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But seeing the world in terms of decentralized interactions is a difficult shift for many 

people. It requires a fundamental shift in perspective, a new way of looking at the world. At some 

deep level, people have strong attachments to centralized ways of thinking. When people see 

patterns in the world (like a flock of birds), they often assume that there is some type of 

centralized control (a leader of the flock). […]  According to this way of thinking, a pattern can 

exist only if someone (or something) creates and orchestrates the pattern. Everything must have 

a single cause, an ultimate controlling factor. The continuing resistance to evolutionary theories 

is an example: Many people still insist that someone or something must have explicitly designed 

the complex, orderly structures that we call Life. […]  One of the basic tenets of Artificial Life is 

that the best way to learn about living systems is to try to construct living systems (or, at least, 

models and simulations of living systems). This idea holds true whether the learners are 

scientists or children. To help people move beyond the centralized mindset, it makes sense to 

provide them with opportunities to create, experiment, and play with decentralized systems.  

 

 

Summarized from Resnick M. (1994).  Artificial Life, vol. 1. 
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Abstract: 

 The overarching theme of this thesis research was to further develop methods to improve 

ecological risk assessment of anthropogenic stressors.  The main objective was to develop a 

bioenergetic, individual-based multi-species model that could be used to predict population-level 

dynamics arising from indirect energetic interactions between species. Ultimately, the goal 

would be to apply such a model to predict effects of chemical stressors on ecological receptors.  

To facilitate model development and evaluation, several experiments were performed—one to 

calibrate single species sub-models, and another to demonstrate the effectiveness of the model in 

predicting population dynamics in single and multi-species scenarios. 

 The two focal organisms were Daphnia magna and Lymnaea stagnalis for their 

environmental and regulatory relevance.  Individual bioenergetic models for each species were 

developed from Dynamic Energy Budget models.  These bioenergetic models were then inserted 

into individual-based models specific to each organisms’ behavioral characteristics.  D. magna 

models were greatly influenced by localized density-dependent effects termed ‘Neighborhood 

Effect’ and L. stagnalis models were greatly influenced by their movement pattern and ‘S’-

shaped growth patterns.  Connecting the individual models in a single, multi-species model 

required modelling indirect energetic facilitation from L. stagnalis to D. magna by using a model 

simplification whereby snail waste was functionally converted to daphnia resources as algae. 

 Experimental results from D. magna populations supported the individual daphnid model 

and the importance of the ‘Neighborhood Effect.’  Multi-species experimental observations 

confirmed the existence of indirect energetic facilitation between snails and daphnid populations 

and provided valuable insight into graded levels of facilitation. 
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 In summary, the results of this thesis demonstrate that a combination of model and 

experimental methods exist that can provide useful linkages between single species energetic 

data and higher levels of biological organization.  More importantly, the success of the multi-

species model emerged from rather simple connections between individual species models.  This 

provides a very useful framework for linking models for single species responses to chemical 

stressors that may prove valuable to ecotoxicological research and ecological risk assessment. 
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Chapter I. 

 

A Bioenergetic Model Accounting for the “Neighborhood Effect” and Characteristics of 

Experimental Environments on Daphnia magna 

 

 

Introduction: 

 In light of expanding human activities and their ecological impacts, robust 

approaches are needed by which these impacts can be explored and predicted to limit further loss 

of biodiversity and ecosystem services (Hoekstra and Wiedmann, 2015; Mace, 2014).  Chemical 

stressors released to the environment as a result of increased anthropogenic activities can reduce 

biodiversity and alter ecosystem function (Beketov et al., 2013; McMahon et al., 2012).  As 

such, Ecological Risk Assessment (ERA) is used to inform policy and ideally does so by 

providing robust estimates of the likelihood and magnitude of adverse ecological effects from 

exposure to environmental stressors including chemicals (EPA, 1998; 2004). In turn, a key goal 

of ecotoxicological research is to provide data and tools that inform ERAs and lead to improved 

understanding and prediction of effects of manufactured chemicals on natural systems.  Most 

efforts to improve our ability to predict adverse effects of chemicals are based on integrating 

ecological methods and toxicological information (Truhaut, 1977; Chapman, 2002; and Leiss, 

2002) in order to specifically address the source of adverse effects (Heugens et al., 2001).   

All ERAs include three main components: problem formulation, risk analysis (analyzing 

the potential ecological effects), and then risk characterization--which is a discussion of the 

analysis results and inherent uncertainties (EPA, 1998; 2004).  In essence, ERAs represent the 
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linkage between science, public policy, and conservation of natural environments.  In practice, 

the ecotoxicological data used to estimate potential ecological effects and subsequently, risk , are 

typically obtained from highly controlled, single-species, laboratory toxicity tests (e.g., Heugens 

et al., 2001)).  The disparity between data obtained from toxicity tests and the natural systems 

they are designed to protect (Forbes et al., 2011) has been a common criticism of ERA methods 

(Rohr et al., 2016). Rohr et al. (2016) suggested approaching this disconnect from both complex 

system level experiments/models and sub- or organismal level experiments/models.  This ‘top-

down’ and ‘bottom-up’ combined approach will allow linking ecological and stressor 

complexities (Laender et al., 2008a and 2008b; Beketov and Leiss, 2001; Faber and Wensem, 

2012; Gabsi and Preuss, 2014; Gabsi et al., 2014; Smetanova et al. 2014; Orlinskiy et al., 2015) 

to mechanistic drivers (Laetz et al., 2009; Sibly et al., 2013; Forbes and Calow, 2013b).  Not 

only are these methodological suggestions likely to increase confidence in ERA output, but they 

also avoid the costly, complicated, and unlikely shift away from single species toxicity tests 

(Rohr et al., 2016). One possible path forward for connecting levels or organization is to start at 

the individual-level and seek to predict effects under increasing ecological complexity. 

 Efforts to implement the abovementioned advances in ERA are perhaps most likely to 

occur through mathematical methods that link levels of biological organization. This approach 

would not necessarily require additional study designs beyond organism-level laboratory 

assessment, but may provide risk estimates relevant to higher levels of biological organization 

(Rohr et al., 2016; Suter et al., 2005).  Linking levels of biological organization has been well-

supported and modeled through energetic flow between trophic levels (e.g., Carpenter et al. 

(1987); Fath et al. (2004)) due to both observed manipulations (e.g, Carpenter et al. 1987) and 

theoretical reliance on laws of thermodynamics (Fath et al., 2004).  In the context of stress 
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ecology, Sokolova (2013) provided a strong argument for the conceptual connection between 

organismal bioenergetics and the organism’s ability to tolerate/mitigate stress.  The organism, 

when exposed to a stressor, can be thought of as moving through a spectrum from a ‘pejus’ level 

(stressed but ecologically functional) to a ‘pessimum’ (lethal level) where basal metabolic 

demands cannot be met. A spectrum of bioenergetic demand due to stressor exposure follows a 

strong logical and observed base that mitigation or tolerance of stress can be explained by the 

ability or inability to generate ATP (Sokolova, 2012).  As well, interactions between energy and 

stressors have similar characteristics at multiple levels of biological organization.  Utilization of 

bioenergetic principles and processes in a formalized modelling framework could allow a robust 

quantitative linkage between toxicity tests and 

larger natural systems (e.g., Martin et al. 2013; 

Jager et al., 2014)  Predicting adverse effects of 

anthropogenic stressors necessitates linking 

chemical effects on individual survival and 

reproduction to impacts on populations and the 

corresponding communities and ecosystems. 

Ideally, as suggested by the Adverse Outcome 

Pathway (AOP) framework (Ankley, et al., 2010)) 

models that include the individual level can 

ultimately be extended to lower levels of biological 

organization (cellular and molecular) but model 

simplicity and reduced data requirements are important considerations (Jusup et al., 2016 and 

Rohr et al., 2016).  This nested conceptual model (organisms within populations within 

Cell 

Organism 

Population 

Community 

Ecosystem 

Figure 1.  Conceptual schematic 
demonstrating nested framework of 

system level compartments. 
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communities, etc.  See Figure 1 below.), when informed by the bioenergetics within and among 

system compartments, can be used to quantitatively describe and ideally predict effects observed 

at different ecological scales.  The Dynamic Energy Budget Theory for Metabolic Organization 

(DEB) is a specific framework with a strong mathematical foundation (Kooijman, 2010) that can 

provide the modeling core of this nested framework—describing the growth and reproduction of 

individual organisms in context of resource density and stressor exposure (Kooijman, 2010).   

Bioenergetic models based on DEB principles are distinguished from more traditional 

static bioenergetic budget models (e.g., Wisconsin model, Kitchell et al, 1977) by their dynamic, 

systems-based approach and theoretical basis in cellular mechanisms.  One of the core 

advantages of the DEB model for organism growth and reproduction (in relation to traditional 

methods) is the removal of age or life-stage as a critical parameter.  For example, within DEB 

models, life-stage changes are determined by accumulation of energy into “buffers” that 

contribute to maturity and influence reproductive allocation and other potential fluxes that 

determine growth or maintenance.  This is distinctly different than relying on observations of 

mean age at first reproduction, for example, and provides a mechanistic and “first principles” 

platform of support (see Jusup et al., 2016).  

 Although the DEB theory provides a powerful framework of modeling and theory 

development, there is a continuing discussion on the value/strength of DEB models (Jusup et al., 

2016).  One particular concern regarding DEB models is the number and abstractness of DEB 

parameters and state variables that present a barrier to use and cannot easily be directly tied to 

empirical observation. For example, the DEB model state variable ‘reserve’ does not correspond 

to a more intuitive and measureable energy storage as, for example, fat reserves.  DEB ‘reserve’ 

is energy that has been assimilated but not yet allocated.  While this allows the DEB model 
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dynamics to perform so well, the definition: “[…] reserve does not mean ‘set apart for later use’; 

reserve ‘molecules’ […] [are] ‘waiting’ to be used” does not provide much room for empirical 

measurement (Kooijman, 2010, pg. 3).      In an effort to avoid these difficulties, Jager et al. 

(2012) provided derivations of the functions in a standard DEB model that can effectively predict 

growth and reproduction but using a much simpler and shorter set of equations.  Not only have 

these simplifications of DEB models been shown effective in common toxicity test organisms 

Daphnia magna (Jager et al., 2012) and Lymnaea stagnalis (Zimmer et al, 2012), but their 

derivation to von Bertalanffy growth functions (von Bertalanffy, 1938) allow a useful relation to 

commonly applied bioenergetic-based growth models (WI model, etc.).   

 Another valuable and key distinction between static bioenergetic models, like the WI 

model, and DEB models is the fairly strict focus on individual energetics.  Common applications 

of the WI model rely on an “average” animal that represents the mean of a population (see 

review by Hansen et al., 1993).  This allows for easy expansion to population biomass as a key 

metric (see review by Hansen et al., 1993).  This simplification of computational methods was 

largely due to hardware/software available at the time.  However, it is noted (even in the seminal 

work of Kitchell et al., 1977) that individual metrics (e.g. body mass) respond to environmental 

dynamics more quickly than population metrics (e.g. population size) (Sibly et al., 2012) and are 

likely more valuable output.  With the advent of accessible computational power, explicit 

modelling of individual bioenergetic dynamics through DEB models has become an area of 

extensive research (Sibly et al., 2012, Grimm and Railsback, 2005, Martin et al., 2012, etc). 

 Once a bioenergetic model can predict growth and reproduction of an individual, an 

individual-based model (IBM) can be used to predict growth and reproduction of a population of 

individuals (Grimm and Railsback, 2005).  Very simply put, an individual-based model 
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simulates every individual in the population and population dynamics emerge from the 

interactions among individuals and their environment (Vidal, 2007).  Hence, the linkage of the 

DEB and IBM frameworks provides a methodology for linking across levels of biological 

organization. 

 Currently, there are several published IBMs for the model freshwater invertebrate, D. 

magna, all with different strengths. The goal of the current work is to combine these approaches 

to maximize the particular value of each model.  Martin et al. (2013) provided an excellent DEB-

IBM through thoroughly modeling D. magna individual bioenergetics but also using a dynamic 

environment to influence conditions and DEB rates for each individual.  This DEB-IBM 

construct has also been well supported as a model to explore effects of energetic stressors on 

populations (Martin et al., 2014) and as a key demonstration of the use of free open-source 

software (NetLogo, Wilensky, 1999; Martin et al., 2012).  The spatially-explicit design of the D. 

magna DEB-IBM model of Martin et al. (2012) additionally provided flexibility to add a 

dimension of complexity and realism through spatial manipulation.  Preuss et al. (2009) provided 

an approach that focused less on organismal energetics and more on a key intra-species 

interaction—crowding.  Their population model was an important advancement for an organism 

that has strong density-dependent population dynamics under many conditions (e.g. Lampert, 

2005).  The modelling approach developed by Preuss et al. (2009) provided an additional avenue 

for a more explicit spatial approach but could be improved by a generic individual-based 

energetic sub-model (such as DEB) to further explore interactions between density impacts and 

chemical stressors.   

 These two modeling approaches can be merged to maximize the strengths of each—the 

DEB-IBM approach of Martin et al. (2013, 2014) provides the software platform and the 
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bioenergetic framework while the crowding IBM of Preuss et al. (2009) provides a 

behavioral/spatial dynamic that is highly relevant to D. magna. Beyond the logical and 

mathematical strength of the above models, they both also produce output that matches 

experimentally observed population dynamics of D. magna.   

 The primary objectives of the current research were to: (1) combine the strengths of the 

above modeling approaches for a unique D. magna DEB-IBM that closely reflects experimental 

conditions commonly employed in laboratory toxicity testing, and (2) compare model output of 

individual- and population-level metrics against observed populations of D. magna.  A secondary 

goal was to demonstrate how the current DEB-IBM could be applied to existing toxicity data for 

a model toxicant, the fungicide pyraclostrobin. Finally, the model is discussed with regard to 

recent applications of energetic models in ecotoxicology and risk assessment and future areas of 

continued development and testing. 

 

 

Methods: 

D. magna Laboratory Population Dynamics: 

 To evaluate the performance of the DEB-IBM we compared model output to laboratory 

D. magna populations. Experimental populations of Daphnia magna (purchased from Aquatic 

BioSystems) were housed in moderately hard synthetic freshwater (US EPA, 2002) in one, two, 

and three-liter glass beakers and observed for 40 days. Five 1L chambers were started with five 

neonates (< 24 hours old), one 2L container was started with seven adults and 68 neonates, and 

one 3L container was started with > 171 neonates.  The 2 and 3L chambers were started at higher 

densities to explore effects of different starting population sizes and size-class distributions. 
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Ninety percent water changes were performed every other day to avoid need for aeration and 

water quality degradation.  Population sizes and individual organism lengths were recorded 

during each media change while the old media was removed.  Organisms were fed concentrated 

(3.0x107 cells mL-1) Raphidocelis subcapitata (formerly known as Psuedokirschneriella 

subcapitata and Selenastrum capricorutum, also purchased from Aquatic BioSystems) 

corresponding to ~1.65x105 cells mL-1, ~0.0012 mg Carbon mL-1, or 0.5% of experimental 

media by volume (as concentrate) on each water change.  Temperature was stable at 20C and 

lighting was cool fluorescent with a 16 hour-on, 8 hour-off cycle.  

At each water change, digital images were recorded (approx. 10) from directly above the 

experimental chambers.  A ruler placed under the beakers was used to set the scale of the images. 

Image J (Version ij150, 2016) was used to count the number of individuals and measure lengths 

(eye spot to base of spine).  The number of lengths measured per replicate was not consistent due 

the nature of daphnid movement during photography, but every effort was made to obtain 

lengths for 25% of total population size. Program R (Version 3.1.1, R Core Team, 2016) was 

used for data inspection and analysis. 

Table 1.  Concentrations of ion constituents in moderately hard water used for D. magna 
experiments. 

Salt Concentration 

Calcium Sulfate (CaSO4) 60 mg l-1 

Magnesium Sulfate (MgSO4) 60 mg l-1 
Sodium Bicarbonate (NaHCO3) 96 mg l-1 

Potassium Chloride (KCl) 4 mg l-1 
 

 

Pyraclostrobin Chronic Toxicity Experimental Setup: 

 One important application of the DEB-IBM developed here is for predicting the effects of 

toxicants on D. magna populations. Data from standardized toxicity tests (OECD Test Number 
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211) on the fungicide, pyraclostrobin, were used only for development and demonstration 

purposes. Briefly, single Daphnia magna individuals were exposed to 0, 4, and 8 µg L-1 of the 

strobilurin pyraclostrobin in 50 mL of media, and fed concentrated (3.0x107 cells mL-1) 

Raphidocelis subcapitata (formerly known as Psuedokirschneriella subcapitata and Selenastrum 

capricorutum, purchased from Aquatic BioSystems) corresponding to ~2.31x105 cells mL-1, 

~0.00168 mg Carbon mL-1, or 0.7% of experimental media by volume (as concentrate) on each 

water change (every third day).  Temperature was approximately 21C and organisms were on a 

complete dark phase to limit influence of algal activity on pyraclostrobin concentration.  Acetone 

was used as a carrier for pyraclastrobin; 0.1% v/v, and showed no effect during pilot and 

experimental tests.  Daphnid length from base of spine to eye spot at 21 days was the metric of 

interest to explore sublethal effects at these relevant concentrations (Cui et al., 2016). 

 Exposure based difference between lengths at day 21 were used to calculate the 

proportional change in DEB parameters.  Due to the mechanism of action of pyraclostrobin 

(interruption of mitochondrial respiration and ATP generation; Bartlett et al., 2002) and evidence 

of strobilurin effect on metabolic rate (Warming et al., 2009) DEB parameter 𝑘́ 𝑀, as per Jager et 

al. (2012), was adjusted by each exposure treatment’s DEB parameter proportional change.  

DEB-IBM Model for D. magna: 

Model development was conducted in NetLogo (Versions 5.3.1, Wilensky, 1999) and R 

(R Core Team, 2016) simultaneously. Generally, functions were explored in R prior to 

implementation in the NetLogo environment.  

Using simplified DEB functions from Kooijman (2010, and Jager and Zimmer (2012)) 

and using DEB parameters from the ‘add_my_pet’ 

(http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/index.html) database for female D. magna, a 
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DEB-IBM was created in NetLogo (Wilensky, 1999). Stochasticity as parameter variability was 

not explicitly included in sub-models to isolate impact of spatial heterogeneity that may result in 

stochastic outcomes.  To emulate experimental conditions, I created a 3-dimensional 

environment representing an experimental chamber holding 1000mL of media and 

phytoplankton food sources—an expansion of Martin et al.’s (2013) model —where individual 

daphnids were impacted not only by the local food quantity, but also by their local density (e.g., 

Preuss et al. 2009), what I refer to here as the “Neighborhood Effect.” 

Below is a pseudo-code in simplified NetLogo syntax describing the order of submodels 

and procedures in each daily timestep.  In general, the patch conditions of stressor and algae 

were manipulated first, then daphnid parameters were updated.  Updated parameters were used 

to then grow, reproduce, potentially die, and then lastly, move. 

to go 

 

ask patches [  

 

 ifelse time-to-apply-stressor [ 

  set stressor random-normal mean sd 

 ] [ 

  set stressor stressor * decay-rate 

 ] 

 

 ifelse count daphnia-here >= 1 [ 

  set algae (algae – (ingestion-rate * count daphnia-here)) 

 ] [ 

  set algae random-normal mean sd 

 ] 

] 

 

ask daphnia [ 

 calculate-neighborhood-effect 

 calculate-f 

 calculate-ingestion-rate 

 calculate-dL 

 grow 

 calculate-reproductive-output 

 reproduce 

 die? 

 move 

] 

 

end 
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 Output and input to the model were flexible and could be adjusted based on specific, 

desired outputs (mean size versus histogram of all sizes or magnitude and mode of action of 

stressors).  One of the major goals of the current modeling effort was to continue the “generic” 

framework presented by Martin et al. (2013) that allows a modeler to specifically address needs 

of their individual organisms or systems (e.g. behavioral characteristics or experimental chamber 

size/shape) while still maintaining a fairly constant model ‘core’ (DEB-IBM).   

 

Submodel Section: 

DEB Growth Model 

 Growth of organisms was assumed to follow the von Bertalanffy growth function (VBG) 

with rapid early growth that tapers to a maximum limit (von Bertalanffy, 1938).  Via dynamic 

energy budget parameters, growth can be modeled in this fashion with a few functions. 

𝑓 =
[𝑓𝑜𝑜𝑑]

[𝑓𝑜𝑜𝑑]+𝐾
                                                     eq. 1 

𝐿∞ =
𝑓𝑣́

𝑔𝑘́𝑀
                                                        eq. 2 

𝑟́𝐵 =
𝑘́𝑀𝑔

3(𝑓+𝑔)
                                                       eq. 3 

𝑑

𝑑𝑡
𝐿 = 𝑟́𝐵(𝐿∞ − 𝐿)                                                 eq. 4 

where 𝑓 is the functional response value, expressed as a relative value (0-1) with 0 indicating 

starvation and 1 ad libitum food availability.  𝐾 is the half-saturation constant for the given food 

type at a concentration that corresponds with an 𝑓 of 0.5.  It is worth noting that this hyperbolic 

function is the core and essential connection between an organism and its environment in the 

DEB framework (see Beaudoin et al. (2015) for a sensitivity analysis of DEB parameters).  𝐿∞ is 

the maximum length attained by an organism at a given functional response value, 𝑓, with 
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standard DEB parameters 𝑣́, 𝑔, and 𝑘́𝑀 (eq. 2).  𝑣́ is an abstract DEB parameter and is interpreted 

as energy conductance with units of length time-1.  By definition,𝑣́, is surface-area-specific 

maximum assimilation rate divided by maximum energy density (J per l3).  As only energy 

density can be measured, estimates for other parameter values are derived by solving the full 

DEB models.  Conceptually, a moiety moving at a given rate (assimilation rate) through a media 

of a given density (energy density) would have a velocity—this is the conceptual driver for 𝑣́ as 

assimilation processes require that food items move across membranes and barriers. 𝑔 is the 

energy investment ratio, and while it remains fairly abstract, it is more easily explained as the 

ratio of the energetic cost of structure divided by the maximum energetic density of somatic 

structure multiplied by the ratio of energy allocated to non-reproductive processes.  𝑘́𝑀 is a 

somatic maintenance rate coefficient that represents the volumetric somatic maintenance rate 

divided by the volumetric energetic cost of soma. 

 The functions described above (Jager et al., 2012) are simplifications of a ‘full DEB’ 

model and one of the major assumptions that allow this simplification is that if the reserve 

compartment (Figure 2 below) has constant inputs and outputs, allocation to structure (and 

accordingly reproduction) and maintenance costs will remain constant and growth will follow the 

generalized form of a von Bertalanffy curve (von Bertalanffy, 1938).  For organisms that do not 

have large changes in body shape (isoforms) during their lifetime this model performs very well.  

For my purpose of modeling Daphnia magna growth over an experimentally relevant time 

period, this simplification is reasonable and affords more allocation of computational 

power/effort to environmental or behavioral complexities. 

 



 
 

13 
 

 

 

Figure 2.  Simplified schematic of DEB system model.  Additional simplifications allow truncation at 

mobilization node (star). 

 

 For a more complete listing of parameters used in the complete and sub- models, see 

Table 2. 

 

Modeling Juvenile Starvation Mortality 

 Starvation is a function of a critical mass threshold, animal condition (f), and physical 

length (as compared to volumetric length).  Using Martin et al.’s (2013b) critical mass of 0.4 of 

maximum attained volume as a threshold for unavoidable, per capita mortality as inspiration, the 

function: 

1

𝑓 𝐿𝑝ℎ𝑦𝑠⁄
∗ 0.4                                                        eq. 5 

was used to define a threshold for mortality as a function of organism size and ‘condition’.  As 

the current model does not contain the “full DEB” parameter ‘reserve,’ eq. 5 acts as a 

combination of the physical size threshold (0.4 of maximum attained size) and the scaled reserve 

condition of the organism (1-e).  Unavoidable per capita probabilistic mortality (parameterized at 
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0.35) was calculated using similar functions as Martin et al. (2013b).  As such, starvation based 

mortality was probabilistically determined by an ‘if’ statement (eq. 6): 

𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 − 𝑓𝑙𝑜𝑎𝑡 1 < ( 1
𝑓

𝐿𝑝ℎ𝑦𝑠

∗ 0.4)∗ (1 − (1 − 0.35)
1

𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) [𝑑𝑖𝑒]               eq.6 

 Essentially, this ‘if’ statement controls the code for the starvation threshold (eq. 5) and a 

mortality constant (0.35 day-1) with a common per capita mortality probability function (as per 

Martin et al., 2013b) to determine if a shrinking daphnid will die.  Starvation mortality takes 

place during the die? procedure. 

Martin et al. (2013b) specifically addressed starvation mortality and starvation recovery 

as a shortcoming in daphnid population models and a key objective here was to provide this 

method as a suggested improvement.  The core of this suggestion lies in allowing “recovery” due 

to movement to patches that increase f values and thereby decrease the effect of body size.  By 

not including reserve in this model, the lag time of size effect from shifts in f need to be 

accounted for.  Behaviorally, this would be addressed by movement, and by including this in the 

size/condition threshold (eq. 5) the model accounts for individual movements to areas of greater 

resource density.    

The Neighborhood Effect on Movement 

 Under the premise that daphnids tend to aggregate towards areas of high resource density 

but also avoid con-specifics (Cuddington and McCauley, 1994; Neary et al., 1994; Larsson, 

1997; Jensen et al., 2001; Lampert, 2005) the probability of moving to a patch with higher algae 

density (in the move procedures) was modeled as a hyperbolic curve (see Figure 7 in Lampert 

(2005)).  The explanatory axis of that function is a “crowd” count (number of daphnids in 27mL 

“neighborhood”) (or converted to mL of container available per daphnid as in Preuss et al. 

(2009)) and the response is a proportional (0-1) measure of the ‘Neighborhood Effect’ 



 
 

15 
 

 

magnitude.  The word neighborhood comes from NetLogo syntax, and corresponds to the 27 

adjacent and interior cubic patches that a daphnid could inhabit or interact with.  As daphnid 

density decreases (the ‘Neighborhood Effect’ decreases), daphnids move more randomly (i.e. 

less local competition for resources or less physical contact) and as density increases, the 

Neighborhood Effect hyperbolic function guides daphnid movement towards areas of higher 

resource density (and, due to high rates of local ingestion, away from con-specifics).  The 

neighborhood effect (NEMovement) using the count of daphnids in the local 27 mL (CrowdCount) 

and the half-saturation constant for movement (HSCMovement) was modeled as: 

                                   𝑁𝐸𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝐶𝑟𝑜𝑤𝑑𝐶𝑜𝑢𝑛𝑡

𝐶𝑟𝑜𝑤𝑑𝐶𝑜𝑢𝑛𝑡+𝐻𝑆𝐶𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡
                            Eq. 6 

 

The Neighborhood Effect on Reproduction: 

Using the work of Preuss et al. (2009) as inspiration for the impact of localized density 

on reproductive output (brood size decreases as density increases; see Figure 3 below), a 

hyperbolic function (similar to above) was used to determine the probability of reproducing and 

the reduction in brood size (assuming reproduction occurs) during the reproduce procedures.  

The half-saturation constant for reproduction (HSCReproduction) was set at 17.5 daphnids mL-1. 

                                   𝑁𝐸𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝐶𝑟𝑜𝑤𝑑𝐶𝑜𝑢𝑛𝑡

𝐶𝑟𝑜𝑤𝑑𝐶𝑜𝑢𝑛𝑡+𝐻𝑆𝐶𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
                            Eq. 7 
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Figure 3.  The hyperbolic 

function used to model the 

neighborhood effect on D. magna 
reproduction plotted against data 
published in Preuss et al. (2009) 

showing reduction in brood size 
by volume of media per daphnid.  

Notice inverse x-axes for crowd 
size and volume per daphnid 
independent variables.  This 

specific function has a crowd size 
of 17.5 daphnids mL-1 as a half-
saturation constant.  Occurrence 

of a reproductive event is also 
modeled by using a random 

number between 0 and 1, and if 
random number is below modeled 
NEReproduction reproduction occurs. 

 

 

 

 

Reproduction as Function of Length: 

Cumulative reproductive output was modeled as a function of length, and iterative output 

only occurs on a ‘pulsed’ frequency (e.g., every 2.5 days for D. magna).  The iterative magnitude 

is a function of cumulative reproduction divided by the age of the organism.  The function below 

is from Kooijman (2010; Figure 2.10). 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑎𝐿2 +
𝑘́𝑀

𝑣́
𝐿3 − 𝑏𝐿2                        Eq. 8 

 With a and b as fitting parameters adjusted to fit observed data from experimental 

organisms (See Figure 3 for a demonstration of fitted functions). 
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To avoid the unknown or generally unavailable 𝐿𝑅  term, 𝑏𝐿2 is used as a potentially more 

flexible replacement.  Figure 4 below demonstrates the data used to parameterize a and b from 

my lab data (‘East’) and also from published datasets (‘Martin’ and ‘Preuss’).   

  

 

Figure 4. Cumulative reproduction as a 

function of length from three datasets.  

Points represent observations from authors 

East (black dot and line), Martin et al. 

(2013b) (gray cross and line), and Preuss et 
al. (2009) (gray triangle and dashed line).  

Lines are cumulative reproduction 

functions (Eq. 8) fitted ({nls} package) at 

first reproductive event thresholds 2.8 mm 

(East and Martin et al.) or none (Preuss et 

al.).  a for lines are -1.599, -10.277, -7.372 
and b 58.882, -30.290, 22.473 in order of 

legend.  All three datasets are from 

similarly designed 21-day experiments 

with feeding levels >1.1 mg C L-1 and 1 

individual daphnid per 50 to 100 mL of 
moderately hard media. 

 

 

 

Energetic Stressor Effect Submodel: 

To apply my D. magna DEB-IBM in an ecotoxicological context, I used model 

formulations from Jager and Zimmer (2012) to determine DEB parameter effects of energetic 

stressors (sublethal), at an individual level.  This method uses the theoretical and quantitative 

framework of DEB to alter parameters due to exposure.  Experimental endpoints (such as length) 

are used to quantify the shifts in individual model parameters.  For demonstrative purposes, 

strobilurin fungicides act through decreasing ATP generation (Bartlett et al., 2002) and can be 

modeled as increasing the DEB model parameter: somatic maintenance rate coefficient (𝑘́𝑀).  

Warming et al. (2009), provided evidence that strobilurin fungicides (azoxystrobin) can increase 



 
 

18 
 

 

metabolic rates of daphnids by as much as 33% at environmentally relevant concentrations.  An 

overall increase in metabolic activity was suggested by Sokolova (2013) as a potential 

compensatory characteristic of reduced ATP supply.  While 𝑘́𝑀 will not increase in the same 

magnitude as overall respiration rates as the DEB model parameter does not represent the same 

energetic process, this does support the overall hypothesis that 𝑘́ 𝑀 will increase alongside 

empirical metabolic rate observations. In essence, sublethal energetic effects of strobilurin 

fungicides may be effectively modeled at an individual level by altering DEB parameter 𝑘́𝑀.   

Our research on the effects of pyraclostrobin demonstrate that daphnid length at 21 days 

can be impacted by concentrations as low as 8 µg L-1 (Lockett, in prep.).  Figure 5 shows that 

there is a pattern of decline in size at day 21 due to exposure to pyraclostrobin (Fig. 5a). These 

data can be used in the DEB function framework (Equations 2 and 3 above) to predict changes in 

allocation processes of individuals (Fig. 5b). 

 

Figure 5a and 5b.  Effect of pyraclostrobin on day 21 length of D. magna (LEFT) and plot of day 21 

length, maintenance coefficient, and DEB-based function at a given food level (RIGHT).  Based on the 

left data, 𝑘́𝑀 can be adjusted to represent individuals that are exposed to pyraclostrobin as per the DEB 

function visually demonstrated on the right.  Using the day 21 size as a final size, an f  of 0.812 can be 
estimated and then corresponding decreases in size (-5.65%) can be related to increases in DEB 

maintenance rates (+5.99%) due to increased energy allocation due to stressor tolerance activities.  

 

a b 
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Of note is that this shift of 𝑘́𝑀 only occurs in the growth functions.  Reduced reproduction 

due to reduced energetic allocation to reproduction processes would be accounted for in the 

smaller size of organisms and not by adjusting Equation 8 above.  Appendix A, Figure A7 

demonstrates the quantitative outcome of this principle. 

 

Modeling Stressor Exposure: 

 In model scenarios with chemical stressors, the stressor was probabilistically distributed 

but occurring every third day (representing common media change rates) and was modeled with 

a 2 day half-life breakdown.  Thus, individual maintenance rate parameter adjustments were 

made by the stressor level present in the given patch at the given time rather than an overall 

application. In addition, to represent potential experimental designs, the chemical stressor was 

only ‘applied’ for the first 30 days of the 40-day simulation.
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Table 2.  Table describing model parameters with values for D. magna as per sources or fitted by author.  

 

  

Parameter Units Value Source Function Description

K # l - 3 1661.539 Martin et al. -- Half-Saturation Constant

   unitless -- -- Functional Response Value

 
L t -1 0.1584 Martin et al. -- Energy Conductance

unitless 2.44936 Martin et al. -- Energy Investment Ratio

t
-1 0.488075 Martin et al. --

Somatic Maintenance Rate 

Coefficient

L L -- -- V = L 1/3 Volumetric Length

L_phys L -- -- L_phys = L * shape_factor Physical Length

shape_factor unitless 0.2637 Martin et al. shape_factor = V 1/3 / L Shape Coefficient

L -- -- Asymptotic von Bertalanffy Length

 
t -1 -- -- von Bertalanffy Growth Rate

# variable -- --
Count of Daphnids in 27mL 

'Neighborhood'

# 1.75 East --
Half-Saturation Constant for 

Movement Neighborhood Effect

# 17.5 East --
Half-Saturation Constant for 

Reproduction Neighborhood Effect

unitless -- -- Neighborhood Effect on Movement

unitless -- -- Neighborhood Effect on Reproduction

a unitless -- -- --
Cumulative Reproduction Fitting 

Parameter

b unitless -- -- --
Cumulative Reproduction Fitting 

Parameter
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Results: 

 

 Experiment Results: 

 Experimental D. magna populations in one liter chambers showed common patterns of 

rapid increases during first and second reproductive events around days 9 or 10, with a peak in 

population size near day 20, and then declining towards an equilibrium between 50 and 100 

organisms near day 40 (Figure 6).  The two and three liter chambers showed slightly different 

patterns—the daphnid population in the 3L increased earlier due to the high number of neonates 

and adults at start, but this population had not approached any sort of equilibrium by 40 days.  

The daphnid population in 2L did not increase until there was a large die-off around day 7, but 

then population numbers stayed fairly steady at approximately 120 individuals. 

 To demonstrate the Neighborhood Effect, mL of water per daphnid data (Figure 7) 

suggest that an equilibrium condition will be reached (all other conditions being equal) at 

approximately 15 mL per daphnid and this was used to support a crowding threshold or optimal 

density of daphnids in a local environment.  This daphnid density is also supported by the data of 

Lampert (2005) and Preuss et al. (2009) that respectively suggested that biomass per unit of 

volume approaches a plateau and that reduced volume per daphnid is linked to increased 

mortality and reduced reproductive output.  

Daphnid size-class structure in the one liter chambers showed common patterns through 

the experiment duration (Figure 8).  Of note is the generally right-skewed distribution, but more 
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importantly, the right-ward shift of the peak, demonstrating that new neonate production had 

declined as the populations approached equilibrium levels near day 40.  

 
Figure 6.  Total D. magna counts 

in 1, 2, and 3 L chambers through 

40 days.  The two liter chamber 

was started with more than 170 
juveniles that were not counted 

until the fifth day (minimal 

mortality was observed until the 

next observation point).  The 

three liter chamber was started 

with 68 juveniles and 7 adults.  
These chambers were set up as 

comparisons for populations that 

start at different densities and age 

structures. 

 

 

 

 

 

Figure 7.  Plot showing mL of media 

available in experimental chamber per 

daphnid present.  Y-axis is limited to 
below 50mL to simplify visualization.  

This plot is included as a comparison to 

Preuss et al. (2009) and suggests 15mL 

per daphnid as a target neighborhood 

size.   
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Figure 8.  Four histograms 

of size distributions from 

1-liter chamber population 
data (all five replicates) 

with mean (blue, dashed) 

and median (blue, dotted) 

highlighted.  Sizes are in 

mm and data are presented 
from days 15, 21, 35, and 

40. 
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Model Output Results: 

 

 Population data from the current research (Figure 9a) and from related literature (Martin 

et al. (2013b) and Preuss et al. (2009) were combined to compare my observations to similar 

study designs (Figure 9b).  Importantly, the population data from the current study showed 

similar trends in timing and size of population increase, peak, decline, and equilibrium levels 

compared to both Martin et al. (2013b) and Preuss et al. (2009).  Key evidence supporting 

successful model output is the capture of experimental data (Figure 9c).  Model mean (solid 

line), maxima and minima (gray shading) daphnid population sizes from 50 replicate simulations 

reasonably captured the size, timing, and variability of experimental observations (Figure 9c).  

The reproductive function used in these simulations was a ‘combination’ function aimed to fit 

the early reproduction observed in Martin et al. (2013b) but also the high rate of increase 

observed in the current data (see Fig. 4 above).  Changing the ‘Neighborhood Effect’ function 

half-saturation constant had clear impacts on model population dynamics (Figure 9d). Increasing 

the tolerated crowd size for both movement and reproduction lead to a higher mean peak size and 

increased variability in model output.   

Beyond agreeable model fit for population size, model output of maximum, mean, and 

minimum length reasonably capture the range of observed lengths from experimental organisms 

(see Figure 10).  Modeled mean and median estimates fit less well, but could possibly be 

improved with further refined parameterization of reproduction, neighborhood effect, and ageing 

submodels. 
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Figure 9a, 9b, 9c, and 9d. Plots of experimental observations (top L and R) and model output 

(bottom L and R).  Top left (a.) shows each replicate (connected points) of one liter populations 
through 40 days observed by the author.  Top right (b.) shows additional datasets published by 
Martin et al. (2013b) and Preuss et al. (2009).  Bottom left (c.) shows the current model plotted 
against all datasets.  Bottom right (d.) shows an additional model output using different 

‘Neighborhood Effect’ model parameters.  Solid lines are mean of 50 simulations and gray 
shading represents maximum and minimum. 
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Figure 10.  Histograms of 
lengths (mm) observed in 
one liter conditions at 

days 15, 21, 35, and 40 
with model output plotted 
against.  Experimental 
data are summarized by 

blue lines (dashed for 
mean and dotted for 
median) and model data 
are summarized by red 

lines (dashed for mean, 
dotted for median, and dot 
dash for maximum and 
minimum).  Model data 

are means of 50 
simulation runs.  
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Modeling Stressor Effects: 

Using the pyraclostrobin effect data and exposure patterns outlined above (Fig. 5, 

Stressor Submodel and Exposure Methods Section), it is clear that adjusting individual energetic 

parameters can have population level effects (Figure 11).  Model output from 50 simulations 

(each) of populations exposed to a hypothetical concentration eliciting a mean effect of 0%, 6%, 

or 12% increase in the maintenance coefficient for 30 days (‘exposed’ every third day with a 2 

day half-life) show delayed growth rates and diminished peak sizes.  Of note in Figure 11 is the 

slight rightward shift of population size observations at time points prior to day 21.  This 

suggests that individual increases in maintenance allocation of small amounts (6-12%) can 

change population peak size and peak timing. Additionally, after day 21, the exposed populations 

appear to not crash as drastically.  This could be due to changes in algae consumption and 

consequent crowding effects of the exposed populations.  However, this moderated decline does 

not last, and after day 30 (the end of the exposure) the exposed populations do tend to reach the 

lowest point in 40 days.   

See Appendix A, Figure A8a and A8b for distributions of model output for population 

size and organism size for a range of selected days. 
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Figure 11.  Plot of three model population simulations under a range of stressor exposures.  
Solid lines are mean and dashed are maximum and minimum of 50 simulations.  Stressor 

exposure was during the first three days and occurred every third day with a 2 day half-life.  
Exposure in each patch (6% or 12%) was random but normally distributed with a standard 
deviation of 0.5%. 
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Discussion: 

 

 The key goals of this research were to develop a unique, spatially-explicit DEB-IBM 

modelling framework and to then compare against observed population dynamics in an effort to 

ultimately advance population-level risk assessment of chemical stressors. The primary model 

amendments in the current DEB-IBM were focused on creating a virtual environment that 

mimicked the spatial arrangement of experimental chambers, resources, organisms, and stressors 

that reflect common toxicity test designs. The eventual application of the model is to conduct 

“virtual toxicity tests” and to evaluate model performance against actual toxicity data. Overall, 

model performance was satisfactory with regard to predicting D. magna population dynamics 

under controlled laboratory conditions and from data from several different sources (this 

research, Martin et al. 2013b; Preuss et al. 2009). Importantly, the effect of localized density (the 

‘Neighborhood Effect’) emerged as a key factor that advances the mechanistic explanation of 

density-dependent effects on population dynamics of D. magna. 

  

The Neighborhood Effect: 

 The importance of the “Neighborhood Effect” as a way to account for density-dependent 

effects is strengthened by the fact that regardless of chamber size (1, 2, or 3 liters; Fig. 7), 

daphnid populations appear to have converged on a density that corresponded to approximately 

15 mL per daphnid (1.8 daphnids per 27mL ‘neighborhood’).  This therefore suggests (with 

resource levels being held constant) an optimal or limiting density, regardless of environment 

size.  This is of particular importance as localized, density-dependent population forcing was 
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hypothesized by the author as a key mechanism that could address the missing post-peak 

population decline in the model of Martin et al. (2013b, Figure 9).   

A maximum biomass level has also been suggested in the work of Lambert (2005) that 

suggests daphnids fit an Ideal Free Distribution “with costs” (also Larsson, 1997).  This can be 

interpreted as the daphnids selecting a balance between, not only temperature, resource density, 

and oxygen levels, but also density of competitors.  While aggregation in areas of high resource 

density by daphnids is a commonly observed phenomenon (Cuddington and McCauley, 1994; 

Neary et al., 1994), it stands to reason that selective pressure could exist to avoid competitors 

that would maintain existence in close proximity to relatively high resource density locations.  

Hence, daphnids’ balance of crowding effects and congregation in high resource areas is a key 

process for the model to capture.  

The IBM developed by Preuss et al. (2009) was specifically geared towards addressing 

crowding as a key mechanism driving population dynamics.  Their approach was well supported 

by experimental data and model output.  Specifically, Preuss et al. (2009) described the two 

forcing processes in their model as resource density and crowding.  Resource density is more of 

a driver at low resources.  As resource levels increase, crowding becomes a more prominent 

driver, and as crowding increases (daphnid density less than 50 ml per daphnid) its importance 

increases.  This is of particular relevance to common experimental conditions, which are often at 

50 ml and arguably high resource levels.  Based on experimental and model outcomes, Preuss et 

al. (2009) labeled crowding “as relevant as food supply.”  Additionally, Preuss et al. (2009) 

present model output and data (from Goser, 1997) that suggest crowding can induce or 

contribute strongly to mortality (Figure 5, Preuss et al., 2009) at densities greater than 5 ml per 

daphnid, which is equivalent to 5.4 daphnids per 27 mL neighborhood.  Their data on brood size 
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(Figure 2 above and Figure 6 from Preuss et al. (2009) (data from Goser, 1997)) also suggest that 

there is a strong population dynamic mechanism at densities less than 10ml per daphnid. In 

relation to the units of the current model—brood size is reduced by 50% at greater than 2.7 

daphnids per 27 ml neighborhood. 

An additional line of evidence supporting the importance of the Neighborhood Effect 

arose during the process of parameterization for the current model.  Initially, the data from 

Preuss et al. (2009) and Lambert (2005) were used to define a hyperbolic curve as a possible 

function to define the relationship between density and crowding effect.  This allowed an 

asymptotic maximum at 1 (100% impact of crowding) and a 50% half-saturation point (could be 

considered quasi-threshold) that could be parameterized by observed 50% effect data.  The initial 

parameter space for half-saturation constants for reproduction and movement was not well 

defined. The data from Lambert (2005) suggested a fairly high level of crowding could be 

withstood (high biomass per unit volume) and the data from Goser (1997) in Preuss et al. (2009) 

suggested a much lower density.   

As shown in Table 1 half-saturation values for movement and reproduction 

‘Neighborhood Effect’ functions are quite different.  Figures 3 and A5 show that this causes the 

two functions to have different qualitative shapes.  The reproductive ‘Neighborhood Effect’ 

(Figure 3) is a fairly angular function with a half-saturation constant that is low volume per 

daphnid or high daphnids per volume.  The movement ‘Neighborhood Effect’ (Figure A5) is a 

fairly smooth shaped function with a half-saturation constant with greater volume per daphnid 

and lower daphnids per volume.  I suggest that these two parameters, 𝑁𝐸𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 and 

𝑁𝐸𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡, could be this distinctly different due to what are actually quite disparate 

characteristics.  While I named them both ‘Neighborhood Effect,’ they both correspond to 
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different potential mechanisms.  Localized density effects on reproduction comes from 

observational data from Preuss et al (2009) and Goser (1997) that both imply that density has 

low impact until a crowded neighborhood causes a steep drop in reproductive output.  In 

converse, localized density effects on movement relates to the balance between resource and 

con-specific density.  The data presented by Lambert (2005) towards this end demonstrate that 

the range of densities linked to effects is more graded than for reproduction. 

To replicate the sharp curve of density effects on reproduction (Preuss et al., 2009) and 

the gradual effects of density on movement (Lambert, 2005), parameters were initially set an 

order of magnitude apart.  As the data from Preuss et al. (2009) show no effect at 50 ml per 

daphnid (< 1 daphnid per 27 ml), half-saturation values were initially set at 25 and 2.5 ml per 

daphnid for movement and reproduction, respectively.  These values respectively correspond to 

1.08 and 10.8 daphnids per 27 ml in the Neighborhood syntax of NetLogo.  Systematically 

adjusting movement and reproduction parameter values after simulations to attempt to fit data 

give a satisfactory fit on population size in between 15 and 1.5 and 20 and 2.0 ml per daphnid 

(1.8 and 18; 1.35 and 13.5 daphnids per 27 ml, respectively).   

Of great importance are data supporting the ‘Neighborhood Effect’ parameter values.  

Figure 6 demonstrates that experimental populations, by day 40 and regardless of experimental 

chamber size, converged at a density between 15 and 20 ml per daphnid.  Firstly, the overlap of 

model output and data indicates good performance of our model parameterization and the 

relevance of the ‘Neighborhood Effect’ on reproduction.  Secondly, the more nuanced takeaway, 

is that the data agreement with half-saturation parameter values specific to reproduction may 

indicate that the ‘Neighborhood Effect’ has a greater or more important impact on reproduction 

than movement.  The experimental populations did not converge near 1.5 ml per daphnid as 
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implied by the movement half-saturation constant.  Lampert (2005) suggests that the impact of 

con-specifics exists but is not more important than resource density and it may be that in 

relatively evenly distributed resource environments (experiments) this places the emphasis on 

reproductive effects. 

In summary, experimental and model observations support the mechanisms and 

parameterizations of localized density-dependent effects (the ‘Neighborhood Effect’) on D. 

magna reproduction and movement patterns. 

 

Starvation Submodel: 

 Martin et al. (2013b) hypothesized that the observed lack of fit of their model to the post-

population peak and equilibrium periods was due to poor performance of starvation sub-models.  

The model presented here fit best when I included a starvation sub-model that was adjusted to 

include f in the function.  The inclusion of f as a determinant of organism ‘condition’ in addition 

to shrinkage allows for greater juvenile starvation mortality during periods of high crowding and 

low resource density.  Perhaps more important is that recovery due to movement to areas of 

greater resource that allow better fit is due to an observable phenomena.  After daphnid 

populations reach peak densities, the ‘Neighborhood Effect’ tends to cause modelled individuals 

to scatter during periods of population decline.  Post-peak movements to areas of increased 

resource density or reduced con-specific density is a directly testable phenomena.  Additionally, 

this new starvation sub-model adjustment also aligns with the interest of simplifying the number 

of functions and unique parameters needed to apply DEB individual models to IBM population 

frameworks. 
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 There is potentially information to be gained from the ‘weird animal’ approach of van 

Der Meer (2016) to equalize competitiveness between adults and juveniles in their starvation and 

recovery abilities but this has not yet been applied under this model framework. 

 

 

Modeling Effects of Chemical Stressors: 

 Model output for populations exposed to an energetically disruptive chemical stressor 

suggests that populations are impacted by individual energetics and that this effect can carry over 

beyond the period of exposure.  While there are no population level experiments of the effects of 

pyraclostrobin (or other strobilurins) with which to compare model results, data does suggest that 

strobilurins cause mortality and reproductive effects (Ochoa-Acunã et al., 2009 and Cui et al., 

2016). Because reproductive effects of strobilurins can be strong (Cui et al., 2016), these would 

likely translate to population level effects similar to those observed in model output—delay in 

peak population size and a lower equilibrium.  Additionally, Cui et al., (2016) presented data on 

length that is in agreement with the work of Lockett (in prep) that suggests sub-lethal levels also 

impact length. Ongoing research to evaluate population-level effects of pyraclostrobin will be 

helpful in evaluating model performance and use in this context. 

 Beyond the reasonable model output for chemical stressor exposure, the stressor results 

also agree with the hypothesis that simplification of DEB model functions would allow for a 

relatively easy application of individual toxicity test data (Jager and Zimmer, 2012).  Data from a 

relatively coarse energetic metric (length) provided an estimation of energetic allocation 

disruption at an individual level could then be applied to a robust IBM to explore population 

level effects in testable and common conditions.   
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 Connecting effects observed in individuals to populations has been the goal of 

ecotoxicology researchers for some time (see Rohr et al., 2016) and one particular work that 

supports the current work’s methodology and results is Martin et al. (2013a).  Reproduction data 

from individual D. magna exposed to 3,4-dichloroaniline were used to adjust DEB reproduction 

functions within a D. magna specific DEB-IBM (Martin et al., 2012).  As individual exposures 

did not result in changes in size (growth and maintenance parameter dependent metrics), a 

reproduction-specific mechanism of action was determined.  Accordingly, cost of embryo 

survival was reduced as a function of exposure and a series of population simulations were run.  

For the most part, simulated population size and dynamic timing followed the experimental 

observations.  Additionally, the altered size-class dynamics (due to reproductive effect) were 

captured by the model when concentrations were higher.   

 Baveco and de Roos (1996) provide an additional example that is likely the first 

publication to specifically connect an individual-based population model and individual toxicity 

data specifically geared towards risk assessment.  Earthworms were the target species, predation 

was a focal ecological interaction, and pulsed pesticide application was the focal chemical risk.  

Their DEB-based individual energetic model (early work by Kooijman, 1984) accurately 

connected pesticide reduction in individual growth to population level declines due to single and 

pulsed exposures.  They also applied the model across two species and provided a strong risk 

assessment policy-oriented synthesis of organism persistence as a function of pesticide half-life 

and initial exposure through the individual and population model output (See Figure 4, Baveco 

and de Roos (1996)).  It is of note that a similar construct for earthworms has been published 

more recently (Johnston et al., 2014) that used a different energy budget (still dynamic), but 

proved accurate in predicting population level effects from individual energetic effect data. 
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 In summary, as the accessibility of DEB and IBMs increases (Grimm and Martin, 2013) 

there are an increasing number of models (e.g. Beaudoin et al., 2015) that include a large number 

of complex ecological drivers.  While these modeling efforts are inherently important 

(Koenigstein et al., 2016; Energetics and IBM sections) for their use in understanding population 

dynamics in the sense of larger ecological processes there is still available room to simplify and 

improve the core quantitative and software approaches.  As is posited in Grimm and Martin 

(2013), mechanistic effect models (such as DEB-IBMs) provide a framework specifically geared 

towards quantitatively and mechanistically robust risk and effect predictions.  As such, they hold 

great possibility to change and influence risk assessment policies and methods.  This chapter 

presents one such method of thoroughly, but simply, describing individual metrics that are 

testable against chemical stressors and expanding that to a similarly testable environment.  This 

provides a framework for exploring new questions and mechanisms of stressors and population 

level interactions.    
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Appendix A: 

 

Below are figures demonstrating several points of interest that support the above document. 

 

Individual Models: 

 Figures A1, A2, and A3 demonstrate ageing based mortality (top left), growth (top right), 

cumulative reproduction (bottom left), and crowd count (bottom left, number of daphnids in 27 

mL area) at either high or low food levels, with and without starvation sub models. 

 

Starvation Models: 
 Key to Figure A4 is that while each organism reaches starvation mortality at the same 

proportional size, decreased resource levels (lower f)  increase the rate at which an organism 

approaches that proportional size. 

 

Movement Neighborhood Effect Submodel: 
 Figure A5 shows the relationship to daphnid density and crowd count on movement 

patterns of individual daphnids. 

 

Reproduction Function Variability: 

 As seen in Figure A6, there is a wide range of variability in cumulative reproduction as a 

function of length relationships.  I propose that this is a large source of variability and worth of 

attention in adaptations of this and other DEB-IBM models for experimental organisms. 

 

Metabolic Rate Effect Details : 

 Reproductive functions include 𝑘́𝑀 and thus, the assumption that energetic stressors 

increasing this rate will artificially cause the reproduction submodels to increase reproductive 

output.  As this is likely not observed (see Jager and Zimmer (2012; reproductive modes of 

action are adjusted separately than other single DEB parameters), stressor effect has to be 

specifically address to the 𝑘́𝑀 values in the growth functions.  Figure A7 demonstrates this 

principle.  The yellow line has a 20% increased 𝑘́𝑀 value and this suggests that reproductive 

output would occur much earlier than normal organisms.  More likely is that stressors cause 

decreases in reproductive output—and this is modeled already by the reduction in size (shift to 

the left on regular function (black line). 

 

Model Output Distributions with Stressor Effect: 

 Figure A8 shows distributions from 50 simulations of population size and organism 

length. 
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Figure A1. Figures from 50 model iterations to display effect of age-based mortality on a 
population that is not reproducing (top left), mean individual growth and cumulative 
reproduction (top right and bottom left), and finally the interrelated relationship between 
crowding and movement (bottom right).  These model runs were performed without any 

starvation or reproduction sub-models and any mortality or variation is based on age-based death 
or impact of successful patch choice, algae ingestion rates, and neighborhood crowd counts.  
Zero values at final days correspond to conditions where there are zero animals remaining and an 
error is returned during calculation of the mean—this is recorded as a zero. 
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Figure A2.  Figures from 50 model iterations to display effect of age- and starvation-based 
mortality on a population that is not reproducing (top left), mean individual growth and 

cumulative reproduction (top right and bottom left), and finally the interrelated relationship 
between crowding and movement (bottom right).  Mortality is due to aging and starvation sub-
models.  Neighborhood effects on movement and reproduction are modeled with crowd count 
values in bottom right.  Zero values at final days correspond to conditions where there are zero 

animals remaining and an error is returned during calculation of the mean—this is recorded as a 
zero.  Of note: Neighborhood effect drive increased rate of starvation in areas of high 
ingestion/phytoplankton depletion. 
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Figure A3.  Figure similar to conditions presented above, but with food reduced by an order of 

magnitude.  Of importance is the increase in variability of mean metrics during periods of 

highest growth and reproduction rates due to increased effects of individual starvation during 

periods of high energy demand.   
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Figure A4. Figure demonstrating function for 
starvation sub-model that provides volumetric 
cutoff point.  At a constant f value, individuals 
reach 0.4 (modeled volumetric starvation 

shrinkage critical mass as per Martin et al.) at 
their given maximum physical size.  
Overarching premise being that smaller animals 
can survive lesser shrinkage events but all 

individuals approach 0.4 at the same rate (lower 
f values increase rate of starvation shrinkage 
tolerance—assuming the organism survives). 

 

 

 

Figure A5.  Figure describing hyperbolic 
function used to model neighborhood effect on 

D. magna movement between patches.  Notice 
inverse x-axes for crowd size and volume per 
daphnid independent variables.  This specific 
function uses a crowd size of 1.75 daphnids 
mL-1 as a half-saturation constant. 

 

 

 

 

Figure A6.  Figure showing fitted curves from 

data.  Equation is as above.  Important—these 
reproduction data are not from the same 
experiment, but from individual organism per 
100mL media in glass jar exp.  Feeding rate was 

~1.1 mg C mL-1.  Media was changed every 
three days. 
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Figure A7.  Figure showing 
incorrect shifting of 
reproduction curve due to 

k_dot_M shifting.  This shift is 
not needed as animals are going 
to be smaller and their 
reproductive output will be 
smaller.  

 

 

 

 

Figure A8a and A8b.  Distributions from 50 simulations with a range of 

stressor effects on somatic maintenance coefficient parameter.  Left (a) is 

population size at days 15, 30, and 40 and right (b) are size distributions on days 

15, 30, and 40.  Stressor effect magnitudes were 0%, 6%, and 12% and were 
ended at day 30. 
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Chapter II. 
 

An Energetic Model Accounting for Morphology and Experime ntal Characteristics of 

Lymnaea stagnalis 

 

 

Introduction 

As human activities continue to result in the release of chemical stressors that affect 

biodiversity and ecosystem function (Beketov et al., 2013; McMahon et al., 2012), it is critical to 

formalize a method to understand and predict the risks of chemical stressors to natural systems 

(Bradbury et al., 2004; Forbes and Calow, 2002).  Ecological Risk Assessments (ERAs) provide 

the conceptual and, ideally, quantitative approach used to predict risk of chemical effects to 

natural systems (EPA, 1998, 2004).  A key result of an ERA is an estimate of the risk of negative 

effects to ecological receptors (Suter, 2016).  These risk estimates are almost always determined 

using laboratory based single-species toxicity test data (Suter, 2016).  For example, Hayashi et 

al. (2016) used algal toxicity of herbicides determined in laboratory tests to inform a 

spatiotemporal model to predict regional ecotoxicity of herbicides in Japan.  As discussed in 

Hayashi et al. (2016) risk estimation requires integrating information on effects and natural 

conditions.  In their work, single algal species, herbicide-toxicity tests were used to inform an 

estimation of risk under observed stream flow conditions (Hayashi et al., 2016).  Integrating 

these methods and endpoints led to a much more useful understanding of the risk to algae under 

relevant environmental conditions (Norton et al., 1992).  However, as emphasized by Hayashi et 

al. (2016), there remains room for specificity and improvement in the conceptual and 

quantitative linkages between environmental conditions, effects on ecological receptors, and risk 

estimation. 

a b 
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In relation to the limitations presented by Hayashi et al. (2016), Rohr et al. (2016) 

highlight that metrics from single species toxicity tests typically do not match ecological 

dynamics due to differences in design, fundamental approaches, and scale.  They posit a focus on 

further developing the quantitative and modeling approaches used by risk assessors to bridge 

disconnects between data and protection goals while maintaining the strength of research at each 

level of biological organization (e.g., individuals, populations, communities).  Two perspectives 

that can serve to bridge this gap, are that chemical mode of action is imperative in establishing 

causative linkages between toxicant exposure and organismal effects (e.g. Ankley et al., 2010) 

and that population dynamics are vital to understanding the complexities of natural systems (De 

Laender et al., 2010).  A quantitative linkage between causal effects and natural system 

dynamics, that does not require a large regulatory experimental paradigm shift, would likely 

revolve around a mathematical model that links these levels of focus (Rohr et al., 2016).  For 

example, a model for zebrafish (Danio rerio) by Beaudouin et al. (2015) accounted for nutrient 

cycling, resource dynamics, and behavioral differentiation between age-classes and sexes, which 

were crucial in capturing population dynamics.  The model of Beauduoin et al. (2015) also 

provides detailed energetic insights for each modelled individual that could not only capture 

effects of non-chemical and indirect stressors, but also provide mechanistic linkages for toxicity 

effect data (Jager and Zimmer et al., 2012; Martin and Grimm, 2013).   

Beauduoin et al. (2015) demonstrated a potential method to link organisms of interest and 

their environment using a flexible and generic model framework.  The generic and flexible 

approach to ERA methods is one of the core requirements that makes ERA valuable across a 

range of systems and stressors (Norton et al., 1992).  The fundamental design of Beauduion et al. 

(2015) was related to the generic dynamic energy budget, individual-based model (DEB-IBM) 
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first presented by Martin et al. (2012).  This model has been validated against individual and 

population data (Martin et al., 2013) and, as described in Grimm and Martin (2013), provides a 

mechanistic effect framework that not only quantitatively links individuals and populations, but 

provides the conceptual linkage as well.  Specifically, the population dynamics emerge from 

processes modelled at individual levels.  This process-based design holds promise for ERA 

focused linkage of individual level data and risk estimation at higher levels of biological 

organization (Jager et al., 2006).  

One particular study organism that is relevant to mechanistic effect modeling and 

regulatory ERA methods is the great pond snail (Lymnaea stagnalis) (Charles et al., 2016; 

OECD, 2016; Ducrot et al., 2014, Zimmer et al., 2012, and Zimmer et al., 2014).  L. stagnalis 

has been proposed for use in a reproductive toxicity test for freshwater gastropods (Charles et al., 

2016; OECD 2016) and has been used widely in the literature for toxicity testing.  Accordingly, 

there will likely be data generated on an individual level in relation to stressor exposure (Zimmer 

et al., 2012; Zimmer et al., 2014; Barsi et al., 2014) and then motivation to incorporate that data 

into ERAs (Ducrot et al., 2014; Cote et al., 2015).  Additionally, focus on L. stagnalis is due to 

its ecological relevance and extensive global range (Budha et al., 2010).  Specifically, L. 

stagnalis is a generalist herbivore (Elger et al., 2002) that is ecologically relevant to a variety of 

physical processes (Gutierrez et al., 2003; Elger and Lemoine, 2005).  Importantly, L. stagnalis 

also demonstrate individual behaviors that are easily observable and relevant to ecological and 

stressor interactions (Lukowiak et al., 2008).   

As suggestions to improve ERA methods largely rest on the linkage of individual metrics 

to population/community metrics (Rohr et al., 2016) and L. stagnalis has been studied as a model 

organism to explore individual stressor effects on ecosystems (OECD, 2016; Charles et al., 
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2016), there is motivation to design and evaluate an individual energetic model specific to L. 

stagnalis (Ducrot et al., 2010; Ducrot et al., 2010, Zimmer et al., 2012; Zimmer et al., 2014).  

Using the conceptual design of Grimm and Martin (2013) and example of Beauduoin et al. 

(2015), a successful L. stagnalis individual-based model (Grimm and Railsback, 2005) would 

incorporate a suite of relevant behaviors and intra- and inter-specific interactions.  

Spatiotemporal patterns of movement towards resources or away from stressors (Elger et al., 

2005; Lukowiak et al., 2008) and energetic deposition/cycling (Gutierrez et al., 2003) are likely 

ecologically relevant foci of an individual-based model of L. stagnalis.  Modelling these 

interactions at the individual level would allow a direct connection between stressor data from 

standardized individual tests (OECD, 2016) and ERA output (Barsi et al., 2014). 

Beyond the ecological details potentially relevant to an individual model, L. stagnalis 

present a significant physiological uniqueness worthy of attention.  Generally, bioenergetic 

models of individual growth are simplified to a von Bertalanffy growth pattern (VBG) (von 

Bertalanffy, 1938).  VBG is defined by minimal parameters but captures very significant details 

regarding individual growth—starting size, growth rate, and asymptotic size.  Organisms that 

follow ‘normal’ VBG easily fit this model as they have high rates of growth rates shortly after 

birth and then a reduced growth rate as they approach maximum size.  L. stagnalis do not 

demonstrate normal VBG under standard diet and laboratory conditions (Zonneveld and 

Kooijman, 1989; Zimmer et al., 2012; Arambasi et al., 2013; and Zimmer et al., 2014).  Instead, 

this species shows a sigmoidal (‘S’ shaped) growth pattern with low growth rates after birth, but 

then a period of increased growth rate later in life (Figure 1).  In considering individual and 

population-level models of L. stagnalis it is clear that capturing this deviation from common 

growth patterns is imperative.   
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Figure 1.  Two hypothetical growth patterns.  'Regular' von Bertalanffy growth (VBG, black) 

and an exmple of 'S' Shaped growth (red) observed in L. stagnalis.  The delay in reaching a more 
rapid growth rate also leads to a delay in sexual maturity. 

 

As in Chapter 1, in which a Dynamic Energy Budget (Kooijman, 2010) individual-based 

model (e.g., Martin et al., 2012) (DEB-IBM) was developed and applied for Daphnia magna, a 

similar model for L. stagnalis may prove useful and robust in capturing individual and system 

level dynamics relevant to ecological risk assessment based on standardized test endpoints.  

Specifically, the goal would be to capture individual growth patterns with enough mechanistic 

detail to infer impacts of sublethal stressors, independently and in combination, with behavioral 

and system interactions (Jager and Zimmer et al., 2012; Zimmer et al., 2012).  Again, as in the D. 

magna model, adjustments will be needed to create a well performing model of L. stagnalis 

growth at individual and population levels accounting for specific ecological and energetic 

characteristics (Zimmer et al., 2012; Barsi et al., 2014).   

The objectives of this chapter are to (1) refine a simplified DEB-IBM model of individual 

growth of L. stagnalis, (2) include important behavioral characteristics of L. stagnalis individuals 

in the IBM, and (3) evaluate model output against a series of experimental scenarios.  Meeting 

these objectives would demonstrate a model framework that captures mechanisms and 
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phenomena specific to L. stagnalis with the ultimate goal of improving quantitative linkages 

between levels of study in ecological risk assessments of chemical stressors in aquatic systems.  

 

 

Methods: 

DEB-IBM model: 

As in Chapter 1 of this thesis, the overall model approach is a DEB-IBM developed in R 

(R Core Team, 2016) and NetLogo (Version 5.3.1, Wilensky, 1999).  The core of the design is 

motivated by the work of Martin et al.’s (2012) generic DEB-IBM platform.  While the generic 

platform has great strength in its applicability, some specificity is required to adequately capture 

the internal and external energetic mechanisms.  Specific to Lymnaea stagnalis, the observed “S-

shaped” growth pattern (Zonneveld and Kooijman, 1989; Zimmer et al., 2012; and Arambasi et 

al., 2013) that deviates from the common von Bertalanffy pattern (von Bertalanffy, 1938) and 

their non-random movement pattern in a three dimensional environment. Refinement of the DEB 

sub-model focused on applying the ‘food limitation’ approach by Zimmer et al. (2012) and 

linking it to a ‘snail-specific’ IBM movement model that mimicked their wall/surface focused 

movements. 

Using simplified DEB functions ( Kooijman’s, 2010, (Figure 2.10); Jager and Zimmer 

(2012)) and using DEB parameters from the ‘add_my_pet’ 

(http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/index.html) database for L. stagnalis, a DEB-

IBM was created in NetLogo (Wilensky, 1999). To emulate experimental conditions, we created 

a 3-dimensional environment representing an experimental chamber holding 1000mL of media 

and surface located food sources. The surface-located resource represented Romaine lettuce as a 
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representative of macrophytic vegetation, which is also commonly used in experimentation 

(Charles et al., 2016; OECD, 2016; Ducrot et al., 2014). 

These model refinements were intended to improve the generic framework of Martin et 

al. (2012) by increasing the number of factors that influence individual energetic state.  

Accordingly, model output for individuals (and populations) will emerge from an increased 

number of mechanisms and potentially improve output across an increased range of ecological 

conditions (Grimm and Martin, 2013). 

 

DEB and Juvenile Assimilation Lag Sub-Model: 

 The initial functions of the DEB growth sub-model were based on growth of organisms 

assuming adherence to the von Bertalanffy growth function with rapid early growth then tapering 

to a maximum limit (von Bertalanffy, 1938).  Via dynamic energy budget parameters we can 

model growth in this fashion with a few functions: 

𝑓 =
[𝑓𝑜𝑜𝑑]

[𝑓𝑜𝑜𝑑]+𝐾
                                                     eq. 1 

𝐿∞ =
𝑓𝑣́

𝑔𝑘́𝑀
                                                        eq. 2 

𝑟́𝐵 =
𝑘́𝑀𝑔

3(𝑓+𝑔)
                                                       eq. 3 

𝑑

𝑑𝑡
𝐿 = 𝑟́𝐵(𝐿∞ − 𝐿)                                                 eq. 4 

where 𝑓 is the functional response value, expressed as a relative value (0-1) with 0 indicating 

starvation and 1 ad libitum food availability.  𝐾 is the half-saturation constant for the given food 

type at a concentration that corresponds with an 𝑓 of 0.5.  𝐿∞ is the maximum length attained by 

an organism at a given functional response value 𝑓 with standard DEB parameters 𝑣́, 𝑔, and 𝑘́𝑀 

(eq. 2).  𝑣́ is an abstract DEB parameter and is interpreted as energy conductance with units of 
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length time-1.  By definition, 𝑣́, is surface-area-specific maximum assimilation rate divided by 

maximum energy density.  𝑔 is the energy investment ratio, defined as the ratio of the energetic 

cost of structure divided by the maximum energetic density of somatic structure multiplied by 

the ratio of energy allocated to non-reproductive processes.  𝑘́𝑀 is a somatic maintenance rate 

coefficient that represents the volumetric somatic maintenance rate divided by the volumetric 

energetic cost of soma. 

In other implementations of DEB-IBM, the functional response value (f) was a product of 

the whole environment—resources per container volume (Martin et al., 2012).  In Chapter 1, f 

values were modeled by the amount of resources in the patch containing the individual organism 

(e.g. resources per mL) to improve the detail of the individual energetic model.  However, an L. 

stagnalis -specific adaption of this model was a combination of these two approaches (individual 

vs. container).  Individual f values were determined by the concentration of resources in the 

container unless the individual was in a patch that contained lettuce.  If the snail was directly in a 

patch containing lettuce its f value was set to 1.  This was required due to the use of a simplified 

DEB model.  This DEB model was simplified by removing a ‘reserve’ compartment that helps 

the starvation sub-model.  Without this ‘reserve’ compartment, individuals that spend normal 

periods of time away from food items would die prematurely.  This methodology is supported by 

DEB parameterization experiments that model food level as constant (Zimmer et al., 2012 and 

Zimmer et al., 2014) even though food level has clear—though small—fluctuations.  i.e., DEB 

model parameters are fitted with this coarse approach in mind.   

The food-limitation (or neonate assimilation lag) sub-model for L. stagnalis growth 

hypothesized and tested by Zimmer et al. (2012) was used to model individual deviation from 

VBG patterns (see Figure 1 above).  The food-limitation model is driven by the hypothesis that 
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young snails cannot physically chew lettuce food items due to a small mouth opening or that they 

physically cannot reach the lettuce at the same rate as adult/juvenile snails.  From a mechanistic 

standpoint, assimilation of energy has a lag period before it reaches levels observed in adult or 

sub-adult L. stagnalis.  Within the quantitative framework, this is performed by adjusting the f 

value downward until an organism reaches a pre-determined size, at which point the f value 

becomes the original ‘non-lag’ value.  The functions below were used in concert with the DEB 

functions above to model this adjustment: 

𝑓(𝐿) = 𝑎𝑓0
𝐿

𝐿𝑚
    𝑤𝑖𝑡ℎ    𝐿 < 𝐿𝑓                                           eq. 5 

𝐿𝑚 =
𝑣́

𝑔𝑘́𝑀
                                                                  eq. 6 

with Lf being the length at which normal growth is observed (and the neonate assimilation lag 

period ends), a being a ‘food quality’ parameter that is largely used to fit the model to 

observations that different foods cause reductions in growth rate (Zimmer et al., 2012), f0 is the 

“regular” functional response value (eq. 1 above), L is the length, and Lm is the maximum (non f- 

influenced) length. 

 

Reproduction as Function of Length: 

Cumulative reproductive output was modeled as a function of length, and iterative egg 

production only occurred on a ‘pulsed’ frequency (e.g., 1-2 events per week for L. stagnalis, 

(personal communication, Evy Reatgui-Zirena and Charles et al., 2016).  The iterative magnitude 

is a function of cumulative reproduction divided by the age of the organism.  The function below 

is from Kooijman (2010; Figure 2.10). 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑎𝐿2 +
𝑘́𝑀

𝑣́
𝐿3 − 𝑏𝐿2                             Eq. 7 
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 With a and b as fitting parameters adjusted to fit observed data from experimental 

organisms (data from ‘add_my_pet’ database used).  To avoid the unknown or generally 

unavailable 𝐿𝑅  term, 𝑏𝐿2 was used as a potentially more flexible replacement (See Kooijman, 

2010, Figure 2,10).  Figure 2 below demonstrates the data used to parameterize a and b published 

datasets (Zimmer et al., 2012 and Zimmer, 2013).  See Table 1 for a summary of parameters, 

sources, and descriptions used in this model. 

Spatially-Explicit Behavioral Model: 

 In a fashion similar to Chapter 1 above, a DEB-IBM of L. stagnalis was created in 

NetLogo (Wilensky, 1999) of a 3-dimensional environment (with a variable volume) designed to 

replicate an experimental chamber with lettuce patches on the surface of the media and walls that 

provide surface for movement. 

Below is a pseudo-code in simplified NetLogo syntax describing the order of procedures 

(submodels) in each daily timestep.  In general, the patch conditions of stressor and lettuce were 

manipulated first, then the snails update parameters, grow, reproduce, potentially die, and then 

move lastly. 

to go 

 

ask patches [  

 

 ifelse time-to-apply-stressor [ 

  set stressor random-normal mean sd 

 ] [ 

  set stressor stressor * decay-rate 

 ] 

 

 ifelse count snails-here >= 1 [ 

  set lettuce (lettuce – (ingestion-rate * count snails-

here)) 

 ] [ 

  set lettuce random-normal mean sd 

 ] 

] 

 

ask snails [ 

 calculate-f 
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 calculate-ingestion-rate 

 calculate-dL 

 grow 

 calculate-reproductive-output 

 reproduce 

 die? 

 move 

] 

 

end 

 

 Of particular importance to this model is the design of the “walk” pattern of L. stagnalis.  

Casual observation suggests that the snails are either on the lettuce patches or a surface (wall or 

bottom) of the 3-dimensional chamber and they must move toward the surface to breath.  As 

such, snails probabilistically leave the wall and rise to the surface where they can search for 

lettuce or move to other walls.  The pseudo-code in simplified Netlogo syntax demonstrates how 

this procedure operates.  Within the overall schedule of procedures during a timestep, 

“draw_walls” occurs during setup phases and “move” and “wobble” occur during the later 

individual stages of the timestep (after growth and reproduction procedures). 

; setup procedure occurs prior to go procedure 

to setup 

to draw_walls [ 

 ask patches with [ coordinates = max ] [ 

  set id wall 

  ] 

 ] 

end 

 

; go procedure here (as above) 

 

to move [ 

 ask snails [ 

  ifelse random 100 > 80 [ 

move-to patch with [zcor = max-zcor] 

][ 

wobble 

] 

 ] 

] 

 

to wobble [ 

 ask snails [ 

ifelse patch-ahead [id] = wall [ 

move-to patch-ahead 
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][ 

turn random direction 

wobble 

] 

 ] 

] 

 

 

 As experimental work with snails generally is for a short period of their lifespan and not 

explicitly focused on populations (Charles et al., 2016), this model is largely focused on the 

growth and behavior of individuals over a simularly short timespan.  While reproductive 

behavior was modeled (and offspring produced) populations were not simulated as the timeframe 

to observed emergent dynamics of L. stagnalis (>= 1 year) was greater than typical laboratory 

experimental design (1-2 months).   

 

Table 1.  Table of parameters, sources, and descriptions for L. stagnalis. 

 

Parameter Units Value Source Function Description

K # l
- 3 3.08 Zimmer et al. -- Half-Saturation Constant

f 0 unitless -- -- Functional Response Value

f unitless -- -- Functional Response Value

 
L t -1 0.2161 Zimmer et al. -- Energy Conductance

unitless 0.1176 Zimmer et al. -- Energy Investment Ratio

t -1 0.4882 Zimmer et al. -- Somatic Maintenance Rate Coefficient

L L -- -- V = L 1/3 Volumetric Length

L_phys L -- -- L_phys = L * shape_factor Physical Length

L m L -- -- Maximum Possible Length

shape_factor unitless NA Zimmer et al. shape_factor = V 1/3 / L Shape Coefficient

L -- -- Asymptotic von Bertalanffy Length

 t
-1 -- -- von Bertalanffy Growth Rate

a Lettuce unitless 1.4225
Zimmer et al.

East
Food Quality Parameter

L f L 0.8687 Zimmer et al. Length at end of Food Limitation
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Results: 

To meet the first objective to refine the individual DEB model to capture growth of L. 

stagnalis, data from Zimmer et al. (2014) was used to estimate an f value.  Then using other 

parameters from the same data set, growth of an individual was modeled through a 350 day 

‘lifespan.’  Figure 2 demonstrates that the juvenile assimilation lag model seems to model 

growth of L. stagnalis through its full lifespan quite well.  Of note is the somewhat abrupt 

change at the Lf point (approximately day 150 in Figure 2).  This is due to the lack of variability 

around the point where assimilation lag ends in the model and fitting model parameters from 

mean values rather than distributions.  It is possible that inclusion of stochasticity in the Lf 

parameter could be used to improve this abrupt change, but this was not evaluated here.  

 

Figure 2.  Juvenile assimilation lag model (red line) fit against growth data (black crosses) from 
Zimmer et al. (2014).  Final size data and parameters (Table 1) were used to estimate an f value 

of 0.85 and in combination with food quality parameter (a) and length at regular assimilation 
(Table 1) the model fits data well.  

 After confirmation of the individual growth model, several conditions were simulated in 

the DEB-IBM to evaluate model output.  Specific conditions included amount of food, timing of 
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food application, and shape and size of the environment.  Final metrics of interest were shell 

length (cm) and f value as they are indicators of organism and system energetic state.  All data 

presented are from 50 simulation runs and data were collected on day 250.  The goal of these 

simulations was to evaluate whether the L. stagnalis model functions and metrics could capture 

predictable changes in system-wide energetic manipulations.  

 Food amount and application frequency have differential but important effects on 

individual snails (Figures 3a and 3b).  Food amount has the largest effect on mean size and f 

value, but timing of resource input has an interesting effect on mean f value.  Decreased food 

input frequency appears to increase the variation of mean f values of snails.  This poses an 

interesting insight into toxicity test experimental design and individual stressor response 

energetics that would not be captured in traditional metrics like organism size (see Figure 3a).  

Increased variability in organism condition (f value) may present increased variability in stressor 

response. 

 Due to the spatially-explicit detail at which individual movement was modelled, it was 

hypothesized that, at constant food levels, environment shape could influence snail energetics.  

Two container shapes—‘shallow’ and ‘narrow’ were tested (Figure 4a and 4b).  It was 

hypothesized that a shallow environment would improve the energetic state of the organisms in 

that less time would elapse between movements from the bottom to top of the environment.  The 

‘narrow’ environment was to test the increased density of lettuce patches, but increased distance 

between upper and bottom portions of the environment.  Two additional environments—two 

cubes—of differing size were also tested to explore the effect of food density in relation to the 

environment. 
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 Much as in the food level and application frequency, environmental shape may have 

nuanced impacts on energetic metrics (Figure 5).  Figure 5a shows that median (of 50 

simulations) lengths are ranked: ‘Shallow’ > ’Large’ > ‘Small’ > ‘Narrow’ but that the 

distributions of responses are quite overlapped.  This ranking is likely due to the increased 

number of snails with elevated f values in the ‘Shallow’ and ‘Large’ scenarios (Figure 5b).  

Clearly the interplay between environment shape and its effect on food location is of great 

importance to organisms with specific walk/search patterns.   

 In summary, these results suggest that energetic sub-models and spatially-explicit sub-

models were successful in application and expected output. These results also display the 

strength of a flexible but specific framework in exploring impact of experimental design.   

 

Figure 3a and 3b.  Density plots of responses ((a.) mean length, cm, and (b.) mean f value) of 

four simulation conditions manipulating resource level and timing of application.  50 simulations 
were run for each conditions and data was collected on day 250.  High food was 30 cm2 lettuce 

per L and low was 20 cm2 lettuce per L.  Lettuce was applied every three or five days. 

 

a. b. 
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Figure 4a and 4b.  Two simulated environment shapes used to simulate growth of snails.  (a.) is 
‘shallow’ with an area of 796 cm3 and dimensions of 11x11x6 cm and (b.) is ‘narrow’ with an 

area of 796 cm3 and dimensions of 11x6x11 cm.  Green patched are single cm2 patches 
containing lettuce. 

 

Figure 5a and 5b.  Density plots of responses ((a.) mean length, cm, and (b.) mean f value) of 
four simulations with varied environment shape or size.  50 simulations were run for each 
condition and data was collected on day 250.  ‘Large’ is a cube of 1331 cm3, ‘small’ is a 

rectangle 396 cm3, ‘shallow’ is a rectangle 726 cm3, and ‘narrow’ is a rectangle 726 cm3.  
Dimensions (x,y,z or length,width,depth) of ‘shallow’ were (11,11,6) cm and ‘narrow’ were 

(11,6,11). 

 
 
 

a. b. 

a. b. 
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Discussion: 

Mechanistic effect models are proposed as a means to improve both the output and value 

of ecological risk assessment of chemical stressors (Rohr et al., 2016 and Grimm and Martin, 

2013).  These models will require well performing and robust individual energetic models to 

provide confidence predictions of larger system dynamics (Sibly et al., 2013 and Grimm and 

Martin, 2013).  The research presented in this chapter was intended to contribute to efforts to 

increase confidence in a single organism model (L. stagnalis) through specific details of 

bioenergetics but also spatially-explicit phenomena.  Model output for individual growth 

matches published datasets (Figure 2) (Zimmer et al., 2012 and Zimmer et al., 2014) and 

anticipated energetic effects of resource level and spatial variation are produced when the full 

model is run. 

 

Juvenile Assimilation Lag: 

While most experimental designs for L. stagnalis do not incorporate the full lifespan of 

the organism (Charles et al., 2016), there are recent efforts to explore effects of chemical 

stressors and diet types on juvenile or neonate stage snails (Fidder et al., 2016, Reatgui-Zirena et 

al., 2016) and a model with increased detail would improve confidence in predicting these 

conditions.  Additionally, it is important that the juvenile assimilation lag period arises from a 

reasonably testable mechanism.  If a lettuce diet is unavailable to juvenile or neonate snails 

(Zimmer et al., 2012), more accessible diet items could be presented and growth patterns could 

be observed to test this mechanism (Reatgui-Zirena et al., 2016).  Additionally, due to the 

flexibility of the function used to account for juvenile assimilation lag, the magnitude of 

assimilation lag for different diet items could be explored.  The aLettuce parameter could be fitted 
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to growth patterns under different diet conditions.  As presented in Zimmer et al. (2012) this is a 

key consideration for models geared towards sub-lethal energetic effects of chemical stressors.  

The work of Fidder et al. (2016) and Reatgui-Zirena et al. (2016) also corroborate with the 

hypothesis that increased detail at individual levels increases confidence of overall understanding 

of stressor mechanisms and effects. 

While the juvenile assimilation lag period is the chosen mechanism for this model, there 

is work that posits another mechanism and quantitative approach.  L. stagnalis were one of the 

first organisms modelled using the dynamic energy budget (Zonneveld and Kooijman, 1989) and 

the core message was that two parameter sets were required to model the full lifespan of L. 

stagnalis.  Juvenile snails appeared to allocate energy at different rates than adult snails.  Zimmer 

et al. (2014) returned to this work as a contrast to the earlier Zimmer et al. (2012).  The two 

approaches being ‘food-limited’ and ‘metabolic-acceleration’ with food-limited as described 

under the moniker ‘juvenile assimilation lag’ in this research and metabolic acceleration being a 

more complicated approach.  Metabolic acceleration (as in Zimmer et al., 2014) requires shifting 

DEB parameters at given sizes to account for the increased rate of allocation of food items as the 

snails age.  As shown in Zimmer et al. (2014), this model provides a ‘smoother’ fit in relation to 

Figure 2 of this research, but does not appear to fit better across the lifespan of the snails.  

As there has not been work to specifically address which of these methods is more 

correct, I prefer the simpler juvenile assimilation lag (food limitation) model.  As the metabolic 

acceleration models are fitted from observed data and as are juvenile assimilation lag methods, 

the timing of parameter shifts are both arguably arbitrary.  Additionally, the metabolic 

acceleration model requires a ‘full DEB’ model, which introduces an additional series of 

calculations and can increase computational costs required to run model simulations.  Lastly, 
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both models are mechanistic, so in the absence of supporting evidence, the simpler juvenile 

assimilation lag model is preferred.   

 

Spatially-Explicit Behavioral Model: 

 Improvement of an organism specific individual-based model requires an appropriate 

level of detail of internal processes (see above) but also an appropriate level of detail in the 

external interactions between individuals and the environment (Sibly et al., 2013, Grimm and 

Martin, 2013).  This becomes very clear when an increased level of complexity is desired.  In the 

work of Beauduoin et al. (2015), individual zebrafish were modelled through sex, age, and 

location specific sub-models.  Their well-performing model suggests that for organisms with 

specific resource or habitat needs for specific sexes or age classes (such as zebrafish), this level 

of detail is required.  The energetic backbone of the model of Beuaduoin et al. (2015), provides 

additional support, as the biomass dynamics observed are best fit by the spatially-explicit 

energetic interactions between different sex and age-class zebrafish and their prey items. 

A well performing ecotoxicology model that accounts for complexity of multiple species 

will require strong individual models (Grimm and Martin, 2013) and I suggest that the current 

model framework can serve as an initial effort.  As L. stagnalis represents an important 

regulatory (OECD, 2016) and ecological organism (e.g. Gutierrez et al., 2003) there is value in 

this specific and detailed approach.  Linking internal and external at the individual and 

organismal level provides the platform upon with linkage of intra- and inter-

population/community models can be built.  At the intra-individual level, this requires generic 

but flexible approaches such as a DEB model with juvenile assimilation lag to account for 
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organism specific adjustments.  Spatiotemporal dynamics of resources and abiotic conditions can 

then be accounted for at an individual level by organism specific but generic ‘walk’ patterns.   

In summary, this chapter presents a Lymnaea stagnalis specific DEB-IBM that accounts 

for several unique characteristics of L. stagnalis growth and behavior.  Specifically, a refined 

simplified DEB-IBM model of individual growth accounting for juvenile assimilation lag and a 

detailed model of movement patterns was described.  Evaluation of model output demonstrated 

that the model performed as expected and incorporation of juvenile assimilation lag and detailed 

behavioral characteristics was important to model output.  The model demonstrated a conceptual 

and quantitative framework specific to L. stagnalis that could potentially be useful to improve 

ecological risk assessment of chemical stressors. 
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Chapter III. 

 

Modelling Experimentally Observed Indirect Energetic Facilitation between Co-occurring 

Lymnaea stagnalis and Daphnia magna. 

 

  

 

 

Introduction: 

 The overall goal of ecotoxicological research is to provide data, tools, and insights that 

can inform and improve ecological risk assessment.  As highlighted recently, however, there is 

an important disconnect between ecotoxicology study endpoints and ecological risk assessment 

(ERA) outcomes (Rohr et al., 2016).  This disconnect is largely due to the mismatch of 

experimental endpoints and environmental protection goals.  Most data used to inform ERAs is 

obtained from individual-level toxicity tests while society is most interested in protecting 

populations, communities, and ecosystems (Rohr et al., 2016).  Given that expanding regulatory 

testing protocols to include specifically evaluating population and community-level metrics is 

unlikely to occur (OECD, 2016; OECD, 2012), the most practical way forward is to improve 

methods that link individual-level effects to effects at higher levels of biological organization.  

To this end, a robust and flexible quantitative linkage might provide a means of predicting 

effects of chemical stressors on ecological systems within the constraints of current testing 

guidelines (Jager, Heugens, and Kooijman, 2006; Jager and Zimmer, 2012; Forbes et al., 2011; 

Grimm and Martin, 2013; and Rohr et al., 2016). 

 Much of the recent focus on linking results from toxicity tests to natural systems in the 

context of ERAs has been built on a premise of organismal energetic costs of exposure to 
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chemical stressors.  These energetic costs at individual-levels are represented by shifts in energy 

allocation patterns that can drive subsequent changes in population dynamics (e.g. Sokolova, 

2013; Nisbet et al., 2000, Congdon et al., 2001, Baas et al., 2010, Kooijman, 2001).  One specific 

framework of energetic assimilation and allocation is the Dynamic Energy Budget Theory of 

Metabolic organization (DEB) (Kooijman, 2010).  The DEB theory has a sophisticated and 

robust mathematical framework (Jusup et al., 2016) and has been implemented for a number of 

species (see ‘add_my_pet’ database at <http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/>; 

Lika 2011a; and Lika 2011b).  Additionally, recent research (e.g. Jager and Zimmer (2012) in 

concert with Kooijman 2001 above) specifically demonstrates the connection of stressor effects 

to a DEB-based organismal model that is individual based.  DEB additionally has a foundation in 

‘first principles’ (Jusup et al., 2016), is supported by a large and growing database (Kooijman, 

2010 and ‘add_my_pet’ database), and allows focus towards mechanistic stressor effects at 

individual levels (Jager and Zimmer, 2012).  Hence, developing and implementing DEB models 

is an excellent starting point to establish mathematical linkages between individual-level data 

and higher levels of biological organization. 

 While the large body of DEB modeling has revolved around models of controlled 

laboratory settings for model parametrization, there have been several that link indirectly or 

directly to field data.  Martin et al. (2012) and Zimmer et al. (2014) are good examples of 

parameterizing a DEB model from controlled conditions of food and environment.  Both 

Daphnia magna and Lymnaea stagnalis are common toxicity test model organisms and 

accordingly, data obtained for these species ideally can lead to models that perform well under 

conditions common to toxicity tests.  Moving beyond simple experimental conditions , however, 

requires more understanding of the environment and inter- intra-species variability of DEB 
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model parameters.  Cardoso et al. (2006) demonstrated that linking model results from laboratory 

settings and field-observed data can provide insight into the variability in model parameters 

under varying environmental conditions.  Potentially more important, is to parameterize a DEB 

model from laboratory-observed data and to then accurately predict organism energetics under 

field-observed conditions.  To some extent, this is the ultimate objective for ecological modelers.  

For example, Ren and Schiel (2008) developed and parameterized a DEB model of oyster 

growth under lab conditions and were able to accurately predict oyster growth in the field under 

naturally varying food and temperature conditions.  

 These examples provide additional support for a DEB-based modelling framework for 

applications in ecotoxicology.  Additionally, the above examples lay the groundwork and 

provide working examples of increasing model system complexity.  As outlined in Rohr et al. 

(2016), multi-species models could be useful because they directly relate to higher levels of 

biological organization which are relevant to environmental regulation and management.  

Beyond regulatory relevance, multi-species models commonly take methodological and 

conceptual constructs (Park et al., 2008 and Vinebrooke et al., 2004) that are designed to 

explicitly account for indirect interactions between system members.  This interaction-dependent 

framework of multi-species models that leads to emergence of population and community 

dynamics from interactions, processes, and contexts at lower levels of organization has been a 

strength and goal of many current ERA modelling methods (Chen et al., 2013; Jager et al., 2006, 

Rohr et al., 2016).  However, we are not aware of any efforts that have attempted to use DEB 

models to explore multi-species systems or, specifically, the energetic interaction of one species 

with another (in greater complexity than phytoplankton dynamics such as Ren and Schiel 

(2008)).  In an effort to explore a new avenue of ecotoxicology research, but remain based in 



 
 

74 
 

 

ERA and regulatory relevant organisms, I developed a multi-species DEB-IBM that is a 

combination of the D. magna and L. stagnalis DEB-IBMs presented in Chapters 1 and 2 of this 

thesis.  These species do not directly compete for resources nor is one a predator to the other.  

Accordingly, their energetic interactions are likely to be entirely indirect but of high potential 

relevance to exploring effects of stressors at population- and community-level (Congdon et al., 

2001).  

 As the two model organisms, D. magna and L. stagnalis, and their interaction, are 

seldom studied together in relation to ecotoxicology (Sanchez and Tarazona, 2002), below is an 

introduction to what I hypothesize is their main route of interaction—indirect energetic 

facilitation (Steiner et al., 2005 and Davidson et al., 1984).  I hypothesize that L. stagnalis will 

generally increase daphnid population size through ‘mobilization’ of energy in lettuce that would 

normally be unavailable to daphnids.  Additionally, the increased nutrient and elemental 

complexity of waste products will likely produce altered phytoplankton dynamics that may 

influence daphnid population dynamics. 

 Indirect energetic facilitation is explained by two different potential mechanisms: 1.) 

Diffusion of competitors—in which a high diversity of competitors leads to suppression of 

shared resources and/or 2.) Specialization by one competitor causes a shift in resource abundance 

that effectively reduces prior competitive interactions (Steiner et al., 2005).  As suggested in 

Steiner et al. (2005) distinguishing between these two can be fairly complex.  For instance, the 

seminal work on indirect facilitation by Davidson et al. (1984) between rodents, ants, and two 

seed types clearly demonstrated that the specialization of the rodent diet for larger seeds removed 

pressure on smaller seeded plants and therefore supported a greater density of ants.  Their 

experimental exclusion of rodents increased the ratio of large seeds to small seeds and 
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subsequently decreased the resources available to the ants—decreasing ant density.  This is 

largely an example of the second mechanism presented above.  The work of Steiner et al. (2005) 

demonstrated a scenario closer to the first mechanism—culturing 4 types of zooplankton together 

produced very different biomass dynamics than culturing each zooplankter individually.  

Elevated consumer diversity increased individual zooplankter biomass stability which, 

consequently, drove an overall positive increase in zooplankton biomass through time.  While 

the largest evidence was for the diffusion type of facilitation based on biomass patterns, observed 

phytoplankton size distribution changes indicate that diet specialization and competitive 

exclusion may have played a role (Steiner et al., 2005).   

 In relation to the system I have described (D. magna and L. stagnalis), I hypothesize 

that diet specialization (similar to the ant-rodent example of Davidson et al (1984)) will be the 

greatest mechanism of indirect energetic facilitation of D. magna by L. stagnalis.  As these 

species likely co-occur in natural lakes or ponds as a zooplankter and macrophyte grazer and are 

both model organisms for energetic, toxicity, and regulatory studies (Kooijman, 2010; OECD, 

2016; and OECD, 2012) a model framework focused on the indirect energetic interactions of 

these species would be valuable.  This chapter presents experimental and model methods and 

results to introduce and explore a relatively understudied energetic interaction in relation to 

mechanistic effect models to ultimately improve ecological risk assessments of chemical 

stressors.  The main objectives were to experimentally test whether indirect energetic facilitation 

occurs from L. stagnalis to D. magna and to develop a multi-species DEB-IBM that could 

effectively simulate the energetic interactions between L. stagnalis and D. magna.   
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Methods: 

 

Experimental Design  

 Experimental populations of Daphnia magna (purchased from Aquatic BioSystems and 

cultured in-house) and Lymnaea stagnalis (from a culture originating at Texas Tech University, 

the Institute of Environmental and Human Health) were housed in standard synthetic freshwater 

(moderately hard) (US EPA, 2002) in one-liter glass jars (n = 30) and observed for 40 days.  

Daphnid populations were started with 5 neonates (0-24 hours old) and the treatments with snails 

each contained one snail (approximately 2 cm terminus to terminus shell length and age 

approximate 180 days).  90% water changes were performed every third day and population 

sizes and individual snail and daphnid lengths were recorded during each media change while the 

old media was removed.  Organisms (if part of algae or lettuce containing treatments) were fed 

concentrated (3.0x107 cells mL-1) Raphidocelis subcapitata (formerly known as 

Psuedokirschneriella subcapitata and Selenastrum capricorutum, also purchased from Aquatic 

BioSystems) corresponding to ~1.65x105 cells mL-1, ~0.0012 mg Carbon mL-1, or 0.5% of 

experimental media by volume (as concentrate) and 1 cm2 rinsed romaine lettuce on each water 

change.  Temperature was stable at 20C and lighting was a cool fluorescent with a 16 hour on, 8 

hour off cycle.  

At each water change, digital images were taken from directly above the experimental 

chambers.  A ruler placed under the beakers was used for scaling. Image J (Version ij150, 2016) 

was used to count the number of individuals and measure lengths, which was taken as eye spot to 

base of spine in daphnids or terminus to terminus of snail shells.  The number of lengths gathered 

per replicate was not always the same due the nature of daphnid movement during photography, 
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but a minimum of 25% of total population size was achieved for most sampling events.  

Additionally, specific effort was made to gather lengths of the largest daphnid individuals for as 

long as reasonable confidence existed that they were the starting individuals (28 days).  Program 

R (Version 3.1.1, 2016) was used for data manipulation and figure generation. 

 

Treatments: 

 Treatments in the experiment were intended to represent a gradient of both energetic 

quantity and quality (or complexity).  Figure 1 below outlines the connection between D. magna, 

L. stagnalis, and their respective primary experimental resources, algae and lettuce.  The 

treatments included in this experiment were intended to highlight the contribution of the arrows 

to organismal interactions.  The treatment with the lowest amended energy and low energetic 

quality was called ‘LD.’  LD referred to lettuce and Daphnia and was code for the treatment of 

only applying lettuce and 5 neonate daphnids to the experimental chambers.  Lettuce was 

changed at each water change to prevent rotting.  The ‘AD’ treatment represents an increase in 

energetic quality and included algae and Daphnia and was the treatment most akin to a control 

population in common experimental conditions.  The next more energetically complex and 

energy rich treatment was ‘ASD.’  ASD designated treatments included algae, Daphnia, and a 

single snail.  This treatment was to isolate the potential consumption of algae by L. stagnalis.  

The converse treatment was the ‘SLD’ treatment and included snails, lettuce, and Daphnia and 

was used to isolate snail contributions to D. magna without the influence of algae.  ‘ASLD’ was 

the most energetically complex and rich treatment and included algae, a single snail, lettuce, and 

Daphnia. Although it is a vast simplification, ASLD also represents the closest approximation to 
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what would be present in actual, multi-species systems. Each treatment included 6 replicates and 

all were monitored and fed (or lettuce just refreshed—LD treatment) concurrently.   

 Conceptually, my hypothesis regarding energetic complexity and energetic content is that 

the increasing order of the treatments would be: LD < AD < ASD < SLD < ASLD. 

 

 

 

 

 

 

Table 1.  Treatment system members and corresponding code labels. 

Treatment Code 

Lettuce 

D. magna 
LD 

Algae 

D. magna 
AD 

Algae 
L. stagnalis 

D. magna 
ASD 

Lettuce 
L. stagnalis 

D. magna 
SLD 

Algae 

Lettuce 
L. stagnalis 

D. magna 

ASLD 

 

 

 

D. magna L. stagnalis 

Algae Lettuce 

Figure 1.  Conceptual diagram of the 

potential interactions between organisms 

and resources.  Arrow width indicates 

hypothesized importance of connection.  

Treatment LD represents the arrow from 

lettuce to D. magna, treatment AD 

represents the arrow from algae to D. 

magna, ASD represents the arrows 

between algae, D. magna and L. 

stagnalis.  SLD represents the arrows 

between lettuce, D. magna and L. 
stagnalis.  ASLD encompasses all arrows. 
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Energetic Sampling and Quantification: 

 To test my hypotheses about the ranking of the treatments and begin to develop model 

parameters for these treatments, carbon content of the water and the daphnids was collected 

periodically throughout the monitoring period as an estimate of system and individual-level 

consolidation of overall energy (after Glazier and Calow, 1992 and Frost et al., 2008).  

Suspended and settled carbon was determined from samples collected from the upper half 

(‘pelagic’) and the bottom (‘benthic’) of the jars on days 2, 21, 30, and 40.  Carbon concentration 

was determined using several methods, one to determine total carbon and another to isolate algae 

sourced carbon.  Algae sourced carbon methods relied on absorbance at 682nm to determine the 

algae content based on comparison to a standard curve of known lab sourced algae. Through the 

known carbon content of the lab algae, an algae-based carbon concentration could then be 

calculated.  Total suspended particulate carbon was determined by a sulfuric acid based 

spectrophotometric method (Albalasmeh et al., 2013 and Reatgui-Zirena et al., 2015).  Briefly, 

water samples were evaporated completely and, along with a tripalmitin standard curve, were 

suspended in sulfuric acid and chloroform (5:1 ratio) and placed in a 200C oven for 30 minutes.  

Absorbance at 340nm by the charred carbon in the remaining sulfuric acid was compared against 

the tripalmitin standard curve to calculate total carbon (mg ml-1) (Reatgui-Zirena et al., 2015). 

 Carbon, nitrogen, and sulfur content of the daphnids was determined by an Elementar 

brand ‘varioEL’ CNS elemental analysis instrument in the Urban Environmental 

Biogeochemistry Lab at Towson University.  Daphnids for elemental analysis were collected on 

day 39 and were the 5 largest and 5 smallest individuals in each replicate.  Daphnids were 

measured for length using scaled imagery and imageJ and then dried overnight in a 60C oven.  

Samples were pooled to meet sample size limitations of the instrument.  Results from this 
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instrument were proportion of sample mass as the selected element (e.g. sample mass was 30% 

carbon indicating that the dry weight of the organism was 30% carbon). 

 

Model Methods: 

 The model used to explore these energetic conditions/treatments was a combination of 

the D. magna and L. stagnalis NetLogo (Wilensky, 1999) based DEB-IBM (Kooijman, 2010, 

Martin et al., 2012) models of Chapters 1 and 2 (see Figure 2) with a sub-model focused on the 

‘conversion’ of carbon contributed by snail waste to an equivalent number of algae cells.  The 

magnitude or efficiency of this conversion has been termed ‘facilitation factor’ and represents a 

new parameter from those presented in prior chapters.  

 Similar to my experimental conditions, all model runs started with 5 neonates and one 

snail approximately 180 days old (~2cm), with algae levels and lettuce levels consistent with the 

specific treatment.  Simulations were run for 40 days in the same fashion as the experiments.  

 See Chapter 1, Table for parameters specific to D. magna and Chapter 2, Table 1 for 

parameters specific to L. stagnalis. 
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Figure 2.  Figure showing three dimensional environment of the multi-taxa DEB-IBM.  Green 
cubes represent patches with lettuce, the brown sphere is the snail, and the red 'bugs' are the 
daphnids.  Algae is not shown, but is in all the patches that are not green. 

Facilitation Sub-model: 

 The new development needed in this model was the quantitative approach to capture the 

movement of energy from snails to daphnids.  Conceptually, this was modelled by the size and 

condition (f) of the snail that then contributes carbon to the system. The snail-contributed carbon 

content was then converted to a number of algae cells by a mass of carbon cell-1 relationship 

previously determined and a ‘facilitation factor’ to control the efficiency of this energy transfer. 

Note, this is a conceptual and model simplification to relate snail-contributed carbon to 

consumable energy units (alga) available to daphnia.  

 Quantitatively, linear models were used to predict algae-based carbon by snail length 

(Figure 3). On a per patch basis, the sum length of all the snails present (generally 0 or 1) and the 

maximum snail f value were used to calculate algal contribution to that patch.  The linear model 

slope was multiplied by the sum snail length to predict the magnitude of contribution by the size 
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of the snail(s) present.  The y-axis intercept was multiplied by the f value to shift the linear 

relationship up or down depending on the condition of the snail.  That concentration of algae-

based carbon was then converted to a number of cells per unit volume as per in-house lab value 

of 7.0*10-9 mg C cell-1 and multiplied by a facilitation factor to create a new algae concentration 

for that patch containing snails. 

 Figure 4 demonstrates that my algae-based carbon content was well predicted by 

observations of total carbon (r2 = 0.78).  Based on the linear model parameters, a reasonable 

level of 37.5% of the total carbon observed in all facilitated treatments had been consistently 

‘converted’ to chlorophyll-containing sources.  This provides support for the hypothesis and 

modeling approach that carbon enrichment in experimental treatments is directly related to algae 

cell enrichment.  
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Figure 4.  Figure 

demonstrating the linear 

relationship between algae-

based carbon and total 

carbon.  Key metric is the 

slope of 0.375, indicating 

that approximately, 37.5% 

of total carbon was from 

chlorophyll containing 
sources. 

Figure 3.  Scatterplots of algae-based carbon as a function of snail length.  Data 

were from experimental observations.  ‘All days’ means that data from sampling 
events on days 2, 21, 30, and 40 were combined in these plots.  As shown on right, 

majority of algae-based carbon was present in benthic samples so (as on left) the 

linear model used to predict snail carbon contribution to algae cells was from 

benthic samples.  The function is mg / ml algae-based C = 0.0004 * snail length 
(mm) – 0.043 and had a r2 value of 0.3699. 
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Results: 

 

Experimental Results: 

Population Level: 

 Patterns of D. magna population dynamics through 40 days in each treatment follow 

similarly shaped trajectories (Figures 5 and 6).  All populations had a period of slow growth 

during the initial neonate development, a period of rapid population growth and then decline.  

However, the data suggest differential influence of energetic treatments on daphnid population 

dynamics.  Specifically, it was interesting to note that the ‘LD’ treatment did support a small 

daphnid population without any experimental addition of resources other than lettuce—which is 

not directly available to daphnids.  The treatment did, however, have the lowest peak size.  The 

next lowest population peak size was the ‘SLD’ treatment.  Again, this treatment did not have 

any resource addition that was daphnid-specific—the only addition was lettuce for the snails.  

The other treatments had similar peak size magnitude, but the dynamics before and after the peak 

differed.  Those treatments with snails and algae (ASD and ASLD) had distinct peaks, sharp 

declines, and then a period of slower decline.  The ‘AD’ treatment (normal experimental 

conditions) showed only a steady increase and then a period of slower decline. 

 Outside of the difference in population size dynamics, there were differences in length 

(age-class) distributions through time and by treatments.  Most of the treatments had the 

expected right-skewed and multi-modal patterns of many populations with short, but distinct 

generation times (Figures 7, 8, and 9).  However, the lack of right-skewness in the LD treatment 

agreed with the low population size and lack of a sharp peak/decline indicative of an ageing 

population.  Additionally, of note is that the SLD treatment was the only treatment to maintain a 
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fairly distinct right-skewness and peak near 1mm through day 40.  All others appeared to have a 

fairly central peak or at least a peak that was moving to the right through time—indicative of 

decreasing reproduction and increasing ratios of large to small daphnids.  

 

Figure 5.  D. magna population size of each replicate and treatment through time.  Replicates are 
points connected by lines.  Each plot has the 'LD' treatment for consistent comparison.  All data 
from day 40 has 10 individuals added to account for sampling of individuals on day 39. 



 
 

86 
 

 

 

Figure 6.  Mean of replicates per treatment D. magna population sizes through time.  Confidence 

intervals were removed for ease of comparison across treatments.  All data from day 40 has 10 
individuals added to account for sampling of individuals on day 39. 
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Figure 7.  Density plots of D. magna lengths of combined replicates by treatment and selected 
days.  Five largest and five smallest individuals were removed from all treatments on day 39.  

 

 

Figure 8.  Data from Figure 4 above, presented with treatments overlaid to demonstrate the 
between treatment differences at the selected timepoints.  Five largest and five smallest 
individuals were removed from all treatments on day 39. 
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Figure 9.  Data from Figure 4 presented by treatment with timepoints overlaid to demonstrate 

the change in age class distribution through time within treatments.  Five largest and five 
smallest individuals were removed from all treatments on day 39. 

 

 

Individual Results: 

 In an effort to connect observed population dynamics with properties of individuals, 

data from individuals was collected and presented below.  Maximum length observed in each 

replicate for the first 28 days of the experiment was collected and used to fit VBG models to 

explore the effect of facilitation on individuals (Figure 10).  Pilot studies (and Chapter 1 above) 

suggested that mortality of the initial five neonates is fairly low through the first month and it 

stands to reason that the largest observed size would be one of the starting individuals.  The goal 

was to demonstrate the difference between individual growth patterns due to the different 

treatments and, as hypothesized, mean length at day 28 was approximately ranked by energetic 

‘quantity and quality’ in increasing order of LD < AD < ASD < SLD < ASLD (Figure 6).  The 

DEB framework provides quantitative evidence that an increase of energetic assimilation and/or 

allocation can be observed in increased final size (Kooijman, 2010, see eq. 2 in Chapters 1 and 2 

above).  Visually, this is seen by the approximately ‘parallel’ von Bertalanffy growth patterns 
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between treatments LD, AD, ASD, and ASLD.  Treatment SLD does not appear to follow the 

‘parallel’ pattern and this is highlighted by the listed von Bertalanffy growth function parameter 

(k) values (Figure 10). 

 In order to further explore the observed growth patterns, a suite of energetic metrics 

were collected.  Daphnids had a satisfactory mass by length relationship that follows expected 

third power rules, but also there appeared to be some individuals that showed greater deviation 

(Figure 11).  Additionally, the individuals with greater deviation appeared to be from common 

treatments (Figure 12).  It also is clear, due to the clumping of the points, that treatments had 

contributed to what might be considered energetically different organisms—not just individuals.  

Of particular note is the large length, but small mass (relatively) of the SLD treatment 

individuals (green points, Figure 12) that further highlights their deviation from expected 

patterns. 

 Beyond mass and length, elemental proportions (C, N, and S) were collected and there 

were some apparent trends between treatments (Figure 13).  N and S measurements were 

particularly weak and were likely influenced by the limit of detection of the instrumentation and 

limited mass of sub-adult samples.  Carbon, however, showed a positive trend of enrichment in 

the hypothesized order of energetic quantity and complexity.  Again, of note, was the slight 

deviation of the SLD treatment.  In relation to Frost et al. (2008), this observed enrichment may 

potentially indicate more than just organism condition, as impact of bacterial infections altered C 

balance in their daphnids.   

 Additionally, when plotted against mass or length (Figure 14) proportion of each 

element showed potential treatment-related patterns.  C and N appeared to approach linearity 

with a positive slope while S appeared to either be non-linear or slightly negatively linear.  
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Again, the SLD treatment appeared to either fall between the AD and ASD treatments (rather 

than ASD and ASLD as hypothesized) or, as in the case of N, as a potentially completely 

different relationship. 

 

Figure 10.  Maximum size measured in each replicate prior to day 28.  Fitted von Bertalanffy 
functions are plotted against data and growth rate parameters (k) are highlighted for each 
treatment.   
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Figure 11.  Scatterplot of dry weight (mg, n=3, 4, 5) predicted by mean length (mm, n=3, 4, 5) 
with fitted length3 function and colors to indicate age-classes. 

 

Figure 12.  Data from Figure 11 above, but with colors indicating grouping by treatment.  Of 
particular note is the deviation of the SLD (green) data. 
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Figure 13. Variability and trends of elemental proportion (C, N, and S; by mass) for daphnia 

from each treatment and age class.  Large variability in subadult age classes is attributed to small 
sample size. 
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Figure 14.  Scatterplots demonstrating grouping of treatments in elemental proportions of 
daphnia plotted against size metrics (length and dry weight) in the adult age class. 
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Environmental Energetics: 

 To explore the hypothesis that the energy of the system was driving the differentiation 

between the daphnid population and individual metrics, suspended carbon concentration was 

collected and evaluated (Figure 15).  The strongest patterns were the physical descent of the 

carbon (highest levels in benthic samples) and the enrichment or dilution of carbon through time.  

That gravity influenced carbon distribution was not surprising given the contribution of snail 

waste to this carbon pool.  Dilution or enrichment of carbon was also demonstrated by the 

temporal dynamics of C in treatments with snails.  As the ASD treatment snails did not show any 

definitive growth through time (Figure 16)—the temporal decline in benthic total carbon in the 

ASD treatments (Figure 15, top center) showed that if snails were not fed, they did not contribute 

to C enrichment of the system and that the dilution of the water samples suggests that C had been 

allocated to other processes (daphnids’ growth, metabolism, snail metabolism, heat loss, etc).  

The temporal enrichment of benthic total carbon (Figure 15, top center, SLD and ASLD 

treatments) was supported by the growth displayed in Figure 16 of the SLD and ASLD 

treatments (plotted against von Bertalnffy growth functions).   
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Figure 15.  Total (top panel) and chlorophyll sourced (bottom panel) carbon concentrations (mg 
ml-1) by treatment (x-axis), day (colors), and location (combined, benthic, and pelagic, L to R).   
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Figure 16.  Shell length of L. stagnalis individuals in each replicate through time with fitted 
functions plotted against (von Bertalanffy (SLD and ASLD) and linear (ASD)).  Two points 
from ASD treatment were removed as they were clearly measurement errors (lengths of < 5 
mm).  Variability is due, in part, to measurement error from using digital photographs to avoid 

directly handling organisms.  Apparent trends are considered accurate regardless of reduced 
precision. 
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Model Output: 

 Three different scenarios were modelled in an attempt to match three of the 

experimental treatments.  The LD and AD treatment were not modelled as conditions similar to 

AD are presented in Chapter 1 and, as of yet, a sub-model of the direct contribution of 

carbon/energy sources from LD (lettuce alone) has not been determined.  In the scenarios 

modelled (ASD, SLD, and ASLD), parameters and feeding levels are those presented in Chapters 

1 (D. magna) and Chapter 2 (L. stagnalis).  Accordingly, the ASD treatment was modelled by 

limiting the lettuce amount but keeping algae normal (105 cells ml-1).  In this scenario, snail 

individuals did not show growth—similar to the experimental observations (see Figure 16 

above).  The SLD treatment was modelled by limiting the algae amount, but keeping lettuce at 

normal levels (20 cm2 l-1).  In this scenario, algae levels were 2 orders of magnitude lower than 

normal and resulted in f values in daphnia less than 0.5.  The ASLD treatment was modelled by 

keeping algae and lettuce levels normal.  In all three scenarios, a non-facilitated group of 

simulations were run alongside facilitated simulations.  The intent was to demonstrate the impact 

of the experimental condition (ASD vs SLD vs ASLD) alone and then show the impact of 

facilitation under those conditions. 

 Modelled ASD simluation output generally captured experimental ASD daphnid 

population dynamics through 40 days (Figures 17 and 21a).  ASD model output also showed that 

the model predicted no impact of facilitation due to the lack of snail growth and carbon 

contribution (Figure 17).  A similar observation was made in the experimental data (Figure 21a).  

While the mean modelled daphnid counts do not perfectly match the data, there is a large 

overlap—indicating that the facilitation observed in the ASD experimental treatments was fairly 

minimal (Figure 21a). 
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 Model output that demonstrates facilitation is required for growth of a daphnid 

population in absence of amended algae would support both objectives of this chapter: 1.) 

Existence of facilitation and 2.) Facilitation can be modelled through a simple quantitative 

method.  In the modelled SLD scenario (Figure 18), facilitation supported persistence of the 

daphnid population (compare black mean and red minimum line).  This supported the surprising 

SLD experimental observations—daphnid populations can exist and grow without 

experimentally applied daphnid-specific food items, provided snails were present to facilitate 

algal growth (Figures 5 and 6).  Again, as the mean model and experimental trends do not match 

well, there is clearly room for model improvement, nevertheless, it is clear that the model 

captures the essence of the energetic interaction overall. 

 Additional support for my hypothesis and quantitative structure could come from 

model output showing increased facilitation influence on daphnid populations from increased 

snail activity.  Using conditions of increased snail resources, the model captured the observed 

population dynamics of the ASLD treatment quite well (Figure 19).  Note that the model 

predicted a small, but consistent increase of mean population peak due to the increased 

facilitation in the ASLD treatment (Figure 20a in relation to 20b).  The experimental ASLD 

treatment showed an increase in peak size over the AD (‘control’) treatments.  Additionally, a 

key observation was the low overlap of maximum and minimum lines between treatments during 

peak population densities (Figure 21b).  This was different than the observation that AD and 

ASD experimental data show large overlap of maximum and minimum daphnid population sizes 

(see Figure 21a).  Clearly, the model was able to capture the range of experimental observations, 

but also capture reasonably accurate predictions of mean dynamics. 
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 The model’s performance across the three highlighted treatments (ASD, SLD, and 

ASLD) demonstrates its performance overall (Figure 20a, 20b, and 20c).  Clearly, mean model 

output captured timing and size of daphnid populations quite well under a range of facilitation 

levels (ASD and ASLD).  Additionally, the relatively simple quantitative methodology (snail 

waste converted to algae cells) appeared to explain the observed persistence of daphnid 

populations in the experimental treatment without amended algae (SLD). 

 

 

Figure 17.  Model output (red and 
black lines) against experimental 
output (blue points) for the ASD 

scenario.  Dark lines are means 
and light lines are maximum and 
minimum.  Model data are of 50 
simulations with algae levels set to 
normal and lettuce to minimum. 

 

 

 

Figure 18.  Model output (red and 

black lines) against experimental 

output (blue points) for the SLD 

scenario.  Dark lines are means 

and light lines are maximum and 

minimum.  Model data are of 50 

simulations with algae levels set to 

normal and lettuce to minimum. 
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Figure 19.  Model output (red and 
black lines) against experimental 
output (blue points) for ASLD 
scenario.  Dark lines are means and 

light lines are maximum and 
minimum.  Model data are of 50 
simulations with algae levels set to 
normal and lettuce to minimum. 

 

 

 

 

 

Figure 20a, 20b, 20c.  Mean model (solid lines gray areas) and experimental (points with error 

bars) daphnid population sizes through 40 days.  Shading limits and error bars represent 
maximum and minimum values for model output and data, respectively.  Treatment conditions 
mimicked in simulations are ‘ASD’ in a., ‘ASLD’ in b., and ‘SLD’ in c. 

 

 

 

 

 

 

a. b. c. 
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Figure 21a, 21b, 21c, and 21d.  Experimental output of each treatment plotted against control 
(‘AD’) treatments.  Points are mean of six replicates and error bars are maximum and minimum 
of six replicates.     

 

 

 

 

 

 

a. b. 

c. d. 
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 In summary, indirect facilitation between L. stagnalis and D. magna appeared to be 

relevant in contributing to experimental observations of individual, organismal, and system level 

energetic dynamics.  In particular, increased contribution of overall energy content (ASLD) 

caused the largest individuals (snails and daphnids), largest and earliest daphnid population 

peaks, and the greatest level of suspended total and chlorophyll-sourced carbon.  The next 

highest treatment in system energetic concentration (carbon concertation), the SLD treatment, 

provided strong evidence that indirect facilitation played a major role in population persistence 

under experimental conditions.  The ASD treatment represented the ‘intermediate’ energetic 

condition in that the energetic content (carbon concentration) was not largely greater than AD 

treatments, and this subsequently did not create a strong differential response in daphnid 

populations.  Lastly, but surely not least, the LD treatment provided evidence that addition of an 

indirect source of carbon (lettuce alone) can support a small population of diminutive daphnids.  

 From the modelling perspective, the goal was to attempt a very simple but mechanistic 

approach for indirect energetic facilitation.  As the model generally captured daphnid population 

dynamics, it appears that a rather simple snail waste to algal cell conversion sub-model may 

provide the core framework for the influence of indirect energetic facilitation between L. 

stagnalis and D. magna.  This point is made particularly clear by the SLD mimic conditions 

(Figure 19), in which facilitation alone created enough energy to support a daphnid population.   
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Discussion:  

Experimental Observations: 

 The key observation from the experiments was that daphnid populations had distinct 

responses to the experimental treatments that generally represent different energetic conditions.  

The addition of a gradient of snail-sourced energetic input produced a gradient of daphnid 

individual and population level responses.  In the most complex and energy rich condition 

(ASLD), individual growth (snails and daphnids) was the largest and daphnid populations 

showed the highest and earliest peak.  An intermediate condition (ASD) with limited facilitation 

showed a modest increase in daphnid size both individually and at the population level.  While 

the SLD treatment was hypothesized to be of moderate energy content (no algae applied), it 

demonstrated the clear existence and value of facilitation on individual daphnia and their 

populations.  The lowest energetic condition (LD) presented the interesting case of a daphnid 

population existing at low densities on what could be considered energy amendment from the 

applied, but largely unavailable, lettuce. 

 Each of these findings provided valuable insight on experimental conditions that affect 

study organisms and may be of value to ecological risk assessors.  In particular, the goal of 

complex system, ‘top-down,’ experiments with relevant and common organisms under a wide 

suite of energetic states could be a strong connection between the commonly discordant 

organismal and “cosm”-based approaches to toxicity tests and ecological risk assessments (Rohr 

et al., 2016).  The findings that I present are largely in sync with the intent of the work of 

Sanchez and Tarazona (2002).  Improving the environmental relevance of experimental designs 

and outputs is hypothesized to be both more cost efficient (Rohr et al., 2016) but also an 

improvement in linking regulatory protection goals and system-level effects (Stampfli et al., 
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2011).  In essence, the experimental design demonstrated here fits between normal single-

species/single individual toxicity tests and more complicated mesocosm studies (Landner et al., 

1989; Culp et al., 2000; Kennedy et al., 2002, among others).  While there is some information 

lost in the experimental simplification such as effects of temperature or sunlight (Stampfli et al., 

2011), this loss is offset by more approachable individual energetic metrics.  As the strength and 

value of individual-based mechanistic effect models increase (as suggested by Grimm and 

Martin, 2013), they may replace coarser energetic models (e.g., AQUATOX; Park, 2008) and 

this will likely require experimental validation.  An experimental level that makes energetic 

metrics accessible (carbon content of all compartments—lettuce, algae, daphnids, snails, and 

water) also allows for increased insight into differentiating effects of chemical stressors and 

abiotic or biotic interactions (Fischer et al., 2013; Congdon et al., 2001; Vinebrooke et al., 2004). 

 By comparison, one current methodology used to extrapolate individual-level observed 

toxic effects to community-level effects is the AQUATOX model (among others, Park et al., 

2008).  Lombardo et al. (2015) demonstrated the use of AQUATOX in predicting seasonal 

biomass of many food-web members based on their direct and indirect predator/prey and 

competitive interactions.  Toxicant data used were published LC50 (concentration killing 50% of 

organisms in single-species standard toxicity test) values.  These were applied against all food-

web compartments during the simulated time period and compartment biomass through time was 

a model output.  One very important metric was the relation between LC50 concentration and % 

perturbation of biomass with the food-web approach.  The non-linearity of these relations (Figure 

5 of Lombardo et al. (2015)) demonstrated the importance of food-web level interactions 

(predation/competition) in predicting perturbation due to chemical exposure.  While the 

conceptual underpinnings of organism-to-community stressor effect connections of the 
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AQUATOX model seem reasonable and are considered state-of-the-art (Chen et al., 2013), there 

remains several key uncertainties (Lombardo et al., 2015).  Specifically, an incomplete 

understanding of individual chemical tolerance or effect (Grimm and Martin, 2013; Jager et al., 

2011) leads to unknown levels of variability in organismal parameters in the AQUATOX 

framework (Lombardo et al., 2015).  As highlighted by Suter et al. (2005), lack of clarity about 

model resolution can lead to uncertainty regarding key model components like stressor effect or 

interaction parameters. 

 As my experimental observations support the overall objective of describing a 

hypothesized indirect interaction between two relevant ecotoxicological model organisms, a 

secondary objective has emerged from the results.  Attempting to apply experimental results to a 

multi-species DEB-IBM highlighted the importance of synchronizing model parameter and 

experimental metrics.  This misalignment of parameter resolution presented by Lombardo et al. 

(2015) is akin to the misalignment presented by Rohr et al. (2016) in relation to ERA methods.  I 

argue that linking different levels of organization required in ERA can be aided by a useful 

experimental design that fits between individual toxicity tests and large, complex mesocosms.  In 

particular, individual level metrics (such as LC50) are very useful to infer effects of acute 

exposures, but conservation goals are generally at higher levels of biological organization and 

environment exposures are often far below concentrations that are acutely toxic.  As such, the 

experimental results of this chapter, alongside Sanchez and Tarazona (2002), demonstrated that a 

relatively simple system can be constructed that produces population level metrics of exposure, 

while simultaneously producing individual level output.  Arguably, this method relies on 

mechanistic effects of exposure to produce emergent properties.  This conceptual design is 
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presented by Grimm and Martin (2013) as a method to improve ERA model frameworks, but 

strong validating experimental evidence should follow the same overall framework.   

 

Model Observations: 

 The model output suggested, firstly, that the overall conceptual model of using individual 

based bioenergetic models (DEB-IBM) to link levels of biological organization can be 

successfully applied.  Supporting evidence was that mean daphnid population size showed a 

graded increase with increasing energetic facilitation by snails (Figures 17 and 20).  This model 

output was validated in experimental observations against graded levels of snail-driven 

facilitation (Figure 22).  Additionally, capturing the persistence of a daphnid population under 

solely facilitated energy sources is a key success of the model (Figure 19).  This suggests that the 

very simplistic model mechanism for indirect energetic facilitation was aligned with what is a 

likely mechanism in experimental settings.  That said, additional research and model 

development is warranted to further improve model fit and performance in regards to indirect 

energetic facilitation. 

 As the model is an individual-based model (IBM), population dynamics emerge from the 

processes and mechanisms modelled at the individual level (Grimm and Railsback, 2005).  This 

principle is a key characteristic of model method improvements suggested by proponents of 

mechanistic effect models in ecological risk assessments (Grimm and Martin, 2013; Martin et al., 

2014; Jager et al., 2006; Forbes et al., 2009).  As described by Chen et al. (2013) many 

modelling methods in use in ERA and ecotoxicology analyses already make use of emergent 

properties or rely on a conceptual construct that effects at higher levels of organization emerge 

from interactions among relevant organisms plus the effects of the chemical stressor(s) at lower 
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levels.  The AQUATOX example of Lombardo et al. (2015) above demonstrated this quality 

quite well.  By plotting the modelled/predicted % perturbation against the LC50 values of each 

organism in the food-web, it was abundantly clear that percent population/community level 

effect was not a 1:1 relationship with % individual level effect.  However, in the case of 

AQUATOX, this emergent property does not account for some processes observed at the 

individual level.  Using the examples of Beauduoin et al (2015), Martin et al (2014), and Murphy 

et al. (2008), zebrafish, daphnid, and larval Atlantic croaker models performed best by explicitly 

accounting for impacts of size/age class structure-based diets and behaviors. These impacts at 

individual levels played a role in accounting for emergent effects of stressor exposure at higher 

levels (see trait-based and resource allocation-based approaches by Fischer et al. (2013) and 

Congdon et al. (2001)). 

 In the model presented here, daphnid population dynamics emerge from interactions 

between individual growth, the Neighborhood Effect (see Chapter 1), and resource density.  

Individual growth was a function of local resource density, internal starvation resistance 

functions, and stressor exposure. Size influences reproduction along with localized daphnid 

density (the Neighborhood Effect).  Movement patterns were a function of local resource density 

and the Neighborhood Effect.  Local resource densities were influenced by the size, condition, 

and density of local snails.  Meanwhile, snail facilitative contribution was a function of its 

movement patterns, local resource density, and its size and condition.  All of these interactions 

were were influenced by the experimental design and feedback from snails and daphnids.  Other 

system level dynamics that can influence daphnids (such as stressor effect levels or distributions 

or overall resource density) were controlled by the experimenter.   
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Both the snails and daphnid individual process-based models were designed separately 

(See Chapters 1 and 2) using the overall NetLogo (Wilensky, 1999) DEB-IBM approach of 

Martin et al. (2012), but amended along several fronts.  These amendments for local density-

dependent effects (the Neighborhood Effect), starvation sub-models, juvenile assimilation lag, 

and non-random walk patterns were key to improving the trait-based or resource allocation-based 

factors in these organisms and individuals (Fischer et al., 2013; Congdon et al., 2001).  Linking 

these two previously unconnected models through a simple indirect energetic facilitation sub-

model was used to address the major underlying hypothesis of this work—can the emergent 

daphnid population dynamics be predicted by facilitation from similarly emergent properties of 

snails? 

Model output suggested that a.) Individual level parameterized snail size and a condition-

dependent facilitation sub-model can produce observed daphnid survival under facilitation only 

conditions (SLD scenarios and treatments) and b.) Graded facilitation contribution produces 

graded daphnid population responses as observed in experiments (ASD and ASLD).  The model 

results discussed above suggest that a multi-species framework can be successfully constructed 

and capture experimentally observed dynamics.  The value of these results are that capturing a 

suite of potential interactions (Vinebrooke et al., 2004; Fischer et al., 2013; and Stampfil et al., 

2011) through process based mechanism effect models (Jager et al., 2006; Grimm and Martin, 

2013) is proposed as one potential methodological tool to improve ecological risk assessment 

(Rohr et al., 2016). 
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In summary, this chapter presents two main themes: 1.) An experimental design using 

two common toxicity test organisms that could provide enough complexity to infer stressor 

effects at system levels, but maintain knowledge of the effects at individual levels and 2.) A 

bioenergetic individual-based model framework that was able to largely capture the 

experimentally observed daphnid population dynamics under a range of snail-driven facilitative 

input.  The overall motivation for exploration of these topics was to provide ecotoxicology 

researchers experimental and model frameworks that could improve ecological risk assessment 

outputs at higher levels of biological organization.  Experimental results suggested that a.) 

Indirect energetic facilitation between L. stagnalis and D. magna occurs and b.) Indirect 

energetic facilitation can manifest at population and individual levels.  Model results suggested 

that a.) Energetically linking two individual-based models in the NetLogo environment is 

possible and performs well and b.) Indirect facilitation from L. stagnalis to D. magna may be 

fairly simple quantitatively. 

Future validation of this framework would likely necessitate a suite of chemical stressor 

exposures.  Exposures at individual levels to parameterize DEB models and then exposures to 

experimental systems to observe effect of facilitation on exposed organisms.  Successful model 

prediction of experimental observations of exposed system would more fully validate the 

individual to system ERA framework proposed here. 
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