
Towards a Pervasive Grid�

Vipul Hingne, Anupam Joshi, Tim Finin, Hillol Kargupta
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County
Baltimore, MD 21250

Email: fvipul1,joshi,finin,hillolg@cs.umbc.edu

Elias Houstis
Department of Computer Sciences

Purdue University
West Lafayette,IN 47907

Email: enh@cs.purdue.edu

Abstract

The increase in the use of mobile & embedded devices,
coupled with ad-hoc, short range wireless networking is en-
abling pervasive computing. This pervasive computing en-
vironment and the wired Grid infrastructure can be com-
bined to make the Computation and Information Grid truly
pervasive. This paper identifies some of the interesting re-
search issues and challenges in creating such a pervasive
Grid, and describes some preliminary work we have done
to that end. We propose a runtime environment for the
Pervasive Grid that utilizes a multi agent framework, and
provides for discovery of services being offered by sensors,
embedded and mobile devices, and their composition. The
computation in this environment needs to be dynamically
partitioned between the traditional Grid and elements that
constitute the pervasive environment, like sensors, with lim-
ited computing and communication capabilities.

1 Introduction

The evolving information infrastructure has significantly
impacted many facets of society over the past decade, and
promises to play an increasingly important role in our lives.
An important component of this will be the continuous in-
teraction between individuals, embedded devices and sen-
sors, and the wired information infrastructure that the wire-
less networks will engender. This vision has been described
as pervasive computing and is enabled by the rapidly shrink-
ing form factor/cost of computers for a given computational
power, and significant new advances in the creation of a va-
riety of wireless networks. Contrasted with the high band-
width information superhighways with which the computa-
tional grid has mostly concerned itself, wireless networks
will serve as the country roads which provide “ubiquity of

�This work was supported in part by NSF Awards 0203958, 9875433,
and 0070802

access”. The vision that drives our research is one of provid-
ing seamless access to networked computational resources
(a.k.a “The Grid”) from wirelessly networked walk stations
(laptop/palmtop/wearable devices), embedded sensors and
controllers, and nanosensors . We are investigating an agent
oriented approach towards enabling this vision, which is a
component of the idea of scalability of the information in-
frastructure that a recent presidential advisory panel recom-
mended. More specifically (and in the short term), the work
we propose here will create a framework and agent oriented
middle-ware to realize the Pervasive Grid. In ongoing work,
we are

� Developing an agent oriented software architecture ap-
propriate for UPSEs that will promote reuse of legacy
scientific computing codes and handle their evolution.

� Developing techniques for multi agent systems to dy-
namically adapt to their changing environment. These
techniques will create a framework where software
components/agents advertise their capabilities, dis-
cover other agents, and negotiate with other agents
about appropriate mediating interfaces or performance
commitments etc.

� Developing techniques allowing ubiquitous access to
the networked scientific computation infrastructure.

Networked Scientific Computing (NSC) systems de-
veloped over the last few years have enabled us to at-
tack large multidisciplinary scientific problems. They al-
low us to use the high performance communication infras-
tructure (vBNS, NGI, Internet II etc.) to view heteroge-
neous networked hardware (from the ASCI terraflop ma-
chines to workstations) and (legacy) software (e.g. special-
ized solvers, databases of material properties, performance
measuring systems) resources as an abstract, single “meta
computer”[15]. This scenario is typically tailored towards
a scientist or engineer at a desktop machine attacking a
known problem. The emergence of pervasive computing

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

will not just create a new infrastructure that the Grid must
accommodate, but create a new class of applications as well.

Consider a real time environment to monitor the health
effects of environmental toxins or disease pathogens on hu-
mans. There are significant advances being made today in
biochemical engineering to create extremely low cost sen-
sors for various toxins[18] that could constantly monitor the
environment and generate data streams over wireless net-
works. It is not unreasonable to assume that similar sensors
could be developed to detect disease causing pathogens. In
addition, most state health/environmental agencies and the
federal government entities such as CDC and EPA have
mobile labs and response units that can test for the pres-
ence of pathogens or dangerous chemicals. The mobile
units will have handheld devices with wireless connections
on which to send the data and/or their analysis. In addi-
tion, each hospital today generates reports on admissions
and discharges, and often reports that to various monitor-
ing agencies. Given these disparate data streams, one could
analyze them to see if correlates can be found, alerting ex-
perts to potential cause-effect relations (Pfiesteria found in
Chesapeake Bay and hospitals report many people with up-
set stomach who had seafood recently), potential epidemi-
ological events (field units report dead infected birds and
elderly patients check in with viral fever symptoms, indicat-
ing tests needed for west nile virus and preventive spraying),
and more pertinent in present times, low grade chemical and
biological attacks (sensors detect particular toxins, mobile
units find contaminated sites, hospitals show people who
work at or near the sites being admitted with unexplained
symptoms). At present, much of this analysis is done “post
facto” – experts hypothesize on possible causes of ailments,
then gather the data from disparate sources to confirm their
hypotheses. Clearly, a more proactive environment which
could mine these diverse data streams to detect emergent
patters would be extremely useful.

As another example, consider a real-time environment
for monitoring and commanding a defense operation. It
may involve a central command and control station, air-
borne vehicles and sensors (e.g. AWACS, drones), ground-
based wireless integrated network sensors, satellite data,
and war fighters on the ground. Defense applications like
this often require emergent situation awareness, discovery
of anomalous patterns, and performance assessment. This
in turn requires analysis of massive amount of data avail-
able through sensor data streams, databases containing re-
lated information such as intelligence reports, target tracks,
road networks, as well as databases with information about
the weather, site models, and enemy deployment. The war
fighter on the ground may be interested in finding out enemy
capabilities in his neighborhood; the control team in the air-
borne AWACS may be interested in monitoring the major
active weapons system and detection of any anomaly. On

the other hand the main mission control may want to query
the data network for evaluating the overall performance or
simulating the potential effect of their actions.

Analysis of this kind of complex data sets for different
purposes requested by different groups of users may involve
a whole range of different techniques like clustering, predic-
tive scoring, solving Navier-Stokes equations for applying
numerical models. This may involve light-weight in situ
analysis of data in the sensor nodes or streaming of data
to high-end number crunching machines for running large
simulations. We should note here that the obvious solution,
of gathering all the data at a central place, is not likely to
work. The sensors, if treated as dumb data sources only, can
generate huge data streams that will be beyond the capacity
of the wireless connections, and will drain battery power at
sensors which can be in short supply. Often the sensing ele-
ments or the field units will need to minimize the traffic they
generate so as to avoid detection and potential destruction.
In that case we will need inherently distributed techniques
to analyze data in such a way that resource usage (network
communication load, sensor network power consumption)
is minimized on the constrained nodes.

We note that the two scenarios painted above, far from
being unique, are actually representative in fields as far
apart as process monitoring & control, and network-based
intrusion detection. The runtime system needed to enable
such scenario would need to posses the following charac-
teristics:

� It should be able to handle the transport level prob-
lems caused by low bandwidth, high latency, frequent
disconnections and network topology changes.

� It should be able to operate on a variety of devices with
different resource constraints

� It should automatically figure out the components
needed for a task and discover them on the network

� It should be able to compose the discovered compo-
nents to dynamically create the required application

� It should be able to dynamically partition the compu-
tation across the various computational elements con-
strained by device resources, data and code locations,
and network bandwidth/connectivity.

Notice that some of these issues do not arise in the tra-
ditional Grid Computing work that has been done for fixed
networks – such as extreme variability of device resource
constraints, dynamic network topologies etc. Others are
similar to the ones that the Grid Computing community has
dealt with (recommending components, distributing com-
putations), but have to operate under significant new con-
straints associated with pervasive computing and so will re-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

quire the development of new approaches. We propose the
use of multi agent systems to enable the Pervasive Grid.

In the next section we describe the Multi agent Frame-
work that underlies our Runtime Environment. Then we
discuss our approach for Service Discovery, Composition
and Management. Finally we describe our ongoing work
on Dynamic Partition of Computation in sensor networks.

2 Multi agent Framework

The DARPA Knowledge Sharing Effort [23] has given
rise to a model for developing intelligent cooperating agents
based on ontologies, content languages and agent commu-
nication languages. Although this approach and its associ-
ated components is being adopted as a standard for agent
communication by both the research community and the in-
dustry, it requires significant extensions to support the inter
agent interactions and negotiations which our system will
demand. We will attack a number of key problems, devel-
oping theoretically sound solutions for each, building those
solutions into our evolving software infrastructure, and ex-
perimenting with the results in the wireless communication
environment. We will design our system to scale across the
problem complexities and reaction time needed for appli-
cations, ranging from simple but fast reactive actions of an
agents doing network bandwidth measurements to the more
complex, slower cooperation needed for cooperative analy-
sis of heterogeneous data streams across wireless networks.
Agent Development Framework
The underlying substrate of the system will be provided by
further development of our Ronin Agent Framework [6, 7].
At present, this is a simple Jini-based agent development
framework that is designed to aid in the development of
next generation smart distributed mobile systems. In the
Ronin Agent Framework we introduce a hybrid architec-
ture, a composition of agent-oriented and service-oriented
approaches. Ronin contains a number of features that dis-
tinguish it from traditional multi agent frameworks and will
make it especially suitable for the mobile domain. These
include an ACL and network protocol independent commu-
nication infrastructure. Ronin has the notion of service dis-
covery (agent discovery) built into the architecture – this
allows us to integrate our new service discovery protocols
into it. We will integrate the enhanced Ronin functionalities
into one of the existing FIPA compliant Agent Development
Platforms such as JADE or AGILE.

The design goal of Ronin is to define an open frame-
work that specifies the infrastructure requirement and the
interface guideline for the interaction and communication
between agent-oriented components. It models services as
agents. Each service consists of two parts: an Agent Deputy
and an Agent. An Agent Deputy acts as a front-end in-
terface for the other agents in the system to communicate

with the Ronin Agent it represents. Ronin Agent is a ser-
vice that can be realized as software or hardware. Ronin
does not define how an Agent Deputy should communicate
with a Ronin Agent. However, it does define the interface
for the communication between the Ronin Agent and Agent
Deputy. Specifically, each Agent Deputy must implement a
delivermethod. This delivery abstraction means that de-
pending on their connectivity and network QoS, agents can
deploy deputies that will provide features of transcoding or
disconnection management that we will develop as a part
of this research. The messages that are interchanged be-
tween Ronin Agents are embedded within Envelope ob-
jects during the delivery process. This meta-level approach
allows Ronin Agents to interchange messages with arbitrary
content message types under a uniform communication in-
frastructure [30]. Within each Envelope object, the type
of content message and the ontology identifier of the con-
tent message are also stored.

There is a set of attributes associated with each Ronin
Agent. These attributes can be further divided into two
subsets. The first set of attributes, Agent Attributes, define
the generic functionality of an agent in domain independent
fashion. For example, an agent could be a broker, or a ser-
vice provider. Ronin framework defines the types and the
semantics of Agent Attributes. The second set of attributes,
Agent Domain Attributes, define the domain specific func-
tionality of an agent. For example, in a financial domain,
an agent could be a stock quote server. The framework nei-
ther defines the Domain Attribute types nor their semantics.
While domain attributes will allow us to create agents that
understand a domain specific ontology, agent attributes pro-
vide a common base from which interaction amongst agents
from heterogeneous domains can be bootstrapped.

3 Service Discovery, Composition, and Man-
agement

In order for an entity to cooperate with others in its vicin-
ity or use the services available on the fixed grid, it needs
to discover them. This problem of “service discovery” has
recently been explored elsewhere as well in the context of
distributed systems. We use the term service broadly here
– it could be a computational component which executes,
data/information, or even a CPU cycles / storage capacity
that one entity is willing to provide to the other. Thus there
is a need to develop mechanisms which allow for compo-
nents to describe themselves (at a semantic level) and their
“requirements”, as well as for other components to locate
them.

State of the art systems such as Jini[1], Salutation[26],
UPnP[26], IETF’s Service Location Protocol[12], E-
Speak[13], Ninja[8], and most recently, UDDI[9] provide
for networked entities to advertise their functionality. How-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

ever, these systems are either tied to a language (Java/Jini),
or describe services entirely in syntactic terms as interface
descriptions. This not only limits interoperability, but forces
a client to know a-priori how to describe a service it needs
in terms of an interface. Moreover, they return “exact”
matches and can only handle equality constraints. This
leads to a loss of expressive power in the component de-
scription. For example, the Jini discovery and lookup pro-
tocols are sufficient for service clients to find a service that
implements the method printIt(). However, they are
not sufficient for clients to find a printer service that has
the shortest print queue, that is geographically the closest,
or that will print in color but only within a prespecified
cost constraint. When we look at service discovery in short
range ad-hoc mobile environments like Bluetooth, the pic-
ture is even worse. Bluetooth SDP relies on unique 128 bit
UUIDs to describe and match services. This is clearly inad-
equate.

We are investigating the creation of efficient broker
agents to discover services at a semantic level. To the
extent possible, we leverage emerging industrial standards
such as UDDI, BPML and WSDL/WSFL. UDDI’s present
highly centralized model is not appropriate for our sce-
nario, but more recent developments in that effort seem
to indicate that a distributed set of brokers could be cre-
ated. In order to describe services, we use semantic web
languages. At present we use DAML/DAML-S (DARPA
Agent Markup Language, http://www.daml.org/),
the semantic language developed by a joint US/EU effort
over the past few years. We plan to switch to OWL, a
DAML based language being standardized by the W3C
at present. Each entity/component of the system will be
able to describe itself using DAML. Components register
their capabilities (what services they can provide) and con-
straints/requirements (what software/hardware they need to
run, how much is the cost to run them, what interfaces they
provide) using DAML. The matching of a request to ser-
vices is semantic and uses the DAML descriptions. This
matching is fuzzy, and often recommends a ranked list of
matches. Our initial work towards building such a system
is described in [19, 4, 2]. We are currently enhancing the
matching process to fully utilize the logic description that
DAML+OIL provides.

Given an efficient semantic level discovery infrastruc-
ture, the next task is to use it to compose services and com-
ponents. For instance, a particular analysis technique[17]
for streams tries to create ensembles of decision trees from
the data stream and then combine them. First the system
needs to figure out that this task has several components –
generating decision trees, computing their Fourier spectra,
choosing the dominant components, and combining them
to create a single tree. For task categories that are well
understood a-priori, this can be done by hard coding spe-

cific decompositions. However, in the more general case,
this requires the use of a planner[11]. We feel that existing
planning techniques are adequate for our purposes, and we
will eventually integrate a planner like SPIE-2[29] into our
system.

The second part of the composition problem is actually
putting together the composite task in a mobile or mobile-
wired environment. Given a certain ordering of several sub
tasks that may be executed to derive the result of a complex
request, the problem is how these heterogeneous tasks can
be integrated and executed in environments where there is a
combination of resource-rich and resource-poor devices in-
terconnected to each other by thin or thick communication
channels. The problem can be tackled by using centralized
broker-based architectures [22, 3, 10] for service compo-
sition in purely wired environments. However, in perva-
sive grid systems where the computation platforms range
from high end super computing workstations to low-end
minute nano sensors, centralized architectures are often not
the most appropriate. We highlight some of the important
research issues associated with service composition in such
environments.

Service coordination and management is one important
aspect for service composition. Every service composition
platform must have some entity coordinating the different
services involved in the composition. Most service compo-
sition platforms follow a centralized architecture to coordi-
nate and manage the execution of a composite service. The
efficiency and design of the platform depends on the way
the central entity or manager handles the different services.
The problem of coordination and management becomes dif-
ficult when the entities are distributed across the network
and when some services are resident in a relatively stable
fixed ’wired’ environment and some services are more mo-
bile and present in the vicinity of a client. The composition
architecture needs to ensure that the composite service is
tolerant to failures, available and efficient to a reasonable
extent. The composition manager should also be able to
efficiently manage the network resources and apply certain
optimization criteria to reduce the cost of the composite ser-
vice . Service composition becomes difficult in a resource-
variant environment consisting of heterogeneous devices
with varying capabilities. A good service composition ar-
chitecture in a mobile/ubiquitous environment should ide-
ally be able to use the maximum amount of resources it can
obtain from its vicinity to compose a complex query. Such
resource utilization calls for a distributed way of imple-
menting a composition architecture. Services themselves
may be resident on mobile devices in an ad-hoc environ-
ment. For example, there might be sensor services willing
to provide information about the pollution/germ indices in
the air in its vicinity. Service composition should be able to
take advantage of different short-lived services which stay

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

in the vicinity for a finite amount of time and then disap-
pear. A distributed service composition platform should fol-
low the mobility pattern of a set of services. There may be
different ways to carry out service composition of requests
depending on the frequency of requests. We might want to
pro-actively compute some generic information about ser-
vices required to execute a query which is requested with
a high frequency. The other approach is to re-actively inte-
grate and execute services to derive the result of a query. In
this research we aim to investigate various means of achiev-
ing efficient resource/computation usage in the form of ser-
vice composition in ubiquitous environments.

We need different services following different infor-
mation exchange mechanisms to operate together to real-
ize a heterogeneous service composition platform. Exam-
ples of such mechanisms include services that follow the
message-passing paradigm to communicate with clients,
services that follow the remote method invocation mecha-
nism like SOAP[25] or agent-based services that follow a
certain agent language. A good service composition plat-
form should be able to communicate with all the different
services and utilize them appropriately for any composition
with other services not following the same type of informa-
tion exchange paradigm.

Fault tolerance and scalability are two most important
aspects for efficient service composition and information
retrieval. In a conglomeration of super computing grids
and low-end wireless grids, there are ample chances of link
and resource failures. If a network service breaks down,
the architecture should be able to detect this and resort to
fault control mechanisms to ensure that the processing of a
complex query is not hindered. The composition platform
should degrade gracefully as more and more services be-
come unavailable. Scalability is also an important aspect in
this domain. Composition architectures should scale with
the increasing number of services in smartdust type envi-
ronments.

The architecture should have the flexibility to adapt itself
to the changing environment in the smart space layer of the
ubiquitous grid. The world of services can change rapidly
especially in the lower layers of a grid computing system
where there are m heterogeneous mobile devices. Services
may be coming up and going down frequently in those en-
vironments. There are also examples of long-standing ser-
vices (e.g. weather forecast, problem solvers) in fixed grid
environments. With the induction of mobile devices, the
chances of non-persistent services being available for some-
time are increasing. A good composition platform should
be able to adapt its composition by taking maximum advan-
tage of the currently available services. This increases the
chances of availability of the composite service in a dynam-
ically changing environment.

Apart from just being able to integrate and execute dif-

ferent simple services and hence achieve better utilization
of networked resources, execution also needs to be done in
an efficient manner. This is particularly relevant in a mo-
bile or mobile-wired environment where the same service
plan may be executed in different manners to optimize pa-
rameters like bandwidth, data transfer. Research needs to be
done in this field to enable efficient and fast resource utiliza-
tion. Our preliminary work in creating such a composition
architecture in described in [5]. We have built a system that
can do pure reactive composition. The implementation is
over a combination of notebook and PocketPC devices, and
uses Bluetooth as well as 802.11. We have also extended
GloMoSim [31] to simulate such dynamic composition, and
are carrying out simulations.

4 Dynamic Partition of Computation in Per-
vasive Environments

There has been a lot of work in partitioning of computa-
tion in the Grid computing community. However, as pointed
out earlier, different issues arise when the sources of data
are tiny sensors, the network topology is dynamic, the con-
nections are wireless, and there is vast difference between
the computing abilities of the devices making up the grid.
Let us look at a scenario which illustrates many of these
issues.
Scenario
Consider a building with temperature sensors embedded at
various locations in the building. The sensors can commu-
nicate with neighboring sensors and with a base-station lo-
cated nearby. They generate streams of temperature data.
The Grid Infrastructure, capable of doing heavy computa-
tion is accessible from the basestation. Suppose the build-
ing is on fire. Fire fighters with handheld devices arrive,
and want to query the sensor network in the building to plan
their response. The queries could be as simple as finding the
temperature at a particular spot, or involve a simple compu-
tation such as the average temperature in some room. Such
queries (or computations) can be done in-situ in some com-
bination of the sensors and the basestation. Other queries
could be as complex as finding the temperature distribution
inside the building. To answer this query, a 3D partial differ-
ential equation needs to be set up, grid points populated by
data from the sensors and static data about building material
and boundary conditions, and then solved. It is simply not
feasible to perform the computation for solving such a query
inside the network. One way would be to transfer the data
from the sensors to the grid and perform the computation in
the grid. Even in this case, one might want to perform some
kind of optimizations to speed up the response time. For in-
stance, depending upon the accuracy of results required, in-
stead of sending each sensor reading to the grid, one might
only send the average reading from a region(the size of the

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

region depending on the level of accuracy needed).

Grid
Infrastructure

Sensor NetworkBase
Station

Handheld device

Query

Results

Install Query

Streaming data

Data Results

Figure 1. General Scenario

The problem that we intend to solve is to dynamically
partition the computation needed for the execution of the
query. Some obvious possibilities for this are

� The data is moved to the resources on the grid, which
do the computation

� The computation is done in the sensor network and
only the result is provided to the base station/handheld
devices

� The data is delivered to the base station/PDA, which
perform the computation

Some queries may involve performing a lot of compu-
tation, which may take a long time in the sensor network.
Such queries are best solved by the first approach above.
Some very frequent queries may require less computation,
but the amount of data transfer required may drain the en-
ergy of the sensors. The second approach would work best
in this case. Some queries which fall between the earlier
two may be best solved by the last approach above. Some
queries may need combination of the approaches above. It
is important to make this decision whenever a query is sub-
mitted.

To be able to dynamically partition the computation
some estimates would be needed. It is essential to know
the amount of computation required for a particular query.
Another important parameter is the amount of data transfer
required for evaluation of the query. In sensor networks,

preserving the energy of the sensors is of prime importance.
So estimates of energy consumption of sensors to evaluate
a query with each of the above approach are desirable. For
real-time queries, the turn around time is crucial. Hence es-
timate of the response time of the query in each of the above
approach is needed.A lot of factors would affect the esti-
mates required above. All networks may not be of the same
size, so the number of sensors in the network would wary.
Different networks would have different network topology.
The data routing technique used in the network would not
be the same for all networks. A particular network may use
flooding technique to route data, while another may use gos-
siping. Different sensors may generate data with different
rates.

To ease the process of making the various estimates de-
scribed earlier, we have divided the possible queries into
four different types.

� Simple Queries: Queries targeted at a particular sen-
sor, would fall under this category. E.g. “Return tem-
perature at Sensor # 10”

� Aggregate Queries: Queries which involve aggregate
functions like Max, Min, Avg, Sum, etc. E.g. “Return
Average Temperature in room # 210”

� Complex Queries: Queries which involve performing
computation over data from sensors to return the result.
E.g. “Find Temperature Distribution in room #210”

� Continuous/Windowed Queries: Any query which is
continuous in nature. E.g. “Return temperature at Sen-
sor #10 every 10 seconds”

The query format we use is presented below:

SELECT {func(), attrs} from sensors
WHERE { selPreds }
COST { cost limitation }
EPOCH DURATION i

The query format is similar to the one used by Madden
et. al in TAG[21]. However we allow for any arbitrary func-
tion to be specified in the SELECT clause. We have also in-
troduced the COST clause to specify the cost within which
the function is to be evaluated. Cost could be in terms of
sensor energy, response time or accuracy of the result. The
EPOCH clause specifies the interval between two consecu-
tive results for continuous queries.

Different solution models can be used to gather data and
perform the computation required to answer a query. In a
simple model, all sensors would send their data to the base
station. The base station would then perform the compu-
tation over the data. Cluster based models can enable the
computation to be carried out in the sensor network. Sen-
sors are divided into clusters and each cluster has a cluster

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

head. Cluster heads aggregate information from the sensors
in individual clusters and send it to the base station. An-
other way to perform in-network aggregation is to use ag-
gregation trees[16]. Data centric routing techniques can be
used to form aggregation trees in sensor networks. Data
would be routed and aggregated through the aggregation
trees. Most importantly, the grid can be used to perform
the computation. The data would be transferred to the grid
through the base station. The computation would be done
in the grid and results would be returned to the base station.
For a given query, one or a combination of the models above
can be used to perform the computation.

In Pythia[14], we have shown that Artificial Intelligence
techniques can be successfully applied to Problem Solv-
ing Environments. We choose a similar approach here to
dynamically partition the computation required to evalu-
ate queries. We propose to conduct simulations on these
query types to generate data for amount of computation,
data transfer, energy consumption, and response time for
various approaches. Standard machine learning techniques
would be used on the data to select the right approach for a
given query. The system will be made adaptive by compar-
ing the estimates of energy consumption and response time
with the actual values of energy consumption and response
time during the execution of the query and the results would
be incorporated into the learning technique.

The system comprises of three major components:
Query Processor, Decision Maker and Simulator for sen-
sor network. Query processor analyzes the query and cate-
gorizes it into one of the types mentioned above. Decision
maker would decide the solution model to use based on type
of query, historic data and known features of the network at
hand. The simulator simulates the solution model for the
query and returns the results.

To the best of our knowledge, this is the first work which
utilizes the the computational abilities of the grid to answer
queries on streaming data from sensor networks. There have
been efforts in the sensor database community that look into
efficient query processing in sensor networks, but none uti-
lize the grid.

Johannes Gehrke and colleagues from Cornell Univer-
sity present a model for sensor databases in their Cougar
Sensor database project[24].Sensor databases consist of
stored data; regarding the sensors, and the sensor data. The
authors represent the stored data as relations and sensor data
as time series. The emphasis is on modeling long running
queries. The sensor time series is based on the sequence
model introduced by Seshadri et al[27]. Sensor queries in-
volve relations and sequences. Relations are manipulated
using relational operators and sequences are manipulated
using sequence operators. In COUGAR, sensors are mod-
eled using ADTs and the signal processing functions of the
sensors are modeled by ADT functions which return the

sensor data. Long running queries are formulated in modi-
fied SQL. Signal processing functions are modeled as scalar
functions which disallow the use of queries with explicit
time constraints like aggregates. Cougar, however supports
only a limited type of queries.

Micahel Franklin and colleagues have proposed a query
plan data structure called Fjords(Framework in Java for Op-
erators on Remote Data Streams)[20] to allow queries com-
bining push-based sensor sources and conventional pull-
based sources. The system provides non-blocking and win-
dowed operators over streaming data. They also propose
sensor proxies which act as mediators between query pro-
cessing environment and the physical sensors.

Samuel Madden et. al from UC Berkeley propose aggre-
gation of data in sensor networks as part of their TinyDB
project TAG (Tiny Aggregation)[21]. They push declara-
tive queries into network. They impose a hierarchical rout-
ing tree onto the network. In TAG, Madden et. al show that
performing the computation for certain type of aggregate
queries inside the sensor network result in saving the energy
of the sensors and thus lengthen the lifetime of the sensor
network. They also suggest further optimizations like chan-
nel sharing which result in further saving of sensor energy.
Their approach, however, is designed primarily for aggre-
gate type queries. They do not support complex functions
in queries.

Viglas et. al from University of Wisconsin- Madison
present Rate-Based query optimization for streaming infor-
mation sources [28]. They argue that cardinality-based op-
timization techniques are not suitable for streaming infor-
mation sources. In rate-based optimization, fundamental
statistics used are estimates of the rates of the streams in
the query evaluation tree rather than the sizes of intermedi-
ate results. Query optimization only gives the best order in
which to evaluate the operators.

References

[1] K. Arnold, A. Wollrath, B. O’Sullivan, R. Scheifler, and
J. Waldo. The Jini specification. Addison-Wesley, Reading,
MA, USA, 1999.

[2] S. Avancha, A. Joshi, and T. Finin. Enhanced Service Dis-
covery in Bluetooth. IEEE Computer, 35(6):96–99, June
2002.

[3] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan.
Adaptive and dynamic service composition in eflow. Techni-
cal Report, HPL-200039, Software Technology Laboratory,
Palo Alto, CA, march 2000.

[4] D. Chakraborty, F. Perich, S. Avancha, and A. Joshi. Dreg-
gie: A smart service discovery technique for e-commerce
applications. In Proc. Workshop on Reliable and Secure Ap-
plications in Mobile Environments, 20th Symposium on Re-
liable Distributed Systems, October 2001.

[5] D. Chakraborty, F. Perich, A. Joshi, T. Finin, and Y. Yesha.
A reactive service composition architecture for pervasive

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

computing environments. In 7th Personal Wireless Com-
munications Conference (PWC 2002), Singapore, October
2002.

[6] H. Chen. Developing a Dynamic Distributed Intelligent
Agent Framework Based on the Jini Architecture. Master’s
thesis, University of Maryland Baltimore County, January
2000.

[7] H. Chen, A. Joshi, and T. Finin. Dynamic sercice discov-
ery for mobile computing: Intelligent agents meet jini in the
aether. Baltzer Science Journal on Cluster Computing, 4(4),
Oct 2001.

[8] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph,
and R. H. Katz. An architecture for a secure service dis-
covery service. In Fifth Annual International Conference
on Mobile Computing and Networks (MobiCom ’99), pages
24–35, Seattle, 1999.

[9] U. D. Discovery and I. platform. World Wide Web,
http://www.uddi.org/pubs/Iru_UDDI_
Technical_White_Paper.PDF.

[10] U. B. C. S. Division. http://ninja.cs.berkeley.
edu.

[11] K. Erol, J. Hendler, and D. Nau. Htn planning: Complexity
and expressivity. In Proc. AAAI., 1994.

[12] E. Guttman, C. Perkins, J. Veizades, and M. Day. ”rfc2068:
Service location protocol, version 2”. ftp://ftp.isi.edu/in-
notes/rfc2608.txt, 1999.

[13] Hewlett-Packard. E-Speak Architectural Speciification, ver-
sion beta 2.2 edition, December 1999.

[14] E. Houstis, S. Weerawarana, A. Joshi, and J. R. Rice. The
PYTHIA project. In S. K. Aityan et al., editor, Neural, Par-
allel, and Scientific Computations, pages 215–218. Dynamic
Pub., 1995.

[15] A. Joshi, T. Drashanksy, J. Rice, S. Weerawarana, and
E. Houstis. Multiagent simulation of complex heteroge-
neous models in scientific computing. IMACS Math. Comp.
Simulation, 44, 1997.

[16] K. Kalpakis, , K. Dasgupta, and P. Namjoshi. Maximum
lifetime data gathering and aggregation in sensor networks.
In Proceedings of the 2002 IEEE International Conference
on Networking (ICN’02), pages 685–696, Atlanta, August
2002.

[17] H. Kargupta and B. Park. Mining decision trees from data
streams in a mobile environment. In Proceedings of the
IEEE International Conference on Data Mining (to appear),
2001.

[18] Y. Kostov and G. Rao. Low-cost optical instrumentation for
biomedical measurements. Review of Scientific Instruments,
71(12):4361–4373, December 2000.

[19] Liang Xu. Using Jini and XML to build a component based
distributed system. Technical report, University of Maryland
Baltimore County, 2000.

[20] S. Madden and M. J. Franklin. Fjording the stream: An
architecture for queries over streaming sensor data. In ICDE,
2002.

[21] S. Madden, M. J. Franklin, J. M.Hellerstein, and W. Hong.
Tag: a tiny aggregation service for ad-hoc sensor networks.
In 5th Annual Symposium on Operating Systems Design and
Implementation(OSDI), Boston, December 2002.

[22] D. Mennie and B. Pagurek. An architecture to support dy-
namic composition of service components. Systems and
Computer Engineering. Carleton University, Canada.

[23] R. S. Patil, R. E. Fikes, P. F. Patel-Schneider, D. McKay,
T. Finin, T. Gruber, and R. Neches. The DARPA knowl-
edge sharing effort: Progress report. In B. Nebeld, C. Rich,
and W. Swartout, editors, Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Third Inter-
national Conference (KR92), pages 777–788. Morgan Kauf-
man, 1992.

[24] P.Bonnet, J.Gehrke, and P.Seshadri. Towards sensor
database systems. In Conference on Mobile Data Manage-
ment, 2001.

[25] S. O. A. Protocol. World Wide Web, http:
//msdn.microsoft.com/workshop/xml/
general/SOAP_White_Paper.asp.

[26] Rekesh John. UPnP, Jini and Salutaion - A look at some
popular coordination framework for future network devices.
Technical report, California Software Labs, 1999. Available
online from.

[27] P. Seshadri, M. Livny, and R. Ramakrishnan. Seq: A model
for sequence databases. In ICDE, pages 232–239, 1995.

[28] S. Viglas and J. F. Naughton. Rate-based query optimization
for streaming information sources. In SIGMOD Conference,
2002.

[29] D. E. Wilkins and M. desJardins. A call for knowledge-
based planning. AI Magazine, 22(1):99–115, 2001.

[30] H. C. X. Luan. A meta protocol for agent communication.
Technical report, University of Maryland Baltimore County,
1999.

[31] X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: a library
for parallel simulation of large-scale wireless networks. In
12th Workshop on Parallel and Distributed Simulations,
Canada, May 1998.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

	IPDPS 2003
	Return to Main Menu

