
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative
Commons license, for uses protected by Copyright Law, contact the copyright holder or the
author.

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.

mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

Def Con 31, Las Vegas, Nevada, United States, August 10-13, 2023

Domain Fronting Through Microsoft Azure and

CloudFlare: How to Identify Viable Domain Fronting

Proxies

Charles Miller

Department of Information Systems

University of Maryland Baltimore County

Baltimore, Maryland, United States

cmiller1111@gmail.com

Michael Pelosi

Department of Computer Science

Texas A&M Texarkana

Texarkana, Texas, United States

mpelosi@tamut.edu

Michael Scott Brown

Department of Information Systems

University of Maryland Baltimore County

Baltimore, Maryland, United States

michaelb@umbc.edu

Abstract— Domain fronting is a technique for internet

connection obfuscation and also internet censorship

circumvention that uses different domain names in different

communication layers of an HTTPS connection to discreetly

connect to a different target domain than is discernible to third

parties monitoring the traffic. Domain fronting involves using

different domain names in the DNS/SNI headers of the visible

HTTPS packet and the Host header of the encrypted HTTP

packet. If both domains are served from the same Content

Delivery Network (CDN), then the CDN may proxy the request to

the address specified in the HTTP header after unwrapping the

TLS encrypted HTTPS payload. As a result, connection

monitoring outside the CDN server network will not be able to

ascertain where the connection packets are ultimately going to or

coming from.

This paper explores and expands upon methodologies for

identifying viable domain fronting proxies within the CloudFlare

and Microsoft Azure Content Delivery Networks (CDNs). Despite

claims by Microsoft to block domain fronting behavior on all

Azure products, our research successfully identified 14 Azure edge

servers on 6 Microsoft domains that successfully proxied domain

fronted traffic. Comparably, the CloudFlare CDN yielded over

2000 viable proxies among the 30 domains tested, with an average

of 6.61 viable proxies per domain (excluding outliers).

Unlike similar research conducted in 2017-2018 by penetration

testers Vincent Yiu and Raphael Mudge [14], [23], no consistent

pattern was found between a domain's DNS record and its ability

to proxy fronted traffic. As an example, the domain

huffingtonpost.com contains a different CDN address in its DNS

records but still exhibited three subdomains as proxy-willing

CloudFlare edge servers. In response to these findings, this paper

presents a methodology, subdomain enumeration using brute

force scripting, as a more effective method of identifying domain

fronting proxies within popular CDNs.

Additionally, the domainfuzzer.py application developed as

part of this study plays a crucial role in the analysis of viable

domain fronting proxies within a CDN. By providing a user-

friendly tool, domainfuzzer.py enables non-technical users to

identify CDN edge servers capable of proxying domain fronted

traffic. For more technical users, this methodology can easily be

adapted to any CDN, empowering users to build their own

domainfuzzer.py for use on a CDN of their choosing, should they

be so motivated.

Keywords—Domain Fronting, Cybersecurity.

I. INTRODUCTION

Domain fronting is a web traffic obfuscation technique
popularized by the 2015 UC Berkeley paper titled “Blocking-
resistant communication through domain fronting” [9]. In this
paper Fifield describes a means of using Content Delivery
Networks (CDNs) to forward the contents of HTTPS packets to
a forbidden location hosted on the same CDN via customized
HTTP packet headers. Since this discovery domain fronting has
been widely used as a method of web traffic obfuscation for
users wishing to retain their internet privacy, however many of
the largest CDN providers have decided to block domain fronted
traffic in order to prevent malicious use by would-be attackers.
In 2018 Google and Amazon announced they would be blocking
all domain fronted traffic [4], and Microsoft followed suit in
2022 [10]. Additionally, many of the techniques used by
penetration testers in 2017-2018 for identifying viable CDN
edge instances to use as domain fronting proxies have been
rendered obsolete by changes to public DNS records and
responses.

With these global improvements to operational security, it is
more difficult than ever for users to identify viable domain
fronting proxies. DNS records of all websites vary so greatly
from domain to domain that the previously established methods
of proxy identification often yield more false positives than true,
viable proxies. While AWS documentation may have previously
instructed web developers to expose their unique CDN edge
instance URLs in the CNAME record, this is no longer the case.
Now, even identifying domains to test for domain fronting is
difficult. Many companies have chosen to remove CNAME
records from their public DNS and others have gone as far as to
remove any mention of their CDN provider from their DNS
records at all; further disrupting one’s ability to collect
intelligence on a target network. Domain fronting requires a
considerable amount of technical proficiency to understand and
even more so to use manually. The technical knowledge needed
combined with increasing efforts to hide CDN information from

Def Con 31, Las Vegas, Nevada, United States, August 10-13, 2023

2

the internet has made identifying viable domain fronting proxies
quite formidable.

This paper presents a method for identifying domain fronting
proxies using subdomain enumeration that ensures all returned
addresses are true positives. Using a free static website created
on the target CDN, this method presents a set of steps to collect
open-source intelligence, build a simple brute forcing script in
Python, and enumerate a list of web addresses that will
automatically proxy domain fronted traffic. As a proof of
concept this methodology is first tested on the CloudFlare CDN
using well known CloudFlare hosted domains, and second on
the Microsoft Azure CDN to examine the veracity of
Microsoft’s recent claim to block all domain fronted traffic.

For many, domain fronting means safety from persecution
by a corrupt government; for others it is access to world news.
However, freedom of privacy invariably means freedom of
criminal activity. Anonymizing services that utilize domain
fronting like Tor Browser, Telegram, and Signal, are also used
by criminals to conceal incriminating communications and hide
entire trafficking networks. This duality in how domain fronting
has been used has created much ethical debate on the line
between internet privacy and government oppression.
Unfortunately (or fortunately for the citizens seeking a free
internet), the task of identifying and blocking domain fronted
traffic is often more complicated and expensive than anticipated.
The feasibility of domain fronting relies on the unwillingness of
government censors to block an entire Content Delivery
Network just to prevent a small percentage of domain fronted
traffic to that network. To avoid the “collateral damage” of
blocking domain fronted traffic at the IP layer many world
governments, including China and the United States,
implemented an expensive solution called Deep Packet
Inspection that effectively breaks and rebuilds TLS encrypted
tunnels at the ISP firewall in order to examine packet contents.
This tug of war between internet privacy advocates and the law
authorities of both democratic and authoritarian governments
has inspired much innovation into the detection, prevention, and
improved effectiveness of domain fronting.

II. HISTORY OF DOMAIN FRONTING

The need for Content Delivery Networks arose out of the
global increase in popularity of content providers. Companies
like Netflix, Facebook, YouTube and Google were developing
their source content in the U.S. but delivering it to locations
thousands of miles away. Delivering content over such long
distances yields considerable latency and struggles with the
inevitable packet loss of data connections that large. The
solution was Edge Computing: dedicated servers located at the
“edge” of a global network in high population regions across the
globe that contain cached copies of content and serve it directly
to geographically nearby requesters, thus removing the latency
and unreliability of planet-sized connections. However, CDNs
do not keep cached copies of all content on every edge server in
every region, as that would be impractical, especially for content
that is infrequently requested. For any content not cached
locally on the edge server receiving the request, the edge server
will pass the request to the content source so that it may
complete the request; passing the response (content) back to the
edge server, who then hands it off to the requester. This means

that CDN edge servers will work as geographical proxies,
passing communications between a nearby requester and any
site on the CDN (see Figure 1).

Fig. 1. Content Delivery Before and After CDN Architecture [8]

A. How Domain Fronting Works

A user wishes to view the forbidden website blocked-
example.com but, as the name implies, censorship of some kind
is blocking any traffic addressed to this site. We know blocked-
example.com to use the CloudFlare CDN to host its web services
and if we also know another website, allowed-example.com, to
host its web services on the CloudFlare CDN , we may be able
to “domain front” our HTTPS traffic through allowed-
example.com using the externally visible (not encrypted) DNS
and SNI headers of HTTPS packets. CloudFlare.com describes
the SNI (Server Name Index) header as “somewhat like mailing
a package to an apartment building instead of a house” [22],
meaning that after an HTTPS packet reaches a CDN edge server
addressed in the DNS/SNI headers, it will decrypt the packet and
handle the rest of the routing internally, out of view of a would-
be censor’s firewall. Typically, these HTTPS headers would
share the same destination as the HTTP Host header contained
within the packet, and when a user browses the internet using a
common web browser like Google Chrome, Mozilla Firefox, or
Opera, they do. However, by using HTTPS DNS and SNI
headers addressed to allowed-example.com and a customized
HTTP Host header addressed to blocked-example.com
concealed within the encrypted payload of the packet, we allow
the CDN edge server to function as it was designed; a
geolocational proxy that handles its own internal routing (see
Figure 2).

Fig. 2. How censorship is circumvented using a fronted domain

Although it was invented for censorship circumvention,
domain fronting is frequently used to cloak Command &
Control (C2) communications between criminal hackers and
compromised devices on a botnet. These covert communication
channels are pivotal in a hacker’s ability to maintain a foothold

Def Con 31, Las Vegas, Nevada, United States, August 10-13, 2023

3

inside a corporate network that actively seeks to identify
compromised devices (see Figure 3). It is this malicious use of
domain fronting that has inspired so much effort to identify and
prevent domain fronted traffic, although some claim the true
motivation behind Google, Amazon and now Microsoft’s bans
are due to pressure from the pro-censorship governments in
Russia and China [12].

Fig. 3. How a firewall is bypassed to ex-fill sensitive data using domain

fronting

Once the robustness of CDN internal routing was
discovered, penetration testers like Raphael Mudge [14, 25] and
Vincent Yiu [23-24] realized the next logical step was
enumeration of domains available to front traffic through. This
continued to prove fruitful as Mudge [14] discovers AWS’s own
edge servers (a0.awsstatic.com) can be used as proxies and Yiu
[23] then discovers AWS CloudFront documentation instructs
developers to expose their CDN instance’s URL in their public
DNS CNAME record [19]. Because it was commonplace at this
time to include an edge server address in the CNAME record of
any CDN hosted web services, Yiu was able to enumerate a
large list of potentially viable domains including the Arizona
State government’s website cdn.az.gov. He later proves this site
to be viable as a domain fronting proxy by fronting traffic
through the domain to a separate site hosted within AWS
CloudFront.

Since the discovery of these enumeration techniques,
however, website owners have implemented OpSec updates to
their public facing infrastructure that impede the ability to
identify and use their web addresses as domain fronting proxies.
Many companies have elected to completely remove all
CNAME records from public DNS, with some even removing
any mention of CDN provider name from their records
altogether. Additionally, all public DNS servers now either drop
or reject any query containing the “ALL'' parameter, making
large scale record enumeration difficult and time consuming.
Because DNS records are no longer a reliable clue in identifying
CDN edge instances of a web domain, enumeration techniques
that focus on finding “likely” domain front proxies, like those
used by Mudge and Yiu, have been rendered obsolete.

III. LITERATURE REVIEW

Along with the discovery of domain fronting [9], Fifield et
al. released an open-source API called MEEK [16] for the
popular anonymizing web browser, The Onion Router (Tor),
that allows users to obfuscate their web traffic using domain
fronted connections to existing MEEK servers provided by UC
Berkeley in both the Amazon and Google CDNs. Since the
release of this paper, MEEK has become widely used as a Tor
“pluggable transport” and has inspired considerable research
into the detection and prevention of domain fronted traffic

through the MEEK pluggable [11], [13], [18], [20]. These
innovations in detection/prevention are typically neural
networks trained to identify the “domain fronted traffic through
Tor pluggable MEEK” using only TCP packet sequencing and
no Deep Packet Inspection [20].

However, alongside these innovations in censorship
technology came additional innovations in the circumvention
techniques around them. Sheffey and Aderholdt [17] propose
adversarial techniques that allow “traffic shaping” TCP packets
so that the timing and sequences (especially during initial TLS
handshakes of HTTPS communications) are dynamically altered
with random delays, making the TCP packet sequencing of
Wang et al.’s [19] neural networks unusable. Despite years of
research attempting to thwart domain fronting as an obfuscation
technique, the fundamental concepts on which domain fronting
is based upon have yet proved insurmountable: (1) using a
popular CDN ensures an undesirable amount of “collateral
damage” for any censor wishing to block this traffic with
traditional ACL-based blocking methods, (2) the internal
routing of CDN edge servers to any location within the CDN is
a feature of most cloud networks. Unless the provider of a
Content Delivery Network changes internal routing protocols at
the fundamental level, domain fronting will continue to be
possible.

The python application FindFrontableDomains.py [3]
attempts to achieve the same goal of identifying domain fronting
proxies through subdomain enumeration. The application
makes a large number of queries to public DNS servers and
scans the results for CNAME records that contain urls indicative
of CDN edge instances. Namely, web addresses found in the
same name record that contain the name of a popular CDN
provider including CloudFlare, AWS CloudFront, Google
Cloud, Microsoft Azure, etc. Unfortunately,
FindFrontableDomains.py does not attempt to successfully front
traffic through the identified subdomains and, upon testing with
domain “nginx.com”, it returns a set of subdomains that do not
function as proxies, aka false positives. The solution designed
in FindFrontableDomains.py likely worked in 2017, when
organizations commonly left their CDN instance addresses in
their public CNAME records. As discussed in Section 2,
companies like Nginx have removed their instance addresses
from their public CNAME records, rendering a solution of this
nature obsolete.

In a 2020 DEFCON presentation, Erik Hunstad [12] presents
a means of circumventing Google and Amazon’s domain
fronting blocks by leveraging the ESNI header of HTTP packets
in communications encrypted with the more modern TLS v1.3.
Called “domain hiding” this technique uses an almost identical
solution as domain fronting, just with a different HTTP header.
Unfortunately, TLS v1.3 has not seen the widespread use that
was expected of it and Amazon/Google’s CDN servers now
refuse traffic containing the ESNI header at all (likely due to
Hunstad’s discovery [12]).

IV. METHODOLOGY

A. Assessment Parameters

This method adapts Yiu’s methodology away from using
DNS records to identify likely proxies, electing to enumerate

Def Con 31, Las Vegas, Nevada, United States, August 10-13, 2023

4

subdomains that successfully respond to a domain fronted
request, confirming beyond doubt the viability of return web
addresses. Using a static website hosted on the target CDN and
any domain known to host web services using the target CDN,
any requests that successfully return the contents of the static
site are known-working domain fronting proxies within the
target CDN. Because identifying domain fronting proxies using
subdomain enumeration is based soundly in cloud networking
concepts it should be easily adaptable on any other CDNs that
do not explicitly block traffic with mismatching HTTPS and
HTTP headers.

CloudFlare provides one of the largest CDNs in the world,
serving 152 regions globally with over 7.5 million active
websites [6]. With a free CloudFlare account one gains access
to the Pages dashboard where users can create a web page and
connect it to a GitHub repository. The static webpage,
domainfronter.pages.dev, is connected to a repository
containing a small text file, df.txt, with the contents “domain
fronting works!” As in Yiu’s work, this file will serve as the
proof of concept when successfully requested from one website
while existing on a completely separate site.

B. Identifying Domains to Test

In Domain Fronting via CloudFront Alternate Domains [24],
Yiu uses DNS brute forcing to collect the top 1 million DNS
CNAME records and then searches through the results for any
records that contain the tell-tale “*.cloudfront.net” URL of a
CDN edge instance on the CloudFront network. In this proof of
concept, Yiu finds several domains with their CDN instance
address publicly exposed and successfully domain fronts traffic
through the Arizona State Government (cdn.az.gov) web
domain as proof. Since then, however, companies have begun
hiding their CDN instance addresses by removing these
CNAME records from public DNS. State of Authority or SOA
records can be used as a default DNS response when queried for
a record that doesn’t exist. Here we can see that of the 29 known
CloudFront hosted domains queried, none of them have existing
CNAME records and only 20 have a cloudflare.com address in
the default SOA record (Table 1).

However, even though these records do not contain exact
edge server addresses like they did for Yiu in 2017 [23], we can
still see these records point to CloudFlare resources, confirming
they are hosted by our target CDN.

These queries were conducted using a text file containing a
list of websites known to host their web services using the
CloudFlare CDN [1], [5], [21] and the following command:

dig -f domains.txt -t CNAME | grep “.cloudflare.com”

Using the DNS querying tool, dig [7], this command
iteratively queries public DNS for the CNAME record of all
domains in the list and then pipes the results out to a grep search
for any records containing the typical attribute of a CDN
instance address, “.cloudflare.com”.

C. Testing Identified Domains

To determine whether or not these web addresses point to
actual CDN edge proxies, we must make a successful HTTPS
GET request for df.txt from the viable web address. Because
df.txt is hosted on a completely different website,

domainfronter.pages.dev, one would anticipate an error when
requesting the file from a website like http://xeroshoes.com.
However, by using a custom HTTP header hidden within the
HTTPS payload addressed to domainfronter.pages.dev, the
XeroShoes.com instance on the CDN edge server automatically
proxies traffic between the requester and
domainfronter.pages.dev, passing the request and response
(df.txt) between the two. This is achieved using the wget
command and the following syntax [14], [15], [23]:

wget -q -O - -U demo http://xeroshoes.com/df.txt --header
“Host: domainfronter.pages.dev”

Here we can see the response (Figure 4):

$dig wget -q -O - -U demo

http://xeroshoes.com/df.txt –header “Host:

domainfronter.pages.dev”

domain fronting works!

Fig. 4. Domain fronted GET request and positive response

If one were to browse http://xeroshoes.com/df.txt using a
normal web browser, you would receive an error from the Xero
Shoes web server stating that the df.txt file was unable to be
found, yet here we receive a response. We have successfully
smuggled our traffic through an HTTPS (TLS) encrypted tunnel
with XeroShoes.com to another location within the CloudFlare
CDN. Any censors between our machine and the CloudFlare
edge server would be unable to view the true
domainfronter.pages.dev destination of our packets.

Using the same wget syntax all 30 known-CloudFlare sites
were tested. Of the 20 websites with cloudflare.com addresses
in their public records, only 15 successfully returned the df.txt
file. Of the other 9 sites that did not contain a CloudFlare
address in the SOA record, 4 still successfully proxied domain
fronted traffic: SourceForge.net, Vimeo.com, Shopify.com, and
Bloomberg.com. This shows that Yiu’s method of identifying
domain fronting proxies using clues in the public DNS record is
not reliable and returns both false positives and false negatives.
This methodology may have been a reliable means of identifying
domain fronting proxies in 2017, but modern DNS
configurations vary so widely from target to target that this is no
longer the case; see responses in Table 2.

D. Subdomain Enumeration

As seen, domains such as SourceForge.net and
Bloomberg.com exhibit none of the tell-tale signs of a publicly
exposed CDN instance, however, surprisingly, the top level
domains still successfully proxy domain fronted traffic. As
such, if CNAME records are no longer a reliable indicator of
CDN edge proxies, there may be more false negatives within the
list of CloudFlare domains that remain yet unidentified. With
this knowledge we can hypothesize that there are other
subdomains within these domains that point to CDN edge
instances (and would therefore proxy our traffic), we need only
identify them. If we are able to find these subdomains and prove
that they will proxy our traffic we can create a robust and 100%
reliable list of viable proxies on any given domain within a
CDN.

Fuzzing is a method of identifying all entities of a given type
on a web server by resending (brute forcing) the same request

Def Con 31, Las Vegas, Nevada, United States, August 10-13, 2023

5

multiple times, and each time replacing (fuzzing) one or many
parameters with those from a list of commonly seen entities.
Penetration testers can then analyze the server responses for
variations that tell them if a given entity exists. Using programs
like ffuf or gobuster, we can fuzz web servers for entities like
existing usernames, SQL directories, or even existing
subdomains. However, this paper seeks to take this enumeration
a step further and identify subdomains that also point to
functional CDN edge proxies. Using Python programming to
take user input as the domain and fuzzing subdomains from a
list of top 1000 popular subdomains [2] into Yiu’s wget
parameters, we can test for responses that include the contents
of our df.txt file (“domain fronting works!”) and report back a
list of successful subdomains.

The Python app and BitQuark subdomain list used in this
paper can be found at https://github.com/cmiller-
umbc/subdomain_fuzzer. As shown below (see Figure 5),
domainfuzzer.py allows the user to input a desired domain and
reports back a list of subdomains through which traffic was
successfully domain fronted:

$python3 domainfuzzer.py

Domain: nginx.com

fuzzing top 1000 subdomains for nginx.com...

Successful subdomains:

 pages.nginx.com

900 subdomains remaining...

800 subdomains remaining...

700 subdomains remaining...

600 subdomains remaining...

500 subdomains remaining...

400 subdomains remaining...

300 subdomains remaining...

200 subdomains remaining...

100 subdomains remaining...

 cdn.nginx.com

 email.nginx.com

 www.nginx.com

0 subdomains remaining…

Fig. 5. Subdomain enumeration of nginx.com using domainfuzzer.py

As shown all 1000 subdomains are iteratively tested over
nginx.com and 4 are reported back as positive matches. Using
Yiu’s proof of concept we confirm these 4 subdomains to work
as domain fronting proxies (see Figure 6).

$wget -q -O - -U demo http://pages.nginx.com/df.txt --

header "Host: domainfronter.pages.dev"

domain fronting works!

 $wget -q -O - -U demo http://cdn.nginx.com/df.txt --

header "Host: domainfronter.pages.dev"

domain fronting works!

 $wget -q -O - -U demo http://email.nginx.com/df.txt --

header "Host: domainfronter.pages.dev"

domain fronting works!

 $wget -q -O - -U demo http://www.nginx.com/df.txt --

header "Host: domainfronter.pages.dev"

domain fronting works!

Fig. 6. Manual domain fronted requests to nginx.com confirming proxy

viability

E. Python Scripting

While domainfuzzer.py contains other elements, such as
threading, to improve efficiency, the crux of the script’s
functionality lies within a single while loop (see Figure 7).

while len(subdomains) > 0:

 subDomain = subdomains.pop()

 cmd = "wget -q --connect-timeout=2 -O - -U

demo http://" + subDomain + "." + domain + "/df.txt --

header \"Host: domainfronter.pages.dev\""

 sp = subprocess.Popen(str(cmd), shell=True,

stdout=subprocess.PIPE, stderr=subprocess.PIPE,

 universal_newlines=True)

 rc = sp.wait()

 out, err = sp.communicate()

 if out == "domain fronting works!":

 termcolor.cprint(" " + subDomain + "."

+ domain, "blue")

 results.writelines(subDomain + "\n")

 counter = counter + 1

 elif len(subdomains) == 0:

 break

 elif len(subdomains) % 100 == 0:

 print(str(len(subdomains))+" subdomains

remaining...")

Fig. 7. Code snippet from domainfuzzer.py of subdomain enumeration loop

During each iteration of the while loop a variable “cmd” is
set to Yiu’s wget statement, fuzzing in subdomains from the
BitQuark list. Using the Python subprocess library the cmd
string variable is passed to the host operating system as a shell
command, sending our custom HTTPS request to the desired
address. The response is then examined for the contents of
df.txt. If “domain fronting works!” is received back as a
response the subdomain is printed to stdout and our total count
of viable subdomains increases.

F. Adapting the Model to Microsoft Azure and other CDNs

As mentioned earlier in this paper, Microsoft recently
announced a ban on domain fronting traffic within the Azure
CDN starting Nov 8th, 2022. To test this ban we can adapt
domainfuzzer.py to enumerate subdomains on known Azure
hosted web domains using the same basic cloud networking
concepts as before. First we build a free Azure static website
hosting the df.txt file: delightful-sand-
056d73f0f.2.azurestaticapps.net. Then update the Host header
parameter of the wget statement contained within the while loop
of domainfuzzer.py to this address (instead of
domainfronter.pages.dev). Once these changes are made we run
the new script, appropriately named azure_domainfuzzer.py,
and pass it domain names of known-Azure hosted websites (see
Figure 8).

Def Con 31, Las Vegas, Nevada, United States, August 10-13, 2023

6

Fig. 8. Successful subdomain enumeration of six Azure CDN domains

As of February 26th, 2023 the following Azure resources
were identified as fully functional domain fronting proxies:
security.microsoft.com, portfolio.microsoft.com,

project.microsoft.com, ads.microsoft.com, es.microsoft.com,
mail.microsoft.com, domains.markmonitor.com,
account.markmonitor.com, corp.markmonitor.com,
status.azure.com, join.skype.com, pc.xbox.com,
email.xbox.com, and photos.onedrive.com. To ensure accuracy
all identified proxies were manually tested using Yiu’s wget
syntax and the contents of df.txt were returned.

V. RESULTS

Viable domain fronting proxies were successfully identified
in both the CloudFlare and Microsoft Azure CDNs using this
method of brute force subdomain enumeration. Despite a
November 8th, 2022 announcement from Microsoft claiming
functionality for their Azure Front Door, Azure Front Door
(classic), and Azure CDN Standard products that “block any
HTTP request that exhibits domain fronting behavior” 14 viable
domain fronting proxies on 6 of Microsoft’s own domains were
successfully proven to proxy domain fronted traffic.
Unsurprisingly, viable subdomains were identified more
frequently and at a greater average quantity on domains hosted
within the CloudFlare CDN, with over 2000 viable proxies
identified among the 30 domains tested. Nearly all of these
domains yielded at least one viable proxy with only 3
CloudFlare sites refusing all domain fronted traffic. Two of the
domains enumerated, medium.com and sourceforge.net, exist as
extreme outliers in the number of viable subdomains discovered
with 996 and 970 respectively. Ignoring these extreme outliers,
CloudFlare domains return an average of 6.61 viable proxies
using this methodology. See Tables 3 and 4.

While analyzing the results a pattern was identified among
the subdomains most commonly returned as true positive. Over
half of the CloudFlare domains tested have a www subdomain
that proxies domain fronted traffic. Other frequently seen
subdomains include api (10), cdn (8), mail (5), and ftp (5). See
Table 5.

No connection could be drawn between the contents of a
domain’s DNS records and whether or not that domain would
proxy fronted traffic. Over half of the domains tested showed a
CloudFlare server address in their DNS records, but 5 of those
still refused to proxy fronted traffic. 6 of the CloudFlare
domains tested contained no mention of CloudFlare services in
their DNS records, yet still successfully proxied the fronted
traffic. One domain’s records, huffingtonpost.com, contain the
address of a completely different CDN (awsdns-
hostmaster.amazon.com), yet still returned 3 viable fronting
proxies.

VI. CONCLUSION

By building upon existing innovations in domain fronting
this paper shows subdomain enumeration using Python brute
force scripting as a viable methodology for identifying domain
fronting proxies within a given Content Delivery Network.
Despite formidable innovations in the identification and
prevention of domain fronting traffic, penetration testers are still
able to identify and use domain fronting proxies within many of
today’s popular CDNs. Per their announcement, Microsoft
seeks to join the likes of Google and Amazon in blocking
domain fronted traffic, but they are, as of yet, not entirely
successful. The domainfuzzer.py application achieves an

Def Con 31, Las Vegas, Nevada, United States, August 10-13, 2023

7

additional goal of improving access to domain fronting
capabilities for non-technical users wishing to conceal their web
traffic from internet censorship. The cloud networking
fundamentals on which this methodology is based allow it to be
easily adapted for use on most CDNs.

 At a 2020 DEF CON, Hunstad [12] presented “domain
hiding” as a logical evolution to domain fronting by using TLS
v1.3’s ESNI header to conceal the forbidden address. Amazon
and Google have since made efforts to thwart this functionality,
but more research is needed to determine if it could be leveraged
within domainfuzzer.py to identify viable domain hiding proxies
in those CDNs. Alternatively, CloudFlare offers a bulk
redirector function for Pages currently in Open Beta. More
research is needed to determine if turning
domainfronter.pages.dev into a redirector, could provide a DIY
version of the MEEK pluggable API [9], using the hidden
destination to proxy traffic outside of the CloudFlare CDN.

As history has confirmed, we can also expect more
impressive innovations in censorship technology. These could
include more finely tuned neural networks that utilize advanced
“deep fingerprinting” to identify domain fronted traffic [18] or
improved security postures [18] of companies as cyber security
gains awareness globally. While subdomain enumeration is
currently a solution for identifying domain fronting proxies, it
will eventually become obsolete and need to be upgraded or
replaced by further innovation.

ACKNOWLEDGMENT

We would like to thank Dr. Augusto Casas of the University
of Maryland Baltimore County for some preliminary input and
reviews of this paper.

REFERENCES

[1] 32 Companies That Use Cloudflare [2022]. (2022, May 21). Retrieved
October 22, 2022, from
https://www.starterstory.com/tools/cloudflare/companies-using

[2] BitQuark - bitquark/dnspop: Analysis of DNS records to find popular
trends. (Mar 10, 2016). GitHub. Retrieved October 18, 2022, from
https://github.com/bitquark/dnspop

[3] Borosh, S. (2018, April 12). SSL Domain Fronting 101 - rvrsh3ll.
Medium. https://medium.com/rvrsh3ll/ssl-domain-fronting-101-
4348d410c56f

[4] Brandom, R. (2018, April 18). A Google update just created a big
problem for anti-censorship tools. The Verge.
https://www.theverge.com/2018/4/18/17253784/google-domain-
fronting-discontinued-signal-tor-vpn

[5] CDN Finder - CDN Planet. (n.d.). Retrieved December 13, 2022, from
https://www.cdnplanet.com/tools/cdnfinder/

[6] Dean, B. (2021, July 2). Cloudflare Stats for 2022: How Many Websites
Use Cloudflare? https://backlinko.com/cloudflare-users#cloudfare-users

[7] Dig Command Manual. (n.d.). DigGui.com. Retrieved October 7, 2022,
from https://www.diggui.com/dig-command-manual.php

[8] Ergun, O. (2021, January 20). What is CDN - Content Delivery Networks.
OrphanErgun.net. https://orhanergun.net/what-is-cdn-content-delivery-
networks

[9] Fifield, D., Lan, C., Hynes, R., Wegmann, P., & Paxson, V. (2015, May
15). Blocking-resistant communication through domain fronting.
https://www.petsymposium.org/2015/papers/03_Fifield.pdf

[10] Generally available: Block domain fronting behavior on newly create. . .
(n.d.). Microsoft Azure. https://azure.microsoft.com/en-
us/updates/generally-available-block-domain-fronting-behavior-on-
newly-created-customer-resources/

[11] Guan, Z., Gou, G., Guan, Y., & Wang, B. (Nov. 12-14, 2019). An
Empirical Analysis of Plugin-based Tor Traffic over SSH Tunnel.
MILCOM 2019 - 2019 IEEE Military Communications Conference.
Retrieved October 7, 2022, from
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9020938

[12] Hunstad, E. [DEFCONConference]. (2020, August 5). DEF CON Safe
Mode - Domain Fronting is Dead, Long Live Domain Fronting Using
TLS 1.3 [Video]. YouTube.
https://www.youtube.com/watch?v=TDg092qe50g

[13] Li, Z., Wang, M., Wang, X., Shi, J., Zou, K., & Su, M. (2019).
Identification Domain Fronting Traffic for Revealing Obfuscated C2
Communications. IEEE Explore, 2021 IEEE Sixth International
Conference on Data Science in Cyberspace (DSC).
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9750455

[14] Mudge, R. [Raphael Mudge] (2017, February 3). Domain Fronting and
High-trust Redirectors with Cobalt Strike. YouTube. Retrieved October
7, 2022, from https://www.youtube.com/watch?v=IKO1ovl7Ky4

[15] Muradova, G., & Heymatyar, M. (Oct 23-25, 2019). Securing and Hiding
the Destination of Confidential Medical Information with Domain
Fronting. 2019 IEEE 13th International Conference on Application of
Information and Communication Technologies (AICT). Retrieved
October 7, 2022, from
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8981756

[16] Pluggable Transports-Meek. (n.d.). Tor Project. Retrieved October 7,
2022, from https://gitweb.torproject.org/pluggable-
transports/meek.git/tree/

[17] Sheffey, S. R., & Aderholdt, F. (2019). Improving Meek With Adversarial
Techniques. Usenix. Retrieved October 7, 2022, from
https://www.usenix.org/system/files/foci19-paper_sheffey.pdf

[18] Sirinam, P., Imani, M., Juarez, M., & Wright, M. (2018, October 15).
Deep Fingerprinting: Undermining Website Fingerprinting Defenses
with Deep Learning. CCS ’18: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security.
https://dl.acm.org/doi/pdf/10.1145/3243734.3243768

[19] Using custom URLs by adding alternate domain names (CNAMEs) -
Amazon CloudFront. (n.d.). Retrieved October 7, 2022, from
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuid
e/CNAMEs.html

[20] Wang X., Chen Z., Li Z., Huang W., Wang M., Pan S., Shi J. (2022)
Identification of MEEK-Based TOR Hidden Service Access Using the Key
Packet Sequence https://www.iccs-
meeting.org/archive/iccs2022/papers/133500548.pdf

[21] Websites using CloudFlare • Hunter TechLookup. (n.d.). Hunter.
Retrieved October 22, 2022, from
https://hunter.io/technologies/cloudflare

[22] What is SNI (Server Name Indication)? (2022). CloudFlare.com.
Retrieved October 22, 2022, from
https://www.cloudflare.com/learning/ssl/what-is-sni/

[23] Yiu, V. [Vincent]. (2017, February 4). Abusing Domain Fronting on
Amazon CloudFront [4KHD] [Video]. Retrieved October 7, 2022, from
https://www.youtube.com/watch?v=zSBnM2HcRTw

[24] Yiu, V. (February 2017). Domain Fronting via. CloudFront Alternate
Domains. Retrieved October 22, 2022, from
https://www.vincentyiu.com/red-team/domain-fronting/domain-
fronting-via.-cloudfront-alternate-domains

[25] Mudge, R. (2019, November 12). Red Team Ops with Cobalt Strike (2 of
9): Infrastructure [Video]. YouTube. Retrieved October 20, 2022,
from https://www.youtube.com/watch?v=5gwEMocFkc0

https://www.starterstory.com/tools/cloudflare/companies-using
https://github.com/bitquark/dnspop
https://medium.com/rvrsh3ll/ssl-domain-fronting-101-4348d410c56f
https://medium.com/rvrsh3ll/ssl-domain-fronting-101-4348d410c56f
https://www.theverge.com/2018/4/18/17253784/google-domain-fronting-discontinued-signal-tor-vpn
https://www.theverge.com/2018/4/18/17253784/google-domain-fronting-discontinued-signal-tor-vpn
https://www.cdnplanet.com/tools/cdnfinder/
https://backlinko.com/cloudflare-users#cloudfare-users
https://www.diggui.com/dig-command-manual.php
https://orhanergun.net/what-is-cdn-content-delivery-networks
https://orhanergun.net/what-is-cdn-content-delivery-networks
https://www.petsymposium.org/2015/papers/03_Fifield.pdf
https://www.petsymposium.org/2015/papers/03_Fifield.pdf
https://azure.microsoft.com/en-us/updates/generally-available-block-domain-fronting-behavior-on-newly-created-customer-resources/
https://azure.microsoft.com/en-us/updates/generally-available-block-domain-fronting-behavior-on-newly-created-customer-resources/
https://azure.microsoft.com/en-us/updates/generally-available-block-domain-fronting-behavior-on-newly-created-customer-resources/
https://ieeexplore.ieee.org/xpl/conhome/8993674/proceeding
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9020938
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9020938
https://www.youtube.com/watch?v=TDg092qe50g
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9750455
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9750455
https://www.youtube.com/watch?v=IKO1ovl7Ky4
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8981756
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8981756
https://gitweb.torproject.org/pluggable-transports/meek.git/tree/
https://gitweb.torproject.org/pluggable-transports/meek.git/tree/
https://www.usenix.org/system/files/foci19-paper_sheffey.pdf
https://www.usenix.org/system/files/foci19-paper_sheffey.pdf
https://dl.acm.org/doi/pdf/10.1145/3243734.3243768
https://dl.acm.org/doi/pdf/10.1145/3243734.3243768
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/CNAMEs.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/CNAMEs.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/CNAMEs.html
https://www.iccs-meeting.org/archive/iccs2022/papers/133500548.pdf
https://www.iccs-meeting.org/archive/iccs2022/papers/133500548.pdf
https://hunter.io/technologies/cloudflare
https://www.cloudflare.com/learning/ssl/what-is-sni/
https://www.youtube.com/watch?v=zSBnM2HcRTw
https://www.youtube.com/watch?v=zSBnM2HcRTw
https://www.vincentyiu.com/red-team/domain-fronting/domain-fronting-via.-cloudfront-alternate-domains
https://www.vincentyiu.com/red-team/domain-fronting/domain-fronting-via.-cloudfront-alternate-domains
https://www.youtube.com/watch?v=5gwEMocFkc0

Def Con 31, Las Vegas, Nevada, United States, August 10-13, 2023

8

TABLE I. 29 KNOWN CLOUDFRONT HOSTED DOMAINS QUERIED, NONE OF THEM HAVE EXISTING CNAME RECORDS

$dig -f cfdomains.txt -t CNAME | grep "CNAME"

;\239\187\191discord.gg. IN CNAME

;sourceforge.net. IN CNAME

;nginx.com. IN CNAME

;bloomberg.com. IN CNAME

;shopify.com. IN CNAME

;medium.com. IN CNAME

;vimeo.com. IN CNAME

;nodejs.org. IN CNAME

;huffingtonpost.com. IN CNAME

;xeroshoes.com. IN CNAME

;rightmessage.com. IN CNAME

;snappa.com. IN CNAME

;wheelysales.com. IN CNAME

;counterweightcreative.co. IN CNAME

;bonify.de. IN CNAME

;populum.com. IN CNAME

;episode.ninja. IN CNAME

;leavemealone.app. IN CNAME

;huntakiller.com. IN CNAME

;uplink.com. IN CNAME

;marketbeat.com. IN CNAME

;scribemedia.com. IN CNAME

;jobscan.co. IN CNAME

;katiegoesplatinum.com. IN CNAME

;tickettailor.com. IN CNAME

;upwork.com. IN CNAME

;breezymobility.com.au. IN CNAME

;keyholesoftware.com. IN CNAME

;codekitapp.com. IN CNAME

$dig -f cfdomains.txt -t CNAME | grep "SOA"

discord.gg. 30 IN SOA c.ci-servers.org. dnsmaster.channelisles.net. 2023022244…

sourceforge.net. 30 IN SOA ns11.constellix.com. dns.constellix.com. 2015010283 43200…

nginx.com. 30 IN SOA ns.nginx.com. hostmaster.nginx.com. 20220460 28800 7200…

bloomberg.com. 30 IN SOA pdns1.ultradns.net. dnsmaster.bloomberg.com. 2013076992…

shopify.com. 30 IN SOA ns1.dnsimple.com. admin.dnsimple.com. 1477237709 86400 7200…

medium.com. 30 IN SOA alina.ns.cloudflare.com. dns.cloudflare.com. 2302529701…

vimeo.com. 30 IN SOA ns-70.awsdns-08.com. awsdns-hostmaster.amazon.com. 20140201…

nodejs.org. 30 IN SOA meera.ns.cloudflare.com. dns.cloudflare.com. 2301190932…

huffingtonpost.com. 30 IN SOA huffingtonpost.com. awsdns-hostmaster.amazon.com. 1 28800…

xeroshoes.com. 30 IN SOA damon.ns.cloudflare.com. dns.cloudflare.com. 2300071886…

rightmessage.com. 30 IN SOA bayan.ns.cloudflare.com. dns.cloudflare.com. 2291500221 100…

snappa.com. 30 IN SOA dawn.ns.cloudflare.com. dns.cloudflare.com. 2278239029 1000…

wheelysales.com. 30 IN SOA amanda.ns.cloudflare.com. dns.cloudflare.com. 2299983011 10…

counterweightcreative.co. 30 IN SOA joaquin.ns.cloudflare.com. dns.cloudflare.com. 2300148293…

bonify.de. 30 IN SOA ned.ns.cloudflare.com. dns.cloudflare.com. 2302503105 10000…

populum.com. 30 IN SOA connie.ns.cloudflare.com. dns.cloudflare.com. 2280072249…

episode.ninja. 30 IN SOA donna.ns.cloudflare.com. dns.cloudflare.com. 2280032398…

leavemealone.app. 30 IN SOA ivan.ns.cloudflare.com. dns.cloudflare.com. 2300292581 1000…

huntakiller.com. 30 IN SOA ken.ns.cloudflare.com. dns.cloudflare.com. 2300765135 10000…

uplink.com. 30 IN SOA pdns03.domaincontrol.com. dns.jomax.net. 2023020702 28800…

marketbeat.com. 30 IN SOA isla.ns.cloudflare.com. dns.cloudflare.com. 2302413936 1000…

scribemedia.com. 30 IN SOA derek.ns.cloudflare.com. dns.cloudflare.com. 2300157391 100…

jobscan.co. 30 IN SOA candy.ns.cloudflare.com. dns.cloudflare.com. 2301881876…

katiegoesplatinum.com. 30 IN SOA amy.ns.cloudflare.com. dns.cloudflare.com. 2280541693 10000…

tickettailor.com. 30 IN SOA alex.ns.cloudflare.com. dns.cloudflare.com. 2300665933 1000…

upwork.com. 30 IN SOA fay.ns.cloudflare.com. dns.cloudflare.com. 2302549985 10000…

breezymobility.com.au. 30 IN SOA q.au. noc.afilias-nst.info. 1534290277 10800 3600 2764800…

keyholesoftware.com. 30 IN SOA fred.ns.cloudflare.com. dns.cloudflare.com. 2302506017 1000…

codekitapp.com. 30 IN SOA andy.ns.cloudflare.com. dns.cloudflare.com. 2280028566 1000…

Def Con 31, Las Vegas, Nevada, United States, August 10-13, 2023

9

TABLE II. MODERN DNS CONFIGURATIONS VARY SO WIDELY FROM TARGET TO TARGET THAT THIS IS NO LONGER THE CASE

#wget -q -O - -U demo http://discord.gg/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://sourceforge.net/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://nginx.com/df.txt --header "Host: domainfronter.pages.dev"

#wget -q -O - -U demo http://bloomberg.com/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://shopify.com/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://medium.com/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://vimeo.com/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://nodejs.org/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://huffingtonpost.com/df.txt --header "Host: domainfronter.pages.dev"

#wget -q -O - -U demo http://xeroshoes.com/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://rightmessage.com/df.txt --header "Host: domainfronter.pages.dev"

#wget -q -O - -U demo http://snappa.com/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://wheelysales.com/df.txt --header "Host: domainfronter.pages.dev"

#wget -q -O - -U demo http://counterweightcreative.co/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://bonify.de/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://populum.com/df.txt --header "Host: domainfronter.pages.dev"

#wget -q -O - -U demo http://episode.ninja/df.txt --header "Host: domainfronter.pages.dev"

#wget -q -O - -U demo http://leavemealone.app/df.txt --header "Host: domainfronter.pages.dev"

#wget -q -O - -U demo http://huntakiller.com/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://skyalliance-va.com/df.txt --header "Host: domainfronter.pages.dev"

#wget -q -O - -U demo http://marketbeat.com/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://scribemedia.com/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://jobscan.co/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://katiegoesplatinum.com/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://tickettailor.com/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://upwork.com/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://breezymobility.com.au/df.txt --header "Host: domainfronter.pages.dev"

#wget -q -O - -U demo http://keyholesoftware.com/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

#wget -q -O - -U demo http://codekitapp.com/df.txt --header "Host: domainfronter.pages.dev"

domain fronting works!

Def Con 31, Las Vegas, Nevada, United States, August 10-13, 2023

10

TABLE III. CLOUNDFLARE DOMAINS

CloudFlare Domain

CloudFlare

address found in

DNS records

Top level

domain fronts

traffic

of Viable

Subdomains

medium.com Y Y 996

sourceforge.net N Y 970

shopify.com N Y 43

upwork.com Y Y 21

bloomberg.com N Y 19

counterweightcreative.co Y Y 12

vimeo.com N Y 10

bonify.de Y Y 10

jobscan.co Y Y 9

xeroshoes.com Y Y 9

tickettailor.com Y Y 6

huntakiller.com Y Y 5

katiegoesplatinum.com Y Y 4

rightmessage.com Y N 4

snappa.com Y Y 4

scribemedia.com Y Y 4

marketbeat.com Y Y 3

leavemealone.app Y N 3

wheelysales.com Y N 3

huffingtonpost.com N N 3

nginx.com N N 3

nodejs.org Y Y 2

episode.ninja Y N 2

discord.gg N Y 2

uplink.com N Y 2

codekitapp.com Y Y 1

populum.com Y N 1

keyholesoftware.com Y Y 0

breezemobility.com.au N N 0

skyalliance-va.com N N 0

http://medium.com/
http://sourceforge.net/
http://shopify.com/
http://upwork.com/
http://bloomberg.com/
http://counterweightcreative.co/
http://vimeo.com/
http://bonify.de/
http://jobscan.co/
http://xeroshoes.com/
http://tickettailor.com/
http://huntakiller.com/
http://katiegoesplatinum.com/
http://rightmessage.com/
http://snappa.com/
http://scribemedia.com/
http://marketbeat.com/
http://wheelysales.com/
http://huffingtonpost.com/
http://nginx.com/
http://nodejs.org/
http://discord.gg/
http://uplink.com/
http://codekitapp.com/
http://populum.com/
http://keyholesoftware.com/
http://breezemobility.com.au/
http://skyalliance-va.com/

Def Con 31, Las Vegas, Nevada, United States, August 10-13, 2023

11

TABLE IV. TABLE TYPE STYLES

Microsoft Azure

Domain

Azure Cloud address

found in DNS

records

Top level

domain fronts

traffic

of Viable

Subdomains

microsoft.com Y N 6

markmonitor.com N N 3

xbox.com Y N 2

azure.com Y N 1

onedrive.com Y N 1

skype.com Y N 1

outlook.com Y N 0

live.com Y N 0

hotmail.com Y N 0

bing.com N N 0

bingbar.com Y N 0

internetexplorer.com Y N 0

sqlserver.net N N 0

visualstudio.com Y N 0

xbox360.com Y N 0

xboxone.com Y N 0

zune.com Y N 0

TABLE V. TABLE TYPE STYLES

Commonly Viable Subdomains Count

www 17

api 10

cdn 8

status 7

help 7

app 7

blog 7

dev 6

support 5

search 5

careers 5

mail 5

ftp 5

go 5

admin 5

http://microsoft.com/
http://markmonitor.com/
http://xbox.com/
http://azure.com/
http://onedrive.com/
http://skype.com/
http://outlook.com/
http://live.com/
http://hotmail.com/
http://bing.com/
http://bingbar.com/
http://internetexplorer.com/
http://sqlserver.net/
http://visualstudio.com/
http://xbox360.com/
http://xboxone.com/
http://zune.com/

	BlanksCover.pdf
	Domain Fronting Through Microsoft Azure and CloudFlare - DEFCON

