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Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded
amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by
natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover
relevant physico-chemical properties, or ‘‘chemistry space.’’ Using this metric, we compared the encoded
amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally
generated compound library containing 1913 alternative amino acids that lie within the molecular weight
range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded
alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common
features and anomalies, and we explore their implications for synthetic biology. We present these
computations as evidence that the set of 20 amino acids found within the standard genetic code is the result
of considerable natural selection. The amino acids used for constructing coded proteins may represent a
largely global optimum, such that any aqueous biochemistry would use a very similar set.

L
ife on Earth has adapted to an impressively broad range of environments in large part by constructing diverse
protein polymers using a set of just 20 genetically encoded amino acids. Multiple lines of evidence suggest
that a wide range of amino acids, including many not used in biologically encoded proteins, were available

from abiotic synthesis prior to the origin of life1–4. Even assuming life’s usage of amino acids was biased by
plausible prebiotic sources, of which a plethora exist, it appears that at least half of the genetically encoded amino
acids arose as ‘‘inventions’’ of early living systems - novel chemical derivations of simpler counterparts during
early metabolic evolution5. Combined, these two insights suggest that the set of amino acids incorporated into
genetic coding represents only a small fraction of the wider pool of alternatives that might plausibly have been
used6,7. The set of genetically encoded amino acids could therefore represent a fundamental adaptation, shaped by
natural selection to give maximum fitness advantage. This model has proven to be consistent with predictions of
evolutionary growth of the amino acid alphabet8, and simple statistical analysis reveals that the genetically
encoded amino acids do indeed collectively exhibit unusual physical properties relative to random sets of amino
acids9.

While previous studies have found strong support for the idea that the 20 genetically encoded amino acids
exhibit non-random, adaptive properties as a set9,10, the strength of these findings is limited by the scope of
alternative amino acids considered. Previous analyses considered a total of at most 76 amino acids: 50 that had
been identified in the Murchison meteorite (representing prebiotically plausible amino acids including the coded
amino acids Gly, Ala, Val, Pro, Glu, Asp, Leu, and Ile) the 12 remaining encoded amino acids not found in
Murchison, and 14 intermediates of the metabolic pathways by which contemporary organisms synthesize amino
acids (representing amino acids made available to organisms through evolutionary innovation). Recent work that
applied chemoinformatics and structure generation to the question of the isomer space surrounding the gen-
etically encoded amino acids indicates far more possibilities than previously imagined, numbering (depending on
the structure generation criteria) in the range of several thousands to a few billion11. This finding calls into
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question the robustness of evidence regarding the adaptive qualities
of the encoded amino acids relative to a background pool of only 76
alternatives. Are the perceived special qualities of the encoded amino
acids simply an artifact of the comparison set’s small size?

Here we test whether the observed non-random, adaptive prop-
erties for the set of genetically encoded amino acids remain robust
when compared to a far larger and more comprehensive set of chem-
ical possibilities than was previously available. We also begin to
explore for the first time some ‘‘better sets,’’ which, given their
adaptive qualities, might be plausible candidates for alternative
biochemistries.

Results
As described in the methods section, we drew 108 random sets of 20
amino acids from our library of 1913 structures and compared their
coverage of three chemical properties: size, charge, and hydrophobi-
city, to the standard amino acid alphabet. We measured how often
the random sets demonstrated better coverage of chemistry space in
one or more, two or more, or all three properties. In doing so, we
found that better sets were extremely rare. In fact, when examining
all three properties simultaneously, we detected only six sets with
better coverage out of the 108 possibilities tested. These results are
summarized in Figure 1.

We also programmed our search to save the identities of the
molecules in the cases when better sets were found. Figure 2 shows
three-dimensional plots of select better sets along with the encoded
amino acids in the ‘chemistry space’ of size, charge and hydropho-
bicity, allowing visualization of property space coverage. While these
three dimensions of property space are sufficient to demonstrate the
adaptive advantage of the encoded amino acids, they are necessarily
reductive and cannot capture all of the structural and energetic
information contained in the ‘‘better coverage’’ sets. Figure 3 there-
fore illustrates the molecules comprising the six amino acid sets that
exhibit better coverage than the encoded amino acids in all three
physical properties, as well as their summed heats of formation
(DHfu). When compared with the coded set, in no case was an
alternative set also less costly in terms of total DHfu (DHfu more

negative). In other words, the genetically encoded set of 20 amino
acids once again meets the expectations of a hypothesis based on
natural selection.

Discussion
The results of the analysis of the 1913 chemical structures presented
here corroborate and strengthen previous analyses that used a much
smaller set of only 76 amino acid structures9. With only 6 ? 1026% of
conceivable sets being as good or better, the encoded amino acids’
coverage of chemistry space is remarkable regardless of the size of the
background to which they are compared. This is consistent with the
hypothesis that natural selection influenced the composition of the
encoded amino acid alphabet, contributing one more clue to the
much deeper and wider debate regarding the roles of chance versus
predictability in the evolution of life (e.g. Ref. 12).

Even a library of several thousand molecules underestimates the
true number of plausible amino acid chemical structures that might
plausibly have entered into the genetic coding of living systems11.
Our study is, however, the first to leverage the potential for computa-
tional chemistry to create and analyze densely populated chemistry
space. The results of this analysis provide good reason to think that
the highly unusual nature of the set of genetically encoded amino
acids is not an artifact of the depth to which a background of possible
amino acid structures is constructed.

While some of the molecules present in our library could be cri-
ticized for their likely instability, this does not create a bias with
respect to the descriptor values. In other words, even if many mole-
cules were culled from the library used here, the unusual nature of the
coded set would persist.

Recording the sets of amino acid structures that appear to cover
chemistry space as well or better than the encoded amino acids allows
us to examine the properties of these better sets. Although six sets are
a small sample of all possible better sets, interesting commonalities
are observed. We first note that five of the six computed better sets
(,83%) include one or more of the encoded amino acids. The prob-
ability that any given random set of 20 amino acids contains at least
one genetically encoded amino acid is only 19%. Alanine and serine
show up considerably more than would be expected by chance,
whereas glycine never appears in any set (although sarcosine, a close
structural homolog, appears three times). Perhaps not surprisingly,
histidine, which also remarkably appears once, and serine lie on the
outer edges of the 3-dimensional property space defined by the coded
set (see Figure 2a). Interestingly, meteoritic amino acids are also
highly represented in our better sets. 21 of the 37 meteoritic a-pro-
tonated-a-amino acids reported in carbonaceous chondrites13 over-
lap with our library. 14 of those 21 are encoded amino acids, seven are
non-coded. The probability to have at least one of these non-coded
meteoritic amino acids in a random set of 20 is only 7.1%. However,
again, five of the six sets depicted in Figure 3 contain at least one non-
coded meteoritic amino acid.

Functional criteria, such as the inclusion of certain functional
groups, are not explicitly considered as dimensions of chemistry
space in our analysis – indeed, the point of ‘‘chemistry space’’ is to
abstract beyond these specifics14. Nonetheless, we observe interesting
patterns in the distribution of functional groups within our better
sets. For example, only three of the six sets include amino acid side-
chains with sulfhydryl functional groups, and only one contains a
carboxylic acid. Novel motifs that do occur include pyrrole (though
the so-called 22nd amino acid, pyrrolysine also includes this ring
system) pyrazine, triazine, pyridine, pyrimidine, isoxazole, and iso-
indole ring systems, and aldehyde, ketone, ether and ester functional
groups. Many of these also contain aromatic moieties substituted
directly to the a-carbon atoms of the amino acid backbone, which
may make these prone to epimerization – another example of how
the encoded amino acids may be optimized beyond the simple con-
siderations of our tests. Indeed, side chains of the better sets also

Figure 1 | The number of random sets (out of 108) with better coverage
than the encoded amino acids in one, two, or three properties. Note that

the circles are not drawn to scale; an appropriately scaled circle

representing the number of random sets with better coverage in all three

properties than the encoded set would only cover an area approximately 1/

100th of that of the period at the end of this sentence.
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include nucleophilic groups positioned flexibly at distances from the
backbone that could facilitate peptide scission, a point noted as a
possible explanation for the absence of homoserine, or homocysteine
and its analogues, from the coded set15.

Ring containing structures are heavily represented in the total set
(only 306 of 1913 (,16%) are acyclic), whereas the hypothetically
more optimal sets contain an average of 29% acyclic amino acids, and
the coded set contains 80% acyclic structures. In other words,
optimal sets defined by our criteria are biased against the inclusion
of ring-containing structures. The hypothetical better sets also con-
tain a number of structures of potentially questionable hydro-, redox
or photolytic stability. That none of the hypothetically better sets has
a lower DHfu than the coded set strongly suggests that metabolic
energetic concerns have been guiding forces in the natural selection
of biology’s set.

These observations combined suggest that additional factors
beyond selection for the three properties principally considered in
our test contributed to the adaptability of the coded set as a LUCA
organism colonized habitable spaces on Earth. Given that each addi-
tional criterion greatly reduces the number of better sets, it would
seem that adding functional criteria would only make the coded set
even more unusual, and possibly reflect the truly limited set of pos-
sibilities that life has to choose from. What is remarkable within the
analysis presented here is how few (and how simple) are the criteria
required to perceive the encoded amino acids as a highly unusual set.

Many lines of evidence suggest that the amino acids were not
recruited by biology all at once, but rather some may have been
initially provided by environmental syntheses while others were
added stepwise as novel biosynthetic pathways became available dur-
ing evolution5,8,16–19. Thus, other questions could be asked about how
the order in which amino acids are introduced affects the overall
optimality of a set, or how changing the number of amino acids
affects the optimality of sets that can be constructed. Given a map-
ping of three nucleotides to one amino acid, a highly redundant
code could be constructed with fewer members that gives the same
range and evenness of coverage, but that would lack the nuance of a
larger, more diverse set. Ideas similar to this have been explored for
‘‘error minimizing’’ properties of the code19 but not for the concept of
coverage of chemistry space.

Likewise, it should in principle be possible to compute plausible
metabolisms which could connect the amino acids in the alternative
sets, and it may be that metabolically "tighter" sets exist among them.
This would form a useful target for future work.

The sets that exhibit better coverage of chemistry space than the
genetically encoded amino acids appear to achieve this coverage in
different ways. This raises the question: would an alternative bio-
chemistry using such an amino acid alphabet have access to protein
folds beyond the apparently finite repertoire known from terrestrial
biochemistry? As ab initio folding software continues to improve, it
could be used to explore this question. Quite aside from a relevance
here for detecting alternative origins for life20,21, the recent demon-
stration of the stable incorporation of two new nucleotides into bac-
terial DNA has opened the possibility of adding hundreds of new
coded amino acids to the artificial biochemical repertoire22. Analyses
such as the one presented here might be useful for determining which
amino acids could be added to such a "super-organism" so as to most
extend its ability to explore novel protein space.

Methods
Generating background molecules. The starting point for our analysis was a
previously computed set of a-amino acid structures11. Using molecular structure
generation software based on principles of graph theory and constructive
combinatorics23, this study computed two virtual amino acid libraries, a combined
library (CL) including isomers of the 20 coded amino acids and their sub-formulas,
and a unique library (UL), based on a unique fuzzy formula representing the complete
formula range of the coded a-amino acids up to a certain number of C atoms. Due to
the combinatorial nature of generating isomers and the concomitant exponential
growth of the number of structures with increasing number of atoms, the latter library
proved to be unwieldy, estimated to result in a library of more than 1012 structures11.
We therefore chose to use the smaller library, which does not represent all possible
amino acids in the size range of the encoded amino acids but gives far more
comprehensive insight than previous studies into the chemical possibilities available
to early life. We further filtered the 3,846-member library to exclude what were
deemed to be especially unstable structures (mainly hemi-aminals). This left a final set
of 1913 molecules that represent likely stable structural isomers of the 20 genetically
encoded amino acids and their sub-formulas, including the biologically encoded 20
themselves. The set is available for download as an SD file, see SI.

Definition of adaptive properties for a set of amino acids. In order to test the
adaptive properties of the genetically encoded amino acids, we followed the
hypothesis of Philip and Freeland9, that a well-formed set of amino acids should be
distributed evenly across a broad range of values for key physical properties. In other
words, a set of amino acids with broad and even distribution within a given property

Figure 2 | Figure 2a shows how amino acids occupy descriptor space. The genetically encoded amino acids (green spheres) are labeled by their one-letter

abbreviations. Red and blue spheres represent two ‘‘better-coverage’’ (the first two sets from Figure 3). Figure 2b adds the remaining compounds of our

virtual libraries as gray spheres. For animated and interactive representations see SI.
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space would provide adaptive advantage during the evolutionary discovery of novel
proteins. These two characteristics combined define the set’s coverage of chemical
property space.

Choice and prediction of physico-chemical properties. Following the precedent of
previous analysis6,7,9, as well as broad consensus on what defines functional properties
of amino acids within proteins (reviewed in Ref. 7 and corroborated by recent meta-
analysis24), we chose three chemical descriptors: size, hydrophobicity, and charge.
This represents a carefully and thoughtfully selected alternative to considering any

number of the thousands of available amino acid molecular descriptors in order to ask
which, if any, cause the genetically encoded set to appear unusual. Our intention was
to minimize the risk of introducing fallacious, a posteriori reasoning. That is, we
wanted to avoid detecting the properties of genetically encoded amino acids that
natural selection has ‘‘seized upon’’ over the course of billions of years of biological
evolution and mistaking these for the properties that guided incorporation into
genetic coding. Because the majority of the amino acids considered in our analysis are
computationally generated molecules, we used chemical property prediction software
to calculate quantitative values for our chosen descriptors. Accurate prediction of van

Figure 3 | Six alternative amino acid sets detected within a sample of 108 random sets that had better coverage than the encoded set of all three
measured properties. The sum computed free enthalpy of formation of each set is provided. For reference, this value for the coded set is -2306 kcal/mol.

Black cartouches represent amino acids identified in meteorites, light blue those found in both meteorites and the encoded set, red those found only in the

encoded set.
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der Waals volume (VvdW - a measure of the total volume of the molecule enclosed by
the van der Waals surface, for size) and log P (the partition coefficient, a measure of
the distribution of the molecule between two solvents, typically 1-octanol and water,
for hydrophobicity) is straightforward (see Ref. 25 for VvdW and Ref. 26 for log P).
These values were calculated using MOLGEN-QSPR27. Charge, however, is less easily
predicted6. We chose to calculate pKa rather than pI as a measurement for charge
because there are fewer experimentally determined values of pI available with which
to train prediction software. Our pKa values were computed using ChemAxon’s
JChem package (http://www.chemaxon.com). To obtain values for an amino acid’s
side-chain in a polypeptide-like context, we first modified each amino acid by
acetylating the a-amino group and converting the a-carboxyl group to an N-
methylamide. As the library was initially generated using a single trivalent atom to
substitute for the core H2NCH(C)COOH (for the sake of computational speed, see
Ref. 11), the accurate CH3CONHCH(C)CONHCH3 substructure was reinstated
prior to pKa calculations using MOLGEN-COMB28. The pKa values of all functional
groups within the range from 2 to 14 in each molecule were then averaged.

Calculations of heats of formation. The three physico-chemical properties of amino
acids used in our tests are likely not the only characteristics that render amino acids
adaptive, either individually or as a group. In addition, a functioning set of amino
acids must be compatible with the organism’s metabolism, and, all else being equal,
natural selection would select a metabolism that is as efficient as possible2. For
example, all of the coded 20 amino acids are interconnected by the network of
metabolic reactions by which they are synthesized and decomposed. Presumably the
same principle would hold any biochemistry29,30. Furthermore, the metabolic ‘‘cost’’
of an amino acid correlates with its usage in extant organisms in a manner consistent
with natural selection for efficiency31–33. It would therefore seem likely that, all other
things being equal, the most adaptive coded set would be one which allows for the
greatest and most even exploration of descriptor space while at the same time being
the least metabolically costly. In fact, it has already been noted that the encoded amino
acids, particularly those thought to have been early additions to the genetic alphabet,
have low thermodynamic ‘‘cost’’34,35. To test this idea in the context of our study, we
calculated one additional parameter – the enthalpy of formation (DHfu) of each
molecule.

Calculations of heats of formation, DHfu, were performed by the RM1 method
implemented in the semi-empirical quantum chemistry software package MOPAC2009
(MOPAC2009, J. J. P. Stewart, Stewart Computational Chemistry; Colorado Springs,
CO, USA). Though sometimes perceived as less accurate than Density Functional
Theory (DFT) methods, semi-empirical methods exhibit similar estimation error in
the case of amino acids and are computed much more quickly. In particular, the RM1
method utilized here is a reparameterization of AM1, i.e. all RM1 parameters are
optimized over those of AM136. RM1 is therefore much more precise than the
previously used AM1 and PM3 methods and has the same level of accuracy as PM6.
As has been shown using a large set of molecules, the RM1 method is able to predict
geometries and heats of formation consistent with DFT results and experimental
observations36. The speed of MOPAC2009 and improved accuracy of RM1 are par-
ticularly valuable for generating electronic descriptors for structure–activity and
structure-property relationship analyses. Recently, Puzyn et al.37 recommended the
use of semi-empirical methods in QSAR/QSPR studies instead of the much more
computationally-expensive DFT methods. The structures of amino acids were opti-
mized to get conformations with minimal energy. The RM1 geometry optimizations
of amino acids were carried out using the eigenvector following (EF) optimization
procedure with a final gradient norm of the energy gradient less than 0.1 kcal/mol.

We chose not to consider DHfu as an additional dimension of chemistry space as it
measures something fundamentally different, though no less important, from phy-
sico-chemical property descriptors. Our chosen three descriptors estimate the cor-
responding properties of possible polymers given a set of amino acids, whereas DHfu
helps to constrain how easily these sets of molecules can be synthesized, be it abio-
tically or biochemically. In extant biological systems there is a strong correspondence
between frequency of use of an amino acid in a protein and its biosynthetic cost2,32,
however this is a measure of how frequently an amino acid is used to provide some
aspect of chemistry space, not of how that space is occupied by that set.

Selection of Random Sets and Comparison of Property Space Coverage. Using this
unprecedentedly large pool of comparison a-amino acids and their calculated
physical properties, we tested the encoded amino acids by measuring their coverage
(i.e. how broadly and evenly they span chemical property space) for size, charge and
hydrophobicity relative to sets of 20 amino acid molecules chosen from a much larger
pool.

Each random set of 20 a-amino acids was drawn from the background pool
without replacement, in order to determine whether it exhibited better coverage of
any one, any two or all three physical properties. We repeated this calculation 108

times in order to determine what percentage of random sets had better coverage than
the encoded set. Since coverage is a proxy for the adaptive value of a given set of amino
acids, our hypothesis (of an amino acid set selected for its adaptive properties) pre-
dicts that the encoded amino acids should exhibit better coverage of pertinent
chemical property space than a significant portion of randomly selected amino acid
sets.
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Generation, Elucidation and Quantitative Structure-Property Relationships.
Mathematical Chemistry and Chemoinformatics. Berlin, Boston, De Gruyter
(2013).

26. Wildman, S. A. & Crippen, G. M. Prediction of physicochemical parameters by
atomic contributions. J chem. Inf. Comp. Sci. 39, 868–873 (1999).

27. Kerber, A., Laue, R., Meringer, M. & Rücker, C. MOLGEN–QSPR, a software
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