
dsasads

APPROVAL SHEET

Title of Thesis: CAPTURING AND ANALYSING KERNEL EVENTS
 FOR ANOMALY DETECTION IN WINDOWS O.S.

Name of Candidate: Swapnil Mahendra Bhosale
 Master of Science
 Computer Science, 2021

Thesis and Abstract Approved:

 Dr. Anupam Joshi
 Director, UMBC Center for Cybersecurity Professor and
 Chair, Computer Science and Electrical Engineering

Date Approved: 7/28/2021

ABSTRACT

Title of dissertation: CAPTURING AND ANALYZING
KERNEL EVENTS FOR
ANOMALY DETECTION IN WINDOWS O.S.

Swapnil M. Bhosale, Master of Science, 2021

Dissertation directed by: Dr. Anupam Joshi
Department of Computer Science

This thesis applies recent advances in NLP to anomaly detection in Windows

OS. More specifically, we experiment using fastText as an embedding combined

with an LSTM for state prediction. We explore whether we can model the normal

process behavior on Windows and recognize deviations caused by malware. The

actions performed by malware typically involve modifying the file system, modifying

the Windows registry to change the system configuration & network actions. We

developed a Windows kernel driver to capture file, registry, network events. We

use fastText to train the embedding model to represent events as vectors. FastText

learns not only the syntactic information but also semantic information hidden in

the observed kernel events. The IP address, file path, process path, registry key etc.

have syntactic structure and semantic relationships. Next, we train a sequence-based

anomaly detection model using LSTM to learn the typical behavior of the Windows

OS and the processes running in the system. Lastly, we propose a technique to

identify measured windows event sequences as normal, or anomalies representing an

attack. We evaluate the performance of this anomaly detection system to detect

attacks on a system from their kernel level behavior. We collect datasets for normal

(attack-free) and process takeover (attack) using the kernel driver system we develop,

and use these to test our detection. We show that our approach has high accuracy,

precision, and recall. We also propose to release our kernel driver to capture events

as open source, to facilitate further research in this area.

CAPTURING AND ANALYSING KERNEL EVENTS FOR
ANOMALY DETECTION IN WINDOWS O.S.

by

Swapnil Bhosale

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Master of Science

2021

Advisory Committee:
Dr. Anupam Joshi, Chair/Advisor
Dr. Jeff Avery
Dr. James Oates
Dr. Tim Finin

© Copyright by
Swapnil Bhosale

2021

Acknowledgments

I owe my gratitude to all the people who helped me in the journey and made

this thesis possible. First, I would like to give my deepest thanks to my advisor,

Dr. Anupam Joshi. I want to thank him for all the time and effort he put in to

guide me and for always making sure that I am on the right track. I highly value

all the advice and technical insights he has provided to help me reach this point.

I want to extend my appreciation to the rest of my committee - Dr. Jeff Avery,

Dr. James Oates, and Dr. Tim Finin. I want to extend my sincere thanks to Dr.

Jeff Avery. His insights and attention have helped me grow and shape the quality

of my writing and thought process, which has been especially crucial in these past

few months dedicated to the completion of this thesis. I would especially like to

thank Amina Mahmood and Swati K. for helping me collecting the datasets for the

different experiments. I would also like to thank all the EBIQUITY members; it has

been my privilege working alongside you. Finally, I would like to thank my family

and friends for their endless support.!

ii

Table of Contents

List of Figures v

List of Abbreviations vi

1 Introduction 1

2 Related work 4
2.1 Windows Anomaly Detection . 4
2.2 FastText Sentence Embedding . 6

3 Event Capturing 8
3.1 Introduction . 8
3.2 Implementation . 9

3.2.1 Tapping file events . 12
3.2.2 Tapping registry events . 13
3.2.3 Tapping network events . 14

4 Implementation of Anomaly Detection System 18
4.1 Data . 19

4.1.1 Data Generation . 20
4.1.2 Data Preprocessing . 23

4.2 FastText embedding . 24
4.2.1 FastText model configuration and training 27

4.3 Unsupervised Anomaly Detection model 28

5 Results 34
5.1 Dataset . 34
5.2 Embedding Analysis . 35
5.3 Anomaly Detection . 40
5.4 Summary . 51

6 Conclusion and Future Work 52

iii

A HoTSoS poster presentation 55

Bibliography 56

iv

List of Figures

3.1 Minifilter kernel driver architecture 9
3.2 Function prototypes for file event tapping 12
3.3 Registry tapping function signature 13
3.4 Registry callback function prototype 14
3.5 Registry unregister callback function prototype 14
3.6 Associate user defined structure to packets 16
3.7 Deleting flow context and free the user allocated memory 16

4.1 Data flow in the proposed architecture 19
4.2 Text preprocessing view of the events 25
4.3 Data flow in embedding . 26
4.4 (a) test data reconstruction error (b) distribution of test data recon-

struction error . 31
4.5 LSTM training and validation loss plot 32
4.6 Autoencoder LSTM model layer sizes 33

5.1 t-SNE visualization of words in training dataset 38
5.2 t-SNE visualization of events of the few processes 39
5.3 Confusion matrix for threshold 30 . 42
5.4 ElasticSearch takeover form 10:38 to 10:41 43
5.5 ElasticSearch takeover form 11:04 to 11:15 44
5.6 ElasticSearch takeover form 18:28 to 18:31 44
5.7 Chrome takeover form 16:16 to 16:18 45
5.8 Chrome takeover form 22:00 to 22:02 45
5.9 Chrome takeover form 22:14 to 22:14 46
5.10 Chrome takeover form 22:28 to 22:31 46
5.11 Chrome browser takeover result . 47
5.12 Slow attack: ElasticSearch takeover (20:57, 21:03, 21:15 & 21:39) . . . 48
5.13 Slow attack: anomaly count per minute) 49
5.14 Malware execution at 12:52 . 49
5.15 Malware execution: anomaly count per minute 50

A.1 Poster presented for HoTSoS conference 55

v

List of Abbreviations

LSTM Long Short Term Memory
O.S Operating System
t-SNE t-distributed Stochastic Neighbor Embedding
VM Virtual Machine
NLP Natural Language Processing
SVM Support Vector Machines
MSE Mean Squared Error
MAE Mean Absolute Error
WFP Windows Filtering Platform
SDK Software Development Kit
WDK Windows Development Kit
DLL Dynamic Link Library
REST Representational State Transfer
API Application Program Interface
CLI Command Line Interface
RCE Remote Code Execution
IP Internet Protocol
CSV Comma Separated Value
TCP Transmission Control Protocol
UTF Unicode Transformation Format
BSOD Blue Screen Of Death

vi

Chapter 1: Introduction

Cyberattacks, and the related malware used to affect them, are seeing signif-

icant growth [1] and damage caused by these attacks is causing siginificant harm,

economic and otherwise [2, 3]. Detecting attacks, especially zero days, is a serious

challenge. Windows being the most widely used operating system, is also one of

the most often attacked [4]. Creating a system that can provide the data needed

to detect cyber attacks/malware is thus essential. The actions performed by mal-

ware typically involve modifying the file system, modifying the Windows registry to

change the system configuration & Network actions [5]. Malware is also becoming

intelligent and can evade and/or trick userspace-based, signature driven detection

approaches. Even such malware however leaves footprints in the kernel space. Also,

antivirus and network intrusion detection systems have proven inefficient against

detecting the advanced threats [6]. Moreover, commercially available virus scanners

and Windows have proprietary codebases and a tiny active community with limited

online resources on Windows kernel driver development. Thus, it is challenging but

essential to have a system that can provide data of process events in the kernel

space.

The goal of anomaly detection systems is to monitor the computer system

1

to detect abnormal behavior, which conventional signature-based methods could

not detect. Unsuprevised Anomaly detection systems overcome the limitation of

the signature-based detection to identify the unknown attack. The idea behind

this technique is that the profile of a malicious activity differs from typical user

behaviour [7]. Anomaly detection techniques have the ability of solid generalizability

and to detect the new attacks [8]. However, anomaly detection techniques have a

significant drawback of sizeable false alarm rates. We reduce the false alarms and

improve the system’s accuracy by using the anomaly counts per minute as a measure

to identify the anomaly window.

Since we can model the malicious activities [5] using file, registry, network

access, and due to limited availability of tools and information about Windows

kernel development, in this work we developed a kernel resident system to tap into

the file, registry, and network events in Windows. We show that we capture all events

relating to files, registry, and networks, including processes spawned in the O.S.

Next, this thesis applies recent advancements in the NLP domain to Windows kernel

events anomaly detection. It tests whether advanced NLP embedding approaches

can be used to model kernel events that do not contain typical natural language

but are human-readable text. Then we verify if such representation is suitable

for building an unsupervised Windows anomaly detection system that uses rich

information provided in the kernel events.

The key contribution of our work:

1. Develop a Windows kernel driver capable of tapping into the file, registry, and

2

network events in kernel space

2. Applies the fastText embedding to file, registry, and network events captured

in kernel space of Windows to Anomaly Detection

3

Chapter 2: Related work

In this section we discuss literature associated with Anomaly Detection in

Windows and corresponding approaches.

2.1 Windows Anomaly Detection

Several approaches have been proposed for anomaly detection in Windows,

but they are based on univariate data such as a file, registry, or network [4, 9].

Stolfo presented an anomaly detector of Windows that uses a probabilistic model

and support vector machines to use only registry events in October 2005 paper [4].

The researchers developed a registry sensor to monitor user space registry events.

This sensor deploys a wrapper over systems like RegMon from sysinternals [10]. The

probabilistic model is based upon a probability density estimation, while the second

one using SVM that iteratively finds the maximal margin hyperplane, which best

separates the training data from the origin. It May be viewed as a regular two-class

Support Vector Machine (SVM) where all the training data lies in the first class, and

the origin is taken as the only member of the second class. Thus, the hyperplane

(or linear decision boundary) corresponds to the classification rule [4].

Rabadi and Teo [11] in their paper suggests detecting the malware by gener-

4

alizing the system API calls happening in the Operating System. They use cuckoo

sandbox [12] to generate the data for the execution of the API calls along with their

parameters. M. Alazab uses a similar approach in the paper [13] to profile mal-

ware using System API calls. In the paper, [14] Lin used the builtin tools available

with containerization software to extract the System calls made by the containers.

After feature engineering, they train the typical behavior model of each different

application. To detect the anomalies, they also developed and introduced an Au-

toencoder to model normal application behavior. Based on the same hypothesis,

if the reconstruction error is higher, it indicates that the model did not encounter

that data before, so the result is one of an anomaly. Berlin and slaughter suggested

in their paper [15] the idea of the agentless anomaly detection system. Using audit

logs and cuckoo reports of malicious code execution are the primary data source for

the machine learning model. To classify benign and malware samples, they train

an automated linear logistic regression classifier. According to Jindal in their pa-

per [16], a new idea of automatically learning the process behavior from the dynamic

analysis report of the binary is introduced. With their approach, they train a word

embedding model and the LSTM based neural network. Our approach in this thesis

is different from these approaches in few ways: we capture the file, registry, and

network events in kernel space using the kernel driver developed by us, we train a

model on typical Windows user behavior, thus generalizing the Operating System

behavior, we present an anomaly detection technique based on threshold count per

minute in the event windows sequence.

5

2.2 FastText Sentence Embedding

In their paper, Mikolov [17] presented a pioneering approach in the domain

of Natural Language Processing (NLP) that was a breakthrough both in terms of

quality and computing complexity. It is a neural net with two layers that accepts

the text as input to the model and generates the embedding vectors. However,

Word2Vec has one limitation, which is essential for our work, it can only represent

the words present in the training corpus. Thus, one needs to handle the case when

the input text to the model was not part of the training corpus. As a result of the

following research, fastText was developed and presented [18, 19]. FastText has a

configurable parameter called n-gram. It allows it to train the model not only on

the input words in the corpus but also the character n-grams of the words.

Training on n-gram enables to generate embedding for the unseen words and

incorporate some of the syntactic structure of words in the embedding. Borawdekar,

in their work [20] describes the idea of adding semantic information to the text by

prepending the column names to the text. We employ a similar technique in our

approach to add semantic information to the event data. Jindal, in their paper

[16] trains a Word2Vec model for word embedding. FastText is also applied in

the log anomaly detection systems [21, 22] to represent the logs as vectors. The

logs also consist of syntactic structure such as keyvalue fields in the log statement,

thus allowing fastText to learn the hidden information present in the log statement

structure.

An n-gram is a contiguous sequence of n items from the given sequence, in this

6

context, the characters. N-gram is a commonly used term in many NLP methods.

FastText works on the principle that there exists hidden information in the structure

of the word. The unknown words can be created from the n-grams or the shorter

words. For example, if there is no embedding for the word ‘woman’, the embedding

for the ‘man’ is present in the training corpus. Moreover, the 2-gram ‘wo’ is also

learned from the other words present in the training corpus. Then the aggregated

embedding of the wo and man given the good approximation for the woman.

In NLP, there is also a common task to create embedding for the sentences or

the long text parts. It is a challenging and tricky problem depending on the used

language model to aggregate embedding for the different words. Using FastText is

very straightforward to generate embeddings for the sentences. It does this by taking

the L2 norm of each word vector in the sentence and then divide each vector by its

norm. Finally, all word vectors are averaged to create a single vector to represent

the sentence, and this is believed to capture the semantic information present in the

words of the sentences. We apply a similar approach in our work. Since each event,

i.e., file, registry, and network, have different features, we can model each event as

a sentence, and using fastText, we can generate an embedding of fixed size for each

event. In addition to its capability of generating vectors for unseen words, fastText

is also plausible in this context as a mechanism for embedding.

7

Chapter 3: Event Capturing

3.1 Introduction

One popularly known tool-set, Windows Sysinternals, allows users to view

advanced system information and utilities. These tools are impactful in viewing

user-level processes and system-level when they run through admin users in Win-

dows. With the tremendous increase in cyber attacks, tools such as Sysinternals

have become crucial in identifying threats within the system and the network. A

common problem in using this particular tool-set is that each tool has different uses.

There is a challenge in finding a tool that would be useful in scenarios of malware,

rootkits, and logging inside a Windows system that would be able to display all

of the system’s data. Windows filter manager is a system that allows third-party

“Miniflters” drivers and already comes installed with the operating system. It is

essential to enable third-party Miniflter drivers to be loaded and run on system

level. As a result, these kernel drivers have the highest privileges and are harder to

mitigate against. We use “Minifilter” - Windows kernel driver architecture to im-

plement our Windows Kernel Driver to tap into the file, registry & network events

in the Operating System. The Minifilter driver will be introduced that is capable of

being used in such various scenarios. This solves the problem of combining different

8

tooling capabilities into one and safe from the attacks where the attacker can ob-

serve the user-space applications and user-space application events, data, logs, etc

tampered with. The driver architecture and how to tap into these events will be

described in the later sections.

Figure 3.1: Minifilter kernel driver architecture

3.2 Implementation

Windows is a proprietary Operating System. There is a small active com-

munity that focuses on kernel driver development. Moreover, most virus scanner

companies do not disclose their driver code information out of tactical business ad-

vantage reasons. Thus, it is challenging to implement a Windows kernel driver on

your own. There is an abundance of information available out there on the Inter-

net. But, most information is vast, misleading and you can very soon find yourself

confused. The information out there is challenging to develop a kernel driver for

our usecase. Debugging kernel issues is also a challenging task and requires knowl-

9

edge of special tools like Wingdb and analysis of the memory dump. One memory

leak or error can lead to the famous Blue Screen of Death (BSOD) error on Win-

dows. Hence, it is essential to handle memory management carefully in the driver

implementation.

In Windows, there are two types of drivers: legacy file system filter drivers

and minifilter drivers. A legacy Windows file system filter driver can directly mod-

ify file system behavior and is called during each file system input/output (I/O)

operation. However, Microsoft currently favors the minifilter drivers. A minifilter

driver indirectly connects to the file system by registering all the needed callback

filtering procedures in the filter manager. The filter manager calls the filtering func-

tions registered by a minifilter for a specific I/O operation. In short, even though

minifilter do not have direct access to the file system, minifilters can still capture or

change the system behavior. However, they are much easier to develop and use than

the legacy alternatives. We build out file, registry, and network tapping system on

top of the minifilter driver architecture.

A minifilter driver‘s DriverEntry routine is executed when the Operating Sys-

tem loads the minifilter driver. Thus, all the initialization of variables and data

structure is done within it‘s DriverEntry routine. The minifilter driver calls FltReg-

isterFilter to register callback routines with the filter manager and FltStartFiltering

to notify the filter manager that the minifilter driver is ready to start attaching to

volumes and filtering I/O requests. Minifilter driver instances are defined in the INF

file used to install the minifilter driver. A minifilter driver’s INF file must define

a default instance, and it can define additional instances. These definitions apply

10

across all volumes. Each instance definition includes the instance name, altitude,

and flags indicating whether the instance can be attached automatically, manually,

or both. The default instance is used to order minifilter drivers so that the filter

manager calls the minifilter driver’s mount an instance setup callback routines in

the correct order.

The individual details on how to tap into file, registry and network events will

be described in sections 3.2.1, 3.2.2 & 3.2.3. As shown in figure 3.1, we maintain a

doubly linked list data structure in the kernel memory space to store the captured

events. These events will be deleted from the linked list when the driver is unloaded

from the system or our userspace application has consumed the data. Each sensor

file, registry, and network writes the new record structure at the one end of the

doubly linked list, and the user application consumes the records from the other end

of the doubly linked list. Also, we need to take care of the synchronization issues

using semaphores and locks because these events happen at microsecond granularity;

thus, modification of the linked list data structure is the critical section part of the

driver code. The userspace application uses FilterConnectCommunicationPort

API to connect to the driver’s communication port. We employ a multithreading

technique in the user application, and each thread communicates with the specific

event sensor. Thus, the user application generates three individual files for file,

registry, and network events in Comma Separated Value (CSV) format.

11

3.2.1 Tapping file events

File system filtering is the mechanism by which drivers can intercept calls

destined to the file system. The main function of a file system Minifilter is processing

the I/O operations by implementing ‘pre’ and/or ‘post’ callbacks for the operations

of interest. We hook into 40 different types of ‘pre’ and ‘post’ file system operations.

First, we need to register the operations callback. Our Minifilter driver must indicate

which operations it’s interested in. This is done at registration time with an array of

FLT OPERATION REGISTRATION structures. Now we pass this structure

to FLT REGISTRATION structure to register our driver. Figure 3.2 explains

about prototype of the function used for tapping into file events.

Figure 3.2: Function prototypes for file event tapping

Once the Driver setup is finished, all we need to do is to start filtering in

the driver’s DriverEntry. A Miniflter driver must register itself as a Minifilter with

the Filter manager, specifying various settings, such as what operations it wishes

12

to intercept and altitude settings. Having done the necessary initialization above,

we can call FltRegisterFilter to register. If successful, the driver can do further

initialization as needed and finally call FltStartFiltering to actually start filtering

operations.

3.2.2 Tapping registry events

For Registry entries, the Configuration Manager (the part in the Executive

that deals with the registry) can be used to register for notifications when registry

keys are accessed. The basics of building a registry filter driver is that the driver

needs to call CmRegisterCallbackEx routine during the DriverEntry routine,

and then call the CmUnRegisterCallback during the driver unload. Registry

filteres are considered as minifilter drivers are are loaded based on Load Order

Groups and Altitude just as file system minifilter are. Figure 3.3 is the prototype

of the API signature:

Figure 3.3: Registry tapping function signature

Its function is to register a callback Routine. The Result of a successful reg-

istration is passed to the Cookie parameter. Figure 3.4 describes prototype for the

13

first parameter of the API, the callback routine:

Figure 3.4: Registry callback function prototype

CallbackContext is the Context argument passed to CmRegisterCallbackEx.

The first argument is, in fact, an enumeration, REG NOTIFY CLASS, describing

the operation for which the callback is invoked, if its ‘pre’ or ‘post’ notification. The

second argument is a pointer to a structure that contains information that is specific

to the type of registry operation. The last argument is again the operation specific.

The CmUnRegisterCallback routine as shown is figure 3.5 is called to unregister a

callback.

Figure 3.5: Registry unregister callback function prototype

3.2.3 Tapping network events

The Base Filtering Engine is the component of the Windows Filtering Plat-

form that Microsoft has already implemented for you. The entire WFP API is

14

centered around interacting with this core component. Writing a driver with the

Windows Filtering Platform usually involves registering a series of objects to the

Base Filtering Engine, each of which allows you to interact with network traffic in

different ways. Filters, Callouts, Layers, and Sublayers are the primary objects that

you interact with as the author of a WFP driver. All of these objects ‘live inside’ the

Base Filtering Engine. We register with the following layers of Windows Filtering

Platform:

1. FWPM LAYER ALE FLOW ESTABLISHED V4

2. FWPM LAYER STREAM V4

The first layer allows us to get callbacks for any new network connection

established. This layer also provides metadata such as process id and process path.

The second layer allows us to inspect actual packets flowing through the established

network connection. The process id and process path metadata are not available in

the second layer. Thus to resolve this issue, as shown in figure 3.6 prototype of the

API, we use a concept of WFP called associating the flow context. It allows us to

attach a user-defined data structure to the established connection packets, which in

turn allows us to figure out the process id and name to which these packets belong.

The user-defined structure can contain any metadata. We store the process-id and

process-name. Because the process-id can be reassigned to another process by the

O.S. Thus, retrieving the process name from process-id while dumping the event to

file can give us a wrong process name if queried in the future. Moreover, it might be

possible when we are capturing the process name from the process id, and there is

15

no process running in the O.S with that process id in the future. Thus, the decision

was taken to store process-id along with process-name in the flow context structure.

Thus, we can just copy this structure values when we extract the metadata from

the packets.

Figure 3.6: Associate user defined structure to packets

FlowDeleteFn gets called when a connection is closed for the TCP connection

which has flowcontext associated with it. With this function we free the memory

allocated user defined data structure attached to the flow. Figure 3.7 describes the

prototype of the function, flowContextId is the address of the allocated user defined

flow context structure. Due to the limitation of the metadata unavailable at TCP

stream layer, we only process those network event who's connection was established

after driver was loaded and the flow context is allocated by our driver in kernel

memory.

Figure 3.7: Deleting flow context and free the user allocated memory

16

Current implementation of the network filtering only support TCP protocol

along with IPv4 protocol. However, the design can be extended easily to tap into

IPv6 protocol as well. All we need to do is just tap into the FWPM LAYER ALE

FLOW ESTABLISHED V6 layer.

17

Chapter 4: Implementation of Anomaly Detection System

This chapter presents the complete methodology of the anomaly detection

system used in the thesis. The dataset used for training the model and the pre-

processing of the data are presented. The architecture and the hyperparameter

settings are described for the model and their findings, and finally, the anomaly de-

tection solution used is explained. The first task is to create an event representation

suitable for further processing by machine learning. This representation uses NLP

embedding to keep the information contained in the Windows events. We present

the sentence embedding using the fastText in the section 4.2.

The unsupervised anomaly detection model based on LSTM is presented in

section 4.3. Model is trained to predict the next window sequence of events, and also

model is trained to reconstruct same event window using Autoencoder [23] model,

based on the event windows generated by normal system operations. Distance be-

tween predicted and real window sequences of events is measured and compared

with the threshold to detect the anomalies. Overview of the whole system is in fig

4.1. First, we perform embedding of the input window sequence and then feed it

to the model for the prediction. The output is compared with the original input

sequence, and the prediction error is calculated. The anomaly detector identifies

18

current windows as an anomaly if the error is above the threshold.

The next window prediction model did not perform well. Thus, the research is

focused on using the Autoencoder LSTM model to reconstruct the input sequence.

The idea of using the Autoencoder is if the reconstruction error is more than the

specified threshold, then there is an anomaly because the model has not seen that

data in the past or process is accessing some resources which it is not supposed to

access. Thus, it is an anomaly.

Figure 4.1: Data flow in the proposed architecture

4.1 Data

The data used in this thesis is generated by running the kernel driver devel-

oped by us on the Windows 10 host machine. Beyond The data, we discuss how we

train a sentence embedding model using data collected from kernel driver events.

Two unique aspects characterize our approach: (1) Using unstructured text repre-

sentation of the structural data as an input to the training process (irrespective of

19

the column type, all record fields are converted to the text tokens.) and (2) Using

the unsupervised sentence embedding technique to generate vectors from different

events modeled as a sentence.

4.1.1 Data Generation

We gathered the data by running the kernel driver on the Windows host ma-

chine to evaluate the anomaly detection system. Beyond the normal execution of the

standard programs such as Windows Word, Internet Explorer, WinZip, Microsoft

Paint, Google Chrome, the training also included performing the housekeeping tasks

such as emptying the Recycle Bin, using the Control Panel, updating the firewall

settings, create, delete, move files folder, etc. [4]. All experiment data were acquired

during the typical usage of the real user.

The kernel driver we developed can run on Windows 7, 8, or 10. We used

Windows 10 for the experiments because that is the latest V.M. image available

on the Windows website. Also, this V.M. comes with all the required libraries and

SDK already installed. These V.M. are not licensed and expired after few months,

and after that, you can run this V.M. continuously for only 1 hour. After 1 hour is

auto shutdowns.

The training data for our experiment was collected on Windows 10 for 3 hours

of normal usage. We informally define normal usage [4], which we believe to be a

typical use of the Windows platform in the home setting. For example, we assume

all users would log in, browse some internet websites, reads some emails, use word

20

processing software such as Windows word, etc., then log off. This type of session

is assumed to be relatively typical for many computer users. Normal programs are

those which are bundled with the operating system or in use by most Windows

users. Creating a realistic testing environment is an arduous task and testing the

system under a variety of environments is a direction for future work.

The simulated home use of Windows generated a clean (attack-free) dataset

that has approximately 8 million records in total. File and registry each had approx-

imately 3.5 million records, and the network had ∼1 million records. The reason

behind the large discrepancy with network events is described in section 3.2.3. Due

to the limitation of the metadata available at the TCP stream layer, we only process

those network events whose connection was established after the driver was loaded

in kernel memory. This does not cause any issues because we can still capture all

the network events while the system is under attack. The new network connections

will be established when the system is under attack; thus, we can capture the net-

work events associated with the attack. The normal program run also comprised of

browsing using Google Chrome and Elastic Search process. We execute a few REST

APIs exposed by ElasticSearch to create and access few database indexes as a part

of training data. We later take over these processes and show that we successfully

identify the anomalies. These normal programs are intended to simulate an ordinary

Windows session. The normal processes also include the processes spawned by O.S.,

such as sc.exe, logonui.exe, dmclient.exe, etc.

The attacks were carried out using Metasploit framework [24], and the attack

run includes the process takeover using the publicly available exploits for the Elas-

21

tic Search version 1.1.1, vulnerability CVE-2014-3120 and Google Chrome version

80.0.3987.87, vulnerability CVE-2020-6418. The attacks were active for a specific

duration of time, and meterpreter TCP reverse shell was spawned to perform Re-

mote Code Execution (RCE) on the target machine. We take over the ElasticSearch

process twenty-six times. Out of twenty-six attacks were run, each has a different

duration varying from 1 minute to 5 minutes. In these attacks, the activities per-

formed using reverse TCP shell includes spawning a new process like calculator.exe,

grabbing a screenshot of the system, streaming the screen share of the remote sys-

tem on the attacker system, deleting files, uploading privilege escalation script files,

migrating meterpreter session to another process, retrieving I.P. tables info, etc.

These activities emulate the typical attack session. The attacker might run a new

program, upload script files for privilege escalation, share the screen and migrate the

session to the process with more system privileges. All attacks were run in different

sessions and only happened within a specific period during the session. Thus this

gives us the ground truth when the anomaly was present in the system.

Carrying out attack slowly (performing single or small steps after some time

interval) and then applying the anomaly detection is an interesting step in deter-

mining the accuracy of the model. Thus we emulate slow attack for a 1-hr duration

experiment and collect the dataset. We take screenshot after certain time and stream

the screen share for ∼1 to ∼2 mins duration. We collect 8,675,588 records for the

experiment. The slow attack was carried out at 20:57, 21:03, 21:15 & 21:39. Later,

we explode a malware in controlled environment with our driver running to collect

the dataset. Later we evaluate the anomaly detection system against the collected

22

dataset. The malware was collected from the publicly available website [25]. The

dynamic analysis report [26] was collected from the VirusTotal [27]. We verify the

dynamic behaviour events with the dataset that we collect and indeed the driver

captures all the file, registry and network events reported in the report [26]. In

section 5.3 the results are presented.

4.1.2 Data Preprocessing

The kernel driver dumps file, network, and registry events in the CSV format

in the individual text files. After loading the events in the dataframe, they are

trimmed by removing the columns with the additional system information which

are not of interest, such as process id and timestamp, and removing the events

where attributes are missing or corrupt. A few events are missing or corrupt, mostly

caused by limited kernel memory constraints for storing large text string file path,

registry path, and process path. Empty registry values are replaced with the string

“none”: Some registry operations like “RegNtPreEnumerateValueKey” do not have

a registry-value field. Moreover, ‘\’ has a special meaning; thus, we replace all ‘\’

with ’\\‘ to mitigate any Unicode (UTF) encoding issues. It is a general practice in

programming to represent path separators with a double backslash.

For the preprocessing of the events, we prepend the column attribute string

to the actual value [20] for some of the features of each event type. This is expected

to add semantic information to the event data and provide more weightage to the

specific attributes of the event for their contribution towards the meaning of the

23

neighboring words. Individual data frames for file, network, and registry events are

then merged and sort by the timestamp. Figure 4.2 describes how individual files,

registries, and network events are preprocessed. Each event will act as a sentence

in the corpus for sentence embedding using the fastText model. Integer values from

the dataset are converted to the corresponding string value. Moreover, all strings

are converted to the lower case for consistency. In figure 4.2 the registry type, ports,

process name columns are prepended with the column name and converted to the

lower case. Finally, all words all joined by a space character representing a sentence.

The hidden information in the sentence embedding approach infers latent se-

mantic information in token associations and co-occurrences and encodes it in vec-

tors. The dataset is sorted with the timestamp, thus, simulating the input data as

time-series data for the model to train on. This will capture the semantic relation

of the process with file, registry, and network events. Since the dataset is sorted by

timestamp, we believe this will capture the temporal attributes of the process such

as process ‘P’, first create file ‘X’, then perform registry operations ‘Y’ and then

perform network connection to IP address ‘Z’.

4.2 FastText embedding

Embedding encodes information contained in the text to the numerical values,

usually vectors. In this thesis, we use fastText sentence embedding, and in combina-

tion, we apply some textification techniques described 4.1.2. We group the training

corpus event by process names and then sort each group by timestamp. It is needed

24

Figure 4.2: Text preprocessing view of the events

because some contextual information might not be included in the single event data.

The grouping of events by process name provides essential information to learn for

the embedding. Pre-trained word embeddings as Word2Vec from [17] are common

in the NLP domain. However, since we are dealing with the data related explicitly

to Windows O.S, we need to train our custom embedding model.

In this thesis, as described in section 4.1.2, we combine the NLP sentence

embedding technique for each event type and add additional semantic information

25

to the events. This paper [19] presents an interesting idea for solving the ‘unknown’

words and tries to exploit the hidden semantic information and syntactic structure.

The IP address, file path, process path, registry key, clearly have syntactic

structure and semantics.

Figure 4.3: Data flow in embedding

The final embedding is for each event is described in the figure 4.3. Raw events

first go through the preprocessing step, where the relevant information is extracted

from the event. We strip some columns from the events because some of the in-

formation contained in the event is irrelevant and noisy such as time and process

id. The combined events are, of course, sorted by timestamp, thus preserving the

contextual information. Preprocessed data then goes through the fastText model.

This part is straightforward. The custom trained model returns a vector of size “d”

for each word in the event. For each word vector, we find its L2 norm, divide the

vector by norm, and then average the vectors to produce a single vector to represent

a single event. Thus irrespective of the input event, the model always outputs a

fixed dimension vector.

26

4.2.1 FastText model configuration and training

We use an unsupervised approach based on FastText implementation to build

a sentence embedding model from the Windows events data. Our training approach

operates on the unstructured text corpus organized as a collection of English-like

sentences. There is no need to label the training data as we use unsupervised train-

ing. The fastText code defines a neighborhood window to compute the contribution

to the nearby words. The output of the fastText model for each sentence is the N x

D dimension.

where, “N” is Number of words in the sentence & “D” is Dimension size for

each word

Table 4.1: fastText hyper-parameters settings

vector size window size min word n-gram iteration down sampling

100 20 1 20 50 1e-3

As shown in the table 4.1, the model was trained for 50 iterations. We choose

the fastText ‘SkipGram’ model for training. We also experiment with the various

settings, but the above table provides the hyperparameters that worked best in our

experiments. There was a total of 7,133,471 actual events and 28,566,338 raw words

in the training corpus. The evaluation of the trained model will be discussed in

chapter 5.

27

4.3 Unsupervised Anomaly Detection model

The goal of this thesis is to create an unsupervised anomaly detection model.

There are various approaches in sequence analysis, but the most commonly used is

to train a model on the normal data to predict the next item of sequence or used

an autoencoder to reconstruct the output from the input. Finally, the prediction

is compared with the real values to determine if the current values are anomalous.

This high-level approach is used in [14,28–30].

We tried both approaches, but the autoencoder model performed well. Thus

we choose an autoencoder neural network for unsupervised model training and

anomaly detection to meet our goal of achieving anomaly detection in Windows

O.S. The autoencoder learns the latent representation of the input data and learns

to reconstruct them. The LSTM encoder learns a fixedlength vector representa-

tion of the input timeseries, and the LSTM decoder uses this representation to

reconstruct the timeseries using the current hidden state the value predicted at the

previous timestep [30]. Intuitively given the input sequence, can autoencoder recon-

struct the input? If not, then we can say that the given file, registry, and network

event combination do not seem ordinary, thus Anomaly. The autoencoder network

consists of encoding and decoding regions shown in model configuration figure 4.6.

Input data is compressed in the encoding region and reconstructed in the decod-

ing region. The model replicates its input data after compressing the input data

through intermediate neural network layers. During the training phase, a model is

built to minimize the difference between its input and output. When the autoen-

28

coder model is sufficiently trained, the model can produce output data with a small

reconstruction error compared with the normal input data. We can then use the

reconstruction error to implement the anomaly detection. Specifically, when the

autoencoder model produces an output with a high reconstruction error, we can

infer an abnormal input data is detected.

Our neural net consists of six layers of neurons with ‘tanh’ activation in ad-

dition to the input and output layers. Each iteration trains the autoencoder model

until the model converges. The convergence criteria of the model were set if the

learning from the previous iteration is not greater than 1e-3 on the validation data,

then stop the learning and restore the weights from the previous epoch. As shown

in figure 4.5 After twenty-five epochs, the training was converged. During the train-

ing, our objective is to minimize the mean squared error (MSE)4.1. We perform

backpropagation with Keras library and use ADAM optimizer.

MSE =
1

n

n∑
i=1

(yi − xi)
2 (4.1)

Experiments with different layers and sizes of hidden dimensions will be de-

scribed in chapter 5. However, the dimension of input and out of the LSTM layer

is kept similar to the embedding size, i.e., 100, in our experiments.

The input to the resulting model is divided into batches. The resulting model

is trained to reconstruct the sequence of given ‘window size.’ The model tried to

minimize the MSE error from the input and predicted output vectors. Here it is im-

portant to note that the dimension of the vector can be large. We also experimented

29

with MAE loss function, however. MSE has proven to work best after few exper-

iments with the metrics mentioned earlier. Even in our case with relatively high

dimensions ranging from 100 to 300. The training and validation loss is captured in

figure 4.5. The model converged after 25 iterations.

To detect anomalies prediction model is supplied with (batch size X win-

dow size X embedding size) input vector, and the distance between its output

Y∧ and Y is measured using the same metric as in the training phase. The current

window is label as anomalous if the distance is greater than the threshold. Optimal

setting of correct threshold is a challenging problem, and it is beyond the scope

of this thesis. Some sophisticated solutions, like dynamic shareholding from exists,

but no out-of-box implementation is available. So simple threshold, computed as

confidence interval from errors on training data, is used in this thesis. Threshold-

based on the standard deviation is computed on the testing data. After training,

we evaluate the test data and based on reconstruction error computed from testing

data using the following formula.

t = mean(errors) + 2 ∗ std(errors) (4.2)

30

(a)

(b)

Figure 4.4: (a) test data reconstruction error (b) distribution of test data recon-

struction error

31

Figure 4.5: LSTM training and validation loss plot

32

Figure 4.6: Autoencoder LSTM model layer sizes

33

Chapter 5: Results

This chapter presents the results achieved using the LSTM based sequence

anomaly detection model in the Windows Operating System. Multiple experiments

conducted to verify the hypothesis and evaluate the proposed solution. This chapter

firstly describes the datasets in section 5.1. Then we discuss the analysis of the

fastText model for event embedding. Then we evaluate anomaly detection model in

section 5.3. Finally, we discuss the summary of findings from the experiments.

5.1 Dataset

As discussed in section 5.1 to evaluate the anomaly detection model, we take

over the java ElasticSearch process and Google Chrome browser process using pub-

lically available exploits for the Metasploit [24] framework. The developed kernel

driver runs on the VM on which the attack is being carried out. The driver in

the kernel space will monitor all the Operating System’s file, network, and registry

activities. Since we know the ground truth when Metasploit took over the machine

and when the meterpreter reverse shell connection was closed, we expect the model

to show a significant amount of anomalies during that time. Each take-over experi-

ment varied from one minute to five minutes. Moreover, each take-over experiment

34

dataset was captured for ten to the 1-hour duration time. It is expected to see more

anomalies only when the machine was taken over, and anomalous activities were

carried out.

Similarly, we collect the twenty-five normal datasets varying in duration from

10 minutes to 2 hours. We defined normal behaviour in section 5.1. We evaluate

the model using 55 different datasets collected on different VM’s and different users.

Out of which, 25 are normal experiments, and 30 are taking over experiments. We

propose a threshold calculation technique in the following section, and the F1 score

for various threshold settings is described in table 5.1.

Finally, we perform a slow attack as explained in section and explode a mal-

ware in controlled environment. The dynamic analysis report has file, registry and

network events. We match them against the collected the dataset and indeed the

driver captures those all events with associated metadata.

5.2 Embedding Analysis

We train a custom fastText sentence embedding model on the training dataset.

Additionally, several parameter configurations were tried. The best parameters that

worked for us are described in this section 4.2.1. The parameters discussed in that

section directly affect the results of the FastText embedding. The n-gram default

range is 3-6. However, the 5-20 range worked best for us. Multiple embedding

dimensions (50, 100, 150, 300) were tried out. The more the embedding dimension

size is, the more it takes to train the embedding model, the more memory it takes,

35

and the more it takes for the LSTM model to train on. Thus, the embedding

dimension size should be chosen carefully.

The embedding model was trained on the training dataset. Similar words form

the cluster, allowing the LSTM model to learn about the semantic meaning of the

events. We use the dimensionality reduction method to convert high-dimensional

data into lower dimensional data for visualization purposes. Since the experiments,

we carried out using high dimensions which can not be visualized directly. We can

use the dimensionality reduction to convert the data into two dimensions. This

will allow us to show the distributions of the data on the scatter plot. To plot

the training data, we choose to use t-Distributed Stochastic Neighbor Embedding

(t-SNE) [31]. It is a technique for visualization of the similarity of the data. t-SNE

preserves the local structure of the data and some global structures such as clusters

while reducing the dimensionality.

Figure 5.1 and 5.2 are visualizations of the fastText embedding of the training

dataset and few selected process events from the training dataset. It looks like the

fastText model was able to cluster the events by process names. The training dataset

has 6,373,181 events, and selected processes for the visualization contribute 322351

of the total events. FastText exposes API most similar which allows you to get the

closest words with the given input text word. If we search for process java, we see all

the events related to java are in the output. Moreover if we fetch top 10 closest words

to ‘filename-device\\harddiskvolume2\\windows \\system32 \\cryptbase.dll’ then

in the response we see all the DLL’s which start with name crypt. Thus we can

say that FastText has learned the syntactical and semantics of the input dataset. In

36

figure 5.1 all the words in the training corpus were plotted to visualize the training.

We can see in the figure that clusters are formed for similar words. The cluster

in the center of the figure are the events for the registrykey having prefix ‘regkey-

registry \\machine \\software \\microsoft \\windows’. In figure 5.1 we select a

few processes, and using the tSNE technique, we reduce the higher dimensions to

twodimension for visualization. Each point in the figure is the vector representation

of the event. We can see, the cluster is formed for the ‘java.exe’ and ‘ctfmon.exe’

process. However, the events related to the Google Chrome process have formed

multiple small clusters and spread across the 2D plane. Similarly, few small clusters

are formed for the ‘taskmgr.exe’ process.

37

Figure 5.1: t-SNE visualization of words in training dataset

38

Figure 5.2: t-SNE visualization of events of the few processes

39

5.3 Anomaly Detection

Firstly, several unsupervised models with different layers and the size of hidden

layers were evaluated to determine the model’s reasonable parameters. We also

perform experiments with the loss function. We experimented using Mean Absolute

Error (MAE) and Mean Squared Error (MSE). However, changing the loss function

did not affect the model accuracy. We also perform the experiments with various

window sizes varying from 5 to 50. However, window size 20 performed best and was

used in the evaluation. Large layer size in the Autoencoder model took significantly

longer to train while not providing any additional improvements. Parameter values

that worked well with all sizes of embedding are 128 as an initial input layer, three

layers for compression, each having half number of neurons from the previous layer

in the sequence. For the decoding part, we use three layers, and each layer has twice

the number of neurons from the previous layer. The last output layer is the dense

layer, and the size of the last layer is 100, which is the same as the embedding size.

These configuration settings of the model were used in all following experiments.

We developed a benchmarking script to calculate the per minute anomaly

threshold count. We will describe the approach in the next section. We evaluate

various hyper-parameter settings of the LSTM model like autoencoder number of

layers and layer size, loss function, activation functions used in the layers, etc. The

results of only the best settings are presented here. As discussed in section 5.1, we

collect the datasets for the attack-free and ElasticSearch take-over experiments and

perform the F1 matrix calculation using them.

40

For the given window of the events, if the reconstruction error exceeds the

threshold calculated during training, the window is labeled anomalous. We check

for all the windows in the given input event sequence and label the corresponding

windows as an anomaly or normal. Then, we aggregate and sum the anomalies

for each minute in the given input sequence. Now, we evaluate our model on the

anomaly counts per minute. At the same time, we observed more spikes in the

reconstruction error when the attack was in progress. Thus, aggregating anomaly

counts per minute made sense, and the decision was taken to evaluate the model on

the anomaly counts per minute metric. In figures 5.4 , 5.5 and 5.6 we can clearly

see the more number of anomaly count when the ElasticSearch process was taken

over.

Results in Table 5.1 show that the model converges after threshold count 45.

In the given table, there were 26 datasets for the ElasticSearch take-over and 25

normal datasets. We also observed that the larger the n-gram size is, the better

char-grams that fit the hypothesis that n-grams can help exploit the syntax like

file, registry paths, IP address. Dimension of the embedding seemed to have no

significant effect on the accuracy than the n-gram configuration.

We now fix the threshold as 30 for per minute anomaly count and evaluate

the chrome take-over experiment datasets. In the figure 5.11 we report the anomaly

counts reported per minute for those experiments. We take over chrome four times.

The models report anomalies all four times in the given period when the chrome

process was taken over. Moreover, the dataset was captured with the help of few

researchers, thus providing varied user behavior data. It is essential because it helps

41

validate the hypothesis that the system generalizes the Windows system behavior

instead of the particular test user. If the test session data consist of only a single

user, then system evaluation might be wrong and biased toward the single user. The

anomaly detection model seemed to have generalized the Windows OS behavior and

reported zero or no significant anomaly count per minute on the attack-free dataset.

Thus, we can conclude that model learned the typical behavior of the processes and

learn to detect the anomalies.

Figure 5.3: Confusion matrix for threshold 30

42

Table 5.1: F1 matrix calculation

Threshold count

per minute

Attack-free metric Attack metric

Precision Recall F1 Precision Recall F1

5 1.0 .4 .57 .54 1.0 .7

10 1.0 .58 .73 .69 1.0 .82

15 1.0 .84 .91 .87 1.0 .93

20 1.0 .92 .96 .93 1.0 .96

25 1.0 .96 .98 .96 1.0 .98

30 1.0 .96 .98 .96 1.0 .98

35 1.0 .96 .98 .96 1.0 .98

40 1.0 .96 .98 .96 1.0 .98

45 1.0 1.0 1.0 1.0 1.0 1.0

Figure 5.4: ElasticSearch takeover form 10:38 to 10:41

43

Figure 5.5: ElasticSearch takeover form 11:04 to 11:15

Figure 5.6: ElasticSearch takeover form 18:28 to 18:31

44

Figure 5.7: Chrome takeover form 16:16 to 16:18

Figure 5.8: Chrome takeover form 22:00 to 22:02

45

Figure 5.9: Chrome takeover form 22:14 to 22:14

Figure 5.10: Chrome takeover form 22:28 to 22:31

46

Figure 5.11: Chrome browser takeover result

47

Finally, we evaluate the simulated slow attack and malware execution exper-

iments. The anomaly count is reported in figure 5.13 and time vs reconstruction

error plot is presented in figure 5.12 for the slow attack. We clearly see a significant

anomaly count per minute when system was under a slow attack and exceeds the

proposed threshold count thus it is an anomaly. Model was able detect the malware

execution. The notable anomaly counts were reported when the malware began it‘s

execution. The anomaly count for the malware execution exepriment is reported in

figure 5.15 and time vs reconstruction error plot is presented in figure 5.14

Figure 5.12: Slow attack: ElasticSearch takeover (20:57, 21:03, 21:15 & 21:39)

48

Figure 5.13: Slow attack: anomaly count per minute)

Figure 5.14: Malware execution at 12:52

49

Figure 5.15: Malware execution: anomaly count per minute

50

5.4 Summary

We experimented with multiple fastText configuration settings and verified

that fastText embedding provides a meaningful representation of the events. Events

related to the process form a cluster in the embedding space; as we saw by using the

t-SNE dimensionality reduction technique, we could visualize the embeddings. We

also verified that increasing the dimension size of the embedding has less effect on

the accuracy and anomaly detection than the n-gram setting of the fastText model.

Finally, the unsupervised anomaly detection model performed well. The model

learned a typical sequence of events and reconstructed the events vector embeddings

with less reconstruction error. We choose for anomaly detection, i.e., looking at

the anomaly counts per minute windows and calculating the acceptable threshold

worked in the context for Anomaly detection. We further examine the sequence

windows, which reported the reconstruction error more than the threshold: the

anomalous windows had events such as 1) accessing the ‘meterpreter’ class file 2)

reverse TCP connection network event on port 4444 3) accessing windows registries

where the information about system network configuration is kept. Thus, the model

captures the anomalies and captures the actual anomalous events in the anomaly

window. After setting the acceptable threshold on the anomaly window to 30,

the model could also detect the attack on the google chrome process four out of

four times. In figure 5.11 we report the anomaly counts for the Chrome takeover

experiment. The model is also able to detect the slow attack and malware execution.

51

Chapter 6: Conclusion and Future Work

In this thesis, we studied the problem of Anomaly Detection in Windows OS.

Many approaches use only a single source of data, such as a file, registry, or network,

but they fail to capture the spatial locality between the events. For example, process

‘P’ usually first open system DLL file ‘X’ then check the windows registry value ‘Y’

for configuration and finally performs network activities with specific IP addresses

and specific ports ‘Z’. These events are enriched with semantic and syntactic infor-

mation. The file path, registry path, process binary path, windows system DLL file

names, IP addresses, etc., clearly have syntactic information. Thus, we developed a

Windows kernel driver to tap into the file, registry, and network events.

Results show that we can apply the NLP technique like fastText sentence

embedding to represent these kernel events and capture the hidden information

present. We proposed the fastText sentence embedding approach and some text

preprocessing techniques. LSTM based sequence Autoencoder model was trained

with input as an embedding representation of these events. The proposed model is

implemented and evaluated in this thesis.

The kernel driver helped us collecting the required dataset for training and

experiments. We proposed the approach to calculating the threshold value for the

52

sequence window to be marked as an anomaly. The collected attack and attack-free

datasets were evaluated on the Autoencoder model. The results were used for the

F1 matrix and threshold calculation. The result shows that threshold value 30 yields

optimal results with an F1 score of 98% for both attack-free and attack metric. The

precision is 1 for attack-free metric, and recall is 1 for attack metric. Thus, resulting

in addition to the acceptable system for Anomaly detection along with current other

techniques.

One interesting future experiment might be testing the system with other

Chromium-based web browsers and seeing if web browsing can generalize the browsers

based on the web engine behavior. Further, validate how anomaly detection system

behaves when any new application is installed and ran. This is expected to show

up some Anomalies (due to unseen data in the past) in the system but is expected

to be below the threshold count per minute. This can be a limitation of our system

that we might have to retrain the model with the new data for the new application.

Moving the system goal to detect the actual malware families would be an ex-

citing step to gain more insights. The trivial idea of exploding few malware samples

of family ‘X’ and then verifying if the model can also detect other samples from the

same malware family would be interesting. Also, promoting the current system to

the real-time anomaly detection system would be a simple yet exciting next step.

For example, how long does the system takes to detect an attack? Alternatively,

how long does it takes to detect the malware when it was exploded?. Answers to

these questions can provide more insights into the model. Since the model was able

to generalize the multiple user behavior on the Windows platform, we believe the

53

system we proposed has the potential to overcome the problem of virus scanner and

other systems such as inefficiency against the unknown attack and/or inefficiency

against the specially crafted executable and process behaviour [32]

54

Appendix A: HoTSoS poster presentation

We participated in the 8th Annual Hot Topics in the Science Security (HoT-

SoS) symposium. We created and presented the poster on the online platform

provided by them. In figure A.1, we present the poster developed for this work.

MACHINE LEARNING MODEL IMPLEMENTATION

Fig. : Windows
Kernel Driver

Architecture of

Mini Filter

Windows Kernel Driver

Adding records

to the specific Link List

User-Space App,

Fetching records

from Specific Link List

and write to file

File
Events

CmRegisterCallback()

Thread 1
File Event
Retrieve

Thread 2
File Event
Retrieve

Thread 3
File Event
Retrieve

Registry
Events

Network
Events

WFP wallouts

Register Pre/Post
File Operations

Windows
Operating System

File

Reg

NW

Doubly

Link List of Records
We maintain a doubly linked-list

data structure of the events in the

kernel memory space. We employ

synchronization technique, add

records to one one end and remove

records concurrently from other

1) Antivirus companies has Proprietary code-bases
2) Small community with Windows Kernel Driver knowledge
3) Enormous events generated by O.S, multithreading and
 memory leak issues results in BSOD errors
4) Microsoft lacks in documentation on kernel driver
 development

CHALLENGES :-

1) MODIFYING THE FILE SYSTEM

2) MODIFYING WINDOWS REGISTRY

3) NETWORK ACTIONS

* Malware Data Science : Saxe, J.(2018). Malware Data Science.

TYPICAL MALWARE BEHAVIOUR * :

Virus
MALWARE

 Behaviour

File Operation

Registry Operation

Network Activity

 First of all, we need a way to represent

events to train a Machine Learning model

using this data.We used the FastText sentence

embedding NLP technique to represent each

event as a vector. FastText has a "window

size" hyperparameter, which allows the model

to look back at many records to exploit spatial

locality. We believe that this can help the model

capture the process behavior with file,

network, and registry events. Thus, the

dataset is group by process names and then

sorted by timestamp. Then the dataset is fed to

FastText for training.We then use the t-

Distributed Stochastic Neighbor Embedding

(t-SNE) algorithm to reduce dimensions to 2D.

The plot of the words shows that related events

are appearing together.

Preprocessing
Fast Text

embedding

Preprocessed

event

event embedding

1 X D

embedding vector

sentense embedding

Divide by Norm and

average the vector

fig: FastText text embedding data flow

In this work, we have created a kernel resident system to tap into file, registry and network events in Windows O.S. We capture all events relating to files,
registry and networks, including processes that are spawned by the O.S. In ongoing work, we have developed a unsupervised neural network LSTM
based sequence anomaly detection model that uses this data.

EBIQUITY RESEARCH LAB, UNIVERSITY OF MARYLAND, BALTIMORE COUNTY

CAPTURING AND ANALYSING WINDOWS KERNEL EVENTS FOR ANOMALY DETECTION
Swapnil Bhosale | Anupam Joshi | Jeff Avery

2,427,119File ~ 1 hours

539,588Registry ~ 1 hours

Network 1,432,243 ~ 1 hours

Total Records Exepriment Run TimeType Record

Fig: Histogram of prediction error and Anomaly detection

We also experiment by stacking multiple LSTM

layers and trained to predict the next window sequence. To evaluate the

model, we take over the running Java process using Meterpreter. The

malicious activities are performed such as downloading files, keylogging

the keyboard strokes, etc. The constructions errors are then plot and

anomalies are detected

We experiment with the Autoencoder model and train it to

reconstruct the event sequences of size n. To detect anomalies, the

prediction model is supplied with 'X, 'Y' and the distance between its

output 'y^' and 'y' is measured using the MSE loss function. The current

event sequence window is label as anomalous if the distance is greater

than the threshold.

 We capture the normal system usage behavior. For example, we

assume all users would log in, check some internet

processing, then log off. This type of session is

assumed to be relatively

sites, read some

mail, use word

typical of many computer users

 The simulated home use of Windows generated a clean (attack-

1 hour of activity has followin record to predictfree) dataset for a

the timeseries and detect Anomalies.

Fig: t-SNE visualization for the training dataset.

1) File: Use MiniFilter driver tehnique to tap into file events

2) Network: Using WFP framework, tap into required OSI network
layers. We tap into flow_established and tcp_stream_layer

3) Registry: Hook registry calls by registering callback with
“CmRegisterCallback" API.

Anomaly detection using LSTMSentence Embedding using FastTextData Collection

Figure A.1: Poster presented for HoTSoS conference

55

Bibliography

[1] J. Johnson. Global new malware volume 2020. https://www.statista.

com/statistics/680953/global-malware-volume/#:~:text=As%20of%

20March%202020%2C%20the,surpass%20700%20million%20within%202020,
January 2021.

[2] Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, and John Yen. Using bayesian
networks for probabilistic identification of zero-day attack paths. IEEE Trans-
actions on Information Forensics and Security, 13(10):2506–2521, 2018.

[3] Mamoun Alazab and MingJian Tang. Deep learning applications for cyber
security. Springer, 2019.

[4] Salvatore Stolfo, Frank Apap, Eleazar Eskin, Katherine Heller, Shlomo Her-
shkop, Andrew Honig, and Krysta Svore. A comparative evaluation of two
algorithms for windows registry anomaly detection. Journal of Computer Se-
curity, 13:659–693, 10 2005.

[5] Joshua Saxe and Hillary Sanders. Malware Data Science: Attack Detection and
Attribution. No Starch Press, USA, 2018.

[6] Konstantin Berlin, David Slater, and Joshua Saxe. Malicious behavior detection
using windows audit logs. In Proceedings of the 8th ACM Workshop on Artificial
Intelligence and Security, AISec ’15, page 35–44, New York, NY, USA, 2015.
Association for Computing Machinery.

[7] Ammar Alazab, Michael Hobbs, Jemal Abawajy, and Moutaz Alazab. Using
feature selection for intrusion detection system. In 2012 international sympo-
sium on communications and information technologies (ISCIT), pages 296–301.
IEEE, 2012.

[8] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, Joarder Kamruzzaman, and
Ammar Alazab. Hybrid intrusion detection system based on the stacking en-
semble of c5 decision tree classifier and one class support vector machine. Elec-
tronics, 9(1):173, 2020.

56

https://www.statista.com/statistics/680953/global-malware-volume/#:~:text=As%20of%20March%202020%2C%20the,surpass%20700%20million%20within%202020
https://www.statista.com/statistics/680953/global-malware-volume/#:~:text=As%20of%20March%202020%2C%20the,surpass%20700%20million%20within%202020
https://www.statista.com/statistics/680953/global-malware-volume/#:~:text=As%20of%20March%202020%2C%20the,surpass%20700%20million%20within%202020

[9] Frank Apap, Andrew Honig, Shlomo Hershkop, Eleazar Eskin, and Sal Stolfo.
Detecting malicious software by monitoring anomalous windows registry ac-
cesses. In International Workshop on Recent Advances in Intrusion Detection,
pages 36–53. Springer, 2002.

[10] Regmon for windows - windows sysinternals — microsoft docs. https://

docs.microsoft.com/en-us/sysinternals/downloads/regmon. (Accessed
on 05/07/2021).

[11] Dima Rabadi and Sin G. Teo. Advanced windows methods on malware detec-
tion and classification. In Annual Computer Security Applications Conference,
ACSAC ’20, page 54–68, New York, NY, USA, 2020. Association for Computing
Machinery.

[12] Cuckoo sandbox - automated malware analysis. https://cuckoosandbox.

org/. (Accessed on 05/07/2021).

[13] Mamoun Alazab. Profiling and classifying the behavior of malicious codes.
Journal of Systems and Software, 100:91–102, 2015.

[14] Yuhang Lin, Olufogorehan Tunde-Onadele, and Xiaohui Gu. Cdl: Classified dis-
tributed learning for detecting security attacks in containerized applications. In
Annual Computer Security Applications Conference, ACSAC ’20, page 179–188,
New York, NY, USA, 2020. Association for Computing Machinery.

[15] Konstantin Berlin, David Slater, and Joshua Saxe. Malicious behavior detection
using windows audit logs. In Proceedings of the 8th ACM Workshop on Artificial
Intelligence and Security, AISec ’15, page 35–44, New York, NY, USA, 2015.
Association for Computing Machinery.

[16] Chani Jindal, Christopher Salls, Hojjat Aghakhani, Keith Long, Christopher
Kruegel, and Giovanni Vigna. Neurlux: Dynamic malware analysis without
feature engineering. In Proceedings of the 35th Annual Computer Security Ap-
plications Conference, ACSAC ’19, page 444–455, New York, NY, USA, 2019.
Association for Computing Machinery.

[17] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[18] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag
of tricks for efficient text classification. arXiv preprint arXiv:1607.01759, 2016.

[19] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. En-
riching word vectors with subword information. Transactions of the Association
for Computational Linguistics, 5:135–146, 2017.

[20] Rajesh Bordawekar, Bortik Bandyopadhyay, and Oded Shmueli. Cognitive
database: A step towards endowing relational databases with artificial intel-
ligence capabilities. arXiv preprint arXiv:1712.07199, 2017.

57

https://docs.microsoft.com/en-us/sysinternals/downloads/regmon
https://docs.microsoft.com/en-us/sysinternals/downloads/regmon
https://cuckoosandbox.org/
https://cuckoosandbox.org/

[21] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. Robust log-based
anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 807–817, 2019.

[22] Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong,
and Wenbin Zhang. Semi-supervised log-based anomaly detection via proba-
bilistic label estimation. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 1448–1460. IEEE, 2021.

[23] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, California Univ
San Diego La Jolla Inst for Cognitive Science, 1985.

[24] Penetration testing software, pen testing security. https://www.metasploit.
com/.

[25] Vx vault. http://vxvault.net/. (Accessed on 05/07/2021).

[26] Virustotal malware report. https://www.virustotal.com/gui/file/

504229eb947e4ae07f6cb408da3dde9ae2ae2996b4df208ab9d06558f39d2cf5/

behavior. (Accessed on 05/07/2021).

[27] Virustotal. http://virustotal.com/. (Accessed on 05/07/2021).

[28] Akash Singh. Anomaly detection for temporal data using long short-term mem-
ory (lstm), 2017.

[29] Tolga Ergen and Suleyman Serdar Kozat. Unsupervised anomaly detection
with lstm neural networks. IEEE transactions on neural networks and learning
systems, 31(8):3127–3141, 2019.

[30] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig,
Puneet Agarwal, and Gautam Shroff. Lstm-based encoder-decoder for multi-
sensor anomaly detection. arXiv preprint arXiv:1607.00148, 2016.

[31] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(11), 2008.

[32] Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach. Query-efficient
black-box attack against sequence-based malware classifiers. In Annual Com-
puter Security Applications Conference, ACSAC ’20, page 611–626, New York,
NY, USA, 2020. Association for Computing Machinery.

58

https://www.metasploit.com/
https://www.metasploit.com/
http://vxvault.net/
https://www.virustotal.com/gui/file/504229eb947e4ae07f6cb408da3dde9ae2ae2996b4df208ab9d06558f39d2cf5/behavior
https://www.virustotal.com/gui/file/504229eb947e4ae07f6cb408da3dde9ae2ae2996b4df208ab9d06558f39d2cf5/behavior
https://www.virustotal.com/gui/file/504229eb947e4ae07f6cb408da3dde9ae2ae2996b4df208ab9d06558f39d2cf5/behavior
http://virustotal.com/

	23f0e4a5-9778-4a28-93cf-56029f92ce7d.pdf
	List of Figures
	List of Abbreviations
	Introduction
	Related work
	Windows Anomaly Detection
	FastText Sentence Embedding

	Event Capturing
	Introduction
	Implementation
	Tapping file events
	Tapping registry events
	Tapping network events

	Implementation of Anomaly Detection System
	Data
	Data Generation
	Data Preprocessing

	FastText embedding
	FastText model configuration and training

	Unsupervised Anomaly Detection model

	Results
	Dataset
	Embedding Analysis
	Anomaly Detection
	Summary

	Conclusion and Future Work
	HoTSoS poster presentation
	Bibliography

