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ABSTRACT

Title of Thesis: Representation Learning on Time Series with Symbolic Approximation

and Deep Learning

Thesis directed by: Tim Oates, Professor
Department of Computer Science and
Electrical Engineering

Most real-world data has a temporal component, whether it is measurements of natu-

ral (weather, sound) or man-made (stock market, robotics and even speech and language)

phenomena. Analysis of temporal data has been the subject of active research for decades

and is still considered to be a challenge in machine learning and data mining, due to the

intrinsically structured temporal correlation.

In this thesis, we propose three different novel approaches to represent and model

time-series. Time-Warping SAX and Pooling SAX are two extensions of the vanilla SAX

approach that is used as a symbolic representation of time series. Time-Warping SAX ex-

tracts linear temporal dependencies by building a time-delay embedding vector to construct

more informative SAX words. Pooling SAX applies a non-parametric weighting scheme

to extract significant variables. These are data adaptive models that achieve state-of-the-art

accuracy on time-series classification problems.

We also propose the Gramian Angular Field (GAF) and Markov Transition Field

(MTF) as two novel approaches to encode a time-series as an image. These representa-

tions not only demonstrate potential for visual inspection by humans, but when they are

combined with deep learning approaches (Convolutional Networks and Denoised Auto-

encoders). They achieve state-of-the-art performance compared to other modern algorithms

on classification and regression/imputation problems for different type of temporal data and

trajectories. GAF and MTF are non-data adaptive approaches that allow us to learn models

and extract the abstract representations supported by model-based approaches.



Finally, we develop a set of exponential-form based error estimator (NRAE/NAAE)

with their learning approaches (Adaptive Training) to attach the non-convex optimization

problems in training deep neural networks. Both in theory and practice, they are able to

achieve optimality on accuracy and robustness against outliers/noise. They provide another

perspectives to debunk the non-convexity of deep learning in high dimensional learning

and recurrent architectures and benefit the modeling of high-dimensional temporal data.
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Chapter 1

INTRODUCTION

A time series represents a sequence of values obtained from measurements over time.

Time series learning stems from the desire to reify our natural ability to analyze the shape

of data. Humans rely on complex schemes to perform such tasks. Major time-series-related

tasks include query by content, anomaly detection, motif discovery, prediction, clustering

and classification. Despite the vast body of work devoted to this topic in the early years,

(Antunes & Oliveira 2001) noted that the research has not been driven so much by actual

problems but by an interest in proposing new approaches. But with the ever-growing ma-

turity of time series learning techniques, this statement seems to have become obsolete.

Nowadays, time-series analysis covers a wide range of real-life problems in various fields

of research. Some examples include economic forecasting, intrusion detection, gene ex-

pression analysis, medical surveillance, hydrology and geography. Time-series learning is

complex. The most prominent problems arise from the high dimensionality of time-series

data and the difficulty of defining a form of representation based on the characteristics em-

bedded in time series. With the rapid growth of digital sources of information, time series

learning algorithms will have to match increasingly complicated datasets.

Time series representation and modeling are at the core of time-series learning sys-

tems, but those available approaches are not exhaustive as many tasks will require the use
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2

of more specific models. For example, forecasting and imputation may require the use of

a time series representation and a notion of similarity (mostly used to measure prediction

accuracy) whereas model selection and statistical learning are also at the core. Moreover,

high-dimensional, and noisy real-world time-series data cannot be described with analytical

equations with parameters to solve since the dynamics are either too complex or unknown

and traditional shallow methods, which contain a small number of non-linear operations,

might be fail to accurately model such complex systems.

In this thesis, we improve and develop the approaches from two perspectives, i.e.

Symbolic approximation and imaging with deep learning, to learn the representation and

model time series. Based on the Symbolic Aggregate Approximation (SAX) method (Lin

et al. 2003), we develop two novel extensions called time-Warping SAX and pooling SAX.

Time-Warping SAX successfully extract the linear temporal dependencies by time-delay

embedding vector to build more informative SAX words and thus Bag-of-Patterns. Pool-

ing SAX apply a non-parametric weighting scheme to extract significant variables. It works

well on handling the synchronous multivariate physiological time series. As data adaptive

models, they both achieve good results on time series classification problems. Gramian An-

gular Field (GAF) and Markov Transition Field (MTF) are two novel approach to encode

time series as images. These representations not only demonstrate potential for visual in-

spection by humans, but also achieve the state-of-the-art performance on classification and

regression/imputation problems with deep learning approaches (Convolutional Networks

and Denoised Auto-encoders). GAF and MTF are nondata adaptive approach, from which

we learn the model and abstract representations with model-based approach.

When training deep neural networks (including convolutional networks and stacked

autoencoders), the non-linearity always leads to a non-convex optimization problem. In-

spired by previous work of Normalized Risk-Averting Error (NRAE) (Lo, Gui, & Peng

2012), we proposes a novel learning approach, Adaptive Normalized Risk-Averting Train-



3

ing (ANRAT) to attack the non-convex optimization problem in training deep neural net-

works. Theoretically, we demonstrate its effectiveness based on the expansion of the con-

vexity region. By analyzing the gradient on the convexity index λ, we explain the reason

why our learning method using gradient descent works. In practice, we show how this

training method is successfully applied for improved training of deep neural networks to

solve visual recognition tasks on the MNIST and CIFAR-10 datasets. Performance on

deep/shallow multilayer perceptron and Denoised Auto-encoder is also explored. ANRAT

can be combined with other quasi-Newton training methods, innovative network variants,

regularization techniques and other common tricks in Deep Neural Networks (DNNs).

Other than unsupervised pretraining, it provides a new perspective to address the non-

convex optimization strategy in training DNNs. By pushing the robust-optimal (RO) index

λ to −∞, we are able to achieve robustness to outliers by optimizing a quasi-Minimin

function. The robustness is realized and controlled adaptively by the RO index without any

predefined threshold. Optimality is guaranteed by expansion of the convexity region in the

Hessian matrix to largely avoid local optima. Detailed quantitative analysis on both ro-

bustness and optimality are provided. The results of proposed experiments on fitting tasks

for three noisy non-convex functions and the digits recognition task on the MNIST dataset

consolidate the conclusions.

The contribution of this thesis stems from the effort to explore three different technolo-

gies in time series modeling and the optimization problems coming along within modeling

using DNNs. Time-warping SAX is able to capture the more complicated temporal corre-

lations in multiple time scales, but when the temporal data is not primarily relying on the

temporal part (like the shape data which is not a ’natural’ time series), the advantage is not

obvious compared to the vanilla SAX approach. Pooling SAX successfully extends SAX

to multivariate temporal data in a non-parametric manner. Empirically, when the num-

ber of channels is smaller than 6, Pooling SAX always works better than or competitive
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the current state-of-the-art approaches like SMTS (Baydogan & Runger 2014) or MTSBF

(Baydogan, Runger, & Tuv 2013). Modeling temporal correlations as images to learn the

features automatically using DNNs is a more general framework for a more wide range of

temporal data modeling problem (signal and trajectory), which achieves the state-of-the-art

results in classification and imputation tasks. Finally, our proposed non-convex optimiza-

tion estimator and learning approach cast light on the future research of deep learning in

high dimensional learning and recurrent architectures.



Chapter 2

BACKGROUND

2.1 Related Work

As mentioned earlier, time series are essentially high-dimensional data. Defining al-

gorithms that work directly on the raw time series would therefore be computationally

too expensive. The main motivation of representations is thus to emphasize the essential

characteristics of the data in a concise and informative way. Additional benefits gained

are efficient storage, speedup of processing, as well as implicit noise removal. Many rep-

resentation techniques have been investigated. It is, however, possible to classify these

approaches according to the kind of transformations applied. In order to perform such

classification, we follow the taxonomy of (Keogh, Lonardi, & Ratanamahatana 2004) by

dividing representations into three categories, namely non-data adaptive, data adaptive, and

model based.

In non-data adaptive representations, the parameters of the transformation remain the

same for every time series regardless of its nature. The Discrete Fourier Transformation

(DFT) was used in the seminal work of (Agrawal, Faloutsos, & Swami 1993). It projects

the time series on a sine and cosine function basis domain (Faloutsos, Ranganathan, &

Manolopoulos 1994). The resulting representation is a set of sinusoidal coefficients. In-

stead of using a fixed set of basis functions, the DWT uses scaled and shifted versions of

5
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a mother wavelet function (Chan, Fu, & Yu 2003). This gives a multiresolution decom-

position where low frequencies are measured over larger intervals, thus providing better

accuracy. The Discrete Cosine Transform (DCT) uses only a cosine basis; it has also been

applied to time-series mining (Korn, Jagadish, & Faloutsos 1997).

Data adaptive approach modifies the parameters of a transformation depending on the

data available. By adding a data-sensitive selection step, almost all nondata-adaptive meth-

ods can become data adaptive. For spectral decompositions, it usually consists of selecting

a subset of the coefficients. Several inherently data-adaptive representations have also been

used. Singular value Decomposition (SVD) has been proposed (Korn, Jagadish, & Falout-

sos 1997) and later been enhanced for streams (Ravi Kanth, Agrawal, & Singh 1998). It

has recently been adapted to find multiscale patterns in time-series streams (Papadimitriou

& Yu 2006). Piecewise Linear Approximation (PLA) is a widely used approach for the

segmentation task. The set of polynomial coefficients can be obtained by interpolation

(Keogh & Pazzani 1998). Many derivatives of this technique have been introduced. The

Landmarks system (Perng et al. 2000) extends this notion to include a multiresolution

property. However, the extraction of features relies on several parameters that are highly

data dependent. (Xie & Yan 2007) proposed a pattern-based representation of time series.

The input series is approximated by a set of concave and convex patterns to improve the

subsequence matching process.

Instead of producing a numeric output, it is also possible to discretize the data into

symbols. This conversion into a symbolic representation also offers the advantage of im-

plicitly performing noise removal by complexity reduction. A relational tree representation

is used in (Bakshi & Stephanopoulos 1995). Nonterminal nodes of the tree correspond to

valleys and terminal nodes to peaks in the time series. The Symbolic Aggregate approXi-

mation (SAX) (Lin et al. 2003), based on the same underlying idea as Piecewise Aggrega-

tion Approximation (PAA) (Yi & Faloutsos 2000), calls on equal frequency histograms on
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sliding windows to create a sequence of short words. An extension of this approach, called

indexable Symbolic Aggregate approXimation (Camerra et al. 2010), has been proposed

to make fast indexing possible by providing zero overlap at leaf nodes. The grid-based rep-

resentation (An et al. 2003) places a two-dimensional grid over the time series. The final

representation is a bit string describing which values were kept and which bins they were

in. Another possibility is to discretize the series to a binary string (Ratanamahatana et al.

2005). Each bit indicates whether the series is above or below the average. That way, the

series can be very efficiently manipulated. A very interesting approach has been proposed

in (Ye & Keogh 2009); it is based on primitives called shapelets, that is, subsequences

which are maximally representative of a class and thus fully discriminate classes through

the use of a dictionary. This approach can be considered as a step towards bridging the gap

between time series and shape analysis.

The model-based approach is based on the assumption that the time series observed

has been produced by an underlying model. The goal is thus to find parameters of such

a model as a representation. Two time series are therefore considered similar if they have

been produced by the same set of parameters driving the underlying model. Several para-

metric temporal models may be considered, including statistical modeling by feature ex-

traction (Nanopoulos, Alcock, & Manolopoulos 2001), Auto-Regressive and Moving Av-

erage (ARMA) models (Kalpakis, Gada, & Puttagunta 2001), Markov Chains (MCs) (Se-

bastiani et al. 1999), or HMMs (Panuccio, Bicego, & Murino 2002). MCs are obviously

simpler than HMMs so they fit well shorter series but their expressive power is far more

limited. The time-series bitmaps introduced in (Kumar et al. 2005) can also be consid-

ered as a model-based representation for time series, even if it mainly aims at providing a

visualization of time series.
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2.2 Motivation

Traditional approaches for modeling temporal data include the estimation of param-

eters from an assumed time series model. The estimated parameters can then be used as

features in a classifier to perform classification, or as the basis to make prediction or per-

form imputation/regression. However, more complex, high-dimensional, and noisy real-

world time series data cannot be described with analytical equations with parameters to

solve since the dynamics are either too complex or unknown (Taylor 2009) and traditional

shallow methods, which contain only a small number of non-linear operations, do not have

the capacity to accurately model such complex data.

Recall time-series data consists of sampled data points taken from a continuous, real-

valued process over time. There are a number of characteristics of time-series data that

make it different from other types of data (Längkvist, Karlsson, & Loutfi 2014).

• The sampled time-series data often contain significant noise and have high dimen-

sionality. To deal with this, signal processing techniques such as dimensionality

reduction techniques, wavelet analysis or filtering can be applied to remove some of

the noise and reduce the dimensionality. The use of feature extraction has a number

of advantages (Nanopoulos, Alcock, & Manolopoulos 2001). However, valuable in-

formation could be lost and the choice of features and signal processing techniques

may require expertise with the data.

• It is not certain that there is enough information available to understand the process.

For example, in electronic nose data, where an array of sensors with different selec-

tivity for a number of gases are combined to identify a particular smell, there is no

guarantee that the selection of sensors is actually able to identify the target odour. In

financial data when observing a single stock, which only measures a small aspect of
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a complex system, there is most likely not enough information to predict the future

(Flash & Hochner 2005).

• Time-series have an explicit dependency on the time variable. Given an input x(t)

at time t, the model predicts y(t), but an identical input at a later time could be

associated with a different prediction. To solve this problem, the model either has to

include more data input from the past or must have a memory of past inputs. For long-

term dependencies the first approach could make the input size too large for the model

to handle. Another challenge is that the length of the time-dependencies could be

unknown. Many time-series are also non-stationary, meaning that the characteristics

of the data, such as mean, variance, and frequency, changes over time. For some

time-series data, the change in frequency is so relevant to the task that it is more

beneficial to work in the frequency-domain than in the time-domain.

• There is a difference between time-series data and other types of data when it comes

to invariance. In other domains, for example computer vision, it is important to have

features that are invariant to translations, rotations, and scale. Most features used for

time-series need to be invariant to translations in time.

In conclusion, time-series data is high-dimensional and complex with unique prop-

erties that make them challenging to analyze and model. There is large interest in rep-

resenting the time-series data in order to reduce the dimensionality and extract relevant

information. The key for any successful application lies in choosing the right representa-

tion. Various time-series problems contain different degrees of the properties discussed in

this section and prior knowledge or assumptions about these properties is often infused in

the chosen model or feature representation.

To better model complex real-world data, one approach is to develop hand-crafted

features that capture the relevant information. This might be task specific and requires
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expertise with the data. However, such hand-crafted features can achieve good performance

in specific tasks. The alternative is to use unsupervised feature learning in order to learn

a layer of feature representations from unlabeled data. This has the advantage that the

unlabeled data, which is plentiful and easy to obtain, is utilized and that the features are

learned from the data instead of being hand-crafted. These layers of feature representations

can be stacked to create deep networks, which are more capable of modeling complex

structures in the data. We argue that the hybrid of hand-crafted with unsupervised learning

features has the potential to learn more powerful representation and models. However,

much focus in the feature learning community has been on developing models for static

data and not so much on time-series data.

In another hand, when we model time series using deep learning or recurrent net-

works based approaches, we found that training is hard. Neural network model always

leads to a non-convex optimization problem. The optimization algorithm impacts the

quality of the local minimum because it is hard to find a global minimum or estimate

how far a particular local minimum is from the best possible solution. The most stan-

dard approach to DNNs optimization is Stochastic Gradient Descent (SGD). There are

many variants of SGD, researchers and practitioners typically choose a particular vari-

ant empirically. Nearly all DNNs optimization algorithms in popular use are gradient-

based, recent work has shown that more advanced quasi-Newton methods such as L-

BFGS, Hessian-free (HF) and Kronecker-factored Approximate Curvature (K-FAC) ap-

proach can yield better results for DNNs tasks (Ngiam et al. 2011; Martens 2010;

Martens & Grosse 2015). Although the high computational complexity using second order

derivatives can be addressed by hardware extensions (GPU or clusters) or batch methods

when dealing with massive data, SGD still provides a robust default choice for optimizing

DNNs.

Instead of fortifying the training approach for DNNs, we focused on designing the
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error function to convex the error space. The convexification approach has been studied in

the optimization community for decades, but never be seriously applied within deep learn-

ing. Two well-known methods are the graduated nonconvexity method (Blake & Zisser-

man 1987) and the LiuFloudas convexification method (Liu & Floudas 1993). LiuFloudas

convexification method can be applied to optimization problem where the error criterion is

twice continuously differentiable, although determining the weight α of the added quadratic

function for convexing the error criterion involves much computation when dealing with

massive data and parameters.



Chapter 3

SYMBOLIC APPROXIMATION FOR TIME SERIES

CLASSIFICATION

3.1 Introduction

As one of the successful techniques to discretize and reformulate raw time-series data,

symbolic time series analysis has been used in many different application areas to identify

temporal patterns (Daw, Finney, & Tracy 2003). Aligned Cluster Analysis (ACA) was in-

troduced as an unsupervised approach to cluster the temporal patterns in human motion

data (Zhou, Torre, & Hodgins 2008). It is an extension of kernel k-means clustering but re-

quires significant computational capacity. Persist is an unsupervised discretization method

to maximize the persistence measurement of each symbol (Mörchen & Ultsch 2006). The

Piecewise Aggregation Approximation (PAA) method was proposed by Keogh (Keogh et

al. 2001), which then upgrades to Symbolic Aggregation approXimation (SAX)(Lin et al.

2003). In SAX, each aggregation value after the PAA process is mapped into equiprobable

intervals according to a standard normal distribution to produce symbolic representations.

SAX has become a common representation method due to its simplicity and effectiveness

on various types of data mining tasks (Camerra et al. 2010).

SAX forms the PAA in temporal order using a sliding window. Such representation is

12
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effective in several data mining tasks such as indexing (Camerra et al. 2010) and visualiza-

tion (Kumar et al. 2005). As one of the effective features for classification, a bag-of-words

makes use of SAX words to encode non-linearity and benefits from invariance to rota-

tions (Lin, Khade, & Li 2012). Lin et al. also reported state-of-the-art results using a

One-Nearest-Neighbor classifier (1NN) on University of California Riverside (UCR) Time

Series Classification/Clustering databases (Keogh et al. 2006). Oates et al. applied SAX

and Bag-of-Patterns (BoP) to predict outcomes for traumatic brain injury patients (Oates

et al. 2012a) and explored representation diversity by ensemble voting to further improve

classification performance (Oates et al. 2012b).

The principal idea of SAX is to smooth the input time series using Piecewise Aggre-

gation approXimation (PAA) and assign symbols to the PAA bins. The overall time series

trend will be extracted as a symbolic sequence.

The algorithm requires three parameters: window length w, number of symbols s and

alphabet size a. Different parameters lead to different representations of the time series.

Given a normalized time series of length L, we first reduce the dimensionality by dividing

it into [L/w] non-overlapping sliding windows with skip size 1. Each sliding window is

partitioned into s subwindows and mean values are computed to reduce volume and smooth

the noise. Then PAA values are mapped to a probability density function N (0, 1), which

is divided into several equiprobable segments. Letters starting from A to Z are assigned to

each PAA value according to their corresponding segments (Figure. 3.1).

After discretization and symbolization, BoP is built by a sliding window of length w

and converting each subsequence into a SAX word. The BoP representation can catch the

features shared in the same structure among different instances regardless of where they

occur. We build our features based on BoP histogram of word counts that is analogous to

the bag-of-words (Wang et al. 2013; Lin, Khade, & Li 2012; Baydogan, Runger, & Tuv

2013).
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FIG. 3.1. PAA and SAX word for the ECG data. The time series of length 4000 are parti-
tioned into 8 segments. In each segment we compute means to map them to the equiprob-
able interval. After discretization by PAA and symbolization by SAX, we convert the time
series into SAX word sequence CABDAEBB.

This chapter will explore two extensions of SAX methods to further improve this

symbolic representations by considering the internal temporal dependency in SAX words

and extend the SAX approach to the multivariate time series classification problem.

3.2 Time Warping SAX-BoP Representation for Time Series Classification

3.2.1 Background

While standard SAX with BoP obtains state-of-the-art performance on benchmark

datasets and real world applications, we hypothesize that we can improve SAX by cap-

turing more temporal information in the BoP representation. Our work is inspired by two

observations. First, correlation is common in time series. Statistical time series analysis

utilizes AutoCorrelation Functions (ACF) and Partial AutoCorrelation Functions (PACF)

to interpret the internal linear correlations in ARIMA models (Box, Jenkins, & Reinsel

2013). We propose to explicitly extract the implicit linear correlation in time series and

thus to help reveal the intrinsic statistical properties to potentially improve the expressive
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capacity.

Another motivation is based on the observation that BoP extracts local patterns, re-

gardless of where they occur within time series. Standard SAX keeps the temporal order-

ing information while this information might be ignored after building a BoP. We attempt

to seal the temporal correlation in the bags by borrowing the concept of time embedding

vector from dynamic systems to overcome the loss of information.

Among a number of papers that explore the application of SAX and its derivatives,

no work has been investigated to integrate BoP patterns and the SAX words with linear

temporal correlations. This time warping approach to build SAX words is based on a

few research works about symbolic dynamics of time series. The research on permutation

entropy (Bandt & Pompe 2002; Riedl, Müller, & Wessel 2013) and fractal dimensions

(Clark 1990) include details of delay-time embedding vectors. Oates et al. apply SAX

with a bag-of-words to detect traumatic brain injury (Oates et al. 2012a) and explore the

representation diversity via ensembles of different BoP representations (Oates et al. 2012b)

and provides us the paradigm to analyze and apply our approaches on physiological data.

3.2.2 Motivation

The first motivation relies on the internal linear correlations embedded in time-series.

For a stationary process Z = Z1, Z2, ..., Zt, the covariance between Zt and Zt+k is defined

as:

(3.1) γk = cov(Zt, Zt+k) = E[(Zt − µ)(Zt+k − µ)]

The correlation between Zt and Zt+k is:

(3.2) ρk =
cov(Zt, Zt+k)√

var(Zt)
√
var(Zt+k)
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As a function of k, ρk is called the AutoCorrelation Function (ACF). It represents the

correlation between Zt and Zt+k at time lag k.

If we remove the mutual linear dependency on the intervening variablesZt+1, Zt+2, ..., Zt+k−1,

the conditional correlation is given by:

(3.3) corr(Zt, Zt+k|Zt+1, Zt+2, ..., Zt+k−1)

The resulting value is called the Partial AutoCorrelation Function (PACF) in time

series analysis.

ACF and PACF helps discover the internal correlation and identify the order of

ARIMA models in statistical time series analysis (Box, Jenkins, & Reinsel 2013). Time

series have intrinsic correlations even though sometimes we observe no obvious periodic

trends. As shown in Figure 3.2, although there is no obvious periodic trend in the raw data,

the ACF and PACF values show significant linear dependencies at different time lags. In

this example, the raw data needs a first order or even higher order differencing to reveal the

essential linear temporal dependency in a stationary time series.
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FIG. 3.2. Plots of (a) raw data (left), (b) ACF (middle) and (c) PACF (right) on ECG
dataset from UCR Time Series Classification/Clustering database.
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Correlations revealed by ACF and PACF are more general than periodicity and are

very commonly observed in time series data. A number of ACF and PACF plots from UCR

time series databases with various type of data show similar phenomena as seen in Figure

3.2.
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FIG. 3.3. Plots of (a) raw data ACF (upper left), (b) SAX word ACF (upper right) and
(c) raw data PACF (bottom left) and (d) SAX word PACF (bottom right) on ECG datasets
from UCR Time Series Classification/Clustering database. Standard SAX preserves the
temporal correlation, but this advantage might be ignored in BoP representations.

In Figure 3.3, standard SAX word shows their intrinsic property of preserving the

major internal correlation embedded in raw data. This is because standard SAX builds PAA

bins and slides windows sequentially in temporal order. Sequential information in temporal

order is one of the essential properties of time series, and standard SAX works quite well

on tasks like similarity evaluation and time series indexing. However, this advantage might

be lost in the BoP representation because of the order invariance in BoPs.

A Bag-of-Patterns (BoP) is a histogram-based representation for time series data, simi-

lar to the bag-of-words approach that is widely accepted by the natural language processing

and information retrieval communities. Given a time series of length L, a BoP representa-

tion is constructed by sliding a window of length n (n << L) to map each subsequence of
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length n into a SAX word. Then the L−n+1 subsequences are represented as a histogram

of word counts.
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FIG. 3.4. PAA and SAX procedure for ECG data. (a) Time series are partitioned into two
windows and each window has two PAA bins (left). We exchange the order of two windows
in (b) (right), but the BoP patterns are same, i.e, BC: 1, DA: 1

BoP can handle time series with varying length. It is invariant to the shift of pattern

locations by extracting local structures regardless of where they occur. Nonetheless, the

standard SAX approach preserves the temporal order by sliding windows sequentially. BoP

runs the risk of losing this temporal dependency due to its shift invariance. To clearly state

the problem, consider the toy example as shown in Figure 3.4. We partition the time series

into two windows with two PAA bins in each half (Figure 3.4(a)). Then we exchange the

order of the two windows as shown in Figure 3.4(b). Obviously, these two time series have

different temporal information from each other, but they produce the same BoP.

The BoP reveals the higher level structures, its invariance to shifts also allows rotation-

invariant matching in shape datasets. In the next section, we introduce time warping SAX

approaches. They capture the temporal correlation information embedded in time series

by taking advantage of the invariance to shift and temporal order in BoP to generate more

informative representations.
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3.2.3 Time Warping SAX

In this section, we introduce three time warping SAX approaches inspired by the idea

of time delay embedding vectors (Bandt & Pompe 2002; Riedl, Müller, & Wessel 2013).

They take advantage of the order-invariance of BoP to capture temporal correlation infor-

mation through building words and bags with a time warping procedure.

Given a time series T = {t1, t2, ..., tL} of length L, a sliding window of length n and a

number of PAA w, the standard SAX method partitions the time series into dL
n
e − 1 equal-

sized sliding windows ti, ti+1, ..., ti+n−1. Each window is then divided into w PAA bins. In

time warping SAX, we change the step size i + 1 by i + τ to build the new time warping

sequence ti, ti+τ , ..., ti+n−1. The delay-time embedding vector ti, ti+τ(n−1), ..., ti+τ(n−1) is

used to embed the time series into a higher dimensional space to reconstruct the original

state space vector. τ is the delay time and n is the embedding dimension. In the time

warping procedure, τ has the same mechanism with the time lag k in ACF and PACF. The

embedding dimension n is equivalent to the sliding window size.

We will introduce two time warping SAX approaches named Skipword and Skipbin.

They correspond to the different discretization granularity in standard SAX. Moreover,

we explore the effect of a skip step on sliding window in standard SAX and call it the

Skipwindow SAX approach.

Skipword SAX applies the time warping approach to build PAA bins. Because each

corresponding SAX word is the mean value of PAA bins, the idea of Skipword is to seal

the temporal correlations into single SAX word through delay-time embedding vectors.

Consider a simple sequence T = {1, 2, ..., 10} with delay time τ = 2, embedding

dimension n = 6 and number of bins w = 3. T is divided into three windows with three

PAA bins in each window as {1 3 | 2 4 | 3 5}, {6 8 | 7 9 | 8 10}. After calculating the

mean values in the PAA bins, T is discretized as {2 3 4}, {7 8 9}. For simplicity, we skip
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the Gaussian mapping procedure in the following examples to map the rounding of each

PAA mean to its corresponding SAX word with the dictionary {1: A, 2: B, ..., 26: Z}.

Thus, we get the BoP pattern BCD: 1, GHI: 1. Then the window slides forward to generate

more BoP patterns with the same loop. The over-simplification here is only to facilitate

the explanation of our approaches. In our experiments, we process the data with the full

pipeline of standard SAX including the Gaussian mapping.

Skipbin SAX applies time warping approaches to build the sliding window instead of

PAA bins. Each window is cut into PAA bins following the standard SAX procedure. By

enlarging the granularity of temporal correlations, we expect different embedding informa-

tion to be sealed in BoP representations.

Consider the same sequence T = {1, 2, ..., 10} with the delay time τ = 2, embedding

dimension n = 5 and the number of bins w = 3. We apply time warping on subsequence

to build two windows and partition each window into three PAA bins {1 3 | 5 7 | 9}, {2 4

| 6 8 | 10}. After figuring out the mean values in each PAA bins, T is discretized into {2 6

9} and {3 7 10} with the BoP patterns BFI: 1, CGJ: 1. Then The window slides forward

to generate more BoP patterns in the same way.

The Skipwindow SAX approach is the same as standard SAX. The only differ-

ence is the changing time steps among each sliding window. For the sequence T =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, we set time step t = 5, window length n = 5 and words number

w = 3. The Skipwindow SAX discretizes the sequence into {1 2 | 3 4 | 5}, {6 7 | 8 9 |

10}. No overlaps occurs in this example due to the large skip size (t = 5). The final BoP

patterns are BDE: 1, GIJ: 1.

By using a time warping procedure based on delay-time embedding vectors, time

warping SAX approaches seal the correlation information into different sizes of ’bags’,

i.e., PAA bins and sliding windows. Skipword has smaller granularity because each SAX

word will contain temporal correlation with different delay embedding vector parameters.
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Instead of embedding the correlation into each single SAX word, the Skipbin approach

looks at larger temporal scales to encode the correlation into the windows that contain

several PAA bins. Skipbin SAX words have longer memory than Skipword SAX words

because the temporal order is preserved in sliding windows with larger scale than a single

PAA bin. Skipwindow SAX is a straight-forward extension of the standard SAX approach

with a larger parameter space as the time step t will change instead of fixing it at 1. We

assume that Skipwindow also captures some temporal dependency when building the BoP

representations. However, when the skip size increases, the BoP discards more phases of

the original time series and results in more information loss.

Delay-time embedding is a powerful tool. In principle, almost any delay time τ and

embedding dimension n works when we need to analyze the correlation behavior of a

complex dynamical system if we have unlimited precise data. However, choosing the em-

bedding vector τ(n−1) is not trivial. We want both τ and and τ(n−1) to be close to some

characteristic decorrelation time. One suggested principle is exactly the ACF (Clark 1990).

Note that if we tune the parameters of the three time warping SAX approaches, the

standard SAX has a chance to be replicated. That is, standard SAX is a specific subset of

time warping SAX. While we take temporal correlation into consideration, we also add one

more dimension, the time delay τ in the parameter space. To avoid ’cheating’ and reveal

the real impact of the internal correlation, we get rid of the parameter intervals that will

reduce time warping SAX to the standard SAX.

3.2.4 Experiments and Results of Classification on Univariate Time Series

The benchmark datasets are from the UCR Time Series Classification and Clustering

home page (Keogh et al. 2006). We choose the subsets for which the BoP error rate with

standard SAX is above 0.1. The error rate is the fraction of incorrectly classified instances.

For each dataset, Table. 3.1 gives its name, the number of classes and the length of the
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individual time series. The datasets are pre-split into training and testing sets to facilitate

experimental comparisons. We also give the number of training and test instances. The test

error rate of the standard SAX-BoP approach is directly taken from (Oates et al. 2012b)

(Table. 3.1).

Table 3.1. BENCHMARK TIME SERIES DATASETS AND SUMMARY STATISTICS
Class Train Test Length Error Rate (Oates et al. 2012b)

Coffee 2 28 28 286 0.1071
Oliveoil 4 30 30 570 0.1667

ECG200 2 100 100 96 0.22
Lighting2 2 60 61 637 0.2295
Lighting7 7 70 73 319 0.3973

Beef 5 30 30 470 0.4667
Adiac 37 390 391 176 0.3836

50words 50 450 455 270 0.4396
FaceAll 14 560 1690 131 0.2497

OSULeaf 6 200 242 427 0.3058
SwedishLeaf 15 500 625 128 0.2064

yoga 2 300 3000 426 0.1677

The second dataset is the patient vital signs signals (ECG and PPG) collected from

University of Maryland School of Medicine. All patient data are anonymous in order to

protect patient privacy. 556 patient’s ECG and PPG data were collected in 68 to 128 min-

utes at a 240 Hz sampling rate. Among them, 237 patient’s vital signs data are less than 128

minutes long and all the data is quite noisy. The label demonstrates if the patient needed

a blood transfusion for Packed Red Blood Cell (pRBC) within 6 hours of admission. The

vital signs time series are preprocessed by filtering outliers and integrating the means in

each minute to reduce data size. Because the data is highly skewed with only 17 positive

instance, we down-sampled 17 negative instance to rebuild a balanced dataset.

We construct BoPs for the datasets in Table 3.1 by looping over the hyperparameters

on the training set. Given a time series of length m, we set n ∈ {0.15m, 0.16m, ..., 0.36m}
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,w ∈ {2, 4, 6, 8} and a ∈ {3, 4, ..., 10}. Moreover, the delay-time τ and skip time t loops in

{0.01m, 0.03m, ..., 0.15m}. We classify the time series with each BoP on the training set

to select the optimal parameters with Leave-One-Out Cross Validation (LOOCV) for the

test set. If two or more representations tie, we choose the representation with the smallest

possible vocabulary size aw and delay-time τ . For vital signs data, we apply LOOCV to

evaluate the classification performance on the training set alone.

Table 3.2. 1NN error rate of time warping SAX and standard SAX on test datasets
Dataset SAX Skipword Skipbin Skipwindow

Coffee 0.1071 0.0357 0.0357 0.0357
Oliveoil 0.1667 0.1 0.1 0.1

ECG200 0.22 0.12 0.12 0.12
Lighting2 0.2295 0.2295 0.1475 0.1475
Lighting7 0.3973 0.2603 0.2466 0.3288

Beef 0.4667 0.4333 0.4 0.4667
Adiac 0.3836 0.5166 0.5141 0.5166

50words 0.4396 0.3867 0.3756 0.3978
FaceAll 0.2497 0.2438 0.2438 0.2349

OSULeaf 0.3058 0.3430 0.3347 0.3554
SwedishLeaf 0.2064 0.2400 0.2336 0.2496

yoga 0.1677 0.1670 0.1603 0.2017

Table 3.2 shows the LOOCV error rate on test sets. Except for ”Adiac”, ”OSULeaf”

and ”SwedishLeaf”, Skipbin and Skipword SAX methods outperform standard SAX. Skip-

window SAX also demonstrates specific improvements, although it is always worse than

the Skipbin and Skipword approaches. Because Skipwindow is the direct extension of stan-

dard SAX with a larger parameter space, the improvement seems “obvious” as it searches

four parameters as opposed to three. However, Skipwindow will discard more original data

when time step grow large (particularly when t > w) and leads to significant information

loss.

Among these three time warping SAX approaches, Skipbin shows better expressive
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capacity than the other two based on the classification performance. This is most likely

because Skipbin SAX applies the time warping procedure to build windows that contain

several PAA bins. It takes advantage of delay-time embedding vectors in capturing the

temporal correlation in the larger window but also preserves sequential order of the subse-

quence within each PAA bin. With appropriate combinations of hyperparameters, Skipbin

extracts the temporal dependency as well as the sequential information to learn more pow-

erful BoP representations.

𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, … , 𝑡𝑚

B, C, D | A, A, E | ...

𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, … , 𝑡𝑚

B, C, D | A, A, E | ...

Skipword SAX Skipbin SAX

FIG. 3.5. Illustration of Skipword (left) and Skipbin (right) SAX. Skipword extracts the tem-
poral correlation through using delay-time embedding vector in each single word; Skipbin
captures the linear correlation in each word and preserves the sequential order in the PAA
bins.

It is necessary to explore the representation diversity between time warping SAX and

standard SAX approaches. Different datasets will require different parameters to properly

demonstrate the expressive capacity and maximize the classification accuracy (Oates et al.

2012b). The different time warping procedures in time warping SAX approaches result in

the diverse BoP patterns as illustrated in Figure 3.5.

A time warping SAX representation is determined by the window size n, the number

of words w, the alphabet size a and the delay-time/skip step τ/t. Because various datasets

and different time warping approaches need specific combinations of hyperparameters to

learn appropriate BoPs, one would expect to observe significant representation diversity on
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Table 3.3. BEST FOUR REPRESENTATIONS (n,w, a, τ/t) BY ERROR RATE FOR
TWO DATASETS.

Dataset SAX Skipword Skipbin Skipwindow

50words

94, 8, 3 , 1 65, 4, 3, 27 65, 4, 3, 27 95, 4, 3, 3
97, 4, 3 , 1 95, 4, 3, 19 68, 4, 3, 27 86, 4, 3, 3
94, 4, 4 , 1 78, 4, 3, 19 86, 4, 3, 3 90, 4, 3, 3
86, 8, 3 , 1 89, 4, 3, 19 62, 4, 3, 27 97, 4, 3, 3

Lighting7

70, 8, 4 , 1 48, 2, 8, 3 48, 2, 10, 3 48, 2, 10, 3
70, 8, 3 ,1 51, 4, 5, 3 73, 2, 10, 41 57, 2, 10, 3
51, 2, 7, 1 90, 4, 7, 3 57, 2, 10, 22 70, 2, 7, 3
51, 2, 9, 1 54, 2, 6, 3 60, 2, 10, 41 96, 2, 5, 3

different SAX approaches and datasets. We also assume that we can find some patterns

in the representation diversities. Table. 3.3 shows four optimal representations with the

best training error rate on two datasets. The best representations for the ”50Words” have

the same word and alphabet sizes (4, 3) on all time warping SAX approaches. The Win-

dow length and delay-time change respectively to learn the BoPs with significant temporal

correlations. The ”Lighting7” dataset shows more obvious diversity in the best representa-

tions, but the Skipbin SAX approach has the same word and alphabet sizes (2, 10), which

means it prefers short words and high alphabetical resolution to build the BoP patterns. On

these two datasets, the skip step for Skipwindow SAX keeps on the lowest value (0.01m),

which is in accordance with our analysis that a large skip step brings much information

loss. Thus Skipwindow SAX is trying to avoid such information loss using small sliding

steps.

Figure. 3.6 shows the plots of training error rate on the ”50word” and ”Lighting7”

datasets with all representations sorted in ascending order over three time warping SAX

approaches. Although we observe slight differences among the error rates of the best rep-

resentations for three time warping SAX approaches in Table. 3.2, the error rate curve over

all representations show more details about the difference among time warping approaches.
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FIG. 3.6. Curve of test error rate for all representations of time warping SAX by
ascending rank for the ”50word” and ”Lighting7” datasets. Y axis is the percent error rate.

Three time warping SAX approaches have the similar best performance, but the curve of

Skipbin SAX stabilizes at the lower horizon with more representations than Skipword and

Skipwindow. It implies that Skipbin SAX is more likely to have robust and better classi-

fication accuracy. On ”Lighting7”, Skipword SAX stays at the best error rate at the very

beginning but follows by a sharp slope where the classification accuracy rapidly decreases.

Through this sharp rising in error rate, the curve leaps to the stable state where the repre-

sentations show significantly worse classification performance. This means that on some
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Table 3.4. ERROR RATE PREDICTING PATIENT OUTCOMES USING VITAL SIGNS
WITH DIFFERENT SAX APPROACHES

ECG PPG

Standard SAX 0.2353 0.2059
Skipbin SAX 0.2059 0.1765

Skipword SAX 0.2353 0.1765
Skipwindow SAX 0.1765 0.2353

dataset, Skipword achieves good classification performance but has large variance and more

significant risk of overfitting. Skipwindow SAX always achieve medium performance but

with good robustness because the sloping region for both datasets are smooth.

The next experiment explores the utility of time warping SAX in predicting if the

patient needs a blood transfusion based on their vital sign data. We use a 1NN classifier

and report the best LOOCV error rate in Table. 3.4.

On the ECG dataset, Skipword is equivalent to standard SAX while Skipbin and Skip-

window SAX outperforms standard SAX. On PPG data, Skipwindow approach is worse

than standard SAX, but the other two approaches both overtake standard SAX with 82.35%

classification accuracy. These results on real world physiological data support our anal-

ysis that Skipbin and Skipword SAX are more likely to have better classification perfor-

mance than standard SAX as they capture the temporal correlation and take advantage of

the shift-invariance of BoP. Because the Skipwindow approach is a natural extension based

on standard SAX, its performance might outperform its prototype if we can find the opti-

mal parameters by mimicking SAX. Time warping SAX has one more parameter (τ or t)

which requires more effort to tune the parameters. However, our approaches and results

make a strong suggestion to consider the linear or even non-linear temporal correlations

when building SAX words.
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3.3 Pooling SAX-BoP Approaches with Boosting to Classify Multivariate Time Se-

ries

3.3.1 Background and Motivation

This section is motivated by the real-world problems in healthcare. Non-invasive,

continuous, high resolution vital signs data, such as Electrocardiography (ECG) and Pho-

toplethysmograph (PPG), are commonly used in hospital settings for better monitoring of

patient outcomes to optimize early care. Such mechanism can help doctors to judge patient

status more accurately and quickly, thus to get thorough preparation for future treatments

(Kononenko 2001). The work in this section is strongly motivated by the real world prob-

lem to predict the potential needs of the patient for pRBC (packed Red Blood Cell) in the

next few hours from very high resolution vital signs data (ECG and PPG).

We formulate this task as a regular multivariate time series classification problem.

Because our data is massive and noisy, the SAX approach tends to be our first choice as

the representation for classification. However, multivariate time series data are not only

characterized by individual attributes, but also by the relationships between the attributes

(Bankó & Abonyi 2012). Such information is not captured by the similarity between the

individual sequences (Weng & Shen 2008). To deal with the classification problem on

multivariate time series, several similarity measurements including Edit distance with Real

Penalty (ERP) and Time Warping Edit Distance (TWED) are summarized and tested on

several benchmark datasets (Lin J 2012). Recently, a new symbolic representation for

multivariate time series classification (SMTS) is proposed. SMTS builds a tree learner with

two ensembles to learn the segmentations and a high-dimensional codebook (Baydogan &

Runger 2014).

While the above methods provide new perspectives to handle the issue of multivariate

data, some of the them are time consuming (e.g. SMTS) or do not handle the curse of
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dimensionality (distance on raw data). Can we design such a method to handle the specific

type of multivariate physiological time series data? The answer is yes. We note that strong

correlation lies among multivariate time series, especially among the synchronous physio-

logical data. Yu et al. made progress in automatically estimating the reliability of reference

heart rates (HRr) derived from ECG and PPG waveforms recorded by monitors (Yu et al.

2006). Lu et al. compared 5-minute recordings to demonstrate a very high correlation level

in the temporal and frequency domains with the nonlinear dynamic analyses between HRV

measures derived from PPG and ECG (Lu et al. 2009). They confirmed where Heart Rate

Variability (HRV) measures can be accurately derived in healthy subjects. PPG could also

provide accurate interpulse intervals as a practical alternative to ECG for HRV analysis.

Such strong correlations will greatly simplify the feature fusion procedure for us. Some

work has been done to visualize the correlation among multivariate physiological time se-

ries data (Ordonez, Oates, & Desjardins 2012).

Another work that inspired our approache is the special pooling structure in convolu-

tional neural networks - one of the most successful deep learning architectures (LeCun et

al. 1989). In this work, we address the classification problem on synchronous high reso-

lution vital signs data based on the new Pooling SAX with BoP representations (Pooling

SAX-BoP) and Boosting algorithms (Freund & Schapire 1995).

3.3.2 Pooling SAX-BoP Approaches

In brief, we propose a post-processing stage to pool the significant SAX word of

each variable with different weighting schemes that is analogous to multiple pooling struc-

tures for feature extraction in Convolutional Neural Networks (CNNs). Instead of weights

trained by the label, we apply the non-parametric weights to determine the information

density of each variable and pool out the significant word at each time. Finally, we use the

pooled-out sequence as single outputs of the multivariate word sequence to build the BoP



30

representations. We call such feature extraction and fusion methods the Pooling SAX-BoP

approach.

Definition. Let X t
k denotes a subsequence/bin of time series in channel k at time t. Oper-

ator G denotes the process of calculating PAA values in each bin, F is the function to map

PAA values to the corresponding SAX word with respect to the standard normal distribution

N (0, 1). Wk is the nonparametric weights, S is the pooling output.

Given a subsequence/bin in a sliding window of multiple time series (MTS)X t
1 ,X t

2 , · · · ,X t
k ,

the pooling functions of four approaches are given below.

• Max Pooling

KMax = arg max
k
Wk · F(G(X t

k))

S = F(G(X t
KMax

))(3.4)

Considering the toy example, we extract the SAX word, [a] and [c] from a bin in the

bivariate time series. Given W1 = 0.8, W2 = 0.2. Since 0.8 × [a] = 0.8 × 1 >

0.2× 3 = 0.2 × [c], so the S = [a].

• Min Pooling

KMin = arg min
k
Wk · F(G(X t

k))

S = F(G(X t
KMin

))(3.5)

Considering the same toy example above with the SAX word [a] and [c]. Given

W1 = 0.8,W2 = 0.2, the S = [c].

• Max-Min Pooling

After extracting two significant SAX words (or, say their variable index KMin and
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KMax) from the pooling functions in Equations. (1) and (2),

S = [F(G(X t
KMax

)),F(G(X t
KMin

))](3.6)

Considering the same above example with the maximum pooling word [a] and the

minimum pooling word [c], then the S = [a, c].

• Max-Min-Mean Pooling (3M Pooling)

Given the significant SAX word indexKMin and KMax from the pooling functions in

Equations. (1) and (2), we consider the weighted average of the SAX words among

different channels as

(3.7)

SMean = d
K∑
k=1

Wk

Z
· F(G(X t

k))e

Z =
K∑
k=1

Wk

Then

S = [F(G(X t
KMax

)),SMean,F(G(X t
KMin

))](3.8)

Given two synchronous SAX words [a] and [c] with the weightsW1 = 0.8,W2 = 0.2,

from Equation (4), SMean = b, then S = [a, b, c]

The four pooling approaches above are actually analogous to the pooling architecture

in CNNs. Max pooling in CNNs attempts to extract the significant weight vectors with

respect to the labels to achieve translation invariance. For multivariate time series, we sup-

pose to pool out the most significant channels with more information density. Max/Min

Pooling also provide us the translation invariance cross multiple channels at the same
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temporal interval. Max-Min pooling and 3M pooling actually act much like multiple K-

pooling. The motivation stems from the significance of the extreme values in time series.

3M pooling combines the average pooling with multiple K-pooling. In 3M pooling, we

observe how the weighted average value regulates the behavior of the BoP representations

together with max and min values.

The weight schemeWk is a series of non-parametric weights. They decide the signifi-

cance level of each SAX word in different channels at the same temporal interval. We have

multiple choices to define Wk. Entropy concerns more about the information density of

each channel, average KL-divergence measures the difference between the object variable

and other variables. Permutation Entropy (Bandt & Pompe 2002) evaluates the complexity

of a given time series. All these measurements are nonparametric but have different com-

putational complexity and focus on different aspects. In this proposal, we mainly explore

the physiological time series data, where, strong correlations are always observed among

different channels/variables. We care more about the information density in synchronous

variables as they tend to have more significant regulations in synchronous data. Our weight

scheme is defined as rescaled variance:

Wk =

∑Lk
t=1(X t

k − X̄k)2

L
(3.9)

In the above equation, X t
k is rescaled into the interval [0, 1]. Such rescaled variance

actually evaluates the information quantity regardless of the magnitude in each channel.

This weight scheme regulates the pooling behavior to extract the significant features while

preferring the channels with more information density.

After pooling out the single sequence of SAX word from the multivariate time series,

we build the Bag-of-Patterns representation to classify the multivariate time series with a

1NN classifier.
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3.3.3 Experiments on Multivariate Time Series

Table 3.5. CV error rates on two standard dataset
ECG wafer

Pooling SAX Max 0.115 0.0293
Pooling SAX Min 0.115 0.0168

Pooling SAX Max-Min 0.115 0.0242
Pooling SAX 3M 0.115 0.0242

SMTS 0.134 0.01
Euclidean 0.1778 0.0833

DTW(full) 0.1889 0.0909
DTW(window) 0.1722 0.0656

EDR 0.2 0.3131
ERP 0.1944 0.0556

LCSS 0.1278 0.1363
LCSS Relaxed 0.1278 0.1091

TWED 0.1278 0.0318

Lin et al. compared multiple distance measurements for classification on multivari-

ate time series and use 10 fold cross-validation (CV) to evaluate the performance (Lin J

2012). They chose four multivariate time series datasets. Two of them are too short to

use SAX approaches (the average length of ”AUSLAN” is 57 and the lengths of ”Japanese

Vowels” range from 7 to 29). We use the other two datasets and compare the CV error rate

with other approaches (including the current state-of-the-art approach SMTS (Baydogan

& Runger 2014)) in Table 3.5. Baydogan et al. split these two dataset into training and

testing sets. They reported the performance on the training-testing data of their SMTS and

MTSBF methods. We also train our approach with CV on the training set and compare

the performance on the test set (Table 3.6). Our methods are proved to be quite competi-

tive with the SMTS approach while our approaches are simpler (average running time is 3

hours) without any ensemble framework. However, SMTS needs two ensembles to learn a

tree-based codebook. Their average running time is reported to be 18 hours.
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In the next experiment, we test our approach on the bivariate high resolution vital

signs data. The clinical data is collected in the University of Maryland Medical School.

All the data is anonymous in order to protect the privacy. The ECG and PPG data of 556

patients were recorded for 68 to 128 minutes with 240 Hz sampling rate. Default values

(e.g. -31556 when there is no input) and missing values are allowed. The data is quite

massive with more than 1.7 million data points. The label indicates whether a patient needs

blood transfusion of pRBC or not in the next 6 hours. The data is highly skewed with only

17 positive samples.

Considering the vital signs data is highly periodical, we preprocess the data second by

second. Among 7680 seconds, we get rid of any interval with default or missing values.

This may lead to information loss because some seconds only contain few missing number

or default values. However, inconsistency caused by missing and default values may be a

larger hazard due to the noise and false information. Based on the fact that the normalized

time series has approximate Gaussian distribution (Lin et al. 2003), we applied a variance

filter to further regulate the outliers. According to the 3-Sigma rule (Pukelsheim 1994), if

a value is more than three standard deviations away from the mean, the probability of that

point incurring is naturally lower than 0.27%. Thus, we truncate these outliers at the lower

and upper bounds. What we need is the overall trend encoded in the time series, the last

step of preprocessing is calculating means in each second to reduce the volume and keep

Table 3.6. Test error rates on two standard dataset
ECG wafer

SMTS 0.182 0.035
MTSBF 0.165 0.015

Pooling SAX Max 0.16 0.02
Pooling SAX Min 0.18 0.033

Pooling SAX Max-Min 0.20 0.031
Pooling SAX 3M 0.18 0.039
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the overall trend like the PAA strategy.

To guarantee the results of our dataset are not biased, we build 100 new balanced

datasets using bootstraping (Manly 2006) by keeping all the 17 positive samples fixed and

randomly choosing 17 negative samples with replacement. To compare the performance of

the Pooling SAX-BoP approaches on this clinical task, we also test the standard SAX-BoP

approach on each single variable of the vital signs data and report the statistics of the best

error rate, precision and recall with Leave-One-Out cross validation (LOOCV) on the 100

bootstrap dataset (Table 3.7).

Table 3.7. The LOOCV statistics of the best performance for standard SAX-BoP and
multivariate Pooling SAX-BoP on 100 bootstrap dataset

Error Rate Precision Recall

PPG 0.192± (0.037) 0.813± (0.043) 0.808± (0.037)
ECG 0.256± (0.038) 0.748± (0.037) 0.744± (0.038)

MAX 0.169± (0.017) 0.831± (0.017) 0.831± (0.02)
MIN 0.196± (0.049) 0.807± (0.048) 0.804± (0.047)

MAX-MIN 0.188± (0.048) 0.813± (0.047) 0.811± (0.046)
3M 0.181± (0.040) 0.824± (0.040) 0.818± (0.034)

Figure 3.7 shows the ranked curve of classification error rate, precision and recall on

four pooling SAX-BoP approaches. In our experiments, except for the Max Pooling, all

other approaches have the equivalent best error rate (0.117) among 100 bootstrap datasets.

Although Max Pooling cannot reach to the same performance as the others, it is more sta-

ble with slight oscillation in the performance curve. It also demonstrates better average

statistics with small standard deviation. Our experiments on the clinical physiological data

imply that Pooling SAX-BoP approaches improve the expressive power of the BoP rep-

resentations and enhance the classification performance. They not only demonstrate the

competitive state-of-the-art performance on standard datasets but also work well to solve

real world problems.
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FIG. 3.7. ranked curve of classification error rate, precision and recall on four pooling
SAX-BoP approaches. X axis represents the index of ranked bootstrap samplings and Y
axis is the error rate.

3.3.4 Ensemble Learning on BoP Representations Using Boosting Algorithm

SAX reduces the volume but also drops details of the raw data. The Pooling SAX

methods attempt to extract the significant SAX words while trying to preserve the core

information. This means SAX based approaches run the risk of information loss where the

key structures in specific time series might be discarded, thus leading to the samples being

misclassified. Some work has been proposed to explore ways of exploiting representational

diversity for time series classification via ensembles of the representations (Oates et al.

2012b). We randomly select a balanced dataset to test majority voting.

In Figure. 3.8 (a), we observe the effect of information loss in the voting results. As

the number of voting agents increases from 10 to 70, there is no change in LOOCV error

rates for Max Pooilng SAX. The enhancement of performance on other pooling structures

is also not so clear. That is, information loss leads to the failure to interpret key features

among the top Pooling SAX-BoP representations.

To solve the problem of misclassification caused by the feature missing in Pooling

SAX-BoP approaches, we apply a Boosting algorithm to build a non-linear classifier (Fre-

und, Schapire, & others 1996). Boosting adaptively changes the sample weights according

to previous classification results to focus on the toughest samples. The missing feature

dimension caused by information loss is hit by the larger weight during the iterative pro-
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FIG. 3.8. LOOCV Error Rate of a) majority voting (left) and b) Boosting (right) with
Pooling SAX-BoP approaches on vital signs data.

cess. Instead of increasing the dimensionality of the feature space in kernel methods, we

use Boosting to tune the linear classification hyperplane of several weak classifiers into a

nonlinear classification hyperplane by weighted summation. Despite missing dimensions,

the nonlinear hyperplane potentially classifies some tough samples in the linear situations.

We apply a slightly modified version of the Boosting algorithm for SAX-BoP repre-

sentations to classify the balanced vital signs dataset. The trick is to combine each SAX-

BoP pattern with a NN classifier as a weak learner in the Boosting algorithm. What Boost-

ing does for the 1NN classifier is to create an ensemble of models with locally modified

distance weighting (Athitsos & Sclaroff 2005). After about 10 turns of voting, the con-

verged performance is significantly enhanced (Figure 3.8 (b)).

Recall that we preprocessed high resolution vital signs data by averaging in each 1

second interval. If voting through the diversity of BoP representations enriches the infor-

mation and enhance the performance, multiple preprocessing frequency may also capture

different temporal information of the vital signs data, respectively. In the preprocessing

stage, we calculate the mean value in each 1 , 0.5 and 0.3 second interval and combine

the Pooling SAX-BoPs of these three preprocessing frequencies together into one large

dataset. Because better weak learners will be selected in each iteration from three resam-

pling frequency samples, different resampling rates will mix various temporal diversity into
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FIG. 3.9. LOOCV Error Rate of Boosting with Pooling SAX-BoP approaches on multiple
frequency vital signs data.

Boosting to further enhance the classification performance and accelerate the convergence

rate (Figure.3.9).

However, boosting runs the risking of overfitting. The direct application of VC theory

shows that boosting can work well if we provide simple weak classifiers which satisfy the

weak learning condition if run for enough but not too many rounds (Schapire 2013). We

update the error rate from the optimal SAX-BoP representation and 1NNs with the higher

accuracy than 50%. The convergence curve in Figure. 3.8 (b) shows that Boosting in our

case does not need many iterations (about 10 turns) to converge to its stable performance.

We applied the trained Boosting classifier on the multiple frequency balanced dataset to

classify the complete dataset with 556 samples. The Boosting classifier achieved a 4.856%

error rate, in which the test error rate among the positive samples is 11.76% (2 out of 17 is

misclassified). Meanwhile, predicting using the trained Boosting classifier is very fast and

convenient for real-time classification of physiological data in a second-by-second manner.



39

3.4 Conclusion

In this chapter, we extended SAX approach to more complex temporal dynamics and

multivariate data. Motivated by the internal correlation embedded in time series and in-

trinsic property of BoP representations, we proposed time warping SAX to integrate the

temporal correlation when building SAX words and BoP representations.Time warping

SAX approaches lead to more accurate predictions of patient outcomes based on high res-

olution vital signs data when the temporal pattern is more complex and primary among the

data. Pooling SAX-BoP with Boosting approach is proposed to solve classification prob-

lems on the multivariate vital signs time series. The experiments on two standard datasets

and the real world vital signs demonstrate the effectiveness and efficiency of pooling SAX-

BoP compared with the current state-of-the-art approaches. Instead of majority voting, the

Boosting algorithm is applied to significantly improve the performance.



Chapter 4

IMAGING AND MODELING TEMPORAL DATA

4.1 Introduction

Symbolic approximation based approach is simple and effective for modeling tempo-

ral data and classification. However, the performance is not so bleeding-edge compared

to a bunch of more advanced techniques. The possible reasons lay on several aspects.

First, its strong assumption of univariate Gaussian distribution cannot be satisfied in most

real datasets. Simple counting on bag-of-words lack the capability of learning more com-

plex dynamics in temporal data. Although the nearest neighbor classifier fits well with

SAX-BoP, it is very simple in some way. All above leads to the degradation on the repre-

sentational power of complicated non-linear temporal correlations among temporal data.

In this section, we will discuss a more general framework to model temporal data us-

ing the techniques from computer vision and deep neural networks. It enables a explicit

encoding of the static/dynamic temporal correlations with a much more powerful learn-

ing mechanism using deep learning framework for visual recognition tasks. Unsupervised

learning and pre-training tricks allow us to fully exploit the benefit of learning using un-

labeled data. We also extend this approach to the trajectory dataset to cover a larger range

of temporal datasets.

40
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4.2 Background

Inspired by recent successes of deep learning in computer vision, we consider the

problem of encoding temporal information spatially as images to allow machines to ”visu-

ally” recognize and classify temporal data, especially time series data.

Recognition tasks in speech and audio have been well studied. Researchers have

achieved success using combinations of Hidden Markov Models (HMMs) with acoustic

models based on Gaussian Mixture Models (GMMs) (Reynolds & Rose 1995; Leggetter

& Woodland 1995). An alternative approach is to use deep neural networks to produce

posterior probabilities over HMM states. Deep learning has become increasingly popular

since the introduction of effective ways to train multiple hidden layers (Hinton, Osindero,

& Teh 2006) and has been proposed as a replacement for GMMs to model acoustic data in

speech recognition tasks (Mohamed, Dahl, & Hinton 2012). These Deep Neural Network -

Hidden Markov Model hybrid systems (DNN-HMM) achieved remarkable performance in

a variety of speech recognition tasks (Hinton et al. 2012; Deng, Hinton, & Kingsbury 2013;

Deng et al. 2013). Such success stems from learning distributed representations via deeply

layered structure and unsupervised pretraining by stacking single layer Restricted Boltz-

mann Machines (RBM).

Another deep learning architecture used in computer vision is convolutional neural

networks (CNNs) (LeCun et al. 1998). CNNs exploit translational invariance within their

structures by extracting features through receptive fields (Hubel & Wiesel 1962) and learn

with weight sharing. CNNs are the state-of-the-art approach in various image recognition

and computer vision tasks (Lawrence et al. 1997; Krizhevsky, Sutskever, & Hinton 2012;

LeCun, Kavukcuoglu, & Farabet 2010). Since unsupervised pretraining has been shown

to improve performance (Erhan et al. 2010), sparse coding and Topographic Independent

Component Analysis (TICA) are integrated as unsupervised pretraining approaches to learn
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more diverse features with complex invariances (Kavukcuoglu et al. 2010; Ngiam et al.

2010).

CNNs were proposed for speech processing because of their invariance to shifts in

time and frequency (LeCun & Bengio 1995). Recently, CNNs have been shown to further

improve hybrid model performance by applying convolution and max-pooling in the fre-

quency domain on the TIMIT Acoustic-Phonetic Continuous Speech Corpus recognition

task (Abdel-Hamid et al. 2012). A heterogeneous pooling approach proved to be benefi-

cial for training acoustic invariance (Deng, Abdel-Hamid, & Yu 2013). Further exploration

with limited weight sharing and a weighted softmax pooling layer has been proposed to

optimize CNN structures for speech recognition tasks (Abdel-Hamid, Deng, & Yu 2013).

However, except for audio and speech data, relatively little work has explored fea-

ture learning in the context of typical time series analysis tasks with current deep learning

architectures. (Zheng et al. 2014) explores supervised feature learning with CNNs to clas-

sify multi-channel time series with two datasets. They extracted subsequences with sliding

windows and compared their results to Dynamic Time Warping (DTW) with a 1-Nearest-

Neighbor classifier (1NN-DTW). Our motivation is to explore a novel framework to encode

time series as images and thus to take advantage of the success of deep learning architec-

tures in computer vision to learn features and identify structure in time series. Unlike

speech recognition systems in which acoustic/speech data input is typically represented by

concatenating Mel-frequency cepstral coefficients (MFCCs) or perceptual linear predictive

coefficient (PLPs) (Hermansky 1990), typical time series data are not likely to benefit from

transformations applied to speech or acoustic data.

In this chapter, we propose two types of representations for explicitly encoding the

temporal patterns in time series as images. We test our approach on twelve time series

datasets produced from 2D shape, physiological surveillance, industry and other domains.

Two real spatial-temporal trajectory datasets are also considered for experiments to demon-
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strate the performance of our approach. We applied deep Convolutional Neural Networks

with a pretraining stage that exploits local orthogonality by Topographic ICA (Ngiam et

al. 2010) to “visually” inspect and classify time series. We report our classification perfor-

mance both on GAF and MTF separately, and GAF-MTF which resulted from combining

GAF and MTF representations into single image. By comparing our results with the cur-

rent best hand-crafted representation and classification methods on both time series and

trajectory data, we show that our approach in practice achieves competitive performance

with the state of the art with only cursory exploration of hyperparameters. In addition to

exploring the high level features learned by Tiled CNNs, we provide an in-depth analysis

in terms of the duality between time series and images. This helps us to more precisely

identify the reasons why our approaches work well.

4.3 Motivation

Learning the (long) temporal correlations that are often embedded in time series re-

mains a major challenge in time series analysis and modeling. Most real-world data has a

temporal component, whether it is measurements of natural (weather, sound) or man-made

(stock market, robotics) phenomena. Traditional approaches for modeling and represent-

ing time-series data fall into three categories. In time series learning problems, non-data

adaptive models, such as Discrete Fourier Transformation (DFT) (Agrawal, Faloutsos, &

Swami 1993), Discrete Wavelet Transformation (DWT) (Chan, Fu, & Yu 2003), and Dis-

crete Cosine Transformation (DCT) (Korn, Jagadish, & Faloutsos 1997), compute the trans-

formation with an algorithm that is invariant with respect to the data to capture the intrinsic

temporal correlation with the different basis functions. Meanwhile, researchers explored

in the model-based approaches to model time series, such as Auto-Regressive Moving Av-

erage models (ARMA) (Kalpakis, Gada, & Puttagunta 2001) and Hidden Markov Models
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(HMMs) (Panuccio, Bicego, & Murino 2002), in which the underlying data is assumed to

fit a specific type of model to explicitly function the temporal patterns. The estimated pa-

rameters can then be used as features for classification or regression. However, more com-

plex, high-dimensional, and noisy real-world time-series data are often difficult to model

because the dynamics are either too complex or unknown. Traditional methods, which

contain a small number of non-linear operations, might not have the capacity to accurately

model such complex systems.

If implicitly learning the complex temporal correlation is difficult, how about refor-

mulating the data to explicitly or even visually encode the temporal dependency, allowing

the algorithms to learn more easily? Actually, reformulating the features of time series

as visual clues has raised much attention in computer science and physics. The typical

examples in speech recognition tasks are that acoustic/speech data input is typically repre-

sented by MFCCs or PLPs to explicitly represent the temporal and frequency information.

Recently, researchers are trying to build different network structures from time series for

visual inspection or designing distance measures. Recurrence Networks were proposed to

analyze the structural properties of time series from complex systems (Donner et al. 2010;

2011). They build adjacency matrices from the predefined recurrence functions to interpret

the time series as complex networks. Silva et al. extended the recurrence plot paradigm

for time series classification using compression distance (Silva et al. 2013). Another way

to build a weighted adjacency matrix is extracting transition dynamics from the first or-

der Markov matrix (Campanharo et al. 2011). Although these maps demonstrate distinct

topological properties among different time series, it remains unclear how these topological

properties relate to the original time series since they have no exact inverse operations. One

of our contributions is to propose a set of off-line algorithm to encode the complex corre-

lations in time series into images for visual inspection and classification. The proposed

encoding functions have exact/approximate inverse maps, making such transformations



45

more interpretable.

4.4 Encoding Time Series to Images

We first introduce our two frameworks for encoding time series as images. The first

type of image is a Gramian Angular field (GAF), in which we represent time series in

a polar coordinate system instead of the typical Cartesian coordinates. In the Gramian

matrix, each element is actually the cosine of the sum/difference of angles. Inspired by

previous work on the duality between time series and complex networks (Campanharo et

al. 2011), the main idea of the second framework, the Markov Transition Field (MTF),

is to build the Markov matrix of quantile bins after discretization and encode the dynamic

transition probability in a quasi-Gramian matrix.

4.4.1 Gramian Angular Field

Given a time series X = {x1, x2, ..., xn} of n real-valued observations, we rescale X

so that all values fall in the interval [−1, 1]:

(4.1) x̃i =
(xi −max(X) + (xi −min(X))

max(X)−min(X)

Thus we can represent the rescaled time series X̃ in polar coordinates by encoding the

value as the angular cosine and time stamp as the radius with the equation below:

φ = arccos (x̃i),−1 ≤ x̃i ≤ 1, x̃i ∈ X̃

r = ti
N
, ti ∈ N

(4.2)

In the equation above, ti is the time stamp and N is a constant factor to regularize the

span of the polar coordinate system. the polar coordinate based representation is a interest-
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ing way to understand time series. As time increases, corresponding values warp among

different angular points on the spanning circles, like water rippling. The encoding map of

equation 4.2 has two important properties. First, it is bijective as cos(φ) is monotonic when

φ ∈ [0, π]. Given a time series, the proposed map produces one and only one result in the

polar coordinate system with a unique inverse function. Second, as opposed to Cartesian

coordinates, polar coordinates preserve absolute temporal relations. In Cartesian coordi-

nates, the area is defined by Si,j =
∫ x(j)
x(i) f(x(t))dx(t), we have Si,i+k = Sj,j+k if f(x(t))

has the same values on [i, i + k] and [j, j + k]. However, in polar coordinates, if the area

is defined as S ′i,j =
∫ φ(j)
φ(i)

r[φ(t)]2d(φ(t)) respectively, then S ′i,i+k 6= S ′j,j+k. That is, the

corresponding area from time stamp i to time stamp j is not only dependent on the time

interval |i− j|, but also determined by the absolute value of i and j. We will address more

details in our future work.

After transforming the rescaled time series into the polar coordinate system, we can

easily exploit the angular perspective by considering the trigonometric sum between each

point to identify the temporal correlation within different time intervals. The Gramian

Angular Summation Field (GASF) is defined as follows:

G =


cos(φ1 + φ1) · · · cos(φ1 + φn)

cos(φ2 + φ1) · · · cos(φ2 + φn)

... . . . ...

cos(φn + φ1) · · · cos(φn + φn)


(4.3)

= X̃ ′ · X̃ −
√
I − X̃2

′
·
√
I − X̃2(4.4)

I is the unit row vector [1, 1, ..., 1]. After transforming to the polar coordinate system,

we take time series at each time step as a 1-D metric space. By defining the inner product

< x, y >= x · y −
√

1− x2 ·
√

1− y2, G is a Gramian matrix:
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(4.5)


< x̃1, x̃1 > · · · < x̃1, x̃n >

< x̃2, x̃1 > · · · < x̃2, x̃n >

... . . . ...

< x̃n, x̃1 > · · · < x̃n, x̃n >


Whereas, if we define the inner product as < x, y >=

√
1− x2 ·y−x ·

√
1− y2, now

we have built another type of GAF image - Gramian Angular Difference Field (GADF).

The deal is, instead of summing up the angle at each 2D time positions, we calculate their

temporal difference. The GADF matrix is like:

G =


sin(φ1 − φ1) · · · sin(φ1 − φn)

sin(φ2 − φ1) · · · sin(φ2 − φn)

... . . . ...

sin(φn − φ1) · · · sin(φn − φn)


(4.6)

=
√
I − X̃2

′
· X̃ − X̃ ′ ·

√
I − X̃2(4.7)

The GAF has several advantages. First, it provides a way to preserve the temporal

dependency, since time increases as the position moves from top-left to bottom-right. The

GAF contains temporal correlations because G(i,j||i−j|=k) represents the relative correla-

tion (temporal summation or difference) by superposition/differencing of directions with

respect to time interval k. The main diagonal Gi,i is the special case when k = 0, which

contains the original value/angular information. With the main diagonal, we will approx-

imately reconstruct the time series from the high level features learned by the deep neural

network. However, the GAF is large because the size of the Gramian matrix is n× n when
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Time Series 𝑋

Gramian Angular Field

Polar Coordinate

FIG. 4.1. Illustration of the proposed encoding map of Gramian Angular Field. X is a
sequence of typical time series in dataset ’SwedishLeaf’. After X is rescaled by eq. (4.1)
and smoothed by PAA optionally, we transform it into polar coordinate system by eq. (4.2)
and finally calculate its GASF image with eq. (4.4). In this example, we build GASF
without PAA smoothing, so the GAF has a high resolution of 128× 128.

the length of the raw time series is n. To reduce the size of the GAF, we apply Piece-

wise Aggregation Approximation (Keogh & Pazzani 2000) to smooth the time series while

keeping trends. The full procedure for generating the GAF is illustrated in Figure 4.1.

4.4.2 Markov Transition Field

We propose another framework that is similar to (Campanharo et al. 2011) for en-

coding dynamical transition statistics, but we extend that idea by representing the Markov

transition probabilities sequentially to preserve information in the time domain.

Given a time series X , we identify its Q quantile bins and assign each xi to the corre-

sponding bins qj (j ∈ [1, Q]). Thus we construct a Q×Q weighted adjacency matrix W by

counting transitions among quantile bins in the manner of a first-order Markov chain along
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FIG. 4.2. Examples of GAF images on the ’Coffee’, ’Gun-Point’, ’Adiac’ and ’50Words’
datasets.

the time axis. wi,j is given by the frequency with which a point in the quantile qj is followed

by a point in the quantile qi. After normalization by
∑

j wij = 1, W is the Markov transi-

tion matrix. It is insensitive to the distribution ofX and temporal dependency on time steps

ti. However, getting rid of the temporal dependency results in too much information loss

in matrix W . To overcome this drawback, we define the Markov Transition Field (MTF)

as follows:

(4.8) M =


wij|x1∈qi,x1∈qj · · · wij|x1∈qi,xn∈qj

wij|x2∈qi,x1∈qj · · · wij|x2∈qi,xn∈qj
... . . . ...

wij|xn∈qi,x1∈qj · · · wij|xn∈qi,xn∈qj


We build a Q×Q Markov transition matrix (say, W ) by dividing the data (magnitude)

into Q quantile bins. The quantile bins that contain the data at time stamp i and j (temporal

axis) are qi and qj (q ∈ [1, Q]). Mij in MTF denotes the transition probability of qi → qj .

That is, we spread out matrix W which contains the transition probability on magnitude
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axis into the MTF matrix by considering the temporal positions.

By assigning the probability from the quantile at time step i to the quantile at time step

j at each pixel Mij , the MTF M actually encodes the multi-span transition probabilities of

the time series. Mi,j||i−j|=k denotes the transition probability between the points with time

interval k. For example, Mij|j−i=1 illustrates the transition process along the time axis

with a skip step. The main diagonal Mii, which is a special case when k = 0 captures

the probability from each quantile to itself (the self-transition probability) at time step i.

To make the image size manageable and computation more efficient, we reduce the MTF

size by averaging the pixels in each non-overlapping m×m patch with the blurring kernel

{ 1
m2}m×m. That is, we aggregate the transition probabilities in each subsequence of length

m together. Figure 4.3 shows the procedure to encode time series to MTF.
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FIG. 4.3. Illustration of the proposed encoding map of Markov Transition Field. X is a
sequence of typical time series in dataset ’ECG’. X is firstly discretized into Q quantile
bins. Then we calculate its Markov Transition Matrix W and finally build its MTF with
eq. (4.8). In addition, we reduce the image size from 96× 96 to 48× 48 by averaging the
pixels in each non-overlapping 2× 2 patch.
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More full MTF images are shown in Figure 4.4.

FIG. 4.4. Example of full MTF on 4 dataset (without blurring) with 16 quantile bins.

4.5 Classifying Time Series Using Deep Learning Architectures

In this section, we will explore the classification performance on time series images

through using different deep learning (DL) architectures which include Convolutional Neu-

ral Networks (CNN), Tiled Convolutional Neural Networks (TCNN), Stacked Autoen-

coders (SAE) and Deep Belief Nets (DBN). It is also interesting to compare the perfor-

mance and learned features of these DL methods on our non-natural images.

4.5.1 Tiled Convolutional Neural Networks

Tiled Convolutional Neural Networks (Ngiam et al. 2010) are a variation of Convo-

lutional Neural Networks. They use tiles and multiple feature maps to learn invariant fea-

tures. Tiles are parameterized by a tile size K to control the distance over which weights
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are shared. By producing multiple feature maps, Tiled CNNs learn overcomplete represen-

tations through unsupervised pretraining with Topographic ICA (TICA).

A typical TICA network is actually a double-stage optimization procedure with square

and square root nonlinearities in each stage, respectively. In the first stage, the weight

matrixW is learned while the matrix V is hard-coded to represent the topographic structure

of units. More precisely, given a sequence of inputs {xh}, the activation of each unit in the

second stage is fi(x(h);W,V ) =
√∑p

k=1 Vik(
∑q

j=1Wkjx
(h)
j )2. TICA learns the weight

matrix W in the second stage by solving:

(4.9)
minimize

W

n∑
h=1

p∑
i=1

fi(x
(h);W,V )

subject to WW T = I

W ∈ Rp×q and V ∈ Rp×p where p is the number of hidden units in a layer and q is the

size of the input. V is a logical matrix (Vij = 1 or 0) that encodes the topographic structure

of the hidden units by a contiguous 3 × 3 block. The orthogonality constraint WW T = I

provides diversity among learned features.

The pretraining algorithm (Algorithm. 1) is based on gradient descent on the TICA

objective function in Equation. 4.9. The inner loop is a simple implementation of back-

tracking linesearch. The orthogonalize localRF (W new) function only orthogonalizes

the weights that have completely overlapping receptive fields. Weight-tying is applied by

averaging each set of tied weights. The algorithm is trained by batch projected gradient

descent. Other unsupervised feature learning algorithms such as RBMs and autoencoders

(Bengio et al. 2007) require more parameter tuning, especially during optimization. How-

ever, pretraining with TICA usually requires little tuning of optimization parameters, be-

cause the tractable objective function of TICA allows to monitor convergence easily.
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Algorithm 1 Unsupervised pretraining with TICA.

Require: {x(t)}Tt=1, v, s,W, V as input
Ensure: W as output

repeat
f old =

∑T
t=1

∑m
i=1

√∑m
k=1 Vik(

∑n
j=1Wkjx

(t)
j )2, g = fold

∂W
, fnew = +∞, α = 1

while fnew > f old do
W new = W − αg
W new = Localize(W new, s)
W new = tieWeights(W new, k)
W new = orthogonalizeLocalRF (W new)
W new = tieWeights(W new, k)

fnew =
∑T

t=1

∑m
i=1

√∑m
k=1 Vik(

∑n
j=1Wkjx

(t)
j )2

α = 0.5α
end while
W = W new

until convergence

Neither GAF nor MTF images are natural images; they have no natural concepts such

as “edges” and “angles”. Thus, we propose to exploit the benefits of unsupervised pretrain-

ing with TICA to learn many diverse features with local orthogonality. In (Ngiam et al.

2010), the authors empirically demonstrate that tiled CNNs perform well with limited la-

beled data because the partial weight tying requires fewer parameters and reduces the need

for a large amount of labeled data. Our data from the UCR Time Series Repository (Keogh

et al. 2011) tends to have few instances (e.g., the “yoga” dataset has 300 labeled instance

in the training set and 3000 unlabeled instance in the test set), so tiled CNNs are suitable

for our learning task. Moreover, Tiled CNNs achieve good performance on large datasets

(such as NORB and CIFAR). W

Typically, tiled CNNs are trained with two hyperparameters, the tiling size k and the

number of feature maps l. In our experiments, we directly fixed the network structures

without tuning these hyperparameters in loops, since the configuration is proved to be the
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optimal in their work. Our experimental settings follow the default deep network struc-

tures and parameters in (Ngiam et al. 2010). Tiled CNNs with such configurations are

reported to achieve the best performance on the NORB image classification benchmark.

Although tuning the parameters will surely enhance performance, doing so may cloud our

understanding of the power of the representation. Another consideration is computational

efficiency. All of the experiments on the 12 datasets could be done in one day on a laptop

with an Intel i7-3630QM CPU and 8GB of memory (our experimental platform). Thus,

the results in this paper are a preliminary lower bound on the potential best performance.

Thoroughly exploring network structures and parameters will be addressed in future work.

The structure and parameters of the tiled CNN used in this paper are illustrated in Figure

4.5.

4.5.2 Experimental Settings and Data

We apply Tiled CNNs to classify time series using GASF, GADF and MTF represen-

tation on 20 datasets from UCR time series repository. More detailed statistics are summa-

rized in Table 4.1. The datasets are pre-split into training and testing sets for experimental

comparisons. For each dataset, the table gives its name, the number of classes, the number

of training and test instances, and the length of the individual time series.

We apply Tiled CNNs to classify time series using GAF and MTF representations

on 20 datasets from (Keogh et al. 2011) in different domains such as medicine, entomol-

ogy, engineering, astronomy, signal processing, and others. The datasets are pre-split into

training and testing sets to facilitate experimental comparisons. We compare the classifica-

tion error rate of our GASF-GADF-MTF approach with previously published results of 6

best approaches proposed recently: Fast-Shapelets(Rakthanmanon & Keogh 2013), a 1NN

classifier based on SAX with Bag-of-Patterns (SAX-BoP) (Lin, Khade, & Li 2012), a SAX

based Vector Space Model (SAX-VSM)(Senin & Malinchik 2013), a classifier based on the
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...

Feature maps 𝑙 = 6
Convolutional I TICA Pooling I

...

...

Convolutional II TICA Pooling II

...

Linear SVM

Receptive Field 8 × 8

Receptive Field 3 × 3

Untied weights 𝑘 = 2

Pooling Size 3 × 3

Pooling Size 3 × 3

FIG. 4.5. Structure of the tiled convolutional neural networks. We fix the size of receptive
fields to 8 × 8 in the first convolutional layer and 3 × 3 in the second convolutional layer.
Each TICA pooling layer pools over a block of 3×3 input units in the previous layer without
warping around the borders to optimize for sparsity of the pooling units. The number of
pooling units in each map is exactly the same as the number of input units. The last layer
is a linear SVM for classification. We construct this network by stacking two Tiled CNNs,
each with 6 maps (l = 6) and tiling size k = 1, 2, 3.

Recurrence Patterns Compression Distance (RPCD) (Silva et al. 2013), a tree-based sym-

bolic representation for multivariate time series (SMTS) (Baydogan & Runger 2014) and

a SVM classifier based on a bag-of-features representation (TSBF) (Baydogan, Runger, &

Tuv 2013).

In our experiments, the size of GAF image is regulated by the the number of PAA bins

SGAF . Given a time series X of size n, we divide the time series into SGAF adjacent, non-

overlapping windows along the time axis and extract the means of each bin. This enables us

to construct the smaller GAF matrix GSGAF×SGAF . MTF requires the time series to be dis-

cretized into Q quantile bins to calculate the Q×Q Markov transition matrix, from which
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Table 4.1. Statistics on 20 UCR datasets
classes train test length

50Words 50 450 455 270
Adiac 37 390 391 176
Beef 5 30 30 470
CBF 3 30 900 128

Coffee 2 28 28 286
ECG 2 100 100 96

Face(all) 14 560 1690 131
Face(four) 4 24 88 350

Fish 7 175 175 463
Gun-Point 2 50 150 150
Lighting-2 2 60 61 637
Lighting-7 7 70 73 319

OliveOil 4 30 30 570
OSUL. 6 200 242 427

SwedishL. 15 500 625 128
Synt.Cont. 6 300 300 60

Trace 4 100 100 275
TwoPat. 4 1000 4000 128

Wafer 2 1000 6174 152
Yoga 2 300 3000 426

we construct the raw MTF image Mn×n afterwards. Before classification, we shrink the

MTF image size to SMTF × SMTF by the blurring kernel { 1
m2}m×m where m = d n

SMTF
e.

The Tiled CNN is trained with image size {SGAF , SMTF} ∈ {16, 24, 32, 40, 48} and quan-

tile size Q ∈ {8, 16, 32, 64}. At the last layer of the Tiled CNN, we use a linear soft margin

SVM (Fan et al. 2008) and select C by 5-fold cross validation over {10−4, 10−3, . . . , 104}

on the training set.

For each input of image size SGAF or SMTF and quantile size Q, we pretrain the Tiled

CNN with the full unlabeled dataset (both training and test set) to learn the initial weights

W through TICA. Then we train the SVM at the last layer by selecting the penalty factor

C with cross validation. Finally, we classify the test set using the optimal hyperparame-
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Table 4.2. Summary of error rates for 3 classic baselines, 6 recently published best results
and our approach. The symbols /, ∗, † and • represent datasets generated from human
motions, figure shapes, synthetically predefined procedures and all remaining temporal
signals, respectively. For our approach, the numbers in brackets are the optimal PAA size
and quantile size.

Dataset Random- Fast- SAX- SAX- RPCD SMTS TSBF GASF-GADF-
Guess Shapelet BoP VSM MTF

50words • 0.98 N/A 0.466 N/A 0.2264 0.289 0.209 0.301 (16, 32)
Adiac ∗ 0.972 0.514 0.432 0.381 0.3836 0.248 0.245 0.373 (32, 48)
Beef • 0.8 0.447 0.433 0.33 0.3667 0.26 0.287 0.233 (64, 40)
CBF † 0.667 0.053 0.013 0.02 N/A 0.02 0.009 0.009 (32, 24)

Coffee • 0.5 0.068 0.036 0 0 0.029 0.004 0 (64, 48)
ECG • 0.5 0.227 0.15 0.14 0.14 0.159 0.145 0.09 (8, 32)

FaceAll ∗ 0.75 0.411 0.219 0.207 0.1905 0.191 0.234 0.237 (8, 48)
FaceFour ∗ 0.98 0.090 0.023 0 0.0568 0.165 0.051 0.068 (8, 16)

fish ∗ 0.857 0.197 0.074 0.017 0.1257 0.147 0.08 0.114 (8, 40)
Gun Point / 0.5 0.061 0.027 0.007 0 0.011 0.011 0.08 (32, 32)
Lighting2 • 0.5 0.295 0.164 0.196 0.2459 0.269 0.257 0.114 (16, 40)
Lighting7 • 0.857 0.403 0.466 0.301 0.3562 0.255 0.262 0.260 (16, 48)
OliveOil • 0.75 0.213 0.133 0.1 0.1667 0.177 0.09 0.2 (8, 48)

OSULeaf ∗ 0.833 0.359 0.256 0.107 0.3554 0.377 0.329 0.358 (16, 32)
SwedishLeaf ∗ 0.933 0.269 0.198 0.01 0.0976 0.08 0.075 0.065 (16, 48)

synthetic control † 0.8338 0.081 0.037 0.251 N/A 0.025 0.008 0.007 (64, 48)
Trace † 0.75 0.002 0 0 N/A 0 0.02 0 (64, 48)

Two Patterns † 0.75 0.113 0.129 0.004 N/A 0.003 0.001 0.091 (64, 32)
wafer • 0.5 0.004 0.003 0.0006 0.0034 0 0.004 0 (64, 16)
yoga ∗ 0.5 0.249 0.17 0.164 0.134 0.094 0.149 0.196 (8, 32)
#wins 0 0 1 5 3 4 4 9

ters {S,Q,C} with the lowest error rate on the training set. If two or more models tie,

we prefer the larger S and Q because larger S helps preserve more information through

the PAA procedure and larger Q encodes the dynamic transition statistics with more de-

tail. Our model selection approach provides generalization without being overly expensive

computationally.
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4.5.3 Results and Discussion

We use Tiled CNNs to classify the single GASF, GADF and MTF images as well as

the compound GASF-GADF-MTF images on 20 datasets. For the sake of space, we do

not show the full results on single-channel images. Generally, our approach is not prone to

overfitting by the relatively small difference between training and test set errors. One ex-

ception is the Olive Oil dataset with the MTF approach where the test error is significantly

higher.

In addition to the risk of potential overfitting, we found that MTF has generally higher

error rates than GAFs. This is most likely because of the uncertainty in the inverse map of

MTF. Note that the encoding function from −1/1 rescaled time series to GAFs and MTF

are both surjections. The map functions of GAFs and MTF will each produce only one

image with fixed S and Q for each given time series X . Because they are both surjective

mapping functions, the inverse image of both mapping functions is not fixed. However,

the mapping function of GAFs on 0/1 rescaled time series are bijective. As shown in a

later section, we can reconstruct the raw time series from the diagonal of GASF, but it

is very hard to even roughly recover the signal from MTF. Even for −1/1 rescaled data,

the GAFs have smaller uncertainty in the inverse image of their mapping function because

such randomness only comes from the ambiguity of cos(φ) when φ ∈ [0, 2π]. MTF, on

the other hand, has a much larger inverse image space, which results in large variations

when we try to recover the signal. Although MTF encodes the transition dynamics which

are important features of time series, such features alone seem not to be sufficient for

recognition/classification tasks.

Note that at each pixel, Gij denotes the superstition/difference of the directions at ti

and tj , Mij is the transition probability from the quantile at ti to the quantile at tj . GAF

encodes static information while MTF depicts information about dynamics. From this
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point of view, we consider them as three “orthogonal” channels, like different colors in the

RGB image space. Thus, we can combine GAFs and MTF images of the same size (i.e.

SGAFs = SMTF ) to construct a triple-channel image (GASF-GADF-MTF). It combines

both the static and dynamic statistics embedded in the raw time series, and we posit that it

will be able to enhance classification performance. In the experiments below, we pretrain

and tune the Tiled CNN on the compound GASF-GADF-MTF images. Then, we report

the classification error rate on test sets. In Table 4.2, the Tiled CNN classifiers on GASF-

GADF-MTF images achieved significantly competitive results with 9 other state-of-the-art

time series classification approaches.

4.6 Image Recovery on GASF for Time Series Imputation with Denoised Auto-

encoder

FIG. 4.6. Network structure of Auto-encoder.
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We use Denoised AutoEncoders (DAE) to learn a generative model of time seris on

GASF. DAE is a variation of a standard AutoEncoder (Figure 4.6). An Autoencoder neural

network is an unsupervised learning algorithm that applies backpropagation, setting the

target values to be equal to the inputs.

The Auto-encoder tries to learn a function hW,b(x) ≈ x. In other words, it is trying to

learn an approximation to the identity function, so as to output x̂ that is similar to x. The

identity function seems a particularly trivial function to be trying to learn; but by placing

constraints on the network, such as by limiting the number of hidden units, we can discover

interesting structure in the data. If the input were completely random say, each xi comes

from an IID Gaussian independent of the other features, then this compression task would

be very difficult. But if there is structure in the data, for example, if some of the input

features are correlated, then this algorithm will be able to discover these correlations (Ng

2011).

The idea behind Denoising Auto-encoders (DAE) is simple and similar to AE. In

order to force the hidden layer to discover more robust features and prevent it from simply

learning the identity, we train the Auto-encoder to reconstruct the input from a corrupted

version of it. The DAE is a stochastic version of the auto-encoder. Intuitively, a DAE

does two things: try to encode the input (preserve the information about the input), and

try to undo the effect of a corruption process stochastically applied to the input of the AE.

The latter can only be done by capturing the statistical dependencies between the inputs.

The DAE can be understood from different perspectives including the manifold learning

perspective, stochastic operator perspective, bottom-up information theoretic perspective

and top-down generative model perspective (Vincent et al. 2008). The stochastic corruption

process in this section randomly sets some of the inputs (as many as half of them) to zero

(salt-and-pepper noise). Hence the DAE is trying to predict the corrupted (i.e., missing)

values from the uncorrupted (i.e., non-missing) values, for randomly selected subsets of
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FIG. 4.7. Pipeline of time series imputation by image recovery. Raw GASF→ ”broken”
GASF → recovered GASF (top), Raw time series → corrupted time series with missing
value→ predicted time series (bottom) on dataset ”SwedishLeaf” (left) and ”ECG” (right).

missing patterns. Note how being able to predict any subset of variables from the rest

is a sufficient condition for completely capturing the joint distribution between a set of

variables.

As previously mentioned, the mapping functions from −1/1 rescaled time series to

GAFs are surjections. The uncertainty among the inverse images come from the ambiguity

of the cos(φ) when φ ∈ [0, 2π]. However the mapping functions of 0/1 rescaled time series

are bijections. The main diagonal of GASF, i.e. {Gii} = {cos(2φi)} allows us to precisely

reconstruct the original time series by

cos(φ) =

√
cos(2φ) + 1

2
φ ∈ [0,

π

2
](4.10)

Thus, we can predict missing values among time series through recovering the ”bro-

ken” GASF images. During training, we manually add ”salt-and-pepper” noise (i.e., ran-

domly set a number of points to 0) to the raw time series and transform the data to GASF

images. Then a single layer Denoised Auto-encoder (DA) is fully trained as a generative

model to reconstruct GASF images. Note that at the input layer, we do not add noise again

to the ”broken” GASF images. A Sigmoid function helps to learn the nonlinear features at
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the hidden layer. At the last layer we compute the Mean Square Error (MSE) between the

original and ”broken” GASF images as the loss function to evaluate fitting performance. To

train the models simple batch gradient descent is applied to back propagate the inference

loss. For testing, after we corrupt the time series and transform the noisy data to ”broken”

GASF, the trained DA helps recover the image, on which we extract the main diagonal to

reconstruct the recovered time series. To compare the imputation performance, we also test

standard DA with the raw time series data as input to recover the missing values (Figure.

4.7).

4.6.1 Experiment Setting

For the DA models we use batch gradient descent with a batch size of 20. Optimization

iterations run until the MSE changed less than a threshold of 10−3 for GASF and 10−5 for

raw time series. A single hidden layer has 500 hidden neurons with sigmoid functions.

We choose four dataset of different types from the UCR time series repository for the

imputation task: ”Gun Point” (human motion), ”CBF” (synthetic data), ”SwedishLeaf”

(figure shapes) and ”ECG” (other remaining temporal signals). To explore if the statistical

dependency learned by the DA can be generalized to unknown data, we use the above four

datasets and the ”Adiac” dataset together to train the DA to impute two totally unknown test

datasets, ”Two Patterns” and ”wafer” (We name these synthetic miscellaneous datasets ”7

Misc”). To add randomness to the input of DA, we randomly set 20% of the raw data among

a specific time series to be zero (salt-and-pepper noise). Our experiments for imputation are

implemented with Theano (Bastien et al. 2012). To control for the random initialization

of the parameters and the randomness induced by gradient descent, we repeated every

experiment 10 times and report the average MSE.
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Table 4.3. MSE of imputation on time series using raw data and GASF images.
Dataset Full MSE Interpolation MSE

Raw GASF Raw GASF
ECG 0.01001 0.01148 0.02301 0.01196
CBF 0.02009 0.03520 0.04116 0.03119

Gun Point 0.00693 0.00894 0.01069 0.00841
SwedishLeaf 0.00606 0.00889 0.01117 0.00981

7 Misc 0.06134 0.10130 0.10998 0.07077

4.6.2 Results and Discussion

In Table 4.3, ”Full MSE” means the MSE between the complete recovered and orig-

inal sequence and ”Imputation MSE” means the MSE of only the unknown points among

each time series. Interestingly, DA on the raw data perform well on the whole sequence,

generally, but there is a gap between the full MSE and imputation MSE. That is, DA on

raw time series can fit the known data much better than predicting the unknown data (like

overfitting). Predicting the missing value using GASF always achieves slightly higher full

MSE but the imputation MSE is reduced by 12.18%-48.02%. We can observe that the dif-

ference between the full MSE and imputation MSE is much smaller on GASF than on the

raw data. Interpolation with GASF has more stable performance than on the raw data.

Why does predicting missing values using GASF have more stable performance than

using raw time series? Actually, the transformation maps of GAFs are generally equivalent

to a kernel trick. By defining the inner product k(xi, xj), we achieve data augmentation

by increasing the dimensionality of the raw data. By preserving the temporal and spatial

information in GASF images, the DA utilizes both temporal and spatial dependencies by

considering the missing points as well as their relations to other data that has been explicitly

encoded in the GASF images. Because the entire sequence, instead of a short subsequence,

helps predict the missing value, the performance is more stable as the full MSE and impu-
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FIG. 4.8. (a) Original GASF and its six learned feature maps before the SVM layer in Tiled
CNNs (left). (b) Raw time series and its reconstructions from the main diagonal of six
feature maps on ’50Words’ dataset (right).

tation MSE are close.

4.7 Analysis on Features and Weights Learned by Tiled CNNs and DA

In contrast to the cases in which the CNNs is applied in natural image recognition

tasks, neither GAFs nor MTF have natural interpretations of visual concepts like “edges”

or “angles”. In this section we analyze the features and weights learned through Tiled

CNNs to explain why our approach works.

Figure 4.8 illustrates the reconstruction results from six feature maps learned through

the Tiled CNNs on GASF (by Eqn 4.10). The Tiled CNNs extracts the color patch, which

is essentially a moving average that enhances several receptive fields within the nonlinear

units by different trained weights. It is not a simple moving average but the synthetic inte-

gration by considering the 2D temporal dependencies among different time intervals, which

is a benefit from the Gramian matrix structure that helps preserve the temporal information.

By observing the orthogonal reconstruction from each layer of the feature maps, we can

clearly observe that the tiled CNNs can extract the multi-frequency dependencies through

the convolution and pooling architecture on the GAF and MTF images to preserve the

trend while addressing more details in different subphases. The high-leveled feature maps
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FIG. 4.9. All 500 filters learned by DA on the ”Gun Point” (left) and ”7 Misc” (right)
dataset.

learned by the Tiled CNN are equivalent to a multi-frequency approximator of the original

curve. Our experiments also demonstrates the learned weight matrix W with the constraint

WW T = I , which makes effective use of local orthogonality. The TICA pretraining pro-

vides the built-in advantage that the function w.r.t the parameter space is not likely to be

ill-conditioned as WW T = 1. The weight matrix W is quasi-orthogonal and approaching

0 without large magnitude. This implies that the condition number of W approaches 1 and

helps the system to be well-conditioned.

As for imputation, because the GASF images have no concept of ”angle” and ”edge”,

DA actually learned different prototypes of the GASF images (Table 4.9). We find that there

is significant noise in the filters on the ”7 Misc” dataset because the training set is relatively

small to better learn different filters. Actually, all the noisy filters with no patterns work

like one Gaussian noise filter.
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4.8 Experiments on Trajectory Data

We have demonstrated the effectiveness of GAF and MTF the benchmark time series

datasets as diverse as shape, physiological surveillance and industry from the UCR time

series repository. In this section we describe an application of our approaches to classify

spatial-temporal trajectory data. The trajectory data is complex because patterns of move-

ment are often driven by unperceived goals and constrained by an unknown environment.

To compare our results with other benchmark approaches including the seminal work

from (Lee et al. 2008), we run experiments on two benchmark datasets, the animal move-

ment dataset (Animal) and the hurricane track dataset (Hurricane) (Figure 4.10). Both

datasets have trajectories of unequal length. For the ”Animal” dataset, the x and y coordi-

nates are extracted from animal movements observed in June 1995. It is divided into three

classes by species: elk, deer, and cattle, as shown in Figure 15. The numbers of trajec-

tories (points) are 38 (7117), 30 (4333), and 34 (3540), respectively. In the ”Hurricane”

dataset, the latitude and longitude are extracted from Atlantic hurricanes for the years 1950

through 2006. The Saffir-Simpson scale classifies hurricanes into categories 1-5 by inten-

sity. A high category number indicates high intensity. Categories 2 and 3 are chosen for

two classes. The numbers of trajectories (points) are 61 (2459) and 72 (3126), respectively.

Both datasets are pre-split into two parts for training (80%) and testing (20%). Figure 4.10

shows the overview of the trajectory data. Table 4.4 provides the classes, training size,

testing size, minimum length and maximum length of the trajectory data.

Table 4.4. Summary statistics of two trajectory datasets.
Dataset Classes Training Testing Min Max

Size Size Length Length

Animal Tracking 3 80 18 10 291
Hurricane 2 112 21 11 108
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Gulf of Mexico

Red: Category 2  Blue: Category 3

Stronger hurricanes tend to 
go further than weaker ones

Red: Elk  Blue: Deer Black: Cattle

FIG. 4.10. Overview of the trajectory and the RB-TB features learnt in (a). Animal
tracking data (left) and (b). Hurricane data (right)

4.8.1 Hilbert Space Filling Curves

Spatial-temporal trajectory data is commonly multi-dimensional. We use Hilbert

Space Filling Curves (SFC) to transform the trajectory into time series while preserving

the spatial-temporal information.

Space filling has been studied by the mathematicians since the late 19th century when

the first graphical representation was proposed by David Hilbert in 1891 (Hilbert 1891).

Space filling curves provide a linear mapping from the multi-dimensional space to the 1-

dimensional space. This mapping can be thought of as dividing D-dimensional space into

D-dimensional hypercubes with a line passing through each hypercube. Recently, filling

curve based approaches have shown to be able to preserve locality between objects in the

multidimensional space in the linear space, and thus have been applied to different tasks

like clustering (Moon et al. 2001), high dimensional outlier detection (Angiulli & Pizzuti

2005), and trajectory query (Ding, Trajcevski, & Scheuermann 2008) and classification

(Gandhi & Oates 2015). Figure 4.11 (a) shows SFC examples of order {1,2,3,4,5,6}.

Basically, the SFC of order 1 divides the square into 4 area. For the Hilbert curve with

order 2, each sub-area of the curve with order 1 is further divided into 4 sub-areas. This
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FIG. 4.11. (a). Hilbert space filling curve of order {1,2,3,4,5,6} in 2-dimensional
space (left) (b). An example of the transformation from 2-dimensional trajectory to 1-
dimensional time series using HSCF of order 2 (right).

process goes on as the order of the SFC increases. It is clear that the number of sub-areas in

2 dimensional SFC is 4order. To convert 2-dimensional data points to 1-dimensional points,

each sub-area is integer numbered from 0 to 4order − 1 starting from the lower left corner

as 0 to the lower right corner. All other sub-areas are numbered in order of occurrence of

the corresponding vertex as shown in Figure 4.11 (b) when order = 2. It also shows the

example transformation process from a 2D trajectory to a sequence of scalars (time series).

The final time series generated after SFC transformation is T = [0, 3, 2, 2, 2, 7, 7, 8, 11, 13,

13, 2, 1, 1].

We map the trajectory points by the visiting order of the SFC embedded in the trajec-

tory manifold space to the index sequence by the recorded times. The produced time series

can be used for classification using our algorithm. This adds another hyperparameter called

the SFC order, which decides the granularity of the space filling curve.
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(a). GAF of ‘Animal’ (b). GAF of ‘Hurricane’ 

(d). MTF of ‘Hurricane’ (c). MTF of ‘Animal’ 

FIG. 4.12. Examples of GAF and MTF images generated from the time series on ’Animal’
and ’Hurricane’ datasets. The time series is produced using SFC from raw 2D trajectory.

4.8.2 Experiment Settings

The parameter settings are the same as the previous experiments on UCR datasets.

The optimal SFC order is selected together with other parameters through 5-fold cross

validation from {3,4,5,6,7,8,9,10}.

Note that both trajectory datasets have quite small sample size with varying length.

When the trajectory length (as well as the time series length produced by SFC) is smaller

than image size S, we uniformly duplicate each point in the time series in temporal order

to stretch the sequence to length S. If the difference between the length of a time series

and S is smaller than the original time series length, the interpolation strategy changes to

random duplication instead of following the temporal order.
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4.8.3 Results and Discussion

Both ’Animal’ and ’Hurricane’ datasets have been used in previous research (Lee et

al. 2008; Gandhi & Oates 2015) to achieve state-of-the-art classification accuracy. Traclass

give two algorithms, trajectory-based (TB-only) and region-based + trajectory-based (RB-

TB) approaches based on features used for classification on these datastes. They carefully

designed a hierarchy of features by partitioning trajectories and exploring two types of clus-

tering. In (Gandhi & Oates 2015), the author used SFC transformation to linearly map the

trajectory data to time series and classified the sequences based on symbolic discretization

with the multiple normal distribution assumption.

After transforming the 2D trajectory data to time series using SFC, we generate the

corresponding GAF and MTF images as shown in Figure 4.12. However, we found sig-

nificant overfitting with CNNs even using 5-fold cross validation. This is probably be-

cause both the sample size and the time series length of the trajectory datasets are too

small to avoid overfitting in neural networks. Previous work has discussed overfitting dur-

ing cross validation and proposed potential techniques to address this problem (Ng 1997;

Prechelt 1998). Here, we applied a simple and straight-forward hyperparameter selection

approach to reduce classifier variance. For a given set of hyperparameter {S,Q, SFCorder},

after cross validation with different C values of the linear SVM, we compute the mean and

standard deviation to get the 3σ lower bound over all C by

score3σ = mean(Accuracy)− 3× STD(Accuracy)(4.11)

By selecting the other hyperparameters {S,Q, SFC − order} with the best statistical

lower bound on the classifier performance over C, the optimal hyperparameters have lower

variance while preserving lower bias. Using this hyperparameter selection approach, the
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Table 4.5. Classification accuracy for TB-Only, RB-TB methods, multiple normal
distribution based symbolic distance (NDist) and our algorithm (%).

Dataset TB-Only RB-TB NDist GAF-MTF

Animal Tracking 50 83.3 83.3 72.2
Hurricane 65.4 73.1 52.3 71.42

classification results are reported in Table 4.5.

We perform better than the TB-Only method on both datasets and almost as good as

the RB-TB method on the ’Hurricane’ dataset. However, both RB-TB and NDist methods

outperform ours on the ’Animal’ dataset. As shown in Figure 4.10, both region and tra-

jectory based features are useful for classification. For the ’Hurricane’ dataset, direction

based features are more useful than region based features. Direction based features are

quite easy to capture using our approach as the GAF is actually calculating the pairwise di-

rection fields on each points in the trajectory data. For the ’Animal’ dataset, region is very

important as shown in Figure 4.10 (a). Elk, deer and cattle are almost separable just using

location as their regions are clearly located at the left, right top and right bottom, respec-

tively. When transforming the trajectory data into time series using SFC, two close regions

might be mapped to different sub-areas with different SFC indexes. When the indexes of

two close regions are also near, this can be handled by CNNs with its capability to cap-

ture the small shifting-invariance features. However, CNNs are not good at discriminating

similar images with large shifting from each other. Thus, when the region information is

preserved by the manner of shifting the specific patterns largely in the time series produced

by SFC, CNNs might have difficulty capturing the region information.

Although our approach does not overtake other benchmark methods on both trajectory

datasets, we provide a more general framework to encode the spatial-temporal patterns

for classification tasks. Instead of complicated hand-tuned features, our approach can be
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applied to a variety of time series and trajectory data. When the region of the trajectory is

not significantly important or the direction feature dominates, our general methods work

quite well. On large datasets where the volume of time series/trajectory data is big, our

deep neural network based approach will greatly benefit from the large sample size in both

feature learning and classification tasks.

4.9 Conclusion

This chapter described an off-line approach to spatially encode the temporal patterns

for classification using convolutional neural networks. We created a pipeline for convert-

ing trajectory and time series data into novel representations, GAF and MTF images, and

extracted high-level features from these using CNNs. The features were subsequently used

for classification. We demonstrated that our approach yields competitive results when com-

pared to state-of-the-art methods by searching a relatively small parameter space. We found

that GAF-MTF multi-channel images are scalable to larger numbers of quasi-orthogonal

features that yield more comprehensive images. Our analysis of high-level features learned

from CNNs suggested Tiled CNNs work like multi-frequency moving averages that benefit

from the 2D temporal dependency that is preserved by the Gramian matrix.



Chapter 5

SIGNIFICANT STATISTICS — ADAPTIVE

NORMALIZED RISK-AVERTING TRAINING FOR

NEURAL NETWORKS

5.1 Introduction

In last section, we investigated modeling temporal data through imaging its static

and dynamic temporal correlations to learn the feature sets adaptively with the deep

learning approaches. The significant non-linearity in DNNs make the training hard with

a high chance to get stuck with local optima and plateaus. Meanwhile, the gradient

vanishing/explosion problem exist when not using the Rectified Linear Unit, which can

be alleviated by unsupervised pretraining techniques(Erhan et al. 2010). Some re-

cent works point out that in high dimensional space (e.g. deep neural nets), the con-

vexity is not needed because the local optima is good enough (Dauphin et al. 2014;

Choromanska et al. 2014). However, all above techniques and works do not really de-

mystify the non-convex optimization problem in DNNs and Recurrent Neural Networks

(RNNs).

In this and next section, we will introduce a exponential-form based error estima-

tor, whose optimality and robustness can be adjusted and achieved by tuning a index λ.

73
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This new estimator provides another perspective to debunk the non-convexity in DNNs and

RNNs.

5.2 Background

Deep neural networks (DNNs) are attracting attention largely due to their impressive

empirical performance in image and speech recognition tasks. (Krizhevsky, Sutskever, &

Hinton 2012; Hinton et al. 2012; Hannun et al. 2014). While Convolutional Networks

(ConvNets) are the de facto state-of-the-art for visual recognition, Deep Belief Networks

(DBN), Deep Boltzmann Machines (DBM) and Stacked Auto-encoders (SA) provide in-

sights as generative models to learn the full generating distribution of input data. (Vincent

et al. 2010; Hinton, Osindero, & Teh 2006; Salakhutdinov & Hinton 2009). Recently, re-

searchers have investigated various techniques to improve the learning capacity of DNNs.

Unsupervised pretraining using Restrict Boltzmann Machines (RBM), Denoised Autoen-

coders (DA) or Topographic ICA (TICA) has proved to be helpful for training DNNs with

better weight initialization (Ngiam et al. 2010; Coates & Ng 2011). Specific types of deep

network structures such as Network in Network (NIN) (Min Lin 2014) and Deeply Super-

vised Nets (DSN) (Lee et al. 2014) enhance the local and global modeling to enhance the

feature learned by hidden layers. Rectified Linear Unit (ReLU) and variants are proposed

as the optimal activation functions to better interpret hidden features (Nair & Hinton 2010;

He et al. 2015). Various regularization techniques such as dropout (Srivastava et al. 2014)

with Maxout (Goodfellow et al. 2013b) are proposed to regulate the DNNs to be less prone

to overfitting.

Neural network models always lead to a non-convex optimization problem. The op-

timization algorithm impacts the quality of the local minimum because it is hard to find a

global minimum or estimate how far a particular local minimum is from the best possible
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solution. The most standard approach to optimize DNNs is Stochastic Gradient Descent

(SGD). There are many variants of SGD and researchers and practitioners typically choose

a particular variant empirically. While nearly all DNNs optimization algorithms in popular

use are gradient-based, recent work has shown that more advanced second-order methods

such as L-BFGS and Saddle-Free Newton (SFN) approaches can yield better results for

DNN tasks (Ngiam et al. 2011; Dauphin et al. 2014). Second order derivatives can be

addressed by hardware extensions (GPUs or clusters) or batch methods when dealing with

massive data, SGD still provides a robust default choice for optimizing DNNs.

Instead of modifying the network structure or optimization techniques for DNNs, we

focused on designing a new error function to convexify the error space. The convexification

approach has been studied in the optimization community for decades, but has never been

seriously applied within deep learning. Two well-known methods are the graduated non-

convexity method (Blake & Zisserman 1987) and the LiuFloudas convexification method

(Liu & Floudas 1993). LiuFloudas convexification can be applied to optimization prob-

lems where the error criterion is twice continuously differentiable, although determining

the weight α of the added quadratic function for convexifying the error criterion involves

significant computation when dealing with massive data and parameters.

Following the same name employed for deriving robust controllers and filters (Speyer,

Deyst, & Jacobson 1974), a new type of Risk-Averting Error (RAE) is proposed theo-

retically for solving non-convex optimization problems (Lo 2010). Empirically, with the

proposal of Normalized Risk-Averting Error (NRAE) and the Gradual Deconvexification

method (GDC), this error criterion is proved to be competitive with the standard mean

square error (MSE) in single layer and two-layer neural networks for solving data fitting

and classification problems (Gui, Lo, & Peng 2014; Lo, Gui, & Peng 2012). Our work

will consistently follow the paradigm of Lo’s work. Interestingly, SimNets, a generaliza-

tion of ConvNets that was recently proposed in (Cohen & Shashua 2014), uses the MEX
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operator (whose name stands for Maximum-minimum-Expectation Collapsing Smooth) as

an activation function to generalize ReLU activation and max pooling. We notice that the

MEX operator with L2 units has exactly the same mathematical form with NRAE. How-

ever, NRAE is still hard to optimize in practice due to plateaus and the unstable error

space caused by the fixed large convexity index. GDC alleviates these problems but its

performance is limited and suffers from the slow learning speed. Instead of fixing the con-

vexity index λ, Adaptive Normalized Risk-Averting Training (ANRAT) optimizes NRAE

by tuning λ adaptively using gradient descent. We give theoretical proofs of its optimal

properties against the standard Lp-norm error. Our experiments on MNIST and CIFAR-10

with different deep/shallow neural nets demonstrate the effectiveness empirically. Being an

optimization algorithm, our approach are not supposed to deal specifically with the prob-

lem of over-fitting, however we show that this can be handled by the usual methods of

regularization such as weight decay or dropout.

In this section, we generalize RAE and NRAE to LP norm and provide theoretical

proofs on the convexity properties. We prove that NRAE is at least as good as MSE in

solving Non-convex optimization problems when |λ| ≥ 1. We develop an Adaptive Nor-

malized Risk-Averting Training approach (ANRAT) to automatically tune the sensitive in-

dex λ through standard gradient descent. By analyzing the derivatives on λ, we show that

our approach is analogous to Deconvexification by GDC while possessing more flexibility

and fast convergence speed. Empirically, our approaches are able to overcome the under-

fitting problem encountered when training DNN more effectively than the pretraining +

fine-tuning. Being an optimization algorithm, our approach are not supposed to deal specif-

ically with the problem of over-fitting, however we show that this can be handled by the

usual methods of regularization such as weight decay or dropout. Our experiments demon-

strate competitive results with the state-of-the-art on several visual recognition tasks. On

MNIST dataset without pretraining, we can achieve 0.52% error rate using only ConvNets
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(LeNet5) with weight decaym which is the best results ever reported with only standard

ConvNets. Our preliminary experiments on CIFAR-10 dataset show that by using Con-

vNets and dropout with ANRAT methods, we can achieve 82.12% test accuracy, which

is superior to the results using Cross Entropy (CE) and dropout (Zeiler & Fergus 2013)

as well as competitive with the results achieved by unsupervised pretraining (Coates &

Ng 2011). The experiments on Denoised Auto-encoder also demonstrate ANRAT helps in

unsupervised feature learning.

5.3 Reformulation on Error Criterion - Significant Statistics

We begin with the definition of RAE for the Lp norm and the theoretical justifications

on its convexity property. RAE is not suitable for real applications since it is not bounded.

Instead, NRAE is bounded to overcome the register overflow in real implementations. We

prove that NRAE is quasi-convex,and thus shares the same global and local optimum with

RAE. Moreover, we show the lower-bound of its performance is as good as Lp-norm error

when the convexity index satisfies a constraint, which theoretically supports the ANRAT

method proposed in the next section.

5.3.1 Risk-averting Error Criterion

Given training samples {X, y} = {(x1, y1), (x2, y2),

..., (xm, ym)}, f(xi,W ) is the learning model with parameters W . The loss function of

Lp-norm error is defined as:

lp(f(xi,W ), yi) =
1

m

m∑
i=1

||f(xi,W )− yi||p(5.1)

When p = 2, Eqn. 6.1 denotes to the standard Mean Square Error (MSE). The Risk-
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Averting Error criterion (RAE) corresponding to the Lp-norm error is defined by

RAEp,q(f(xi,W ), yi) =
1

m

m∑
i=1

eλ
q ||f(xi,W )−yi||p(5.2)

λ is the convexity index. It controls the size of the convexity region.

For clarity, we write the matrix derivatives as function form. In our proof we use

quadratic form.

The Jacobian matrix of Eqn. 6.1 is

Jp,q(W ) =
1

m
pλq

m∑
i=1

eλ
q ||f(xi,W )−yi||p||f(xi,W )− yi||p−1

∂f(xi,W )

∂W
(5.3)

The Hessian matrix of Eqn. 6.1 is

Hp,q(W ) = p
m

∑m
i=1 e

λq(f(xi,W )−yi)p(5.4)

×{(p− 1)λq||f(xi,W )− yi||p−2 ∂f(xi,W )
∂W

2
(5.5)

+pλ2q(yi − f(xi,W ))2p−2 ∂f(xi,W )
∂W

2
(5.6)

+λq(yi − f(xi,W ))p−1 ∂f
2(xi,W )

∂W 2 }(5.7)

Because RAE has the sum-exponential form, its Hessian matrix is tuned exactly by

the convexity index λq. The following theorem indicates the relation between the convexity

index and its convexity region.

Theorem 1 (Convexity). Given the Risk-Averting Error criterion RAEp,q (p, q ∈ N+),

which is twice continuous differentiable. Jp,q(W ) and Hp,q(W ) are the corresponding

Jacobian and Hessian matrix. As λ → ±∞, the convexity region monotonically expands

to the entire parameter space except for the subregion S := {W ∈ Rn|rank(Hp,q(W )) <

n,Hp,q(W < 0)}.
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Proof. Assume p > 0 and q > 0, matrix 5.4 is positive semi-definite. Note that both
∂f(xi,W )2

∂W
and λ2q(yi−f(xi,W ))2p−2 are positive semi-definite, matrix 6.7 is semi-positive

definite, but Eqn. 6.6 and 6.8 may be indefinite. Let αi(W ) = f(xi,W )− yi, We rewrite

Eqn. 6.7 in quadratic form:

= pλ2qαi(W )T
∂f(xi,W )T

∂W
· ∂f(xi,W )

∂W
αi(W )(5.8)

= pλ2qαi(W )TQΛQTαi(W )(5.9)

= pλ2qS(W )TΛS(W )(5.10)

Λ = diag[Λ1,Λ2, ...,Λm]. Note that when p is a even number, Eqn. 6.6 is also positive

semi-definite.

If S(W ) if a full-rank matrix, then Eqn. 6.9 is positive definite. When λq → ±∞, the

eigenvalues Λ becomes dominant in the leading principal minors (as well as eigenvalues)

of the Hessian matrix to make Hp,q(W ) monotonically increasing with λq. Assume Pλ :=

{W ∈ Rn|Hp,q(W > 0)}, we have Pλ1 ∈ Pλ2 when λ1 < λ2. Considering Eqn. 6.6, 6.7

and 6.8 are all bounded, ∃ ψ(W ), s.t. Hp,q(W ) > 0 when |λq| > ψ(W ).

When S(W ) is not a full-rank matrix, the determinant of all its
(
n
k

)
submatrices is 0.

Thus, in the subregion S := {W ∈ Rn|rank(Hp,q(W )) < n,Hp,q(W < 0)}, there is no

parameters satisfied the convexity conditions (
⋃
Pλ).

Please refer to the supplementary material for the proof. Intuitively, the use of the

RAE was motivated by its emphasizing large individual deviations in approximating func-

tions and optimizing parameters in an exponential manner, thereby avoiding such large

individual deviations and achieving robust performances. Theoretically, Theorem 7 states

that when the convexity index λ increases to infinity, the convexity region in the parameter

space of RAE expands monotonically to the entire space except the intersection of a finite
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number of lower dimensional sets. The number of sets increases rapidly as the number

m of training samples increases. Roughly speaking, larger λ and m cause the size of the

convexity region to grow larger respectively in the error space of RAE.

When λ → ∞, the error space can be perfectly stretched to be strictly convex, thus

avoid the local optimum to guarantee a global optimum. Although RAE works well in the-

ory, it is not bounded and suffers from the exponential magnitude and arithmetic overflow

when using gradient descent in implementations .

5.3.2 Normalized Risk-Averting Error Criterion

RAE ensures the convexity of the error space to find the global optimum. By using

NRAE, we relax the global optimum problem by finding a better local optimum to meet a

theoretically and practically reasonable trade-off in real applications.

Given training samples {X, y} = {(x1, y1), (x2, y2), ..., (xm, ym)}, f(xi,W ) is

the learning model with parameters W . The Normalized Risk-Averting Error Criterion

(NRAE) corresponding to the Lp-norm error is defined as:

NRAEp,q(f(xi,W ), yi)

=
1

λq
logRAEp,q(f(xi,W ), yi)

=
1

λq
log

1

m

m∑
i=1

eλ
q ||f(xi,W )−yi||p(5.11)

Theorem 2 (Bounded). NRAEp,q(f(xi,W ), yi) is bounded. NRAEp,q(f(xi,W ), yi)→

minimax if λq →∞, NRAEp,q(f(xi,W ), yi)→ Lp-norm error if λq → 0.



81

Proof. Let

αi(W ) = f(xi,W )− yi(5.12)

αmax(W ) = max{αi(W ), i = 1, ...,m}(5.13)

βi(W ) = eλ
q(||αmax(W )||p−||αi(W ))||p(5.14)

Then we can write Eqn. 5.11 as

NRAEp,q(f(xi,W ), yi) =
1

λq
log

1

m
eλ

q ||αmax||p
m∑
i=1

βi(W )

= − 1

λq
logm+ ||αmax||p +

1

λq
log

m∑
i=1

βi(W )(5.15)

≤ − 1

λq
logm+ ||αmax||p +

1

λq
logm · eλq ||αmax||p

= 2||αmax||p(5.16)

The proof is provided in the supplemental materials. Briefly, NRAE is bounded by

functions independent of λ and no overflow occurs for λ � 1. The following theorem

states the quasi-convexity of NRAE.

Theorem 3 (Quasi-convexity). Given a parameter space {W ∈ Rn}, Assume ∃ ψ(W ), s.t.

Hp,q(W ) > 0 when |λq| > ψ(W ) to guarantee the convexity of RAEp,q(f(xi,W ), yi).

Then, NRAEp,q(f(xi,W ), yi) is quasi-convex and share the same local and global opti-

mum with RAEp,q(f(xi,W ), yi).

Proof. If RAEp,q(f(xi,W ), yi) is convex, it is quasi-convex. log function is monotoni-

cally increasing, so the composition logRAEp,q(f(xi,W ), yi) is quasi-convex. 1

1Because the function f defined by f(x) = g(U(x)) is quasi-convex if the function U is quasiconvex and
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log is a strictly monotone function and NRAEp,q(f(xi,W ), yi) is quasi-convex, so it

shares the same local and global minimizer with RAEp,q(f(xi,W ), yi).

The convexity region of NRAE is consistent with RAE. To interpret this statement in

another perspective, the log function is a strictly monotone function. Even if RAE is not

strictly convex, NRAE still shares the same local and global optimum with RAE. If we

define the mapping function f : RAE → NRAE, it is easy to see that f is bijective and

continuous. Its inverse map f−1 is also continuous, so that f is an open mapping. Thus,

it is easy to prove that the mapping function f is a homeomorphism to preserve all the

topological properties of the given space.

The above theorems state the consistent relations among NRAE, RAE and MSE. It is

proven that the greater the convexity index λ, the larger is the convex region is. Intuitively,

increasing λ creates tunnels for a local-search minimization procedure to travel through

to a good local optimum. However, we care about the justification on the advantage of

NRAE against MSE. Theorem 9 provides the theoretical justification for the performance

lower-bound of NRAE.

Theorem 4 (Lower-bound). Given training samples {X, y} = {(x1, y1), (x2, y2), ..., (xm, ym)}

and the model f(xi,W ) with parameters W . If λq ≥ 1, p, q ∈ N+ and p ≥ 2, then both

RAEp,q(f(xi,W ), yi) andNRAEp,q(f(xi,W ), yi) always have the higher chance to find

a better local optimum than the standard Lp-norm error due to the expansion of the con-

vexity region.

Proof. Let hp(W ) denotes the Hessian matrix of standard Lp-norm error (Eqn. 6.1), note

the function g is increasing.
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αi(W ) = f(xi,W )− yi we have

hp(W ) =
p

m

m∑
i=1

{(p− 1)αi(W )p−2
∂f(xi,W )2

∂W

+ αi(W )p−1
∂f 2(xi,W )

∂W 2 }(5.17)

Since λq ≥ 1, let diageig denotes the diagonal matrix of the eigenvalues from SVD decom-

position. � here means ’element-wise greater’. When A � B, each element in A is greater

than B. Then we have

diageig[Hp,q(W )] � diageig[hp(W )+

p2

m

m∑
i=1

||αi(W )||2p−2∂f(xi,W )

∂W

2

}]

� diageig[hp(W )](5.18)

This indicates that the RAEp,q(f(xi,W ), yi) always has larger convexity regions than the

standardLp-norm error to better enable escape of local minima. BecauseNRAEp,q(f(xi,W ), yi)

is quasi-convex, sharing the same local and global optimum with RAEp,q(f(xi,W ), yi),

the above conclusions are still valid.

Roughly speaking, NRAE always has a larger convexity region than the standard Lp-

norm error in terms of their Hessian matrix when λ ≥ 1. This property guarantees the

higher probability to escape poor local optima using NRAE. In the worst case, NRAE will

perform as good as standard Lp-norm error if the convexity region shrinks as λ decreases

or the local search deviates from the ”tunnel” of convex regions.

More specifically, NRAEp,q(f(xi,W ), yi)

• approaches the standard Lp-norm error as λq → 0.
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• approaches the minimax error criterion infWαmax(W ) as λq →∞.

Intuitively, when λq →∞, we can roughly draw the second conclusion based on Eqn.

6.3. When λq → 0, we have 2

NRAEp,q(f(xi,W ), yi) =
1

λq
log

1

m

m∑
i=1

eλ
q ||f(xi,W )−yi||p

=
1

λq
log(1 +

1

m

m∑
i=1

λq||f(xi,W )− yi||p +O(λ2q))

=
1

m

m∑
i=1

||f(xi,W )− yi||p(5.19)

Please refer to the supplemental materials for the proofs. More rigid proofs that can

be generalized to Lp-norm error are also given in (Lo 2010). In SimNets, the authors also

include quite similar discussions about the robustness with respect to Lp-norm error (Cohen

& Shashua 2014).

5.4 Learning Methods

We propose a novel learning method to training DNNs with NRAE, called the Adap-

tive Normalized Risk-Avering Training (ANRAT) approach. Instead of manually tuning λ

like GDC (Lo, Gui, & Peng 2012), we learn λ adaptively in error backpropagation by con-

sidering λ as a parameter instead of a hyperparameter. The learning procedure is standard

batch SGD. We show it works quite well in theory and practice.

The loss function of ANRAT is

l(W,λ) =
1

λq
log

1

m

m∑
i=1

eλ
q ||f(xi,W )−yi||p + a||λ||−r(5.20)

2Consider the rules ex = 1 + x+ x2

2 + · · · (x→ 0) and log x = x− x2

2 + · · · (x→ 0)
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Except for NRAE, we use a penalty term a||λ||−r to control the changing rate of λ.

While minimize the NRAE score, small λ is penalized to regulate the convexity region. a

is a hyperparameter to control the penalty index. The first-order derivatives on weight and

λ are

dl(W,λ)

dW
=

p
∑m

i=1 e
λqαi(W )p−1 ∂f(xi,W )

∂W∑m
i=1 e

λqαi(W )p−1(5.21)

dl(W,λ)

dλ
=

−q
λq+1

log
1

m

m∑
i=1

eλ
qαi(W )p(5.22)

+
q

λ

∑m
i=1 e

λqαi(W )pαi(W )p∑m
i=1 e

λqαi(W )p
(5.23)

− arλ−r−1(5.24)

We make a transformation on Eqn. 5.24 to better understand the gradient with respect

to λ. Note that ki = eλ
qαi(W )p∑m

i=1 e
λqαi(W )p is actually performing like a probability (

∑m
i=1 ki = 1).

Ignoring the penalty term, Eqn. 5.24 can be formulated as follows:

dl(W,λ)

dλ
=

q

λ
(
m∑
i=1

kiαi(W )p −NRAE)

=
q

λ
(E(α(W )p)−NRAE)

≈ q

λ
(LP -norm error−NRAE)(5.25)

Note that as αi(W )p becomes smaller, the expectation on αi(W )p approaches the

standard Lp-norm error. Thus, the gradient on λ is approximately the difference between

NRAE and the standard Lp-norm error. Because large λ can incur plateaus to prevent

NRAE from finding better optima using batch SGD (Lo, Gui, & Peng 2012), they need

GDC to gradually deconvexify the NRAE to make the error space well shaped and stable.

Through Eqn. 6.11, ANRAT solve this problem in a more flexible and adaptive manner.
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When NRAE is larger, Eqn. 6.11 remains negative and makes λ increase to enlarge the

convexity region, facilitating the search in the error space for better optima. When NRAE

is smaller, the learned parameters are seemingly going through the optimal ”tunnel” for

better optima. Eqn. 6.11 becomes positive to decrease λ and helps NRAE not deviate far

from the manifold of the standard Lp-norm error to make the error space stable without

large plateaus. Thus, ANRAT adaptively adjusts the convexity index to find an optimal

trade-off between better solutions and stability.

This training approach has more flexibility. The gradient on λ as the weighted dif-

ference between NRAE and the standard LP -norm error, enables NRAE to approach the

LP -norm error by adjusting λ gradually. Intuitively, it keeps searching the error space near

the manifold of the Lp-norm error to find better optima in a way of competing with and at

the same time relying on the standard Lp-norm error space.

In Eqn. 5.20, the penalty weight a and index r control the convergence speed by pe-

nalizing small λ. Smaller a emphasizes tuning λ to allow faster convergence speed between

NRAE and Lp-norm error. Larger a forces larger λ for a better chance to find a better lo-

cal optimum but runs the risk of plateaus and deviating far from the stable error space. r

regulates the magnitude of λ and its derivatives in gradient descent.

5.5 Experiments

We present the results from a series of experiments designed on the MNIST and

CIFAR-10 datasets to test the effectiveness of ANRAT for visual recognition with DNNs.

We did not explore the full hyperparameter in Eqn. 5.20. Instead we fix the hyperparame-

ter at p = 2, q = 2 and r = 1 to mainly compare with MSE. So the final loss function of

ANRAT we optimized is
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l(W,λ) =
1

λ2
log

1

m

m∑
i=1

eλ
2||f(xi,W )−yi||2 + a|λ|−1(5.26)

This loss function is minimized by batch SGD without complex methods, such as mo-

mentum, adaptive/hand tuned learning rates or tangent prop. The learning rate and penalty

weight a are selected in {1, 0.5, 0.1} and {1, 0.1, 0.001} on validation sets respectively. The

initial λ is fixed at 10. We use the hold-out validation set to select the best model, which is

used to make predictions on the test set. All experiments are implemented quite easily in

Python and Theano to obtain GPU acceleration (Bastien et al. 2012).

The MNIST dataset (LeCun et al. 1998) consists of hand written digits 0-9 which are

28x28 in size. There are 60,000 training images and 10,000 testing images in total. We

use 10000 images in training set for validation to select the hyperparameters and report the

performance on the test set. We test our method on this dataset without data augmentation.

The CIFAR-10 dataset (Krizhevsky & Hinton 2009) is composed of 10 classes of

natural images. There are 50,000 training images in total and 10,000 testing images. Each

image is an RGB image of size 32x32. For this dataset, we adapt pylearn2 (Goodfellow

et al. 2013a) to apply the same global contrast normalization and ZCA whitening as was

used by Goodfellow et. al (Goodfellow et al. 2013b). We use the last 10,000 images of the

training set as validation data for hyperparameter selection and report the test accuracy.

5.6 Results and Discussion

5.6.1 Results on ConvNets

On the MNIST dataset we use the same structure of LeNet5 with two convolutional

max-pooling layers but followed by only one fully connected layer and a densely connected
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softmax layer. The first convolutional layer has 20 feature maps of size 5 × 5 and max-

pooled by 2× 2 non-overlapping windows. The second convolutional layer has 50 feature

maps with the same convolutional and max-pooling size. The fully connected layer has 500

hidden units. An l2 prior was used with the strength 0.05 in the Softmax layer. Trained by

ANRAT, we can obtain a test set error of 0.52%, which is the best result we are aware of

that does not use dropout on the pure ConvNets. We summarize the best published results

on the standard MNIST dataset in Table 6.2.

The best performing neural networks for pure ConvNets that does not use dropout

or unsupervised pretraining achieve an error of about 0.69% (Ngiam et al. 2011). They

demonstrated this performance with L-BFGS. Using dropout, ReLU and a response nor-

malization layer, the error reduces to 0.55% (Zeiler & Fergus 2013). Prior to that, Jarrett et.

al showed by increasing the size of the network and using unsupervised pretraining, they

can obtain a better result at 0.53% (Jarrett et al. 2009). Previous state of the art is 0.47%

(Goodfellow et al. 2013b) for a single model without on the original MNIST dataset. Using

batch SGD to optimize either CE or MSE on the ConvNets descried above, we can get an

error rate at 0.93%. Replacing the training methods with ANRAT using batch SGD leads

to a sharply decreased validation error of 0.66% with a test error at 0.52%. With dropout

and ReLU the error rate drops to 0.39%, which is the same with the best results without

averaging or data augmentation (Table 6.2) but we only use standard Convnets and simple

experimental settings.

Fig. 5.1 (a) shows the progression of training, validation and test errors over 160 train-

ing epochs. The errors trained on MSE plateau as it can not train the ConvNets sufficiently

and seems like underfit. Using ANRAT, the validation and test errors remain decreasing

3(1)(Mairal et al. 2014);(2)(Lee et al. 2014);(3)(LeCun et al. 1998);(4)(Ranzato et al. 2007);(5)(Ngiam
et al. 2011);(6)(Ranzato et al. 2007);(7)(Poultney et al. 2006);(8)(Zeiler & Fergus 2013);(9)(Jarrett et al.
2009)
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Method3 Error %

Convolutional Kernel Networks + L-BFGS-B(1) 0.39
Deeply Supervised Nets + dropout(2) 0.39

ConvNets (Lenet-5)(3) 0.95
ConvNets + MSE/CE (this section) 0.93
large ConvNets, random feature(4) 0.89
ConvNets + L-BFGS(5) 0.69
large ConvNets, unsup pretraining(6) 0.62
ConvNets, unsup pretraining(7) 0.6
ConvNets + dropout(8) 0.55
large ConvNets, unsup pretraining(9) 0.53
ConvNets + ANRAT (This paper) 0.52
ConvNets + ANRAT + dropout (This paper) 0.39

Table 5.1. Test set misclassification rates of the best methods that utilized convolutional
networks on the original MNIST dataset using single model.

along with the training error. During training, λ sharply decrease, regulating the tunnel of

NRAE to approach the manifold of MSE. Afterward the penalty term becomes significant,

force λ to grow gradually while expanding the convex region for higher chance to find the

better optimum (Figure 5.1 (b)).

Using the same network architecture described above, we trained two ConvNets using

MSE and ANRAT respectively and compare their performance. Fig. 5.1 (a) shows the pro-

gression of train, validation and test errors over 160 training epochs. The errors trained on

MSE plateau as it can not train the ConvNets sufficiently and underfits. Using ANRAT, the

validation and test errors remain decreasing along with the training error. During training,

λ sharply decrease, regulating the tunnel of NRAE to approach the manifold of MSE. Af-

terward the penalty term becomes significant, force λ to grow gradually while expanding

the convex region for higher chance to find the better optimum (Fig. 5.1 (b)).

Our next experiment is performed on the CIFAR-10 dataset. We observed significant

overfitting using both MSE and ANRAT with the fixed learning rate and batch SGD, so
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FIG. 5.1. (a). MNIST train, validation and test error rates throughout training with Batch
SGD for MSE and ANRAT with l2 priors. We cross-validated the learning rate and reg-
ularization weight on validation set for ConvNets (left). (b). The curve of λ throughout
ANRAT training (right).

dropout is applied to prevent the co-adaption of weights and improve generalization. We

use a similar network layout as in (Srivastava et al. 2014) but with only two convolutional

max-pooling layers. The first convolutional layer has 96 feature maps of size 5×5 and max-

pooled by 2×2 non-overlapping windows. The second convolutional layer has 128 feature

maps with the same convolutional and max-pooling size. The fully connected layer has

500 hidden units. Dropout was applied to all the layers of the network with the probability

of retaining a hidden unit being p = (0.9, 0.75, 0.5, 0.5, 0.5) for the different layers of the

network. Using batch SGD to optimize CE on the simple configuration of ConvNets +

dropout, a test accuracy of 80.6 % is achieved (Krizhevsky, Sutskever, & Hinton 2012).

We also reported the performance at 80.58% with MSE instead of CE with the similar

network layout. Replacing the training methods with ANRAT using batch SGD gives a test

accuracy of 85.15%. This is superior to the results obtained by MSE/CE and unsupervised

pretraining. In Table. 5.2, our result with simple setting is shown to be competitive to those

achieved by different ConvNet variants.

4(1)(Zeiler & Fergus 2013);(2)(Srivastava et al. 2014);(3)(Goodfellow et al. 2013b);(4)(Zeiler & Fergus
2013);(5)(Coates & Ng 2011);(6)(Min Lin 2014);(7)(Lee et al. 2014)
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Table 5.2. Test accuracy of the best methods that utilized convolutional framework on
CIFAR-10 dataset without data augmentation.

Method4 Acc %

ConvNets + Stochastic pooling + dropout(1) 84.87
ConvNets + dropout +Bayesian hyperopt(2) 87.39
ConvNets + Maxout + dropout(3) 88.32
Convolutional NIN + dropout(6) 89.6
Deeply Supervised Nets + dropout(7) 90.31

ConvNets + MSE + dropout (this section) 80.58
ConvNets + CE + dropout(4) 80.6
ConvNets + VQ unsup pretraining(5) 82
ConvNets + ANRAT + dropout (This section) 85.15

5.6.2 Results on Multilayer Perceptron

While ConvNets leads the state of the art performance on visual recognition, general

Multilayer Perceptron (MLP) is an important framework for generative and discrimina-

tive learning. Unsupervised layer-wise pretraining by RBM or auto-encoder demonstrate

superb performance boosting on visual recognition on MLP.

On the MNIST dataset, MLPs with unsupervised pretraining has been well studied

in recent years, so we select this dataset to compare ANRAT in shallow and deep MLPs

with MSE/CE and unsupervised pretraining. For the shallow MLPs, we follow the network

layout as in (Gui, Lo, & Peng 2014; LeCun et al. 1998) that has only one hidden layer

with 300 neurons. We build the stacked architecture and deep network using the same

architecture as (Larochelle et al. 2009) with 500, 500 and 2000 hidden units in the first,

second and third layers, respectively. The training approach is purely batch SGD with no

momentum or adaptive learning rate. No weight decay or other regularization technique is

applied in our experiments.

Experiment results in Table. 5.3 show that the deep MLP classifier trained by the
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ANRAT method has the lowest test error rate (1.45%) of benchmark MLP classifiers with

MSE/CE under the same settings. It indicates that ANRAT has the ability to provide rea-

sonable solutions with different initial weight vectors. This result is also better than deep

MLP + supervised pretraining or Stacked Logistic Regression networks. We note that the

deep MLP using unsupervised pretraining (auto-encoders or RBMs) remains to be the best

with test error at 1.41% and 1.2%. Unsupervised pretraining is effective in initializing

the weights to obtain a better local optimum. Compared with unsupervised pretraining +

fine tuning, ANRAT sometimes still fall into the sightly worse local optima in this case.

However, ANRAT is significantly better than MSE/CE without unsupervised pretraining.

Experimental results in Table. 5.3 show that the deep MLP classifier trained by AN-

RAT method has the lowest test error rate (1.55%) than benchmark MLP classifiers with

MSE/CE with the same settings. It indicates that the ANRAT method has the ability to

provide reasonable generalization results with different initial weight vectors. This result

are also better than deep MLP + supervised pretraining or Stacked Logistic Regression net-

work. However, we note that the deep MLP using unsupervised pretraining (auto-encoders

or RBM) is remaining the best with the test error at 1.41% and 1.2%. Unsupervised pre-

training is still effective to better initialize the weight to obtain a better local optimum.

Compared with unsupervised pretraining + fine tuning, ANRAT sometimes still fall into

the sightly worse local optimum in this case. However, ANRAT is significantly better than

MSE/CE without unsupervised pretraining.

Interestingly, we do not observe significant advantages with ANRAT in shallow

MLPs. Although in early literature, the error rate on shallow MLPs were reported as 4.7%

(LeCun et al. 1998) and 2.7% with GDC (Gui, Lo, & Peng 2014), both recent papers using

CE (Larochelle et al. 2009) and our own experiments with MSE can achieve error rate of

1.93% and 2.02%, respectively. Trained by ANRAT, we can have a test rate at 1.94%. This

performance is slightly better than MSE, but it is statistically identical to the performance
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obtained by CE. 5. One possible reason is that in shallow networks which can be trained

quite well by standard back propagation with normalized initializations, the local optimum

achieved with MSE/CE is quite nearly a global optimum or good saddle point. Our result

is also corresponding to the conclusion in (Dauphin et al. 2014), in which Dauphin et al.

extend previous findings on networks with a single hidden layer to show theoretically and

empirically that most badly suboptimal critical points are saddle points. Even with better

convexity property, ANRAT is as good as MSE/CE in shallow MLPs. However, we find

that the problem of poor local optimum becomes more manifest in deep networks. It is

easier for ANRAT to find a way towards the better optimum near the manifold of MSE.

For the sake of space, please refer to supplemental materials for the results on the shallow

Denoised Auto-encoder. The conclusion is consistent that ANRAT performs better when

attacking more difficult learning/fitting problems. While ANRAT is slightly better than

CE/MSE + SGD on DA with uniform masking noise, it achieves a significant performance

boost when Gaussian block masking noise is applied.Moreover, the exponential form of

NRAE helps to alleviate vanishing of gradient also help training deep networks.

5.6.3 Results on Denoised Auto-encoder

Our last experiments focus on generative learning instead of discriminative learning.

In (Vincent et al. 2010), Denoised Auto-encoder (DA) is well studied to show the ability

to learn useful representations. We were considering if ANRAT is likely to lead to the

learning of feature detectors that detect better structure in the input patterns with more

sufficient training.

On MNIST dataset, we use a single-layer DA with the local masking noise at the

5in (Larochelle et al. 2009), the author do not report their network settings of the shallow MLP + CE,
which may differ from 784-300-10.

6(1)(Larochelle et al. 2009);(2)(LeCun et al. 1998);(3)(Gui, Lo, & Peng 2014)
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Table 5.3. Test error rate of deep/shallow MLP with different training techniques.
Method6 Error %

Deep MLP + supervised pretraining(1) 2.04
Stakced Logistic Regression Network(1) 1.85
Stacked Auto-encoder Network(1) 1.41
Stacked RBM Network(1) 1.2

Shallow MLP + MSE(2) 4.7
Shallow MLP + GDC(3) 2.7 ± 0.03
Shallow MLP + MSE (this section) 2.02
Shallow MLP + ANRAT (this section) 1.94
Shallow MLP + CE(1) 1.93

Deep MLP + CE(1) 2.4
Deep MLP + MSE (this section) 1.91
Deep MLP + ANRAT (this section) 1.45

levels from 30% to 60%. That is, we randomly set the pixels to be 0 evenly. Another noise

paradigm is Gaussian block noise. We randomly select centroids to span masking blocks

in terms of each centroid with a Gaussian distribution. The noise level differs from 33.3%

to 52.6% accordingly. Figure. 5.2 shows three examples of different corruption level. We

train the DA using ANRAT and MSE with pure batch SGD with fixed learning rate among

{1, 0.1, 0.01} for 1000 epochs and report the best reconstruction MSE.

Corruption level: 30.2% Corruption level: 43.1% Corruption level: 49.8%

FIG. 5.2. Example maps of Gaussian block masking.
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As in the shallow network, we found the advantage of ANRAT is statistically sig-

nificant in DA but the difference is very small when using masking noise (Figure. 5.4).

Although masking makes it harder to reconstruct original images, the strong spatial cor-

relations are still existed between masked pixels and the ”good” pixels nearby, thus helps

DA to learn the generative distribution from the conditional probability with respect to the

manifold of the added noise. The local optimum found by both SGD training with MSE

and ANRAT is nearly optimal. When applying Gaussian block noise as shown in Figure.

5.2, masking blocks cover several patches instead of scattered points. It is much harder

to learn the spatial correlation within the masking areas. On this tougher task, ANRAT

performs much better than using batch SGD on MSE. In Figure. 5.4, the reconstruction

MSE using ANRAT on each image is 1.078, which is 24.09% lower than 1.432 obtained

by batch SGD on MSE.

Table 5.4. Reconstruction MSE of DA output trained by ANRAT and MSE error criterion
at different masking level using random masking or Gaussian block masking. The mean
and standard deviation over 20 times running are reported.

Corruption Level MSE ANRAT

30% 4.552 (0.006) 4.348 (0.005)
40% 5.697 (0.007) 5.57 (0.005)
50% 7.112 (0.005) 7.071 (0.007)
60% 9.245 (0.008) 9.1 (0.008)
Gaussian Isotropic Masking (33.3% - 52.6%) 1.432 (0.0002) 1.078 (0.009)

In Figure. 5.3 (a), the curve of training error using ANRAT penetrates across the curve

trained by MSE after several epochs and is consistently staying lower. Note that NRAE

and LP norm can be compared since they are homeomorphism and in the same magnitude,

but there is still a ”gap” between them. So, λ is still forced to fluctuate, gradually grow

larger to find more optimal tunnel towards the better optimum (Figure 5.3 (b)). This keeps

ANRAT searching for better results near the manifold of MSE through a gradual convexing
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FIG. 5.3. (a). Reconstruction MSE throughout training by Batch SGD for MSE and AN-
RAT (left). Gaussian block noise is applied at input layer. (b). The curve of λ throughout
ANRAT (right).

on its convexity region. In Figure. 5.4, DA using ANRAT learned a lightly more diverse

features than SGD on MSE when uniform masking is applied. In the case of Gaussian

block masking, DA learned more clear meaningful features with the help of ANRAT.

5.7 Conclusions and Outlook

In this section, we introduce a novel approach, Adaptive Normalized Risk-Averting

Training (ANRAT), to help train deep neural networks. Theoretically, we prove the effec-

tiveness of Normalized Risk-Averting Error on its arithmetic bound, global convexity and

local convexity lower-bounded by standard Lp-norm error when convexity index λ ≥ 1.

By analyzing the gradient on λ, we explained the reason why using back propagation on

λ works. The experiments on deep/shallow network layouts demonstrate comparable or

better performance with the same experimental settings among pure ConvNets and MLP

+ batch SGD on MSE and CE (with or without dropout). Other than unsupervised pre-

training, it provides a new perspective to address the non-convex optimization strategy in

DNNs. Theoretically, we prove the effectiveness of Normalized Risk-Averting Error on

its arithmetic bound, global convexity and local convexity lower-bounded by standard Lp-
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(a). 30% noise, MSE: 4.951 (b). 40% noise, MSE: 6.198 (c). 50% noise, MSE: 7.712 (d). 60% noise, MSE: 9.746

(f). 30% noise, MSE: 4.346 (g). 40% noise, MSE: 5.565 (h). 50% noise, MSE: 7.074 (i). 60% noise, MSE: 9.045

(e). Masking noise, MSE: 1.433

(j). Masking noise, MSE: 1.069

FIG. 5.4. 100 feature maps learned by Denoised Auto-encoder using ANRAT and batch
SGD on MSE. Different corruption level of uniform masking and Gaussian block masking
are applied at the input layer.

norm error when convexity index λ ≥ 1. By analyzing the gradient on λ, we explained the

reason why using back propagation on λ works.

Empirically, we compare ANRAT with batch SGD training on MSE/CE and unsu-

pervised pretraining using pure ConvNets on MNIST and CIFAR-10 datasets. ANRAT

achieves comparable or better performance with the same experiment settings among those

use pure ConvNets + batch SGD and/or dropout. An overview of the comparisons among

the best results obtained from different training methods and model variants is also provided

to validate the performance of ANRAT is among the state of the art. Except for ConvNets,

we evaluate ANRAT in shallow/deep multilayer perceptrons. Although the advantage of

ANRAT is not significant against CE/MSE + SGD in shallow neural networks, it overtakes

CE/MSE + SGD in deep neural networks and approaches to the performance achieved by

unsupervised pretraining such as RBM and auto-encoder. To better understand ANRAT

on generative models, experiments on shallow Denoised Auto-encoders are also performed
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with uniform masking noise and Gaussian block masking noise at the input layer. While

ANRAT is slightly better than CE/MSE + SGD on DA with the uniform masking noise, it

achieves significant performance boosting when Gaussian block masking noise is applied.

Finally, while these early results are very encouraging, clearly further research is war-

ranted to address the questions that arise from non-convex optimization in deep neural

networks. It is preliminarily showed that in order to generalize to a wide array of tasks,

unsupervised and semi-supervised learning using unlabeled data is crucial. One interesting

future work is to take advantage of unsupervised/semi-supervised pretraining with the non-

convex optimization methods to train deep neural networks by finding the nearly global op-

timum. Another crucial question is to guarantee the generalization capability by preventing

overfitting. Finally, we are quite interested in generalizing our approach to recurrent neural

networks. We leave as future work any performance improvement on benchmark datasets

by considering the cutting-edge approach to improve training and generalization perfor-

mance such as Bayesian hyperparameter optimization, network layout variants, Maxout or

SFN, etc.



Chapter 6

ROBUST STATISTICS — ADAPTIVE NORMALIZED

ANOMALY-AVERTING TRAINING FOR NEURAL

NETWORKS

6.1 Introduction

So far, we only focused on the situations when λ > 0. However, when λ < 0 and is

small enough, from Equation. 6.7 the Hessian matrix is still definite positive to guarantee

the error function is convex. The credits should be given to Lo who firstly proposed such

an idea in (Lo & Bassu 2001) and we consistently investigate Lo’s early work with dif-

ferent naming systems. When λ → −∞, we called the error estimator Anomaly-Averting

Estimator (AAE, in Lo’s work, he called it Risk-seeking Error). AAE not only ensures the

convexity but also retains high robustness to outliers. Note that when λ is largely negative,

we still have the register underflow problem. The same normalized pipeline in the previous

section also works on AAE. In this section, we will explore the optimality and robustness of

Normalized Anomaly-Averting Estimator (NAAE) by pushing λ to −∞. A more specific

theoretical statements are provided in l2 norm to clarify its connection with square loss.

Robustness is widely required in control theory and dynamical systems design. Thus, we

also evaluate NAAE on both function approximation problems and machine learning tasks.

99
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6.2 Background

Function approximation has many applications in science and engineering, such as

machine learning, pattern recognition, signal processing and control theory. As universal

approximators (Hornik, Stinchcombe, & White 1989), neural networks (NNs) often deliver

very good performance and have become the standard for several machine learning tasks

given their recent success in various applications (Jaderberg et al. 2015; Lee et al. 2014;

Szegedy et al. 2015; Karpathy & Fei-Fei 2015).

Error-free data are rarely provided in applications. Instead, data are usually contami-

nated by noise and outliers. Noise reflects inaccuracies in observations and the stochastic

nature of the underlying process. NNs deal with such noise quite efficiently by optimiz-

ing the minimum squared error (MSE) or cross entropy (CE) between the observed and

predicted values/labels with `1/`2 regularization, sparsity or adversary resistant learning

(Sra, Nowozin, & Wright 2012). Recent developments in computer vision take advantage

of manually added noise and distortion to further enhance the data (Krizhevsky, Sutskever,

& Hinton 2012; Gan et al. 2015) or to capture reverse conditional probability within gen-

erative models (Bengio et al. 2013; Goodfellow et al. 2014). Outliers can be arbitrary,

unbounded, and not from any specific distribution, reflecting sudden abnormal changes

or a mixture of rare but different phenomena. It has been noted that outliers in routine

data are infrequent but heavily impact even high dimensional data (Aggarwal & Yu 2001;

Kriegel, Zimek, & others 2008). When fitting a model or learning an objective function

with rare but significant outliers whose distribution and impact are both unknown, they

need to be identified and eliminated to get rid of their effect. Otherwise, the model overfits

or underfits easily if training procedure is sufficient or not. For example, in the image/video

classification task, some images or videos may be corrupted unexpectedly due to the error

of sensors or severe occlusions of objects. Such outliers can skew parameter estimation
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severely and hence destroy the performance of the learned model. Alternatively, outliers

are sometimes supposed to be examined closely, as they may be of interest themselves

given the sample applications of intrusion or fraud detection.

The maximal likelihood principle is not robust against outliers among different ap-

proximation and learning models like logistic regression (LR) and (Feng et al. 2014) gen-

eralized linear models (Künsch, Stefanski, & Carroll 1989). High breakdown methods

have been developed including least median of squares (Rousseeuw 1984), least trimmed

squares (Rousseeuw 1984) and most recently trimmed inner product methods for linear re-

gression. Several works have investigated multiple approaches to robustify LR (Pregibon

1982; Stefanski, Carroll, & Ruppert 1986; Tibshirani & Manning 2013). The majority of

them are M-estimator based: minimizing a complicated and more robust loss function than

the standard loss function (negative log-likelihood). A robust backpropagation algorithm is

proposed to optimize a robust estimator derived from the M-estimator to train NNs (Chen

& Jain 1994). (Liano 1996) used M-estimators to study the mechanism by which outliers

affect the resulting NNs. The majority of the above work that is M-estimator based needs

to predefine a threshold for determining the degree of contaminated data to achieve robust-

ness to outliers. Besides, few of them discuss optimality while achieving the robustness.

Here, by optimality, we refer to its ability to find a nearly global or better local optimum

while achieving robustness to outliers by getting rid of large deviation among the data.

Our work is largely inspired by the exponentialized error criteria (Jacobson 1973;

Whittle 1990) and its recent variations and modifies exponentialized error with two differ-

ent training methods (Lo 2010; Gui, Lo, & Peng 2014; Wang, Oates, & Lo 2015). Our

main contribution is to implement with our adaptive training approach and verify the idea

that generalizing this estimator by pushing the robust-optimal (RO) index λ to −∞ to ob-

tain the robustness to the largely deviated outliers while preserving the optimality by the

expansion of the convexity regions in the Hessian matrix. As a general error estimator, we
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provide a quantitative analysis and validate its effectiveness on three function fitting and

one visual recognition tasks.

6.3 Normalized Anomaly-Avering Estimator

Given standardized training samples {X, y} = {(x1, y1), (x2, y2), ..., (xm, ym)},

f(xi,W ) is the learned model with parameters W . The loss function of mean squared

loss (MSE) is defined as:

l2(f(xi,W ), yi) =
1

m

m∑
i=1

(f(xi,W )− yi)2

As a modified exponentialized error of MSE, the Anomaly-Averting Estimator (AAE)

is defined as

AAE =
1

m

m∑
i=1

eλ(f(xi,W )−yi)2 (λ < 0)(6.1)

The only difference between the AA estimator and RAE in (Lo 2010) is that λ stays

negative, which makes it serve as the robust-optimal (RO) index to control both the degree

of optimality and robustness to outliers. Note that when λ → −∞, it is not bounded and

suffers from less stability, exponential magnitude and arithmetic overflow when using gra-

dient descent in implementations. We define the Normalized Anomaly-Averting Estimator

(NAAE) as:

NAAE(f(xi,W ), yi)

=
1

λ
logAAE(f(xi,W ), yi)

=
1

λ
log

1

m

m∑
i=1

eλ(f(xi,W )−yi)2(λ < 0)(6.2)
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6.3.1 Robustness

NAAE is a bounded estimator. The bounds exert not only the stable property as an

estimator, but also an interesting dynamics to control the degree of robustness.

Theorem 5. NAAE(f(xi,W ), yi) is bounded between the minimal and maximal squared

errors.

Proof. Let

αi = f(xi,W )− yi

α2
min = min{α2

i , i = 1, ...,m}

α2
max = max{α2

i , i = 1, ...,m}

βi = eλ(α
2
i−α2

min)

Then we can re-write Eqn. 6.2 as

NAAE

=
1

λ
log

1

m
eλα

2
min

m∑
i=1

βi

= −1

λ
logm+ α2

min +
1

λ
log

m∑
i=1

βi(6.3)

let G = α2
max − α2

min to be the maximal margin of the sample squared errors, considering

λ < 0, eλG ≤ βi ≤ 1, so

1

λ
logm ≤ 1

λ
log

m∑
i=1

βi ≤
1

λ
logm+G
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We can derive the bounds of NAAE as

α2
min ≤ NAAE ≤ α2

max

The above conclusions indicate that squared errors regulate the bounds of NAAE.

The next theorem shows that λ controls NAAE to perform interactively with MSE and its

relationship to the minimin operator.

Theorem 6. when λ → −∞, NAAE(f(xi,W ), yi) approaches to an minimin operator;

if λ→ 0, NAAE(f(xi,W ), yi)→ MSE.

Proof. Given λ < 0, we consider the objective function

W = arg min
W

NAAE(f(xi,W ), yi)

Considering equation 6.3, it is easy to see that when λ → −∞, the objective function

becomes

W = arg min
W

α2
min

So a large λ controls the NAAE to approach a minimin operator. Next we consider the
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situation when λ→ 0 1.

NAAE(f(xi,W ), yi)

=
1

λ
log

1

m

m∑
i=1

eλ(f(xi,W )−yi)2

=
1

λ
log(1 +

1

m

m∑
i=1

λ(f(xi,W )− yi)2 +O(λ2))

=
1

m

m∑
i=1

(f(xi,W )− yi)2(6.4)

More rigid proofs that can be generalized to Lp-norm error are given in (Lo 2010).

Equations 6.3 and 6.4 explain how λ controls the robustness level. When λ → 0,

NAAE approaches MSE with a breakdown point of 0%, meaning that a single observation

can change it arbitrarily. Further, it is highly influenced by outliers. When λ → −∞,

NAAE performs like a minimin operator to address only the minimal error. Outliers can be

eliminated if they largely deviate from the objective space, or say manifold, so that NAAE

concentrates on the smaller errors and ignores the impact of those large errors. But it is

still vulnerable to noise and outliers that are much closer to the objective manifold than the

majority of the clean data.

When λ changes between 0 and −∞, the exponential sum of the squared error offsets

the minimin operator to further address the situations when the outliers are close to the

objective manifold. By adjusting λ, NAAE is able to handle both large deviations and false

positive samples, which helps to achieve robustness to different type of outliers.

1Consider the rules ex = 1 + x+ x2

2 + · · · (x→ 0) and log x = x− x2

2 + · · · (x→ 0)
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6.3.2 Optimality

To prove the optimality or NAAE, we start with AAE and generalize our conclusion

to NAAE. For clarity, we write the matrix derivatives in functional form. In our proof we

use the quadratic form. The Jacobian matrix of Eqn. 6.1 is

J(W ) = 2λ
m

∑m
i=1 e

λ(f(xi,W )−yi)2

× (f(xi,W )− yi)∂f(xi,W )
∂W

(λ < 0)(6.5)

The Hessian matrix of Eqn. 6.1 is

H(W ) = 2
m

∑m
i=1 e

λ(f(xi,W )−yi)2{λ∂f(xi,W )
∂W

2
(6.6)

+ 2λ2(yi − f(xi,W ))2 ∂f(xi,W )
∂W

2
(6.7)

+ λ(yi − f(xi,W ))∂f
2(xi,W )

∂W 2 }(6.8)

We assume the training sample is standardized and the error space is a unit sphere

|Rn ≤ 1| (that is, |yi − f(xi,W | < 1). Because AAE has the sum-exponential form, its

Hessian matrix is tuned exactly by the RO index λ. The following theorem indicates the

relation between the convexity index and its convexity region.

Theorem 7. Given the Anomaly-Averting Error criterion AAE, which is twice continuous

differentiable. J(W ) and H(W ) are the corresponding Jacobian and Hessian matrix. As

λ→ ±∞, the convexity region monotonically expands to the entire parameter space except

for the subregion S := {W ∈ Rn|rank(H(W )) < n,H(W < 0)}.

Proof. Both ∂f(xi,W )2

∂W
and λ2(yi − f(xi,W ))2 are positive semi-definite, matrix 6.7 is

semi-positive definite, but Eqn. 6.6 and 6.8 may be indefinite. Let αi(W ) = f(xi,W )−yi,
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We rewrite Eqn. 6.7 in quadratic form:

= pλ2αi(W )T
∂f(xi,W )T

∂W
· ∂f(xi,W )

∂W
αi(W )

= pλ2αi(W )TQΛQTαi(W )

= pλ2S(W )TΛS(W )(6.9)

Λ = diag[Λ1,Λ2, ...,Λm]. 6.6 is positive semi-definite.

If S(W ) is a full-rank matrix, then Eqn. 6.9 is positive definite. When λ→ ±∞, the

eigenvalues Λ becomes dominant in the leading principal minors (as well as eigenvalues)

of the Hessian matrix to make H(W ) monotonically increasing with λ. Assume Pλ :=

{W ∈ Rn|H(W > 0)}, we have Pλ1 ∈ Pλ2 when λ1 < λ2. Considering Eqn. 6.6, 6.7 and

6.8 are all bounded, ∃ ψ(W ), s.t. H(W ) > 0 when |λ| > ψ(W ).

When S(W ) is not a full-rank matrix, the determinant of all its
(
n
k

)
submatrices is

0. Thus, in the subregion S := {W ∈ Rn|rank(H(W )) < n,H(W < 0)}, there is no

parameters satisfied the convexity conditions (
⋃
Pλ).

Theorem 7 states that when the RO index λ decrease to infinity, the convexity region

in the parameter space of AAE expands monotonically to the entire space except the inter-

section of a finite number of lower dimensional sets. The number of sets increases rapidly

as the number m of training samples increases. Roughly speaking, large |λ| and m cause

the size of the convexity region to grow larger in the error space of AAE.

When λ → −∞, the error space can be perfectly stretched to be strictly convex, thus

avoiding the local optimum to find a global optimum. The following theorem states the

quasi-convexity of NAAE.

Theorem 8. Given a parameter space {W ∈ Rn}, Assume ∃ ψ(W ), s.t. H(W ) > 0 when

|λ| > ψ(W ) to guarantee the convexity ofAAE(f(xi,W ), yi). Then,NAAE(f(xi,W ), yi)
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is quasi-convex and share the same local and global optima with AAE(f(xi,W ), yi).

Proof. If AAE(f(xi,W ), yi) is convex, it is quasi-convex. The log function is monotoni-

cally increasing, so the composition logAAE(f(xi,W ), yi) is quasi-convex. 2

log is a strictly monotone function and NAAE(f(xi,W ), yi) is quasi-convex, so it

shares the same local and global optima with AAE(f(xi,W ), yi).

The above theorem states that the convexity region of NAAE is consistent with AAE.

To interpret this statement in another perspective, the log function is a strictly monotone

function. Even if AAE is not strictly convex, NAAE still shares the same local and global

optima with RAE. If we define the mapping function f : AAE → NAAE, it is easy to see

that f is bijective and continuous. Its inverse map f−1 is also continuous, so that f is an

open mapping. Thus, it is easy to prove that the mapping function f is a homeomorphism

to preserve all the topological properties of the given space.

The above theorems state the consistent relations among NAAE, AAE and MSE. It

is proven that the greater the RO index |λ|, the larger the convex region is. Intuitively,

increasing |λ| creates tunnels for a local-search minimization procedure to travel through to

a good local optimum. While NAAE preserves the robustness to MSE, theorem 9 provides

insights into when NAAE is optimal than MSE.

Theorem 9. Given training samples {X, y} = {(x1, y1), (x2, y2), ..., (xm, ym)} and the

model f(xi,W ) with parameters W . Define the deviation αi = f(xi,W ) − yi, when

αi → 1 and λ ≤ −1, both AAE(f(xi,W ), yi) and NAAE(f(xi,W ), yi) always have a

larger convexity region to commit a higher chance for the better local optima than MSE.

2Because the function f defined by f(x) = g(U(x)) is quasi-convex if the function U is quasiconvex and
the function g is increasing.
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Proof. Let h(W ) denotes the Hessian matrix of MSE (Eqn. 6.1),

h(W ) =
2

m

m∑
i=1

{αi(W )2
∂f(xi,W )2

∂W

+ αi(W )
∂f 2(xi,W )

∂W 2 }(6.10)

Since λ ≤ −1, let diageig denote the diagonal matrix of the eigenvalues from SVD

decomposition. � here means ’element-wise greater’. When A � B, each element in A is

greater than B. Then we have

diageig[H(W )]

� 2

m
{(2λ2α2

i + λ)
∂f(xi,W )2

∂W
− λαi

f 2(xi,W )

∂W 2 }

� α2
i

f(xi,W )2

∂W
+ αi

f 2(xi,W )

∂W 2

� diageig[h(W )]

Briefly, when the standard deviation is large (approaches 1) and λ ≤ −1,AAE(f(xi,W ), yi)

always has larger convexity regions than MSE to better enable escape of local minima. Be-

cause NAAE(f(xi,W ), yi) is quasi-convex, sharing the same local and global optimum

with AAE(f(xi,W ), yi), the above conclusions are still valid.

The expansion of the convexity region in the Hessian matrix enables NAAE to find a

better local optima than MSE. This property guarantees higher probability to escape poor

local optima. In the worst case, NAAE will perform as good as MSE if the convexity

region shrinks as the RO index λ increase to approach 0 or the local search deviates from

the ”tunnel” of convex regions.
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6.3.3 Control Robustness and Optimality

NAAE performs robustly while preserving the optimality by the expansion of its con-

vex region in its Hessian matrix, the RO index λ controls both the robustness and optimality

of the estimator simultaneously. When λ is a large negative number, NAAE works like a

minimin operator to avoid large deviations incurred by the outliers. Meanwhile, its Hessian

matrix has a larger convex region to facilitate seeking a better optimum. If λ approaches

0, a compensation from the exponential sum of the squared errors offsets the impact of

the minimin operator to further focus on the larger overview. This will help to address the

small deviation from other noise. NAAE performs more like MSE to grant a smooth and

stable optimization procedure.

6.4 Update Strategies

As λ controls the degree of both robustness and optimality, the initialization and up-

date strategy impacts the learning performance. Generally, large λ is preferable at the start.

Different update strategies lead to three major learning methods.

6.4.1 Fixed-λ

Using a fixed large λ to optimize the exponential estimator is reported in (Lo, Gui, &

Peng 2012). For NAAE, a fixed λ consistently controls the estimator at a specific level of

the offset towards the minimin operator. The weights are updated using gradient descent.

It is simple and work well to approximate the lower dimensional functions with outliers.

When attacking the learning tasks in higher dimensions such as visual recognition, the large

plateau and unstable learning procedure can lead to a failure in training (Wang, Oates, &

Lo 2015; Gui, Lo, & Peng 2014).
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6.4.2 Gradual Deconvexfication

(Lo, Gui, & Peng 2013) proposed the Gradual Deconvexification (GDC) approach

to alleviate the difficulty in finding a good value of λ for training. GDC starts with a

very large λ while recording the values of the objective function before and after a pre-

selected number of training epochs. If the performance converges, GDC flags the current

training condition as stagnant and performs a deconvexification by reducing the current λ

with a percentage r. After that, the training continues and repeats the deconvexification if

necessary until a satisfied training error is achieved. If |λ| keeps coming down to below

1, the training will set λ = 0, which actually converts to the training with MSE. All other

weights are updated using gradient descent.

GDC works in a similar way as the decreasing-learning-rate approach. Training with

GDC avoids fixing the initial λ during training, as the deconvexification gradually decreases

λ to avoid bad optima and vulnerable extreme estimator and eventually obtain a reasonable

optimum while achieving robustness. As reported in (Gui, Lo, & Peng 2014), GDC is much

slower than using MSE alone. The update strategy relies on the per-defined convergence

thresholds and dropping rate.

6.4.3 Adaptive Training

(Wang, Oates, & Lo 2015) proposed a novel learning method to training with RO in-

dex λ, called the Adaptive Normalized Risk-Avering Training approach (adaptive training).

Instead of manually tuning λ like GDC , they learn λ adaptively through error backpropa-

gation by considering λ as a parameter instead of a hyperparameter. The learning procedure

is standard batch gradient descent.
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dl(W,λ)

dλ
≈ q

λ
(LP -norm error− E)(6.11)

As shown in the above equation, the gradient on λ is approximately the difference

between the exponentialized estimator E (e.g., NAAE in this paper) and the standard Lp-

norm error. Considering λ < 0 as for NAAE. When E is larger, λ decreases to enlarge

the convexity region, facilitating the search in the error space for better optima. When E

is smaller, the learned parameters are seemingly going through the optimal ”tunnel” for

better optima. λ then increases and helps the weights not deviate far from the manifold of

the standard Lp-norm error to make the error space stable without large plateaus. We note

that adaptive training also adjusts λ to control the robustness level in a similarly ’smart’

way. If E is larger than the Lp-norm error, λ decreases to further ignore more samples with

large deviations to let the learning function gain a broader overview rather than focusing

on the outliers. When E is small, outliers with large deviation are almost eliminated.

λ increases to approach 0, making the learning procedure more accurate and stable by

considering the effect of more training samples rather than the extreme value. The adaptive

training approach has more flexibility. It keeps searching the error space near the manifold

of the Lp-norm error to find better optima in a way of competing with, and at the same time

relying on, the standard Lp-norm error space.

We consider the fixed λ approach and adaptive training as the update strategies for the

RO index λ in our experiments. For Adaptive training, the final loss function is

l(W,λ) =
1

λ
log

1

m

m∑
i=1

eλ(f(xi,W )−yi)2 + a|λ|−1(6.12)

The penalty weight a controls the convergence speed by penalizing small |λ|. Smaller
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Oracle + Outliers MSE NAAE

𝐹1(𝑥)

𝐹2(𝑥)

𝐹3(𝑥)

FIG. 6.1. Function approximation using MSE and NAAE on the training set. Three
columns are (a). oracle function with outliers (L), (b). approximation results using MSE
(M) and (c). NAAE (R). In column (a), the blue lines plot the oracle function, the red dots
plot the outliers.

a emphasizes tuning λ to allow faster convergence speed between NAAE and MSE. Larger

a forces larger |λ| for a better chance to find a better optimum while skipping the outliers,

but runs the risk of plateaus and deviating far from the stable error space.

6.5 Experiments and Analysis

As an error estimator, we test NAAE on the function approximation and digits recog-

nition tasks with two different neural networks architectures, multiple layer perceptrons

(MLPs) and convolutional networks (ConvNets), respectively. We limit all the experiments

in very simple settings, using gradient descent with batch gradient descent and weight de-
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cay or dropout (Srivastava et al. 2014).

6.5.1 Function Approximation

For function approximation tasks, we design three typical non-convex functions with

different types of outliers to test the robustness and optimality achieved by NAAE.

1). The notch function is defined by

f1(x) =


0 if x ∈ [0, 1.0]

⋃
[2.2, 2.3]

⋃
[3.5, 4.5]

1 otherwise

The outliers in the middle range are generated by the function

f ∗1 (x) =


0.25 if x ∈ [2.8, 2.81]

0.5 if x ∈ [1.5, 1.51]

where x ∈ X = [0, 4.5]. xi are obtained by random sampling 2000 non-repeatable

numbers from X with a uniform distribution, and the corresponding output values yk are

computed by f(x) and f ∗(x). The overall function is F1(x) = f1(x) + f ∗1 (x). The training

data with 2000 (xi, yi) pairs is chosen to perform the notch function approximation f(x)

with the corruption of the outliers f ∗(x). MLPs with 1:16:1 architectures are initiated to

all training sessions.

2). The smooth function is defined by

f2(x) = g(x,
1

6
,
1

2
,
1

6
)
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The outliers with very large derivations given by

f ∗2 (x) = g(x,
1

64
,
1

4
,

1

128
) + g(x,

1

64
,

1

20
,

1

128
)

Where x ∈ X = [0, 1], g is defined as

g(x) =
α√
2πτ

cos(
(x− µ)π

τ
)e−

(x−µ)2

2τ2(6.13)

The overall function is F2(x) = f2(x) + f ∗2 (x). The input values xi are selected by

sampling 2000 numbers from a uniformly distributed grid on X . The corresponding output

values yi are computed by f(x) and f ∗(x). The training data with 2000 (xi, yi) pairs is

chosen to perform the smooth function approximation with two fine-feature intrusions.

MLPs with 1:15:1 architectures are applied.

3). Define a smooth function by

F3(x) = g(x,
1

5
,
1

4
,

1

12
) + g(x,

1

5
,
3

4
,

1

12
) + g(x,

1

64
,
5

4
,

1

12
)

The outliers from the under-sampled points are given by the lower sampling frequency.

x ∈ X = [0, 1.5], the outliers x∗i are collected by sampling 200 numbers from a uniform

distributed grid on [0, 0.5] and 200 numbers from a uniform distributed grid on [1.0, 1.5].

The smooth function is generated by 2000 numbers of points from a uniform distributed

grid on (0.5, 1.0). So the oracle function is f3(x) = F3(x), x ∈ (0.5, 1) and the outlier

generating function is f3(x) = F3(x), x ∈ [0, 0.5]
⋃

[1, 1.5]. The output yi are computed

by F3(x). The training data with 2400 (xi, yi) pairs is the function contaminated by the un-

evenly under-sampled segments. MLPs with 1:12:1 architecture are initiated to all training

sessions.

The sample functions represent three typical sources of outliers (Figure 6.1 (a)). The
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Table 6.1. Training and test MSE of approximation on the three sample functions. For
NAAE, λ is updated by the fixed-λ and adaptive learning strategies. The average perfor-
mance over 10 runs are reported.

MSE NAAE-fixed-λ NAAE-adaptive learning

Training Test Training Test Training Test
F1(x) 0.02 0.022 0.021 0.019 0.021 0.018
F2(x) 0.013 0.029 0.005 0.005 0.005 0.005
F3(x) 0.012 0.037 0.045 0.01 0.045 0.01

outliers in F1(x) are in the range of the uncontaminated data but appearing at wrong po-

sitions. This sometimes occurs when the labels are normal but maybe corrupted or inac-

curate. F2(x) is affected by outliers with significant large deviations (even exceeding the

bounds), indicating the situations where the labels contain some unknown samples. F3(x)

includes seemingly uncontaminated but shifted and under-sampled data. This may happen

among heterogeneous observations from several experiments where the samples are highly

sparse and biased, and the main function needs to get rid of their influence.

In the following experiments, we use both fixed λ and adaptive learning methods to

update the RO index. λ starts at −103. NAAE is optimized with batch gradient descent.

Batch size is fixed at 20. For each of the functions, we generate the test set consisting 2000

samples from the oracle function fi(x), (i ∈ 1, 2, 3) respectively.

The approximation results of 10 runs are summarized in Table 6.1. NAAE is more

robust to these three types of outliers with both update strategies. We did not find significant

differences between fixed-λ and adaptive learning on these experiments. Training with

MSE always achieves lower training error but with a higher test error, which is also known

as overfitting. NAAE eliminates the impact of outliers efficiently to achieve better test

errors. It is interesting that when approximating the smooth function with fine-features

(F2(x)), NAAE achieves better training and test error simultaneously. This perhaps due to

both the robustness and optimality of NAAE. Optimizing MSE is unable to get rid of the
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outliers. The high non-convexity of the compound function also leads to the problem of

local optimum. While ignoring the outliers, NAAE seeks the better local optima due to

the expansion of the convex region to obtain better performance. The empirical breakdown

point of NAAE on these three samples are 0.4%, 8.4% and 16.7%. The training results are

shown in Figure 6.1.

6.5.2 Visual Digits Recognition

We further investigate NAAE in a typical learning problem, the digits recognition

tasks on the MNIST dataset. The MNIST dataset (LeCun et al. 1998) consists of hand

written digits 0-9 which are 28x28 in size. There are 60,000 training images and 10,000

testing images in total. We use 10,000 images in the training set for validation to select

the hyperparameters and report the performance on the test set. We test our method on this

dataset without data augmentation.

The NAAE function is minimized by batch gradient descent with momentum at 0.9.

The learning rate and l2 penalty are fixed at 0.5 and 0.05. The penalty weight a are selected

in {1, 0.1, 0.001} on validation sets respectively. The initial λ is fixed at -100. We use the

hold-out validation set to select the best model, which is used to make predictions on the

test set. All experiments are implemented quite easily in Python and Theano to obtain GPU

acceleration (Bastien et al. 2012).

On the MNIST dataset we use the same structure of LeNet5 with two convolutional

max-pooling layers but followed by only one fully connected layer and a densely connected

softmax layer. The first convolutional layer has 20 feature maps of size 5 × 5 and max-

pooled by 2× 2 non-overlapping windows. The second convolutional layer has 50 feature

maps with the same convolutional and max-pooling size. The fully connected layer has

3(1)(Mairal et al. 2014);(2)(Lee et al. 2014); (3)(Zeiler & Fergus 2013);(4)(Jarrett et al. 2009)
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Method3 Error %

Convolutional Kernel Networks(1) 0.39
Deeply Supervised Nets + dropout(2) 0.39

ConvNets + dropout(3) 0.55
large ConvNets, unsup pretraining(4) 0.53
ConvNets + NAAE (Ours) 0.53
ConvNets + NAAE + dropout (Ours) 0.39

Table 6.2. Test set misclassification rates of the best methods that utilized convolutional
networks on the original MNIST dataset using single model.

500 hidden units. An l2 prior was used with the strength 0.05 in the Softmax layer. Trained

by ANRAT, we can obtain a test set error of 0.53%, which is the best result we are aware

of that does not use dropout on the pure ConvNets. With dropout, our method achieve the

same performance with the state-of-art at 0.39% error. We summarize the best published

results on the standard MNIST dataset in Table 6.2.

The above results demonstrate both the optimality and robustness of NAAE. The im-

provements in MNIST are generally due to better regularization techniques with good op-

timization strategy. With simple experiment settings and network architectures, NAAE

enables the simple ConvNets to optimally learn the models while getting rid of specific

outlier samples to enhance the generalization capability.

To better evaluate the robustness of NAAE, we used a fraction of a permutation of the

labels to add outliers among the samples but without fixed patterns like (Reed et al. 2014).

The learning model is the same as the last experiment on the MNIST dataset. The noise

fraction ranges from 0% to 35%. Figure 6.2 shows that our NAAE with the adaptive train-

ing method provides a significant benefit in the case of permuted labels. The consistently

lower fitting MSE also indicates its optimality. As the noise level increases up to 30%,

NAAE provides the benefit in this high-noise regime, but is only slightly better than or
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FIG. 6.2. Digit recognition error rates versus percent corrupted labels.

same with training using MSE overall. When the noise fraction is larger than 30%, NAAE

perform even worse than MSE due to the failure of robustness to identify the outliers, while

the convex region still expands to ’optimally’ fit the noisy model, thus incurs overfitting.

6.6 Conclusions

We introduced the Normalized Anomaly-Averting Estimator by pushing the robust-

optimal (RO) index λ to −∞. It is robust to outliers due to its quasi-minimin functionality.

The robustness is realized and controlled by its adaptive RO index without any predefined

threshold. Its optimality is guaranteed by the expansion of the convexity region in its

Hessian matrix to largely avoid the local optima. We provide both theoretical and empirical

support for its robustness and optimality.

In future work, it may be promising to consider updating λ between −∞ to ∞ to

achieve robustness to both small noise and large outliers while preserving optimality, pro-

vide the risk and population risk bounds and extend our approach to other areas like aircraft

and robotics control. It is also interesting to augment large-scale training for detection (e.g.

ILSVRC and speech) with unlabeled and more weakly-labeled images/corpus.
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Chapter 7

CONCLUSION AND FUTURE WORK

We introduced three different perspectives/frameworks to model temporal data (pri-

marily time series data) and learn the representations. Motivated by the internal correlation

embedded in time series and intrinsic property of BoP representations, we proposed time

warping SAX to integrate the temporal correlation when building SAX words and BoP

representations. Pooling SAX-BoP with Boosting approach suppose to solve classifica-

tion problems on the multivariate vital signs time series. Instead of majority voting, the

Boosting algorithm is applied to significantly improve the performance. When the data has

strong internal temporal correlations, time-warping always tends to work better than the

vanilla SAX. Pooling SAX-BoP with Boosting approach is motivated to solve the problem

of representation modeling on multivariate time series. It demonstrates its effectiveness

and efficiency compared with the current state-of-the-art approaches especially on the mul-

tivariate physiological data. Instead of majority voting, the Boosting algorithm is applied

to significantly improve the performance. When the number of channel is smaller than 6,

Pooling SAX-BoP is much worth to try.

Imaging time series is an off-line approach for spatially encoding the temporal pat-

terns for classification with deep learning frameworks. We created a pipeline for con-

verting trajectory and time series data into novel representations, GAF and MTF images,
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and extracted high-level features from these using ConvNets. The features were subse-

quently used for classification. We demonstrated that our approach yields competitive re-

sults when compared to state-of-the-art methods by searching a relatively small parameter

space. We found that GAF-MTF multi-channel images are scalable to larger numbers of

quasi-orthogonal features that yield more comprehensive images. Our analysis of high-

level features learned from ConvNets suggested Tiled ConvNets work like multi-frequency

moving averages that benefit from the 2D temporal dependency that is preserved by the

Gramian matrix. When the sample length is standard but the sample size is larges, imaging

+ deep learning demonstrates the supreme performance on a variety type of temporal data.

Modeling and feature learning using deep neural networks are widely explored re-

cently. We introduce a set of novel error estimators with learning methods, NRAE and

ANRAT to help train deep neural networks. Theoretically, we prove the effectiveness of

Normalized Risk-Averting Error on its arithmetic bound, global convexity and local con-

vexity lower-bounded by standard Lp-norm error when convexity index λ ≥ 1. By analyz-

ing the gradient on λ, we explained the reason why using back propagation on λ works.

The experiments on deep/shallow network layouts demonstrate comparable or better per-

formance with the same experimental settings among pure ConvNets and MLP + batch

SGD on MSE and CE (with or without dropout). Other than unsupervised pretraining, it

provides a new perspective to address the non-convex optimization strategy in DNNs.

NAAE is a variation of NRAE with the constraint λ < 0. That is, we push the robust-

optimal (RO) index λ to −∞. It is robust to outliers due to its quasi-minimin functionality.

The robustness is realized and controlled by its adaptive RO index without any predefined

threshold. Its optimality is guaranteed by the expansion of the convexity region in its

Hessian matrix to largely avoid the local optima. We provide both theoretical and empirical

support for its robustness and optimality. NRAE/NAAE with ANRAT are good alternatives

to MSE/cross entropy in fitting and learning problems, especially for modeling temporal
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data using neural nets in the end-to-end manner.

To summarize, symbolic approximation approaches discretize the temporal data as

symbolic representation, facilitating to extract the bag-of-features for modeling temporal

correlation. By symbolic approximation, a bunch of learning algorithm in natural lan-

guage processing (NLP) can be adapted to temporal data mining. Imaging + deep learning

framework enables the model to learn more complicated temporal dynamics. It bridges the

research in computer vision and time series analysis, enabling the modeling and represen-

tation learning on temporal data to be benefit from the rapid development of deep learning

based computer vision approaches. NRAE/NAAE and ANRAT provide another perspec-

tive to address the optimality and robustness with a unified framework for the non-convex

optimization problem in deep learning.

As for the future work, we will explore the idea of imaging and symbolization for

representation learning on the multivariate temporal data. How to learn the representations

which will benefit temporal reasoning/inference is also a key topic. For the Non-convex

optimization problem, more effort is worth to be spent on much large data set (e.g. Ima-

geNet) with more complex vision models (e.g. GooleNet, VGG-Net) and recurrent models

(e.g. Deep LSTM, Deep GRU) to better understand its potential on static and temporal data

learning. Its robustness is also crucial to control theory.
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