmospheric features provide an absolute standard to track392

wavelength calibration shifts over time. Future missions should operationalize this pro-393

cess to prevent avoidable errors. Wavelength inaccuracy caused by spatial nonuniformity394

is more challenging to address. One can resample the radiance data after acquisition, map-395

ping different calibrations to a common wavelength grid for analysis. However, a 10 nm396

measurement grid generally undersamples the high-contrast atmospheric structure in ra-397

diance spectra. Consequently, resampling can cause errors such as distorted shapes or398

shifted band positions. Such corrections may not compensate completely for nonunifor-399

mities - for example, the DESIS mission software corrections reduced its spectral smile400

by approximately 38% (Alonso et al., 2019). An alternative might be to resample the401

reflectances instead, as in Goetz et al. (2003) or Richter et al. (2011). Specifically, one402

could run multiple radiative transfer calculations for different spectral calibrations, ap-403

ply a specific model for atmospheric correction at each, and then resample the result in404

reflectance space where features are smoother and more amenable to interpolation. How-405

ever, this approach is comparatively complex to implement. It still requires that the dis-406

tortions be well characterized, and suffers some inevitable loss of information in sharp407

reflectance features or slopes. Finally, wavelength shifts are often a symptom of other408

miscalibration problems, such as field of view misregistration across channels. Resam-409

pling is a useful tool, but it is not a panacea.410

Another remedy is to modify the retrieval methods to make them less susceptible411

to miscalibration errors. The terrestrial coefficients in our study are notable for having412

rapid oscillations and large first derivatives. This is common in empirical models of fo-413

liar traits, which often cue on very specific channel relationships (Wang et al., 2020). While414

the dominant compounds in tree canopies have broadband absorption features (Feret et415

al., 2008; Ustin et al., 2009; Elvidge, 1990), the expression of relevant biophysical dif-416

ferences is far subtler. This is at least partially due to the strong overlap between ab-417

sorption coefficients (particularly in the SWIR), which requires algorithms to isolate spe-418

cific spectral peaks from the otherwise smooth spectral regions. Importantly, although419

the sharp oscillatory structure in PLSR coefficients also appears in some other common420

trait estimation methods, it is not universal. On the contrary, trait retrieval methods421

that leverage physically-based canopy RTMs (Berger et al., 2018; Verrelst et al., 2019)422

have broad and smooth spectral gain features that may be less susceptible to spectral423

precision and uniformity, to the point that some trait retrieval is even possible using mul-424

tispectral sensors like Landsat (Houborg et al., 2015). However, compared to data-driven425

approaches, physically-based approaches are typically more computationally intensive426

and are limited to a much smaller, though growing (Feret et al., 2008; Féret et al., 2017;427

Fret et al., 2021), set of target traits. Therefore, realizing the full potential of SBG for428

plant trait mapping depends on minimizing the spectral calibration issues raised in this429

manuscript.430

Besides spectral resampling and better algorithms, perhaps the best and most el-431

egant solution is simply to prioritize spectral calibration highly in instrument design. This432

should include consideration of both spatial uniformity and control of stray light. Ad-433

equate performance has been achieved by multiple historical instruments, demonstrat-434

ing that the desired level of performance is possible in practice without excessive cost.435

Designing to these standards will reap long-term dividends in algorithms that work bet-436

ter, generalize more easily, and translate more easily to partner instruments. In the de-437

sign phase, modern tolerancing and error analyses (Moore et al., 2020) can be used to438

provide rapid assessment of predicted optical performance and identification of driving439

tolerances, which can be used to improve uniformity and other key performance param-440

eters. Modern alignment methods can validate the spectral response, spatial response,441

and uniformity characteristics prior to launch (Bender et al., 2011). For a global ecosys-442

tem study like SBG, no degree of wavelength shift should be considered “safe.” Spatial443

uniformity requirements should be established. Uniformity should be reported in descrip-444
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tions of instrument performance alongside the more commonly-quoted radiometric per-445

formance.446

Stray spectral response is a slightly different problem. Its effects range from neg-447

ligible under dry atmospheres, to extreme under more humid ones. This difference could448

induce ecosystem-dependent biases in global vegetation products. Unlike spectral cal-449

ibration, which can be ensured by good optical design, alignment, and operational prac-450

tices (Bender et al., 2011), stray spectral response depends on the scattering properties451

of different components that are more difficult to predict or change. Fortunately, stray452

response may also be more amenable to software corrections. Unlike the wavelength grid453

which undersamples sharp reflectance shapes, the extended spectral response is oversam-454

pled by the focal plane array so the information exists to reconstruct the nominal mea-455

surement. Software approaches to characterizing and correcting spectral response func-456

tions have been demonstrated operationally for many years (Zong et al., 2006; D. R. Thomp-457

son et al., 2018a; Kuhlmann et al., 2016). The extended spectral response function is mea-458

sured in the laboratory or in flight, after which it can be deconvolved to restore a pris-459

tine Gaussian response. The upcoming EMIT mission (Green et al., 2020) may deploy460

this procedure operationally, offering a chance to evaluate whether such an approach will461

meet SBG needs.462

Finally, we note some important caveats. This was intended as a sensitivity study463

based on a handful of representative but stressing example retrievals. It is concise rather464

than comprehensive, and the results of particular studies may not match these predicted465

impacts. It also ignores some other important errors that are more difficult to simulate,466

such as keystone distortions in which different wavelengths come from different locations467

on the surface. Finally, alternative retrieval algorithms or PLSR models might possibly468

achieve similar measurements with less sensitivity to spectral calibration error. Never-469

theless, the fundamental conclusion — that terrestrial ecosystems require highly accu-470

rate spectral calibration — is consistent with previous work and should hold more gen-471

erally.472

5 Conclusions473

This study investigates the impact of spectral calibration errors, in the form of wave-474

length calibration shifts and stray spectral response, on SBG objectives. We simulate475

these errors for inversion problems that are representative of aquatic and terrestrial ecol-476

ogy measurements. We show that inaccuracies which have been considered acceptable477

for previous missions can easily induce systematic error that is larger than the instru-478

ment noise, and of the same order as the variability of physical properties SBG aims to479

measure. Terrestrial ecosystem studies that rely on subtle delineations between spectral480

features of tree canopies are particularly sensitive to this class of errors. Previous or-481

bital instruments have shown a wide range of spectral calibration accuracy. Surface mea-482

surements using PLSR favor the upper range of historical spectrometer performance to483

avoid errors exceeding not just the measurement noise, but even the background vari-484

ability in terrestrial biomes. Investigators should be aware that even minor spectral mis-485

calibration due to drift or spatial nonuniformity can induce systematic atmosphere-dependent486

errors in vegetation traits. Since vegetation community composition correlates strongly487

with these environmental factors, limiting such biases is important for building consis-488

tent global maps. Measuring and reducing stray spectral response should also be a pri-489

mary concern. Despite these admonitions, the SBG investigation promises to revolution-490

ize our understanding of terrestrial and aquatic ecosystems. All the performance targets491

implied by this study are achievable, or have been achieved, by historical instruments.492

Thus, with due attention to spectral calibration accuracy, there is reason for great op-493

timism in the SBG endeavor.494
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Ceamanos, X., & Douté, S. (2010). Spectral smile correction of crism/mro hyper-534

spectral images. IEEE Transactions on Geoscience and Remote Sensing , 48 (11),535

3951–3959.536

Chadwick, K. D., Brodrick, P. G., Grant, K., Goulden, T., Henderson, A., Falco,537

N., . . . others (2020). Integrating airborne remote sensing and field campaigns538

for ecology and earth system science. Methods in Ecology and Evolution, 11 (11),539

1492–1508.540

Cogliati, S., Sarti, F., Chiarantini, L., Cosi, M., Lorusso, R., Lopinto, E., . . .541

Colombo, R. (2021). The prisma imaging spectroscopy mission: overview542

and first performance analysis. Remote Sensing of Environment , 262 , 112499.543

Retrieved from https://www.sciencedirect.com/science/article/pii/544

S0034425721002170 doi: https://doi.org/10.1016/j.rse.2021.112499545

Coops, N. C., Smith, M.-L., Martin, M. E., & Ollinger, S. V. (2003). Prediction of546

–17–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Biogeosciences

eucalypt foliage nitrogen content from satellite-derived hyperspectral data. IEEE547

Transactions on Geoscience and Remote Sensing , 41 (6), 1338–1346.548

Dadon, A., Ben-Dor, E., & Karnieli, A. (2010). Use of derivative calculations and549

minimum noise fraction transform for detecting and correcting the spectral cur-550

vature effect (smile) in hyperion images. IEEE Transactions on Geoscience and551

Remote Sensing , 48 (6), 2603–2612.552

Defries, R., & Hansen, M. (2010). ISLSCP II university of maryland global land553

cover classifications, 1992-1993. ORNL Distributed Active Archive Center. Re-554

trieved from http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds id=969 doi: 10555

.3334/ORNLDAAC/969556

Dekker, A. G., Brando, V. E., Anstee, J. M., Pinnel, N., Kutser, T., Hoogenboom,557

E. J., . . . others (2002). Imaging spectrometry of water. In Imaging spectrometry558

(pp. 307–359). Springer.559

DiVittorio, A. V. (2009). Enhancing a leaf radiative transfer model to estimate560

concentrations and in vivo specific absorption coefficients of total carotenoids561

and chlorophylls a and b from single-needle reflectance and transmittance. Re-562

mote Sensing of Environment , 113 (9), 19481966. doi: https://doi.org/10.1016/563

j.rse.2009.05.002564

Elvidge, C. D. (1990). Visible and near infrared reflectance characteristics of dry565

plant materials. Remote Sensing , 11 (10), 1775–1795.566

Feret, J.-B., François, C., Asner, G. P., Gitelson, A. A., Martin, R. E., Bidel, L. P.,567

. . . Jacquemoud, S. (2008). Prospect-4 and 5: Advances in the leaf optical prop-568

erties model separating photosynthetic pigments. Remote sensing of environment ,569

112 (6), 3030–3043.570
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