This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative

Commons license, for uses protected by Copyright Law, contact the copyright holder or the
author.

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.



mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

Recasting Self-Attention with Holographic Reduced

Representations
Mohammad Mahmudul Alam Edward Raff
University of Maryland, Baltimore County Booz Allen Hamilton
m256@umbc.edu Raff_Edward@bah.com
Tim Oates James Holt

University of Maryland, Baltimore County
oates@umbc.edu

Abstract

Self-Attention has become fundamentally a new approach to
set and sequence modeling, particularly within transformer-
style architectures. Given a sequence of T items the stan-
dard self-attention has O(T?) memory and compute needs,
leading to many recent works building approximations to
self-attention with reduced computational or memory com-
plexity. In this work, we instead re-cast self-attention us-
ing the neuro-symbolic approach of Holographic Reduced
Representations (HRR). In doing so we perform the same
logical strategy of the standard self-attention. Implemented
as a “Hrrformer” we obtain several benefits including faster
compute (O(T log T) time complexity), less memory-use per
layer (O(T) space complexity), convergence in 10X fewer
epochs, near state-of-the-art accuracy, and we are able to
learn with just a single layer. Combined, these benefits make
our Hrrformer up to 370X faster to train on the Long Range
Arena benchmark.
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1 Introduction

Self-attention has become a key component of the develop-
ment of Transformer style architectures, and their recent
successes in machine translation, large language modeling,
and computer vision applications. The fundamental construc-
tion of self-attention includes a triplet of “queries, keys, and
values”, where the response is a weighted average over the
values based on the query-key interactions. This results in a
quadratic memory and computational complexity, that has
inhibited the use of Transformers to those without signifi-
cant GPU infrastructure and prevented applications to longer
sequences. Ever since a myriad of approaches has been pro-
posed to approximate the self-attention mechanism, with
the vast majority trading some amount of accuracy for speed
or memory use. The “market” of self-attention strategies cur-
rently offers various trade-offs in the total package of speed,
memory use, and accuracy.

In this work, we take a different approach to improving
the self-attention mechanism. Rather than approximate the
existing self-attention approach, we re-design the same logi-
cal strategy: return a weighted sum of values based on the
best match pairing of a set of queries against the keys for
each value. To do this we use a neuro-symbolic approach of
Holographic Reduced Representations (HRR) [36]. The HRR
allows us to model the same logic in a mechanism that is
differentiable, thus allowing integration into a larger neu-
ral network. We term the Transformer built from our new
mechanism a Hrrformer (pronounced \her-for-mer)).

We test our method using the Long Range Arena (LRA)
to compare with numerous prior results, as well as a real-
world task in Malware detection. These results show sev-
eral benefits to the Hrrformer: it is near state-of-the-art in
terms of accuracy, and one of only two methods to improve
upon the original Transformer for all tasks in the LRA. The
Hrrformer sets a new state-of-the-art for speed and memory
use, processing 37X more samples/second and 76.79% less
memory than the best prior arts for each respective met-
ric. The Hrrformer converges in 10X fewer epochs and is
effective with just a single layer. Combined this makes the
Hrrformer up to 370X times faster to train. On our malware
classification task, we find that the relative accuracies of
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Transformer models change from the LRA benchmark, but
that our Hrrformer still obtains the best accuracy and scales
the best with sequence length up to T = 8192.

The remainder of our manuscript is organized as follows.
Work related to our own, as well as adjacent techniques
beyond our study’s scope, are reviewed in section 2. The
recasting of attention in our Hrrformer is a simple procedure
demonstrated in section 3, which redefines the Attention
function using HRR, and multi-headed self-attention then
continues as normal. We then demonstrate these benefits
in section 4, showing Hrrformer is consistently one of the
best methods in accuracy and considerably faster thanks to
reduced memory usage, the number of layers, and epochs
needed to converge. In section 5 we conclude our work.

2 Related Works

Since the introduction of the Self-Attention mechanism and
the transformer architecture, considerable research has oc-
curred to mitigate its computational burdens. Though not
explicit in much of the current literature, many of these
approaches resemble strategies for improving Support Vec-
tor Machines that have a similar complexity. This includes
projection [20] to a lower dimension ([59]), finding/creating
sparse structure in the correlations [58] (by [6, 10, 24, 54, 63]),
using randomized features [43, 49] (by [11]), factorized or
budgeted representations [47, 60] (by [31, 62]), and creat-
ing simplified linear approximations [21, 61] (by [22]. Other
more differentiated approaches include the hierarchical de-
composition of the correlations (by [65]), and approaches
that replace self-attention entirely with alternative “mixing”
strategies [27, 53]. To the best of our knowledge, ours is
the first work that attempts to re-create the same logic of
self-attention with alternative constructs (the HRR), with-
out applying approximations to the attention mechanism or
using alternative mixing.

Among these prior methods, we note that F-Net [27] is
the most related as both F-Net and HRR rely upon the Fast
Fourier Transform (FFT) as a fundamental building block.
While F-Net does not approximate self-attention so much as
replace it with an alternative “mixing” procedure, we include
it due to its relevance in using the FFT. Our results will show
significant improvement over F-Net, highlighting the value
of a neuro-symbolic approach to reconstructing the same
logic as opposed to using the FFT as a generic differentiable
mixing strategy.

The HRR has seen successful use in cognitive science re-
search [5, 7, 8, 12, 19, 48, 52], but comparatively little work
in modern deep learning. The symbolic properties have been
previously used in knowledge graphs [35] multi-label clas-
sification [13], and privacy [3], but never previously for
sequential modeling. An older alternative to the HRR, the
Tensor Product Representation (TPR) [50] has been used
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to endow Recurrent Neural Networks with enhanced func-
tionality [18, 46]. Compared to these prior works, we are
re-casting the same logic into HRRs, rather than augment-
ing the logic. In addition, the TPR’s complexity is at least
quadratic, making it a poor choice for tackling the scaling
problems of self-attention.

Other recent approaches to sequential modeling like IGLOO [51]

and State Space Models[14-17] are highly promising. We
consider these, along with RNNs, beyond the scope of our
work. Our goal is to explore the value of re-casting self-
attention within the neuro-symbolic framework of HRR. As
such other sequence modeling approaches are out of scope,
and we focus purely on other self-attention mechanisms.

The need for both less memory and extension to very long
sequences is also prevalent in Malware detection. Process-
ing malware from raw bytes has been found to be one of
the most robust feature types in the face of common mal-
ware obfuscations [2], but simple n-gram based features have
been maligned for being unable to learn complex sequen-
tial information when executable can be tens of kilobytes
on the small side and hundreds of megabytes on the larger
side [1, 23, 25, 39, 64]. Given a maximum T = 200M is realis-
tic, many strategies to handle such sequence lengths have
developed. This includes attempts to create “images” from
malware have been attempted [30, 34], using compression
algorithms as a similarity metric [9, 28, 33, 41, 42, 45, 57],
and attempts to scale 1D-convolutional networks over raw
bytes [26, 38, 40].

We will use the Ember[4] dataset for malware detection as
a real-world test of our new self-attention. We are aware of
no current work that has successfully applied Transformers
to the raw bytes task, and we do not yet get Transformers to
process an entire executable. Still, we find the experiment
informative to the robustness of Transformer architectures
to other domains, where results change for current state-
of-the-art methods but our Hrrformer maintains its high
performance. The task is also interesting as prior work has
identified cyber security data as behaving in intrinsically
different manners to current broad understanding [44] which
is consistent with prior observations about convolutional
networks [38].

3 Attention with Holographic Reduced
Representations

The HRR operation allows assigning abstract concepts to
arbitrary numerical vectors, and perform binding (&) and
unbinding operations on those concepts via the vectors. One
could bind “red” and “cat” to obtain a “red cat”. The vectors
can also be added, so “red” @ “cat” + “yellow” @ “dog” rep-
resents a “red cat and yellow dog”. An inverse operator T is
used to perform unbinding. One can then query a bound rep-
resentation, asking “what was red?” by unbinding “red cat
and yellow dog” @ “red”" to get a vector ~ “cat”. To perform
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this symbolic manipulation the binding operation is defined
as Equation 1

B=x@y=F(F(x) ©F (y1) (1)
where # denotes the FFT and © an element-wise multiplica-
tion. The inversion is defined as y = ! (#y)) Combined

Plate showed that the response 8 @ y' should be ~ 1 if the
vector y € B, and = 0 if not present.

An attention function can be represented using query
Q, key K, and value V vectors where the final output is
computed as the weighted sum of the values. A query vector
can be mapped to a set of linked key-value pairs to retrieve
the value vector associated with the query. The concept of
binding and unbinding operations of HRR is applied to link
the key-value pair, i.e., bound term, and retrieve the value
vector associated with the query from the bound term.

Given a sequence of length T having an embedding size of
Hfor Q,K,V e RT*H  the key and value vectors are paired
together into a bound vector B using the binding operation.

B=K®BVeR™*H )

Next, to make a composite representation of the bound terms,
all the elements of the sequence are added together into a
single synthetic vector represented by B*.

T
=) B R 3)

Later, the query vector is applied to retrieve the correspond-
ing value vector V linked with the key associated with that
query using the unbinding operation.

V:ﬁ+@Q+€RT><H (4)
The retrieved value vector V is extracted from a synthetic
vector storing all the information of a sequence using the
query vector Q. Therefore, a similarity score between the
original value vector V and the retrieved value vector V, will
have the information of which element of the sequence to
prioritize. As a result, cosine similarity is calculated between
them which is scaled using the softmax activation to get the
weight W values of a sequence.

ViV
IVIl2 - VIl

Finally, the weight vector W is multiplied element-wise with
the original value vector to compute the final attention given
in Equation 6.

Attention(Q,K,V) = W - V e RT*H (©)

Moreover, we expand our attention mechanism to multiple
heads. Instead of performing single attention, we split the
embedding size H of the query, key, and value into h heads
each having an embedding of size H' = H/h. The attention
is computed in parallel in each head and then merged into
single attention which is projected to get the final output.

W = softmax ( R (5)

MiLeTS 2022, Aug 15th, 2022, Washington, DC

The time complexity of the binding/unbinding operation is
O(TlogT). Therefore, the time complexity of the Hrrformer
attention per layer is log-linear O(T log T - H) whereas the
space complexity is linear O(T).

This simple approach allows us to have fully replicated the
same logical goals and construction of the attention mech-
anism first proposed by [56]. This neuro-symbolic recon-
struction yields several benefits, as we will demonstrate in
the next section of our experiments. By simply replacing the
self-attention in a standard Transformer with our HRR-based
self-attention gives the “Hrrformer” that we will use to judge
the utility of this new derivation.

4 Experiments and Results

The proposed Hrrformer is designed as an inexpensive al-
ternative to the self-attention models for longer sequences.
Experiments are performed to validate the effectiveness of
the method in terms of time and space complexity in known
benchmarks.

Our first results will use the Long Range Arena (LRA) [55]
which has become a standard for evaluations in this space.
The primary value of these results is to compare our Hrrformer
with numerous prior works, establishing the broad benefits
of faster time per batch, convergence in 10X fewer epochs,
requiring only a single layer, and competitive overall accu-
racy.

Our second result is running many of the current popular
and state-of-the-art xformers on the real-world classifica-
tion task of the Ember malware detection dataset [4]. This
provides an example where the need to handle ever longer
sequences still exists and demonstrates that Hrrformer is
one of the fastest and most accurate options on a problem
with complex dynamics that exceed that of the LRA. In doing
so we also show that current “SotA” methods like Luna-256
do not generalize as well to new problem spaces, as our
Hrrformer does.

4.1 Long Range Arena

The Long Range Arena (LRA) [55] benchmark comprises
6 diverse tasks covering image, text, math, language, and
spatial modeling under long context scenarios ranging from
1K to 16K. ListOps - task inspects the capability of model-
ing hierarchically structured data in a longer sequence con-
text with mathematical operators MAX, MEAN, MEDIAN, and
SUM MOD enclosed by delimiters. This is a ten-way classi-
fication problem with a maximum sequence length of 2K.
Text — is a byte/character level classification task that uses
IMDB movie review [32] dataset. Character-level language
modeling makes the models reason with compositional un-
segmented data to provide a meaningful result. This is a
binary classification task with a maximum sequence length
of 4K. Retrieval - evaluates the model’s ability to encode
and compress useful for matching and retrieval by modeling
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Table 1. Accuracy results of Hrrformer on Long Range Arena (LRA) benchmark. Our Multi-layer results use the same layer
count (3-6) per task as prior methods. Even using just one layer Hrrformer is highly competitive, and the only method besides
Luna to be a Pareto improvement over the original Transformer. Our method is further advantaged in that it requires 10X

fewer epochs to reach competitive accuracies.

Model ListOps (2k) Text (4k) Retrieval (4k) Image (1k) Path (1k) Path-X(16k) Avg Epochs
Transformer [56] 36.37 64.27 57.46 42.44 71.40 FAIL 54.39 200
Local Attention [55] 15.82 52.98 53.39 41.46 66.63 FAIL 46.06 200
Linear Transformer [22] 16.13 65.90 53.09 42.34 75.30 FAIL 50.55 200
Reformer [24] 37.27 56.10 53.40 38.07 68.50 FAIL 50.67 200
Sparse Transformer [10] 17.07 63.58 59.59 44.24 71.71 FAIL 51.24 200
Sinkhorn Transformer [54] 33.67 61.20 53.83 41.23 67.45 FAIL 51.29 200
Linformer [59] 35.70 53.94 52.27 38.56 76.34 FAIL 51.36 200
Performer [11] 18.01 65.40 53.82 42.77 77.05 FAIL 51.41 200
Synthesizer [53] 36.99 61.68 54.67 41.61 69.45 FAIL 52.88 200
Longformer [6] 35.63 62.85 56.89 42.22 69.71 FAIL 53.46 200
BigBird [63] 36.05 64.02 59.29 40.83 74.87 FAIL 55.01 200
F-Net [27] 35.33 65.11 59.61 38.67 77.78 FAIL 54.42 200
Nystromformer [62] 37.15 65.52 79.56 41.58 70.94 FAIL 58.95 200
Luna-256 [31] 37.98 65.78 79.56 47.86 78.55 FAIL 61.95 200
H-Transformer-1D [65] 49.53 78.69 63.99 46.05 68.78 FAIL 61.41 200
Hrrformer Single-layer 38.86 66.49 75.13 47.90 72.79 FAIL 60.23 20
Hrrformer Multi-layer 38.24 65.90 75.83 48.41 73.17 FAIL 60.31 20

similarity score between two documents. For this task, the
ACL Anthology Network [37] dataset is used in a charac-
ter level setup. This task has a maximum sequence length
of 8K and this is a binary classification task. Image - is
an image classification task of 10 classes that uses grayscale
CIFAR-10 dataset in a sequence of length 3232 = 1024. This
task allows assessing the model’s ability to process discrete
symbols. Pathfinder - task evaluates the model’s perfor-
mance over long-range spatial dependency. This is a binary
classification task that classifies whether two circles are con-
nected by a line which is introduced in [29]. To make the task
even more challenging, the images contain distractor paths.
The images have dimension 32 X 32 which is reshaped into
1024.Path-X is extremely difficult version of pathfinder task
which contains images of dimension 128 X 128 = 16384 with
additional distractor paths. This task determines whether
the same algorithmic proficiency scales up to the longer
sequences.

In Hrrformer, we use the same number of parameters
as mentioned in the LRA benchmark [55] across the tasks.
Global average pooling is applied to the output of the en-
coder sequences and subsequently back to back dense layers
are used with ReLU activation to get the final logits output.
During training, the softmax cross-entropy loss function is
optimized using the Adam optimizer. We use the exponential
decay learning rate with the initial value of 1073, the final
value of 107>, and the decay rate of 0.9. For all the tasks,

Hrrformer is trained for a total of 20 epochs both in the case
of single- and multi-layer which is 10x less than the previous
works. The results in terms of accuracy in all the tasks of the
LRA benchmark are presented in Table 1.1

Ours is one of only two methods that improve accuracy
upon the Transformer and consistently acquired higher per-
formance in all the tasks. All the models listed in Table 1
uses 3 to 6 layers of encoder. We show the performance for
both single and multiple layers. In 3 of the 5 tasks (ListOps,
Text, Image), Hrrformer achieves the second-best results us-
ing only 1 layer of the encoder. For the Image classification
task, it achieves the best results of 48.41% accuracy using
3 layers of the encoder. Moreover, Hrrformer requires 10x
fewer epochs than others to produce comparable and better
results. Overall, the multi-layered Hrrformer produces the
second-best result of 60.31% in the benchmark.

The ability to learn with a single layer aids in both through-
put and memory use. The result is surprising, and in visual-
izing the weight vector W of Equation 5 we can confirm that

!We note that the Pathfinder task as originally reported by [55] uses a “hard”
version of the task, but the code provided defaults to an “easy” version. Most
papers do not make clear which version of the task is evaluated, and the
F-Net authors indicated in correspondence the “easy” version was used.
Luna-256 used the hard version, and other authors have not yet reached
back to us. On the easy version, Hrrformer gets 80.81% in a single-layer and
80.77% in the multi-layer, but we report the hard version in our table and
assume others are using the hard version.
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Sparse Transformer
Synthesizer
Transformer
Performer
Longformer*
BigBird

Sinkhorn Transformer
Linear Transformer
Luna-256
H-Transformer-1D
Local Attention
Linformer
Hrrformer

Hrrformer*

00000000000 O0O

103

Speed (Examples per second)

Figure 1. Performance (y-axis), Speed (x-axis, log-scale) of different xformers, and memory footprint on GPU are illustrated
by the size of the circles. Hrrformer is in the top-right of the graph, with the smallest circle size, indicating it is the fastest and
most memory efficient for training (this does not factor in convergence speed).

Airplane  Automobile Bird Cat Horse Ship Truck

Alwﬂ

Figure 2. Visualization of weight vector W € R1024X1 re-
shaped to 32 x 32, the shape of the original image of the
CIFAR-10 dataset used in the LRA Image classification task.
A single layer Hrrformer is able to learn the 2D structure
from the 1D sequence of the image. This is particularly no-
ticeable in the Airplane, dog, Frog, and Horse images. Note
context sensitive Head activation can be observed comparing
Head 3 for dog vs Frog, where activation occurs for different
pixel intensities indicating the model is not naively activat-
ing for simple color intensity.

a single layer is sufficient to learn the structure. We show
this for the Image task of single-layer Hrrformer in Figure 2.
Here, the weight vector W € R1%24*! js reshaped to 32 x 32,
the shape of the original grayscale images of the CIFAR-10
dataset for visualization. From the figure, it is clear that the
Hrrformer is learning to identify the 2D structure from the
1D sequence of the Image classification task.

Hrrformer’s benefits go beyond accuracy and convergence
speed: it is fast and consumes the least amount of memory
on GPU. Figure 1 compares all the self-attention models in
terms of LRA score, speed (training examples per second),
and memory footprint (size of the circle). LRA score is the
mean accuracy of all the tasks in the LRA benchmark. Speed
and memory footprint is calculated on the byte-level text
classification task. To measure these results, a single NVIDIA
TESLA PH402 32GB GPU is utilized with a fixed batch size
of 16 and a maximum sequence length of 1000. For all the
models 6 layers of the encoder are used. Both single- and
multi-layered Hrrformer are 37X and 7.8x faster than the
Luna-256 [31] which has achieved the highest accuracy in the
LRA benchmark. Hrrformer also consumes the least amount
of memory, taking 76.79% and 55.24% less memory compared
to Luna-256 in the case of single and multi-layered Hrrformer,
respectively.

Hrrformer also reduces the amount of overfitting between
train and test performance. We compare the training and
test accuracy, and amount of overfitting of the Image classi-
fication task to the other self-attention models presented in
LRA benchmark [55] and for which data is available?. Table 2
exhibits that the Hrrformer acquires the best results on the
test set with an 8.45% train/test gap. The learning curves of
all the task is also presented in Figure 4 demonstrating the
lower overfitting nature of the Hrrformer across the tasks.

2We do not have the compute resources to run the other xformers on the
LRA ourselves, in part due to the higher memory use that exceeds our
infrastructure.
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Figure 3. Comparison of Hrrformer with other self-attention models in EMBER malware classification dataset. Hrrformer is
presented in a solid line and achieves the best accuracy, and second fastest run-time. The two prior best models according the
the Long Range Arena H-Transformer-1D and Luna-256 are in the dashed lines, and do not perform as well as the LRA would
have indicated in speed or accuracy. The rest of the models are in the dotted line. This shows the Hrrformer is one of the best

options in benchmarks and real-world tasks.

Table 2. Train and test accuracy of different self-attention
models on the Image classification task. Among all the mod-
els, Hrrformer achieves the best test accuracy with the least
amount of overfitting (lower is better).

Model Train Acc. (%) Test Acc. (%) Overfit (%)
Transformer 69.45 42.44 27.01
Local Attention 63.19 41.46 21.73
Sparse Transformer 66.74 44.24 22.50
Longformer 71.65 42.22 29.43
Linformer 97.23 38.56 58.67
Reformer 68.45 38.07 30.38
Sinkhorn Transformer 69.21 41.23 27.98
Synthesizer 97.31 41.61 55.70
BigBird 71.49 40.83 30.66
Linear Transformer 65.61 42.34 23.27
Performer 73.90 42.77 31.13
Hrrformer 56.86 48.41 8.45
4.2 EMBER

EMBER is a benchmark dataset for the malware classifica-
tion task [4]. The benchmark contains 600K labeled training
samples (300K malicious, 300K benign) and 200K labeled
test samples (100K malicious, 100K benign). The maximum
sequence length of this dataset is over 100M which is not

Accuracy (%)
o
s}
i

==

k= ==n =t *

— Train == Test
# ListOps @ Text * Pathfinder

* Retrieval W Image

10 15 20
Epochs

Figure 4. Learning curves of Hrrformer in the LRA tasks,
training performance are solid lines and test is dashed. Where
prior works required 200 epochs of training, we can see that
20 epochs is sufficient for our Hrrformer. In the Pathfinder,
Retrieval, and ListOps task the single-epoch performance of
our Hrrformer is still highly competitive.

feasible for any of the self-attention models to train with. We
experiment with relatively shorter sequence lengths starting
from T = 256 and doubling up to T = 8192 by truncating the
bytes until this maximum length is reached.

In this benchmark, Hrrformer is compared with Trans-
former [56], H-Transformer-1D [65], Luna-256 [31], Per-
former [11], Linformer [59], and F-Net [27] self-attention
models. In all those models, 8 heads of a single encoder with
256 embedding size and 512 hidden size of the feed-forward
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network are used. Since this is a binary classification task,
the encoder output is mapped into 2 logits output using back-
to-back dense layers with ReLU activation. During training,
the softmax cross-entropy loss function is optimized.

For sequence length 256, the batch size is set to be 256. In
the experiment, as the sequence length doubles, we halved
the batch size to fit the data and the model to the memory
which can be expressed as max(2!°7°¢: 7, 1). This is done
to push other models to the maximum possible length, and
keep the batch size consistent between experiments. Even
after exponentially decaying batch size, we could not fit the
transformer model to the memory for the sequence length
8196. The dropout rate is chosen to be 0.1, the learning rate
is 1073 with an exponential decay rate of 0.85. Each of the
models is trained for a total of 10 epochs in 16 NVIDIA
TESLA PH402 32GB GPUs.

Figure 3 shows the classification accuracy and the execu-
tion time of each of the methods for incremental sequence
length. As the sequence length increases, Hrrformer outper-
forms the rest of the models achieving the highest 90.89%
accuracy for maximum sequence length 8192. In terms of
execution time, F-Net is the only model that is faster than
ours, however, the accuracy of F-Net is 4.53% lagging behind
us. The detailed numeric results are presented in ??. The
execution time for linear time complexity methods seems
quadratic in the figure, this is due to the exponential decay
of the batch size with the increase of sequence length.

Of significant importance to our results is that Luna-256
performs considerably worse than all other options, com-
pared to its top accuracy in the LRA. We hypothesize that
the Ember task requires more complex reasoning and feature
extraction over time and because Luna performs aggressive
compression and approximation of the time component of
the model it suffers in terms of accuracy. Our Hrrformer on
the other hand has consistent behavior across Ember and the
LRA: high accuracy, able to handle longer sequences, and
convergence in few epochs, a requirement for working on
this dataset which is 1 TB in size and is otherwise prohibitive
in its scale.

5 Conclusion

In this paper, we have presented Hrrformer a neuro-symbolic
reconstruction of self-attention. The proposed method is
faster in compute and consumes less memory per layer. We
have tested Hrrformer on known LRA and EMBER bench-
marks. In the LRA benchmark, Hrrformer has achieved the
near state-of-the-art accuracy of 60.23% using a single layer
of an encoder. In terms of speed, it is 37X and 7.8x faster
than the current state-of-the-art in the case of single and
multiple layers, respectively. Additionally, it takes 76.79%
and 55.24% less memory on GPU compared to Luna-256 for
single and multiple layers of Hrrformer. Besides, it converges
10x faster than other self-attention models. In the EMBER
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malware classification dataset, Hrrformer has attained the
highest 90.89% accuracy for a maximum sequence length of
8192 with a significantly faster processing rate. In conclusion,
Hrrformer is =~ 370X faster to train and a single layer of the
encoder is sufficient to learn the structure of the input.
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