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ABSTRACT
Diabetes mellitus (DM) is a major public health concern that re-
quires continuing medical care. It is also a leading cause of other
serious health complications associated with longer hospital stays
and increased mortality rates. Fluctuation of blood glucose levels
are easy to monitor. Physicians manage patients’ blood glucose to
prevent or slow the progress of diabetes. In this paper, the MIMIC-
III data set is used to develop and train multiple models that aim to
predict the mortality of DM patients. Our deep learning model of
convolutional neural network produced a 0.885 AUC score, above
all baseline models we constructed, which include decision trees,
random forests, and fully connected neural networks. The inputs
for each model were comprised of admission type, age, Elixhauser
comorbidity score, blood glucose measurements, and blood glu-
cose range. The results obtained from these models are valuable
for physicians, patients, and insurance companies. By analyzing
the features that drive these models, care management for diabetic
patients in an ICU setting can be improved resulting in lowered
motality rate.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification; Neural networks; Feature selection; Visual analytics.

KEYWORDS
data mining, diabetes, convolutional neural networks, supervised
classification

1 INTRODUCTION
Diabetes mellitus affects more than 30 million Americans - roughly
10% of the U.S. population. Additionally, an estimated 80 million
Americans suffer from prediabetes, a condition that if left untreated
often leads to diabetes within 5 years [1]. What is diabetes and how
does it affect those who have it? Simply explained, diabetes prevents
the body from properly using energy obtained from food. Those
with diabetes have trouble producing insulin in their pancreas.
Without proper insulin, the body cannot maintain steady blood
glucose levels, which if not monitored and treated properly can
lead to numerous other health complications [2].

Analyzing large amounts of electronic health records (EHR) to
extract useful information has the potential (and in many cases
already has) to improve care in medical settings drastically [3].
One specific area of study involves using classification techniques
to predict patient mortality. Generally these studies use generic
features between all patients; however, this does not account for
unique features that certain subgroups of the total population may
potentially have. For example, it is required that diabetic patients

have their blood glucose levels monitored frequently. This require-
ment creates a unique feature that other non-diabetic patients may
not have.

In this paper, the primary goal is to model diabetic patient mor-
tality, in addition to utilizing the glucose measurement feature.
The glucose measurements are recorded in mg/dL (milligrams per
deciliter) and fluctuate up and down throughout the time of a pa-
tient’s visit. Due to the time sequence aspect of the glucose measure-
ments, a convolutional neural network (CNN) is the main modeling
technique of focus. CNN’s (commonly used for imaging task) are
very good at detecting trends in data. For example, locating rapid
changes in glucose measurements before death, and associating
those measurement changes to an output. By incorporating blood
glucose measurements along with a few additional features, it will
be determined if glucose measurements are a beneficial feature to
the modeling of mortality for diabetic patients.

2 RELATEDWORK
The ability to analyze and explore health record data is important for
improving medical knowledge and creating models that can predict
different patient outcomes. There are many articles related to this
idea. For example, one study aimed to predict unplanned admissions,
length of stays, diagnoses, and mortality by using deep learning
on raw patient records [4]. This study’s method is unique from
traditional modeling methods since it incorporates all data related
to a patient without discarding information deemed unimportant.
Other studies, including this one [5], also used deep learning to
investigate similar prediction task. However, in the second study
cited, a more structured input feature technique was used. It is
important to note that this study recognized that lab results were
not easy to process and therefore were non-included (a limitation).
One aspect of modeling electronic health records that proves to be
slightly difficult is processing medical notes. Data mining medical
notes in an effective way is an entire branch of interdisciplinary
research which is further explained in this referenced paper [6].

Inmy paper, there are two primary areas of interest that surround
themodeling experiment -mortality and diabetic patients.Modeling
mortality in an ICU is an important tool to help determine care
options for patients and physicians. Most models that are currently
in use to predict likelihood of mortality use a given number of
generic input features. The goal of mortality prediction studies are
to find both methods and features which can best classify a patient’s
outcome, in comparison to a benchmark model [7]. One study, done
on real-time mortality prediction, attempted to predict a patient’s
outcome at different time intervals throughout their stay in order
to provide physicians with a simple synthesis of patient acuity [8].

One potential issue with mortality models such as the ones de-
scribed above is that they are intended for a general population
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and do not always account for patients with specific conditions.
Diabetic patients have particular predictors that are unique to their
subgroup which may not apply to non-diabetic patients. Using sim-
ple demographic, socioeconomic, and biological factors, mortality
can be predicted with fair reliability for diabetic people [9]. One
study, which attempted to predict mortality (for an even smaller
subgroup) used a point based model that focused on elderly-specific
adults with diabetes [10]. The study did this because the research
done in that area was still lacking.

As discussed above, mortality models can be useful as a tool to
help make patient care decisions. While diabetes does not directly
associated with increased mortality, it is known that critically ill
diabetic patients in the ICU have an increased risk for the devel-
opment of further complications [11], which make these patients
susceptible to higher health care cost. This correlation hints that
there may be benefit in predicting mortality of diabetic ICU patients.
One study which did this using logistic regression achieved a good
AUC value of 0.787 using a very simple model, which required way
less variables than the other comparable benchmark models [12].
One of the features used in this model was the patient’s average
blood glucose. In my paper, I aim to expand the potential of this
feature by using multiple blood glucose measurements. Another
area of potential improvement, suggested from this study, was the
modeling technique. Overall, there seems to be little research into
how glucose measurement volatility over time relates to different
outcomes of diabetic patients. In my paper, the goal is to use glucose
measurements as a unique feature for mortality modeling.

3 EXPERIMENT
The primary goal of the experiment in my research was to cre-
ate a model that could predict mortality of diabetic patients in an
ICU environment. With 20% (11820/58976) of all patient visits in
the MIMIC III data set being diabetic patients, an interesting op-
portunity is presented. In a hospital setting, each patient who has
diagnosed diabetes of any type has their glucose levels recorded
each couple of hours. This monitoring allows for the experiment
to have a unique extra feature that would not be present in a non-
diabetic population. These glucose measurements will be a main
concentration of the input features for the prediction model. The
secondary goal of the experiment is to reduce the number of input
features to a relatively small number. Many models currently exist
that require 35 features or more for a risk assessment and prediction.
By reducing the number of features required, it becomes cheaper
and quicker to run these types of assessments [12].

3.1 Pre-processing
MIMIC III is a large, freely-available database comprised of de-
identified health-related data associated with over forty thousand
patients who stayed in critical care units of the Beth Israel Dea-
coness Medical Center between 2001 and 2012 [13]. The database
encompasses tables that include patient admission data, diagnoses,
medical notes, and chart events (such as blood glucose levels). In
whole, the database takes up between 40-50 GB of storage and
contains thousands of potential features to observe.

For this experiment, postgreSQL was used as the database man-
agement system due to the compatibility with the MIMIC III data

Table 1: Example ICD-9 Codes

ICD-9 Code Meaning
250 Diabetes mellitus
401.9 Hypertension
584.9 Acute kidney failure

set. Each of the rows extracted, which will be described below, was
done through the process of querying and exporting rows to CSV
files. Once the proper data was collected into separately labeled CSV
files, the data could then be manipulated and pre-processed with
python. The first and most important table of interest in MIMIC III
was the Chart Event table. Chart Events consist of all charted data
during a patient’s stay. The data most important for this experiment
in the Chart Events table was the blood glucose measurements. Due
to multiple data collection labeling techniques, the blood glucose
measurements were labeled with numerous ID’s including: 807, 811,
1529, 3744, 3745, 220621, 225664, and 226537. By querying only the
rows that contained these ID’s, all patients with at least one blood
glucose measurement were accounted for.

The next table of interest was the ICD Diagnoses table. ICD Diag-
noses consist of all ICD-9 (International Classification of Diseases)
codes individual patients were assigned during their visit. An exam-
ple of some common ICD-9 codes can be found in table 1 above. The
ICD-9 codes needed for this experiment were all codes greater than
or equal to 250.00 and less than 251.00. By querying the rows that
fit within the range 250-251, all patients who were given codes that
signify diabetes mellitus (type 1 or 2) were accounted for. It should
be noted that the ICD-9 system is used for insurance and medical
billing purposes, and therefore is not always completely accurate.
For more information into how the accuracy of diabetes-specific
coding affected this experiment refer to Appendix A: Examining
the Reliability of ICD9 Code Diagnosis.

After finding all patients that were coded to be diabetic, it is
helpful to recognize that each patient had a variable amount of
glucose measurements during their visit. The total amount varied
from 1-78 measurements and is graphed in figure 1. The proportion
of patients who lived or not is also located on the same graph. In
order to combat this variability, if a patient hadmore than 30 glucose
measurements, only the final 30 glucose measurements before death
or discharge were used as input features. Additionally, a new feature
- glucose range, was engineered from the glucose measurements
to represent the volatility of each patient’s measurements during
their stay.

The two input features, age and admission type, were both ex-
tracted from the Admission table. Age, by default, is an integer and
needed no further manipulation. Admission type had to be encoded
from a string to an integer (1 -> "elective", 0 -> "emergency", etc.).
The final feature, which also had to be engineered, was the Elix-
hauser score. The Elixhauser score (an integer value) is used for
measuring patient comorbidity and is created from an algorithm
which uses ICD-9 codes as the input with the Elixhauster score
being the output [14]. After the above feature extraction, all input
features were collected (see figure 2) and ready to be tested for each
model.
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Figure 1: Glucose Measurements per Stay vs. Number of Pa-
tients Distribution.

Figure 2: Example Post-Processing Dataframe.

3.2 Data Visualization
The use of data mining techniques including neural networks has
vastly improved how computers can process large amounts of data
to find patterns and trends. Yet as humans, observing large amounts
of raw data is mostly rather pointless if the data cannot be com-
prised into amore visually organizedmethod. By using visualization
for large data, decision-makers can feel more comfortable about
discovering patterns, comprehending information, and forming an
opinion [15].

In many instances, data visualization can help to alleviate the
black box effect. The black box effect is the idea that with different
modeling methods (especially neural networks), there are inputs
and outputs, but in the middle is a mess of numerical weights
and connections that provide no direct evidence to relationships
between the inputs and outputs [16]. This black box makes it hard
for science and engineering fields to accept neural networks since
they cannot easily be understood or validated. In very high-stake
applications, using techniques that are considered black boxes are
unlikely. Therefore, to help better understand the data used in this
experiment, multiple data visualization techniques were used.

One example of data visualization is of patient glucose levels.
By graphing different patient’s charts (both those who are alive
and not alive) it is easier for us to understand and locate potential
data trends. Using HoloViews, an open source Python library that
concentrates on data analysis and visualization [17], a graph for
each patient’s glucose measurements were plotted. The patients
were separated by green, which signals an alive status, and red,
which signals an expired status. An example of both an alive and
expired graph can be observed in figure 3.

3.3 Feature Analysis
Developing a good understanding of the input features used in any
modeling experiment is critical. One way to determine a feature’s
value for a given model is to see how much a model’s performance
decreases when that feature is removed. The more a feature is used
to make key decisions in a model, the higher relative importance
that feature has. Feature importance helps to simplify what exactly

Figure 3: Patient Glucose Measurements Graphs - Expired
(top) and Alive (bottom).

the driving factors are with decision making in prediction models.
Figure 4, located below, graphs the importance percentage of each
feature for this experiment.What each number located on the x-axis
means is explained in the following list:

Figure 4: Feature Importance Graph.

• Feature 0 (Elixhauser Score) : proved to be the most impor-
tant feature with a 10.0% gain.

• Feature 1 (Age) : second highest gain of 7.4%.
• Feature 34 (Glucose range) : gain of 5.6%.
• Feature 3-9 (Individual Glucose Measurements) : It should
be noted that features 3-33 are the 30 glucose measurements
taken. The final measurement being feature 3 and the first
being feature 33. More notable is the fact that feature 2 (Ad-
mission Type) is not in the top 10.
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While determining feature importance is one useful way to an-
alyze input features, another useful method is creating heatmaps.
Heatmaps are beneficial in determining how correlated different
features are between each other. With the features used for the sim-
plified model in this experiment a few notable points can be made
(seen in figure 5). Overall, the individual glucose measurement fea-
tures are each closely correlated with each other. Yet, as two glucose
measurement get farther apart from each other they become less
and less correlated. This is a logical trend in the sense that many
patient’s glucose levels will be relatively close from hour to hour. If
glucose levels are not correlated heavily for an individual patient,
then that could signify a large glucose range. Additionally, in figure
5 it can be seen that the Elixhauser score feature slightly correlates
to both age and admission type. Again this logically makes sense
since older people tend to have multiple health complications and
emergency admissions. By observing the input features through
various data visualizations, it becomes more clear how the different
features interact with both each other and the overall model.

Figure 5: Heatmap of All Input Features.

3.4 Modeling
The goal in this experiment is to best classify the binary variable
labeled expire flag which signals mortality. For the purpose of
comparison, multiple techniques were used as baseline models,
including a trained decision tree model, a trained random forest
model, and a feed forward neural network model. In the below
paragraphs, the baseline models will be further explained as well
as the convolutional neural network model (the main model of
interest for this experiment).

After pre-processing and feature exploration was completed,
a few techniques were used to prepare the data for the models.
The first concern was to address the imbalance of patients that
died versus patients that lived. Seen in figure 6, roughly 90 percent
of patients lived (12217 patients), while only 10 percent did not

(1443 patients). There are a few possible methods to address this
imbalance. One method is to use under-sampling. This method is
done by reducing the amount of patients who lived to a more even
level of patients who did not. This method works best when the
quantity of data is large. Another method is to use over-sampling,
which is the idea of boosting the amount of minority observations
to equal a number closer to the majority observations. For this
experiment, a combination of these two methods were used, where
the majority was under-sampled to 5000 and the minority was over-
sampled to 4000. By performing these sampling techniques, the
class imbalance concern was resolved. The second concern before
the data was ready for modeling was how the data would be split.
For this experiment, the data was split two ways - 70 percent for
training and 30 percent for testing and validation.

Figure 6: Distribution of Mortality Classes.

3.4.1 Baseline Models. The three baseline models used for this
experiment included a trained decision tree, a random forest model,
and a feed forward neural network. All of the models used in this
experiment were supervised binary classification models. Decision
trees make good baseline models due to their simplicity and easy to
visualize nature. Figure 7 demonstrates this idea by showing the top
two layers for the decision tree model, which uses a gini impurity
algorithm. In this decision tree, it can be seen that X0 (Elixhauser
score) is the first decision node and patients with a value of 14.5 and
higher go left while a value lower continues right. Further down
the feature X1 (Age) is also used to make decisions. Many times the
features with the highest importance tend to be closer to the root
node (seen here with the Elixhauser score and age).

The random forest model, which utilizes multiple decision trees,
served as an intermediary model for the neural networks used.
The baseline neural network, a feed forward network, was chosen
for its similarity to the CNN. By comparing the feed forward to
the convolutional network, it is easy to notice the performance
improvements that the CNN provides.

3.4.2 CNN Model. Convolutional neural networks are commonly
used in imaging classification tasks due to their ability to detect
features and map them to specific outputs [18]. These networks

5



Figure 7: First Two Layers of Decision Tree Model.

are also beneficial since they can handle input features with little
engineering done to the features and still detect trends. In this ex-
periment, part of the input feature matrix is the time series glucose
measurements. By using a convolutional neural network, detecting
trends in the changes of glucose measurements should be improved.
The summary used for this model can be found in figure 8. In ad-
dition to the model summary, the tuned hyper-parameters are as
followed:

Figure 8: CNN Model Hyper-parameters.

• Number of Filters: 100
• Kernel size: 8
• Pool Size: 2
• Activation Functions: Relu
• Optimizer and Loss: Adam and MSE
• Epochs: 75
• Batch Size: 10

The convolutional network was created using keras, an open-
source neural-network library, ran on top of tensorflow. The pro-
gramming language python was used with the application Jupyter
Notebook and tested with the XSEDE supercomputer. For more spe-
cific information on any of the code created for these modes, refer to
the followingGithub link: https://github.com/imw2/Diabetes-Diagnosis-Prediction.

4 RESULTS
The most important evaluation metric used for these binary classifi-
cation models was Area Under the Curve (AUC), which in this case
is preferred over accuracy. Observing the true positive rate (TPR)
and false positive rate (FPR) better demonstrates how the model
predicts both cases of mortality when compared to accuracy which
only factors the overall percentage of true and false predictions.

Figure 9: AUROC (Area Under the Receiver Operating Char-
acteristics).

Figure 10: CNN Confusion Matrix.

The final results for each model can be seen in figure 9 above,
where the CNN (area = 0.885) performed the best, the feed forward
neural network (area = 0.792) second best, then random forest (area
= 0.771) and decision tree (area = 0.643) being the remaining scores
respectively. These results show that by using the convolutional
network, the initial idea that it could better understand the changes
in glucose measurements is correct. This proves that there is benefit
to incorporating blood glucose measurements into the models. It
also demonstrates that a patient’s mean glucose measurement does
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not do have the same impact as incorporating multiple glucose
measurements. It can be concluded that using individual glucose
measurements seems to improve mortality modeling of diabetic
patients.

Another way to visualize binary classification is to use a confu-
sion matrix, which shows how many times each possible outcome
was predicted versus the true outcome in the validation set of data.
This matrix makes it easier to see TPR and FPR which are used to
calculate the above graph. Figure 10 shows a confusion matrix for
the CNN model of this experiment.

5 CONCLUSION
It is known that monitoring and keeping healthy blood glucose
levels is a necessary event for healthy diabetic people. In this paper,
the goal was to determine if multiple blood glucose measurements
are beneficial features for predicting the mortality of diabetic pa-
tients. From the results, it is seen that by utilizing and modeling
the blood glucose measurements, an improved mortality model can
be achieved. The successful use of supervised learning, a convolu-
tional neural network, and proper computing resources allowed for
the strides to be made in this paper. Additionally, throughout the
research other aspects concerning diabetic patients were investi-
gated, for example determining how the reliability of ICD9 coding
effected the mortality model. Overall, there is still much research
to be done regarding diabetic patients; however, the research done
in this paper serves as a deep investigation into using modeling
techniques to extract useful information from electronic health
record data.

6 FUTUREWORK
During the research, some limitation were encountered. One of
the challenges presented in this experiment was determining how
to produce a model with both high evaluation metrics and a low
total of input features. It should be noted that more features could
be added to the existing models which would have improved the
evaluation metrics, yet would also increase the complexity of the
model. Another potential area of further investigation is determin-
ing which patients this model should apply to. It is possible that
other patients with similar diseases to diabetes may also perform
well using these models.

Moving forward from this research, there are two main focuses
for future work. The first focus involves associating diabetic patient
care methods to specific outcomes. Another study done investigated
loose blood glucose control versus strict blood glucose control in
an ICU setting [19]. The study concluded that the verdict on loose
versus strict blood glucose control is not a simple task and often
depends on other factors such as if the patient is neurological or
surgical. In order to conduct research that better defines how dif-
ferent blood glucose control methods effect mortality (and other
outcomes), more investigation into how the type of control is rep-
resented in electronic health records would be necessary.

The second focus involves finding patterns between blood glu-
cose measurements and additional medical events. Examples of
medical events include surgeries, unit transfers, or medication in-
takes. This focus would require new classification techniques, but
could produce informative results. As medical records become more

connected and processed, personalized patient care has the ability
to improve overall health.
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8 APPENDICES
There is one appendix in connection to this paper: Examining the Re-
liability of ICD9 Code Diagnosis. The content of this appendix was
discovered during research as it was noticed that the ICD9 coding
had some interesting patterns in relation to diabetes. Some figures
and explanation can be found below, but for more information on
this topic along with other topics explored see the Github reposi-
tory: https://github.com/imw2/Diabetes-Diagnosis-Prediction.
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A EXAMINING THE RELIABILITY OF ICD9
CODE DIAGNOSIS

ICD9 coding was developed by the World Health Organization to
set a standard practice of disease coding that could be used for
statistical compilation of data reimbursement purposes, and an
array of other reasons [22]. Since the implementation of the ICD9
system, hospitals have transitioned to an ICD10 system, however
for the data in this research, it was collected while the ICD9 system
was still in place. In this paper, ICD9 codes were used for finding
which patients in the data set were diabetic, in addition to the
calculation of comorbidity scores.

While analyzing the number of diabetic patients, it was discov-
ered that many of these patients had multiple ICU visits. In fact,
figure 11 shows the exact distribution of patients who had more
than one visit and were diagnosed with diabetes. As seen in the
graph, two visits is the most frequent occurrence, however some
patients have as many as 42 visits.

It could be assumed that diabetes is a disease that should be coded
each visit, since each diabetic patient requires glucose monitoring
that non-diabetic patients may not require. With this logic, if a
patient has ever been diagnosed at a hospital, each subsequent
visit should also be coded with diabetes. For example, in a scenario
were a patient is coded with diabetes on their first visit out of
three, they should have a diabetes code on each of the next two
visits. To put this logic to the test, patients were graphed based on
whether they were coded with diabetes. An example of this can
be seen in figure 12, where a green dot indicates no diabetes code
and a red dot indicates a diabetes code. After graphing each patient,
an unexpected pattern was found. In many instances, the logic
described earlier did not hold true. To demonstrate this, observe the
first row of figure 12, which is a graph of patients with four total
visits. In the first, third, and fourth visit, the patient was diagnosed
with diabetes; however, the second visit they were not. Logically,

Figure 11: Multiple Visit Distribution.

this represents a likely missed diagnosis. Demonstrated by this
small snippet of patients, this trend happens rather regularly.

Figure 12: Scatter Plot of Patient vs. Visit Number( Red - Di-
abetes Code Present, Green - No Diabetes Code Present).

It can be concluded from this trend that the ICD9 coding should
be used with a small amount of caution. For this paper, the reliability
was not a major concern, but the discovery seemed significant. The
observation from this appendix is a positive result from performing
data exploration.

8



I authorize Hood College to lend this thesis, or reproductions of it, in total or in part, at the request of other institutions or individuals for the
purpose of scholarly research.

9


	Abstract
	1 Introduction
	2 Related Work
	3 Experiment
	3.1 Pre-processing
	3.2 Data Visualization
	3.3 Feature Analysis
	3.4 Modeling

	4 Results
	5 Conclusion
	6 Future Work
	7 Acknowledgments
	8 Appendices
	References
	A Examining the Reliability of ICD9 Code Diagnosis

