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Evidence for a spectral line in the inner Galaxy has caused a great deal of excite-

ment over the last year, mainly because of its interpretation as a possible dark matter

signal. The observation has raised important questions about statistics and suspi-

cions about systematics, especially in photons from the Earth limb. With enough

additional data, we can address these concerns. In this white paper, we summa-

rize the current observational situation and project future sensitivities, finding that

the status quo is dangerously close to leaving the issue unresolved until 2015. We

advocate a change in survey strategy that more than doubles the data rate in the

inner Galaxy, and is relatively non-disruptive to other survey science. This strategy

will clearly separate the null hypothesis from the line signal hypothesis and provide

ample limb data for systematics checks by the end of 2014. The standard survey

mode may not.

http://arxiv.org/abs/1305.4710v1
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I. INTRODUCTION

For indirect dark matter searches with gamma rays, discriminating between a signal from

conventional astrophysical backgrounds is challenging (for a recent review see [1]). Among

various possible signatures, gamma-ray line emission is a long-sought “smoking gun” for

dark matter annihilation [2], as no plausible astrophysical background can produce a diffuse

line signature. The first claims for a spectral feature around 130 GeV in the LAT data

were made by Bringmann et al. [3] and Weniger [4], who performed a spectral fit to photon

events in regions of interest in the inner Galaxy designed to maximize S/N. They found a

line structure at 130 GeV with 4.6σ significance, or 3.2σ after the trials factor correction [4]

(for previous studies see [5–8]). This claim was quickly followed up and disputed by a

number of groups [9, 10]. Subsequent work by Su & Finkbeiner [11] approached the problem

with template fitting, which takes into account the spatial distribution of events along with

spectral information, and found 6.6σ (5.1σ after the trials factor correction) for an Einasto

profile centered 1.5o west of the Galactic center, and found that there may be two lines,

at about 111 and 129 GeV (as earlier pointed out in Ref. [12]). The lower energy line is

tantalizing because it matches the expected energy of a Zγ line if the higher energy is the

γγ line. These findings have inspired a number of models and further analysis of the Fermi

data [12–37]. Preliminary results from the LAT team investigating the excess were presented

in [38, 39].

Although the evidence for a 130 GeV line is compelling, significant concerns about the

Galactic center signature remain, including: (1) its statistical robustness, and (2) its possi-

ble cause by an instrumental systematic. We will briefly summarize the current situation,

concentrating on statistical properties of the Galactic center excess and – as arguably the

most worrisome indication for a systematic – a feature in the low incidence angle Earth

limb data. In the following, we will estimate the additional exposure needed to clarify the

situation on statistical grounds, and discuss a strategy to obtain it while mitigating impact

on other science objectives.
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II. CURRENT STATUS OF SIGNAL AND SYSTEMATICS

A. Time evolution of the signal significance

The first claims of a spectral feature [3, 4] were based on 3.5 years of LAT data (through

4 February 2012). More recent data provide an opportunity to confirm the signal and see

how it evolves with time. Because the signal is based on approximately 1 signal count per

month, Poisson fluctuations cause the significance to accumulate in something akin to a

random walk. The mean trend in significance builds with the square root of exposure (E)
but with large uncertainties. A confirmation at 3σ of the signal in the original ROI (i.e. no

trials factor) would be persuasive, but the exposure required to get an expected significance

of 3σ is quite different from the exposure required to achieve 3σ with a probability of 95%.
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FIG. 1. Number of signal events in 6-month bins starting from 4 August 2008, obtained by an

unbinned likelihood fit to the data in Region 3 of Ref. [4]. The gray band shows the expected

signal rate with ±1σ uncertainty as extracted from data taken until 4 February 2012. In red we

show data taken since 4 February 2012 together with the projected event rate.

Status. We use the first 3.5 years of data, 4 August 2008 through 4 February 2012, to

define the spectral and spatial properties of our signal hypothesis (this is the data set that

was used in the initial publication, Ref. [3]). Data taken after the 4 February 2012 can

then be used to confirm or reject this hypothesis without trials. To be conservative, we will

not use the template regression technique from Ref. [11], but follow [3, 4] and use spectral

fits in ROIs with large expected S/N. For definiteness, we will only use ‘Region 3’ from
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FIG. 2. Expected evolution of signal significance in Region 3 from Ref. [4], starting on 4 February

2012, as function of accumulated exposure. The shaded bands show 68% and 95% CL uncertainties

as derived from a Monte Carlo simulation. The assumed signal rate is 1.2± 0.3 events per month,

the effective background is 3.3 events per month (the values measured prior to 4 February 2012).

The first and second vertical dotted lines indicate how much exposure is expected to be accumu-

lated until end of 2014 if the observation strategy remains unchanged, and respectively when the

observation strategy proposed in this document is adopted starting from June 2013. Note that

without changing the survey strategy, until the end of the three year extension Aug 2016, the

accumulated exposure will be 1.29 × 1011 cm2 s.

Ref. [4], which is one of the regions where the excess was first identified. Below we propose a

geometrically similar but much simpler region that we advocate as an alternative for future

studies.

We will here rely on the public unreprocessed Pass 7 data. Preliminary results from the

LAT team show that the line feature is also present in the reprocessed Pass 7 data, though

it moves to 135 GeV and appears to be slightly less significant [39]. Throughout, we will

refer to the feature as ‘130 GeV feature’ for simplicity.

We derive the number of excess events Ns by a maximum likelihood fit to the first 3.5

years of data from Region 3 (using a power-law plus line model). In the fit, we adopt

an energy range from 65 to 260 GeV, fix the line position at Eγ = 129.8GeV, and use

P7CLEAN events only.1 We find a number of Ns = 50.0 ± 13.3 excess events, with a

1 The details of the fit are identical what was done in Ref. [4], but we checked that similar results are
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FIG. 3. Region 3 (blue) and Region 4 (red) used in Ref. [4], together with the simpler hourglass

region proposed for future studies (cp. also with Fig. 3 in Ref. [1]).

statistical significance of s = 4.3σ. The effective number of background events can be

estimated as Nb = N2
s /s

2, and is Nb = 137.4. These parameters together with the details of

the fit define our signal hypothesis ; the null hypothesis is that the flux is compatible with a

single power law, i.e. Ns = 0.

In Fig. 1 we show the distribution of these excess events in bins of six months. The

first seven bins correspond to the 3.5 years that define the excess, the two red data points

are data taken afterwards. Error bars include background fluctuations and are given by

∆Ns =
√
Ns +Nb. To obtain Ns and Nb, we fit the data of each six-month bin individually.

The gray bands show the number of signal events expected from the above fit to the 3.5

years data, with small variations related to the exposure.

The last two bins are compatible with both the null-hypothesis at the one sigma level,

and with the signal-hypothesis at the two sigma level (see also Ref. [40]). In the case of a

real signal, the last bin would represent a decent downward fluctuation. However, it would

be premature to draw strong conclusions from this single observation.

Projection. Going forward, the signal hypothesis predicts that the significance will build

as sqrt(exposure), but with large uncertainties. It is essential to estimate these uncertainties,

because we need to know how much exposure is required to cleanly separate the signal from

the null hypothesis.

obtained using Region 4, P7SOURCE events, or a ‘2D’ fit that takes into account incidence angle as well

as energy information in the modeling of the line.
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In Fig. 2 we show 68% and 95% CL bands for the projected evolution of the signal

significance as function of exposure accumulated after 4 February 2012. To generate the

plot, we simulate events from a power-law plus line model and derive the signal significance

for each realization as described above. The background and signal correspond to the best-

fit values obtained in Region 3 with data until 4 February 2012. For different realizations

we allow the signal normalization to vary following a normal distribution that is matched

to the ±1σ flux uncertainties from the 3.5 year results.2

The first vertical dashed line indicates the exposure that will be acquired by 1 Jan 2015

with the current survey strategy (in the first 3.5 years, an exposure of 1011 cm2 s was collected

at the GC at 100 GeV). It is likely that a true signal would be confirmed with > 3σ

significance, although this is not guaranteed due to the 95% CL error bands that range down

to significances of only 1σ. Worse, it will be difficult to robustly rule out the signal hypothesis

at the 3σ level unless the accumulated significance is close to zero.3 This drives home the

point that, left unchanged, the current survey strategy may well leave us with ambiguous

results well into 2015. As we will discuss in the next section, a change in the observation

strategy will allow a much quicker confirmation/rejection of the signal hypothesis.

Alternative ROI. For future analysis of the 130 GeV feature in the LAT data, instead of

using the difficult to manage regions from Ref. [4], we propose to use the region shown in

black in Fig. 3. This region is (1) geometrically simple and easy to reproduce, and (2) it is

centered on the part of the sky where the excess was largest in the previous data. Though

we avoid any statement about particular dark matter profiles, it is an a priori region for

data taken since 4 February 2012. We defined this ROI in (ℓ, b) space as the intersection of

ℓ2 + b2 ≤ r2 and ℓ2 ≤ (b tanϕ)2 + d2, with (r, d, ϕ) = (20◦, 3◦, 60◦).

B. The Earth limb feature

The continual cosmic-ray cascades in the Earth’s atmosphere produce gamma rays with

dN/dE ∼ E−2.8 [41]. These so-called ‘Earth limb’ photons provides a convenient source of

photons for systematics tests. The most direct indication for an instrumental cause of the

2 We checked that similar results for the projection evolution are obtained for Region 4, in the hourglass

region discussed below, or using the analytical estimates from Ref. [40].
3 To exclude the signal hypothesis at, say, the 2σ level at a specific point in time, the actually observed

significance has to lie outside of the predicted 95% CL band in Fig. 2.
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Galactic center feature is an excess of 130 GeV photons in low incidence angle events from

the Earth limb [11, 38, 42, 43]. Although it is challenging to understand how such a feature

could possibly be mapped onto the Galactic center while being absent in other test regions,

this feature has raised serious concerns about the energy reconstruction of the LAT around

130 GeV. Additional limb data would determine whether the Earth limb feature is indeed

a true systematic effect or merely a statistical fluke in light of a large number of trials. If

it is a reproducible systematic, additional data may be required to diagnose the software or

hardware problem responsible.

We define here the Earth limb excess by selecting P7CLEAN events until 5 Sep 2012 at

zenith angles Z > 100◦, incidence angles θ < 60◦, and excluding events within 20◦ of the

Galactic center. In this data set, the line feature at 130 GeV has a significance of 2.7σ when

fit in the range 65–260 GeV (for details of the assumed line shape, etc., see Ref. [42]).4 Data

accumulated after 5 Sep 2012 can now be used to test whether this excess is spurious. Using

the above cuts, we find that the rate of events above 100 GeV between the start of the mission

and 5 Sep 2012 is 9.5 ph/month (in total 474), whereas 36.7 ph/month accumulated between

5 Sep 2012 and 16 Apr 2013. The reason for this increase is the commencement of weekly

dedicated limb observations as well as two extended target of opportunity observations in

that time period. If the accumulation of low incidence angle Earth limb data continues at

this pace, 2.3 years of fresh data will be enough to regenerate the putative limb signature

with 4.0σ significance on average, or to rule it out with reasonably high significance if it is a

fluke. Without a change of the observation strategy, this amount of data would be available

end of 2014. As we will discuss next, a change of the observation strategy would help to

collect the same amount of low incidence angle Earth limb data in a much shorter time

period, and the additional data would be invaluable for diagnosing instrumental problems.

III. A NEW OBSERVATION STRATEGY

Since the start of the mission, Fermi has spent over 95% of the time in standard survey

mode. In this mode, the LAT points north of zenith towards the orbital pole by an angle Zrock

on one orbit, and south of zenith by the same angle on the next orbit; the LAT pointing is

4 If we take into account data until 16 Apr 2013, the significance of the Earth limb feature is 3.0σ, which

is marginally larger.
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FIG. 4. Evaluation of standard survey mode (left panels) and mixed observation strategy (right

panels; option3v3). Sky maps are in galactic coordinates (ℓ increases to the left) and averaged over a

orbital precession period of 55 days. Top panels: Exposure maps in cm2s. Central panels: Effective

energy resolution (half 68% containment width) Bottom panels: Figure of merit for gamma-ray line

searches. In all panels the overlaid lines show the main axes of the equatorial coordinate system;

sky maps are symmetric around the celestial equator; color scales are linear.

confined to the plane perpendicular to its orbital velocity. This observation profile, combined

with the precession of the orbit every ∼ 53.4 days, allows the LAT to observe the whole

sky with approximately uniform coverage. The standard survey mode is only occasionally
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FIG. 5. Same as Fig. 4, but for ‘option1v2’ and ‘option2v2’.

interrupted for pointed observations of targets of opportunity (ToOs). During such times

the LAT may point at a larger zenith angle than usual, even at the horizon. In addition,

survey mode is occasionally interrupted by Autonomous Repoints of the observatory for

triggered gamma-ray burst follow-up observations, and for calibration.

However, Fermi is capable of very flexible survey mode patterns. For example, a single

orbit may include both survey mode and pointed observations (“mixed mode”), increasing

coverage of certain parts of the sky. We will explore the impact of such a strategy on the

study of the 130 GeV feature at the Galactic center. We focus here on the mixed modes
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‘option1v2’, ‘option2v2’ and ‘option3v3’ put forth for discussion by the Fermi mission.5

Our goal is to increase the exposure on the Galactic center. The basic strategy would

be to switch to pointed observation of the Galactic center when possible, and to follow the

standard survey mode otherwise. More precisely, Fermi would slew from survey mode to the

target once the target is 10◦ from Earth occultation, and slew back to survey mode position

once the target reenters 10◦ from Earth occultation. The Earth Avoidance Angle (EAA) is

set to 30◦, to avoid the loss of too much exposure during the transition periods. This means

that the LAT will track the target only to within 30◦ of the Earth limb and then hold steady

before it switches back to survey mode.

To reduce potential systematics, it is advisable to avoid pointing directly at the target.

Instead, it is useful to observe it with a broad distribution of incidence angles. The three

mixed modes option1v2, option2v2 and option3v3 differ mainly in what target position

exactly is adopted. In option1v2 and option2v2, the position is fixed at (RA, Dec)=(261.4◦,

−28.9◦) and (RA, Dec)=(261.4◦, 0◦), respectively.6 In option3v3 the target position RA is

set to 261.4◦, while the target declination varies within the range Dec=±25.6◦ during one

orbital precession period such that the target position remains close to the orbital equator.

These variations of the target position yield an improved sky uniformity on short time scales.

A. Impact on line searches at the Galactic center

The upper panels of Fig. 4 show exposure maps after 55 days survey mode (left) and mixed

mode option3v3 (right) in galactic coordinates. In the mixed mode, the point of highest

exposure is at (RA, Dec)≃ (261.4◦, 0◦). At the Galactic center, the exposure increases by a

factor of 2.23 relative to normal survey mode.

In mixed mode, regions close to the Galactic center are predominantly observed at low

incidence angles in the range θ ≃ 5◦–50◦ (see Fig. 6). This has impact on the effective energy

resolution, which is shown in the central panels of Fig. 4. In direction of the Galactic center

the energy resolution is in fact slightly worsen with respect to the standard survey mode

(∆E/E = 9.59% for option3v3 instead of ∆E/E = 8.75%). However, this loss of resolution

has only a small effect on line searches.

5 See http://fermi.gsfc.nasa.gov/ssc/proposals/alt_obs/obs_modes.html.
6 The Galactic center is at RA=266.4◦, Dec=-28.9◦.

http://fermi.gsfc.nasa.gov/ssc/proposals/alt_obs/obs_modes.html
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FIG. 6. The distribution of Galactic center theta angle. Each entry in the histogram corresponds

to a 30 seconds interval. The colors correspond to the zenith angle of the Galactic center. The

plots take account of time spent in the SAA.

In Fig. 5, we show the same information, but for the mixed modes option1v2 (left)

and option2v2 (right). The Galactic center exposure increases by a factor 3.0 and 2.5,

respectively, whereas the effective energy resolution is 11.1% and 10.0%. Apart from the

characteristics at the Galactic center, these modes mainly differ in the impact on other

science goals, as we will discuss below.

As a convenient figure of merit for line searches we define the dimensionless quantity

Q ≡ a
√

E/∆E ,

which is proportional to the expected median line significance in units of standard deviations.

Here, E is the exposure in cm2s, ∆E the energy resolution, and a normalizes Q such that

the spatial mean in survey mode is Q̄ = 1. In the bottom panels of Fig. 4 and 5 we show

sky maps for Q in mixed and survey mode. At the Galactic center, Q increases by a factor

1.43 when switching to mixed mode option3v3, which would increase the growth rate of the

signal significance by 43%, equivalent to doubling the exposure/time.
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FIG. 7. Differential exposure of Earth limb region (zenith angles 111◦ < Z < 113◦) as function of

incidence angle θ. In standard survey mode, incidence angles below θ < 60◦ are not exposed to

the Earth limb. However, in mixed observation modes, a large number of Earth limb events would

be collected down to incidence angles θ ≃ 30◦. In brackets we show the exposure below and above

θ = 60◦ in units of 1011 cm2 s.

B. Impact on Earth limb observations

In general, to keep systematics that might be related to specific incidence angles θ under

control, it is useful if the Galactic center is observed at a broad distribution of different

incidence angles. For the four observation modes, this distribution is shown in Fig. 6. In

case of option3v3, θ spans a range from 5◦ to 50◦ (the discrete distribution comes from

jumps in the target position as it follows Dec ≃ 0◦). This is a significant advantage when

compared to option1v2 and option2v2, which feature pronounced peaks at θ ∼ 5◦ and

θ ∼ 30◦, respectively.

An important side effect of the mixed mode is the accumulation of additional Earth limb

data at low incidence angles, which can be used for checks of instrumental systematics. This

happens during the transitions between pointed observation and survey mode. The target

comes close to the horizon, while the satellite maintains a minimal distance of 30◦ from the

Earth limb. Consequently, the Earth limb is observed at incidence angles θ >∼ 30◦ twice

every orbit (1.5 hours).

In Fig. 7, we show the expected differential exposure of the Earth limb at zenith angles
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Mode Mean exposure [109 cm2 s] GC exposure [109 cm2 s]

survey 4.74 4.33

option1v2 4.38 13.1

option2v2 4.44 10.7

option3v3 4.56 9.67

TABLE I. Mean exposure (averaged over full sky) and exposure of Galactic center for different

observation profiles in comparison. We assume P7CLEAN events at 100 GeV and 55 days of

observation.

111◦ < Z < 113◦. In standard survey mode, practically no limb data is collected at θ <∼ 60◦.

However, during mixed mode a very significant number of the detected Earth limb events

would be collected at lower incidence angles. This would accelerate the accumulation of low

incidence angle Earth limb data with respect to the previous 4.5 years by about a factor of

five, and will allow a rapid rejection or confirmation of the 130 GeV feature in part of the

Earth limb spectrum. Note that a collection of Earth limb events at incidence angles even

lower than 30◦ is possible if the EAA is set appropriately, however at the cost of losing more

exposure on the rest of the sky.

C. Impact on other science

Changing from survey mode to mixed mode observation will necessarily drag exposure

from some parts of the sky towards the Galactic center. In order not to lower the scientific

power of Fermi, it is imperative that the integrated exposure over the whole sky remain as

high as possible. Furthermore, for the observation of transient phenomena, it is vital that

all parts of the sky are sufficiently covered at least each day; ‘blind spots’ should be avoided.

In Table I, we compare for the four reference strategies the mean sky exposure obtained

after 55 days of observation. The overall loss in sky exposure w.r.t. to the standard survey

mode is small and between 4% (option3v3) to 8% (option1v2).

The variations of the exposure over different regions of the sky are illustrated in in Fig. 8,

where we show a histogram of the distribution of exposure in different sky pixels (using

a Healpix projection with N = 128). In the case of standard survey mode, the exposure

distribution spans a factor of two (being largest at Dec=±90◦), whereas it spans a factor 10
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FIG. 8. Histogram of exposure per sky pixel, normalized to standard survey strategy. Left panel

compares the mixed mode option1v2 to the standard survey strategy, and the right panel shows

the modified strategy option2v2 and option3v3.

Mode > 150% exposure < 50% exposure 50% < exposure < 150%

option1v2 25 (12%) 59 (27%) 131 (61%)

option2v2 32 (15%) 45 (21%) 138 (64%)

option3v3 29 (13%) 30 (14%) 156 (73%)

TABLE II. Number (fraction) of transient sources corresponding to different expected exposure

given three modified survey strategy. The fraction of expected exposure is compared to the standard

survey strategy.

in the mixed mode option3v3. However, in no region of the sky does the exposure drop by

more than a factor of four relative to normal survey mode.

For transient phenomena, the daily sky exposure is of importance. In Fig. 9 we show

for each individual day of the precession period which fraction of the sky is covered by

what fraction of the mean exposure. In case of the mixed mode observations option2v2 and

option3v3, in less than 5% of the sky the daily coverage drops below 20% of the daily mean,

whereas in > 80% the coverage remains above 50% of the mean.

The Fermi All-sky Variability Analysis has detected a total of 215 flaring gamma-ray

sources over the entire sky based on weekly time intervals of 47 months LAT data [44].

In Fig. 10 we show how the exposure of different variable source types could be affected

by changing from survey to mixed mode observations. For the different source classes, we
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FIG. 9. Daily sky coverage with different range of exposure time normalized to the mean value of

the exposure map of each day (in total 55 days to complete on orbit precession period).

show the fraction of sources that would lose in exposure by more than 50% (red), which

would gain more than 50% in exposure (green), and which remain relatively unaffected

(black). For option1v2, we have 25 sources that would receive at least 150% exposure

compared to the standard survey strategy with finer sampling on time domain (including

the recently detected Nova Sco 2012), although with the price that 59 sources would receive

less than 50% exposure. We note that 61% of the transient sources (131 in total) would

receive comparable (50-150%) exposure time for option1v2 and the standard survey mode.

In Table II, we compare for the three modified strategies the fraction of transient sources

that would obtain > 150% exposure, < 50% exposure, and between 50-150% exposure time.

As we see from the Table, option3v3 provides a comparable number of sources with > 150%

exposure, but a 50% (33%) smaller sample of sources with < 50% exposure for option1v2

(option2v2).
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Exposure of 1FAV transient sources
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FIG. 10. Source type distribution for the 1FAV catalog from Fermi All-sky Variability Analysis [44].

We classify the sources into three categories: sources with expected exposure time (assuming

option1v2) less than 50% of the standard survey strategy; sources with expected exposure between

50% to 150% compared to the standard survey strategy; and sources with expected exposure more

than 150%.

For transient searches on different time scales, both short-term flares on time scales of a

few hours and long-term flux variations of a few months, the changed survey strategy would

provide the opportunity for a sample of sources with better sampling in the time domain

and higher sensitivity of flare detection.

Furthermore, the recently discovered G2 cloud - the intriguing red emission-line object

which is quickly approaching Sgr A∗ - offers a unique opportunity to observe an accre-

tion event onto the Galaxy’s central black hole [45, 46]. Although the predicted intensity

of gamma-ray emission from the G2 cloud encounter is not clear yet, Fermi as the only

gamma-ray space telescope covering from MeV to TeV energy range, should produce the

most detailed monitoring before, during and after the closest approach of G2 to the central

black hole with enhanced sensitivity as a bonus of the modified survey strategy. Fermi’s ob-

servation would provide unique/key information to study this very rare event. The predicted

encounter time is about later this year, a change of survey strategy as soon as technically

possible would be suggested as response to this valuable chance nature provides to us.
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D. Possible triggers

We advocate the change to a new survey strategy as soon as technically feasible. A more

conservative approach might involve waiting for certain triggers before initiating a change.

For example, one might want to wait until the Pass 8 processing is finished before making a

decision. However, it will probably not be public for another year or more, and it is difficult

to tie the decision to an internal release; in order for the community to provide input, the

decision should be made based upon public data.

Another trigger might be to just wait until a certain significance against/in favour of the

signal hypothesis is achieved. However, this could cause a long-enough delay to make a later

change inefficient. It would make more sense to make the change immediately, and then

have a trigger to revert to normal survey mode when the signal hypothesis is ruled out at

some level.

IV. DISCUSSION AND CONCLUSION

In this document we have argued for a change in the Fermi survey strategy to increase

exposure in the inner Galaxy, and confirm or rule out claims of a 130 GeV spectral line.

The principal reasons for a change are:

• It is important: discovery of a dark matter annihilation line in the Galactic center

would be Fermi’s greatest accomplishment. The nature of dark matter is one of the

greatest mysteries in physics and astrophysics, and the discovery of a line would be a

major step forward for both fields. Exploring the nature of dark matter is one of the

major goals of the Fermi project, and a discovery would define Fermi’s legacy.

• Fermi can do it: a modified survey strategy can obtain a decisive measurement, while

the status quo may not. The significance of a line evolves as sqrt(exposure), but with

large uncertainty due to Poisson fluctuations. For example, if the signal hypothesis is

correct, and starting a new ‘trial-free’ measurement from February 2012, the expected

signal significance by 1 Jan 2015 is about 4σ (Fig. 2). However, Poisson fluctuations

and uncertainties in the signal strength broaden this range such that the actual sig-

nificance achieved is between 2.5 and 5σ 68% of the time, and between 1.5 and 6.5σ
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95% of the time. Hence a clear confirmation with > 3σ significance is by no means

guaranteed. The same is true for the rejection of the signal hypothesis if it is false.

If the project continues with standard survey mode until 2015, there is a fair chance

that we leave this question unresolved. We cannot permit this to happen.

• This is a win-win: the proposed change is not bad for other science. There will be

winners and losers in any change, but more time on the inner Galaxy is good for lots

of projects (better time coverage for pulsars and transients, etc.). Many wide-angle

surveys (SDSS, Pan-STARRs, etc.) have found it fruitful to dedicate a significant

fraction of observing time to “deep fields” where greater sensitivity and improved

cadence extend the range of phenomena observable. Furthermore, roughly half the

sky has more exposure under the new strategy, and even the underexposed regions are

still observed on a regular basis for continued monitoring of transients (Fig. 9).

For all of these reasons, we advocate a change in the survey strategy, as soon as technically

feasible. For reasons discussed above, ‘option3v3’ put forward by the Fermi mission seems

to be the best way to go.

At least for the next several years, Fermi is uniquely able to address the 130 GeV line

(with possible competition from HESS-II [47]). If it is an artifact, it is a subtle one –

and understanding its origin is important for the dark matter search in particular, and the

mission as a whole. If the line is real, we would forever regret missing this opportunity to

pursue it aggressively.
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