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ABSTRACT 
The availability of sensor-rich smart wearables and tiny, 
yet capable, unmanned vehicles such as nano quadcopters, 
opens up opportunities for a novel class of highly interac- 
tive, attention-shared human–machine teams. Reliable, light- 
weight, yet passive exchange of intent, data and inferences 
within such human–machine teams make them suitable for 
scenarios such as search-and-rescue with significantly im- 
proved performance in terms of speed, accuracy and se- 
mantic awareness. In this paper, we articulate a vision for 
such human–drone teams and key technical capabilities such 
teams must encompass. We present TagTeam, an early pro- 
totype of such a team and share promising demonstration of 
a key capability (i.e., motion awareness). 
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1 INTRODUCTION 
The availability of sensor-rich smart wearables and tiny, 
yet capable, unmanned vehicles such as nano quadcopters1, 
opens up opportunities for a novel class of highly interac- 
tive, attention-shared human–machine teams. Reliable, light- 
weight, yet passive exchange of intent, data and inferences 
within such human–machine teams make them suitable for 
scenarios such as search-and-rescue with significantly im- 
proved performance in terms of speed, accuracy and seman- 
tic awareness. 

Our proposed paradigm of human–drone teams are moti- 
vated by two salient trends: 
• Sensor-Rich, Pervasive Wearable Devices: Whilst smart 

watches, bands and rings have been widely studied for 
fine-grained, gesture-based control of smart environments 
and machines, more recent technologies are capable of 
continuously capturing more than just inertial motion. For 
instance, miniaturized sensors such as earables (i.e., wear- 
ables worn on the ear such as the Emotiv MN82) and smart 

 

1https://www.bitcraze.io/ 
2https://www.emotiv.com/setup/mn8/ 

glasses (e.g., AttentiveU3) are equipped with a range of 
inertial and physiological sensors that can measure brain 
activity, eye movements, etc. that can passively measure 
the wearer’s cognitive processes. More recently, devices 
such as the Microsoft HoloLens 24 embedded with a vari- 
ety of vision, depth and time-of-arrival sensors coupled 
with IMU sensors, head and gaze tracking, open up in- 
teresting possibilities for capturing both point-of-view 
visual information and the individual’s physiological and 
neurological states. Together with their low power re- 
quirements and connectivity capabilities, such devices can 
provide cues about individual’s intents and states, at real- 
time, to their robotic teammates for implicit coordination 
in various scenarios including battlefields and Industry 
4.0 settings. 

• Highly Mobile, SWAP-Constrained Unmanned Vehi- 
cles: Robotic platforms that are size, weight, and power 
constrained are attractive for human-machine teams that 
operate side by side, occupying the same physical space. 
While high levels of mobility can pose serious safety con- 
cerns for the human agents, the physical configurations 
of SWAP-constrained platforms make them safer options 
without compromising on the sensing capabilities they 
can offer. However, such platforms can be extremely re- 
strictive in terms of performing fully autonomous naviga- 
tion, sensing and onboard computation for sense-making. 
We posit that such platforms can leverage guidance from 
their human partners for intelligently adapting between 
autonomous and assisted operations for longer operation 
windows without compromising on the sensing efficacy. 

1.1 Motivating Scenarios 
“Passive guidance" from human(s) in the team can help di- 
rect machines for maximizing the effectiveness of human- 
machine combined sensing objectives. Communication, the 
process of information exchange, between man and machine 
is key for successful team performance [28]. While advances 
in natural language processing or exchange of visuals aid 
in more direct, explicit communication between teammates, 

 
3https://www.media.mit.edu/projects/attentivu/overview/ 
4https://docs.microsoft.com/en-us/hololens/hololens2-hardware 

ar
X

iv
:2

20
8.

05
41

0v
1 

[c
s.H

C
] 

10
 A

ug
 2

02
2 

https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://www.bitcraze.io/
http://www.bitcraze.io/
http://www.emotiv.com/setup/mn8/
http://www.emotiv.com/setup/mn8/
http://www.media.mit.edu/projects/attentivu/overview/
http://www.media.mit.edu/projects/attentivu/overview/
http://www.media.mit.edu/projects/attentivu/overview/


Conference’17, July 2017, Washington, DC, USA Kasthuri Jayarajah† , Aryya Gangopadhyay† , Nicholas Waytowich‡ 
 

 

 
 

Figure 1: Illustrative TagTeam Scenarios: Gaze-Assisted Cooperative Visual Scanning in Indoor Environments. See 
https://youtu.be/KYeo2Aichgs for a video demonstration of the blind spot coverage scenario. 

"implicit coordination" where machines are able to synchro- 
nize with their human-teammates without explicit inter- 
vention has its advantages. Previous studies [18] show that 
implicit coordination is helpful under high workload situa- 
tions due to a reduction in communication overheads and 
the resulting distractions. Here, we describe two scenarios 
where we envision tightly-coupled and responsive drones 
that adapt to human intent based on implicit guidance to be 
highly effective. We illustrate this in Figure 1. 

Attention-Shared, coordinated visual scanning for 
reconnaissance and search-and-rescue missions: An 
exemplar scenario is where a dismount is teamed up with a 
robotic teammate, with the robotic teammate equipped with 
a variety of sensors such as RGB cameras and LIDAR. Coor- 
dinated scanning can include two goals: (1) complementary - 
achieve wider coverage where the machine is able to scan 
regions where the human is not paying attention to, and as a 
team, achieve faster and efficient scanning, and (2) collabora- 
tive supplementary – where the machine provides enhanced 
resolution scanning and inference when a human requires 
more accurate visibility and augmentation from the machine. 
In both cases, machines require to know where the human is 
paying attention to, and not just what is within the "visible" 
range. A collection of wearable sensors can help intelligently 
infer the type of assistance the human teammate requires 
(e.g., whether complementary or supplementary) as well as 
in passively guiding the drone to areas that need augmented 
attention and/or at varied perception configurations (e.g., 
resolution, coverage, etc.). 

Non-verbal, interactive communication for contin- 
uous learning While natural language is a more direct in- 
terface for communication with machines, non-language 
behaviours (voice quality, body language, etc.) [5] and motor 
correlates of speech and verbal communication (e.g., gaze, fa- 
cial expressions, gestures [19] play a crucial role in effective 

communication of the human expressor. The ability to sense 
such cues can be beneficial in many battlefield scenarios 
including (1) machine learning and adaptation with passive 
human reinforcement (e.g., via affirmative or negative think- 
ing inferred from brain activity [25]) and (2) to interactively 
resolve comprehension ambiguities of human-to-robot in- 
structions (e.g., gestures to zoom in/out for a vision sensing 
task, corrective or altered behaviours based on cues such as 
a frown or shaking of the head). 
Key Contributions: Through this initial work, we articu- 
late a paradigm of highly interactive, attention-shared human- 
drone teams and identify key technical capabilities such 
teams require to address. We also share details of an initial 
prototype we built and share early results from enabling 
accurate motion transfer from human to drone. 

2 DESIGN GOALS 
To support the TagTeam scenarios that we envision, we enu- 
merate the following key design goals that human–drone 
teaming systems should achieve. 

2.1 Wearable-based attentive state 
estimation: 

Visual attention: In this work, we will develop techniques 
to gauge human visual attention using a combination of 
wearable technologies that allow for accurate tracking of 
eye movements (e.g., using noisy EOG signals) in the pres- 
ence of motion artifacts (determined using on-body inertial 
and EEG signals) and investigate techniques for continu- 
ous, light-weight exchange of attention information. The 
machines then adapt their attentional focus and/or resolu- 
tion, on-the-fly, to synchronize with their human-teammates’ 
intent. Evaluations of such systems will require both recre- 
ations of dynamic environments in an augmented-reality 
based experimental setups and real-world studies to study 
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the trade-offs between accuracy on vision tasks, energy ef- 
ficiency and latency, baselining against attention-agnostic 
models for both the complementary and collaborative goals. 
We believe that these models of attention-responsive adapta- 
tion of machine intelligence will not only improve the overall 
inference and situational intelligence accuracy, but also pro- 
vide a practical way to reduce energy and computational 
requirements, thereby enabling longer operational lifetimes 
and more ergonomic machine form factors. 

Non-verbal intent: A key technical capability that this 
proposed work builds is how such nonverbal intent can be 
reliably measured with a combination of wearable sensors 
including EEG sensors, on-body inertial sensors, gaze track- 
ers, etc. While the effectiveness of physiological sensing has 
been demonstrated with high-fidelity sensors, in lab and con- 
trolled settings, for tasks such as inferring emotion, the abil- 
ity to infer nonverbal cues using energy-efficient, but sparse, 
physiological signals is relatively under-explored (e.g., a 2- 
channel Emotiv MN8 earable as opposed to a 64-channel 
Biosemi ActiveTwo EEG sensor). More recently, ear-worn 
inertial sensors have indeed been shown to be effective in de- 
tecting activities such as head and neck movements [10] and 
more finer-grained motion such as tapping and sliding of the 
teeth [23]. Furthermore, recent work [29] has demonstrated 
that pointing-gesture based input in combination with visual 
and verbal inputs can improve accuracy of object picking 
tasks. To this end, the work will explore sensor fusion of 
wearable modalities (e.g., physiological, micro-expressions, 
lip/jaw movements based on inertial measurements, gaze 
tracking with smart glasses, etc.) for accurate nonverbal cue 
sensing and its application in the two example scenarios. 
One such possible use case is an urban battlefield where the 
human dismount issues commands to a robotic assistant, 
for example, to investigate some roadside objects for possi- 
ble threats. While ongoing work explores such multi-modal 
instruction comprehension for civilian environments (e.g., 
factory floors), kinetic military environments are likely to 
be characterized by higher levels of stress, distraction and 
time constraints. This in turn will affect the ways in which 
humans communicate instructions and raise the importance 
of factoring in non-verbal input (e.g., stress or fear levels) in 
defining the performance requirement (not just accuracy but 
factors such as time sensitivity) for such comprehension. We 
will thus engineer a suite of multimodal features for light- 
weight detection of higher order non-verbal cues, develop 
an adaptive system that orchestrates the triggering of multi- 
ple modalities based on energy, accuracy and task-specific 
performance (e.g., how fast can the human and machine con- 
verge on instruction comprehension?) trade offs, baselining 
against purely language-based comprehension. 

2.2 Global understanding of location and 
motion: 

For highly mobile situations such as scouting, search-and- 
rescue, the human and agent require highly accurate spatial 
and motion awareness. This a key requirement, especially in 
previously unseen environments such as those envisioned. 
In our scenarios, we require that the drone or agent be capa- 
ble of mimicking, or closely follow, the human for situations 
such as providing blindspot coverage. In situations where 
the drone detects that the human requires complementary 
or supplementary scanning, through the combination of var- 
ious wearable-based attentive states, the drone navigates 
independent of the human for completing such tasks, and 
boomerangs back to its human accomplice upon completion 
of the task. Such coordination requires a common grounding 
of the spatial coordinate systems of the two devices (human- 
worn wearable and the drone) and continuous tracking. 

2.3 Constraint-aware orchestration: 
Cooperating human-machine teams can be high efficient 
in terms of scanning target areas in shorter windows, as 
opposed to a human-alone or drone-alone baseline. Whilst, 
small unmanned vehicles, especially aerial vehicles, are ex- 
tremely restrictive in terms of their size, weight, and hence 
power and memory, wearable devices such as the Hololens 2 
are much more resilient (lasts up to 2-3 hours with a single 
charge and active rendering throughout the duration). 

3 INITIAL PROTOTYPE 
Towards realizing our vision for highly interactive human– 
drone teams, we describe our efforts in prototyping an early 
version of TagTeam that accomplishes real-time motion aware- 
ness for the default scenario of blindspot detection. We present 
a simplified architecture in Figure 2. The system consists of 
the following components (see Figure 3). 

A tiny drone: The Crazyflie 2.1 [7], a nano class quad- 
copter, is an open source flying development platform. It is an 
example of a SWAP-constrained edge device similar to what 
we envision in our scenarios, that fits inside the palm of the 
hand and weighs only a nominal 27 grams. The base design 
of the quadcopter consists of a STM32F405 main application 
MCU (microcontroller unit) and communication enabled via 
a nRF51822 radio and power management MCU. With the 
long range open USB radio dongle based on the nRF24LU1+ 
from Nordic Semiconductor 5 (supporting 2.4GHz ISM band 
and Bluetooth Low Energy), the drone can be controlled from 
distances as far as 1 km, under ideal conditions. The capa- 
bilities of the Crazyflie 2.1 can be extended using a range of 
off-the-shelf or custom-built expansion decks. In this work, 

 
 

5https://www.bitcraze.io/products/crazyradio-pa/ 

http://www.bitcraze.io/products/crazyradio-pa/
http://www.bitcraze.io/products/crazyradio-pa/
http://www.bitcraze.io/products/crazyradio-pa/
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Figure 2: TagTeam Components. 
 
 

 
 

Figure 3: TagTeam Implementation. 
 

Figure 4: Coordinate variations for exemplar motions: 
circular (top) and oval (bottom) 

 
we use the AI deck 6 for capturing and wirelessly streaming 
images and the flow deck V2 7 for stable flight. 

Head-mounted Wearable Display (Smart helmet): We 
use the Microsoft HoloLens 2, a sensor-rich smart wear- 
able, in our implementation. Through its four grayscale 
head-tracking cameras, the depth camera and a combina- 
tion of IMU sensors, the HoloLens device has the capabil- 
ity to maintain highly accurate spatial and motion aware- 
ness of the wearer. In the current prototype, we use the 
Camera.main.transform property of the main camera to lo- 
calize the user; this property initializes to (0, 0, 0) at the 
real-world position when the App is launched. In Figure 4, 

exemplar, controlled motions, circular and oval, performed 
by a human subject. 

Middleware: The Nvidia Jetson Nano8 acts as the middle- 
ware between the drone and the wearable on the soldier. The 
Nano is a mobile device consisting of a 128-core Maxwell 
GPU and a Quad-core ARM A57 CPU (clock speed of 1.43 
GHz) and 4 GB system memory. In the current implemen- 
tation, the middleware acts as a broker between the two 
devices; (a) it ascertains positional information from the 
wearable device over the MQTT [12] protocol, by subscrib- 
ing to a certain topic, (b) transforms locational information 
from the HoloLen’s coordinate system to the Crazyflie 2.1’s 
coordinate system, and (c) performs object detection (using 
the SSD MobileNet V2 detector [26]) on the stream of images 
transferred by the drone to provide real-time indication of 
objects in the human’s blindspots. Such detections are pub- 
lished as MQTT back to the HoloLens which outputs the 
information as Spatial Sound 9, dependent on the distance 
and angle of the object relative to the human. During the 
transformation stage (Step (b)), we take a dead-reckoning 
based approach [27] where we assume that the initial posi- 
tions of the HoloLens 2 (or the human) and the drone are 
known, and we estimate the change in movement needed 
by the drone, from the change in movement sensed by the 
HoloLens, assessed periodically, and task the drone to move 
to the new position with a certain velocity (calculated as 
the distance moved divided the time period between up- 
dates). Through experimentation, we found the appropriate 
coordinate transformation between the two devices to be: 
𝑋𝑋ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 → 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑍𝑍ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 → −𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙 (note that 
in our implementation, the Crazyflie drone faces backwards 
to provide situation awareness in the human’s blindspot 
regions). 

4 PRELIMINARY RESULTS 
Figure 5 shows the setup (a 4 ft × 6 ft area) we use in estab- 
lishing the feasibility of tracking (the human’s) movements 

we plot the variation along the 𝑥𝑥 and 𝑧𝑧 directions for two   
8https://developer.nvidia.com/embedded/jetson-nano-developer-kit 

 

6https://www.bitcraze.io/products/ai-deck/ 
7https://www.bitcraze.io/products/flow-deck-v2/ 

9https://docs.microsoft.com/en-us/windows/mixed-reality/design/spatial- 
sound 

http://www.bitcraze.io/products/ai-deck/
http://www.bitcraze.io/products/ai-deck/
http://www.bitcraze.io/products/ai-deck/
http://www.bitcraze.io/products/flow-deck-v2/
http://www.bitcraze.io/products/flow-deck-v2/
http://www.bitcraze.io/products/flow-deck-v2/
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Figure 5: Test setup for location tracking. See 
https://youtu.be/INQULM5csMU for a video demon- 
stration. 

 
using the dead-reckoning based approach. As seen in the 
video demonstration, the drone is able to accurately mimic 
the movements of the human. 

To quantify this, we use the vatic.js tool 10 for annotating 
the bounding box representing both the human’s head as 
well as the drone. In total, the video consists of 503 frames. 
We use Dynamic Time Warping to capture the similarity in 
the trajectories of the head and the drone, and observe a high 
level of synchronization (≈ 0.92 where 1 is the highest). 

5 DISCUSSION AND OPEN PROBLEMS 
In our current implementation we tackle a fundamental and 
necessary building block towards building TagTeam (i.e., 
motion awareness between human and drone). As we de- 
scribe earlier in Section 2, the paradigm of attention-sharing, 
human-drone teams require several other technical capa- 
bilities such as inferring human intent and attention au- 
tomatically, implicit coordination between the human and 
drone, and orchestration of the collective resources (e.g., on- 
board computation on the devices, network bottlenecks, etc.) 
for effective cooperation and communication. Beyond these 
immediate requirements, we enumerate a number of open 
problems for advancing research in this direction. 

Extending to multi-human, multi-drone teams: While 
our current scenarios consider a pair of agents, human and 
otherwise, many of these generalize to multi-human, multi- 
drone teams – for instance, a SWAT team involved in a high- 
risk search cooperating with a swarm of drones. Such ex- 
tensions impose additional challenges such as multi-source 
information aggregation and dissemination under poten- 
tially conflicting sources, data prioritization for processing 
and exchange under scheduling constraints, and physical- 
formation aware coordination. 

 

10https://stefanopini.github.io/vatic.js 

Aspects of trust and psychology: While the form fac- 
tors of sensing and processing platforms have evolved for 
TagTeam-like technical capabilities to be possible. Whilst 
works such as those of Hancock et al. [8] study aspects of 
trust and psychology for human-robot interaction scenar- 
ios in general, the human factors related to close-contact 
human-drone teams remain largely under studied. 

6 RELATED WORK 
Human–Drone Interaction (HDI): Since recently, researchers 
have started looking at the technical capabilities HDI re- 
quires and novel use cases that it enables [4, 22]. In early 
works, Christ et al. [4] study the impact of the level of au- 
tonomy of the drone on user experience. PFeiffer et al. [22] 
demonstrate that understanding where humans pay visual 
attention can aid in improving the navigation capabilities of 
drones through imitation learning. Several works have specif- 
ically focused on exploring modalities for interaction such 
as gesture-based control (e.g., using smart gloves [21], [3]), 
voice [6, 16, 20], gaze-based teleoperation [9, 30], etc. While 
these works explore the explicit control of the drone through 
these modalities, in our work, we emphasize the need for 
implicit guidance where the drone automatically infers the 
intent of the human – for instance, using gaze-based features 
such as saccades and dwell time to infer areas of uncertainty 
where the drone should perform a secondary scan to main- 
tain higher accuracy of the scan. Our work is the first, to the 
best of our knowledge, to articulate a paradigm of humans 
and drones working in close proxemics to perform cooper- 
ative tasks such as indoor scouting and search-and-rescue, 
whilst addressing challenges in terms of enabling real-time 
behavior adaptation of the drone leveraging on multi-modal, 
yet implicit interactions between the drone and its human 
partner. 

Collaborative sense-making at the edge: There have 
been a number of efforts in enabling lightweight collabo- 
ration between machines, especially for compute-intensive 
tasks such as machine perception using deep neural net- 
works (DNNs). Several recent works have explored optimiza- 
tion techniques for networked sensors to achieve efficient 
querying [11, 15]. Recent works [1, 13, 17, 24] have also ex- 
plored the idea of selective activation of nodes in a group 
of collaborating sensors – e.g., Qiu et al. [24] describe a 
vehicle tracking scenario where mobile nodes in a hybrid 
(mobile/infrastructure) camera network are activated selec- 
tively, only to resolve ambiguities. Jain et al. [13] provide 
preliminary examples of the possibility of using inputs from 
peer, overlapping cameras to utilize such spatiotemporal 
correlations to optimize the video analytics pipeline. The 
idea of collaboration among AIoT devices at the edge, and 
its attendant challenges, has also been mooted more gener- 
ally recently [1, 2]. Most recently, ComAI [14] demonstrates 
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concrete mechanisms for low-overhead collaboration for per- 
ception. To the best of knowledge, this work is among the 
first to prescribe the need for lightweight collaboration for 
highly effective human–machine mixed teams. 
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